JPH11132105A - Exhaust heat distributor and waste heat utilizing system - Google Patents

Exhaust heat distributor and waste heat utilizing system

Info

Publication number
JPH11132105A
JPH11132105A JP9292166A JP29216697A JPH11132105A JP H11132105 A JPH11132105 A JP H11132105A JP 9292166 A JP9292166 A JP 9292166A JP 29216697 A JP29216697 A JP 29216697A JP H11132105 A JPH11132105 A JP H11132105A
Authority
JP
Japan
Prior art keywords
exhaust heat
flow rate
heat
path
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9292166A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
義和 川邉
Ikuo Akamine
育雄 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9292166A priority Critical patent/JPH11132105A/en
Publication of JPH11132105A publication Critical patent/JPH11132105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To form a cogeneration system in a small size, and facilitate maintenance. SOLUTION: A waste heat distributor 101 consists of a pump 111, a temperature flow rate sensor 113, a supplying side header 115 for branching water, rate regulating valves 117a, 117b, a bypass flow rate regulating valve 119, a returning side header 125, a temperature flow rate sensor 121, and a main arithmetic unit for outputting control commands 141, 143, 145 on the basis of a waste heat utilizing information and signals 137, 139 detected by the temperature flow rate sensors 113, 121. Waste heat is distributed according to demand and supply, a temperature of fuel cell is stabilized, and a pump and a circulating passage are simplified. It is thus possible to facilitate to form the fuel cell in a compact size, and it is also possible to reduce the burden of maintenance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池や内燃機
関を用いたコージェネレーションにおいて、排熱の分配
・調整を安定して行う装置と、この排熱分配装置を用い
た排熱利用システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for stably distributing and adjusting exhaust heat in a cogeneration system using a fuel cell or an internal combustion engine, and an exhaust heat utilization system using the exhaust heat distribution apparatus. Things.

【0002】[0002]

【従来の技術】コージェネレーションにおける排熱利用
系は、排熱利用機器を直列あるいは並列に接続し各経路
の流量を調整して行われているが、排熱の供給量は有限
であり必要なだけ利用できるものではない。
2. Description of the Related Art An exhaust heat utilization system in cogeneration is performed by connecting exhaust heat utilization devices in series or in parallel and adjusting the flow rate of each path. However, the supply amount of exhaust heat is finite and required. Not just available.

【0003】燃料電池コージェネでは、発電部を適切な
温度に保って運転する必要があり、その温度は燃料電池
の種類によって異なる。例えば、りん酸型なら190〜
220℃、溶融炭酸塩型なら600〜700℃、固体酸
化物型なら900〜1000℃、固体高分子型なら常温
〜120℃といった温度がそれぞれ運転に適していると
いわれる。
[0003] In a fuel cell cogeneration system, it is necessary to operate the power generation section at an appropriate temperature, and the temperature varies depending on the type of fuel cell. For example, if the phosphoric acid type is 190-
It is said that temperatures of 220 ° C., 600 to 700 ° C. for the molten carbonate type, 900 to 1000 ° C. for the solid oxide type, and room temperature to 120 ° C. for the solid polymer type are suitable for operation.

【0004】内燃機関型のコージェネにおいても、温度
によって機関内の燃料条件が変わり発電効率に影響を及
ぼすため、所定の温度で安定させて運転するのが望まし
い。
[0004] Even in an internal combustion engine type cogeneration, it is desirable to operate stably at a predetermined temperature because the fuel conditions in the engine change depending on the temperature and affect the power generation efficiency.

【0005】燃料電池の発電部を所定の温度に保つため
従来の技術では、特開昭63−174281号公報など
に示される燃料電池発電装置は図7のように、燃料電池
本体1,改質器2a,空気供給装置3,水蒸気分離器4
aと循環ポンプ4bと水量調節弁4cからなる冷却装置
4,再循環ポンプ6aと冷却水再循環流量調節弁6b等
からなる再循環装置6,制御装置7などで構成される。
そして、排熱は水蒸気分離器4aから水蒸気の形で改質
や他の機器に利用される。
In order to keep the power generation section of the fuel cell at a predetermined temperature, in the prior art, a fuel cell power generation apparatus disclosed in Japanese Patent Application Laid-Open No. 63-174281 or the like, as shown in FIG. Device 2a, air supply device 3, steam separator 4
a, a cooling device 4 comprising a circulation pump 4b and a water amount control valve 4c, a recirculation device 6 comprising a recirculation pump 6a, a cooling water recirculation flow rate control valve 6b, and the like, a control device 7, and the like.
The waste heat is used for reforming and other devices in the form of steam from the steam separator 4a.

【0006】特開昭63−174281号公報の燃料電
池発電装置は、燃料電池の冷却水出口側と冷却水入口側
との間に、冷却水の循環系とは独立して冷却水出口側と
冷却水入口側とを液的に結ぶ再循環系を設けることによ
り、燃料電池の温度が負荷の大小にかかわらず所定の高
い温度が保てるようにすることを目的としている。
[0006] The fuel cell power generator disclosed in Japanese Patent Application Laid-Open No. Sho 63-174281 discloses a cooling water outlet side between a cooling water outlet side and a cooling water inlet side of a fuel cell independently of a cooling water circulation system. It is an object of the present invention to provide a recirculation system that fluidly connects the cooling water inlet side to a predetermined high temperature of the fuel cell regardless of the load.

【0007】そして、冷却装置4は燃料電池の冷却部1
c,水蒸気分離器4a,循環ポンプ4b,水量調節弁4
cとを有し、これらが順次液的に結合された循環系をな
している。この冷却装置の一部、即ち燃料電池冷却部1
cの冷却水出入口間には、両者を液的に結ぶように再循
環系5が設けられている。またこの再循環系内には、冷
却部より排出された冷却水の一部を強制的に冷却部1c
の入口側に戻す再循環装置6が設けられている。燃料電
池の負荷の低下に応じて、電池冷却部入口側冷却水流量
は常に流量Wに維持したまま再循環量を増すよう制御装
置7により冷却水再循環流量調節弁6b及び冷却水流量
調節弁4cの弁開度を各々制御することにより、所定の
高温を維持することができる。
The cooling device 4 is a cooling unit 1 for the fuel cell.
c, steam separator 4a, circulation pump 4b, water flow control valve 4
c, which form a circulatory system in which these are sequentially and liquidally combined. A part of this cooling device, that is, the fuel cell cooling unit 1
A recirculation system 5 is provided between the inlet and outlet of the cooling water c so as to fluidly connect the two. In the recirculation system, a part of the cooling water discharged from the cooling unit is forcibly cooled.
A recirculation device 6 is provided for returning to the inlet side of the device. The control device 7 controls the cooling water recirculation flow control valve 6b and the cooling water flow control valve so as to increase the amount of recirculation while maintaining the flow rate of the cooling water on the inlet side of the cell cooling section always at the flow rate W in response to the decrease in the load of the fuel cell. By controlling each of the valve opening degrees 4c, a predetermined high temperature can be maintained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
装置においては燃料電池発電装置事体に2つの水循環系
を持つことになり、装備すべき機器が増加することにな
り小型化には不向きであった。また装備すべき機器の増
加は、水質の汚染をまねきやすく、メンテナンス個所も
多くなりがちであった。
However, in the conventional apparatus, the fuel cell power generator itself has two water circulation systems, which increases the number of equipment to be equipped, and is not suitable for miniaturization. Was. In addition, the increase in equipment to be equipped tends to cause water pollution, and the number of maintenance locations tends to increase.

【0009】さらに、従来の装置では排熱利用系は、排
熱量や排熱利用機器にあわせて別途設計し設置工事を行
うため、排熱利用系を構成するのに労力を要した。
Furthermore, in the conventional apparatus, since the exhaust heat utilization system is separately designed and installed according to the amount of exhaust heat and the exhaust heat utilization equipment, labor is required to construct the exhaust heat utilization system.

【0010】本発明はこのような従来の課題を解決する
ものであり、排熱供給源の小型化が容易で、設置が容易
で、冷却水の汚染を抑えメンテナンス負担が軽く、熱源
の温度を安定に保ちつつ排熱の分配を行うことのできる
排熱分配装置および排熱利用システムの提供を目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, in which the size of the exhaust heat supply source is easy, the installation is easy, the contamination of cooling water is suppressed, the maintenance burden is light, and the temperature of the heat source is reduced. An object of the present invention is to provide an exhaust heat distribution device and an exhaust heat utilization system capable of distributing exhaust heat while maintaining stability.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の排熱分配装置は、熱媒体を循環させるための
ポンプと、熱媒体の送り側の状態を検出する送り側検出
手段と、熱媒体の分岐手段および合流手段と、分岐のの
ち排熱利用機器へ接続する少なくとも1つ以上の経路に
それぞれ設けた流量調整手段と、分岐ののち合流手段に
直結するバイパイス経路と、各々の流量調整手段を制御
する制御手段と、熱媒体の戻り側の状態を検出する戻り
側検出手段を備えたものである。
According to the present invention, there is provided an exhaust heat distribution device comprising: a pump for circulating a heat medium; and a feed-side detecting means for detecting a state of a feed side of the heat medium. A branching means and a joining means of the heat medium, a flow rate adjusting means provided in at least one or more paths connected to the exhaust heat utilization device after the branching, a bi-pipes path directly connected to the joining means after the branching, It is provided with control means for controlling the flow rate adjusting means and return side detection means for detecting the state of the heat medium on the return side.

【0012】上記制御手段によって、排熱利用機器での
排熱需要と送り側検出手段および戻り側検出手段により
検出した熱媒体の状態に基づいて各流量調整手段に指令
を送り、各排熱利用機器およびバイパス経路への熱媒体
の流量配分を調整する。
The control means sends a command to each flow rate adjusting means on the basis of the exhaust heat demand in the exhaust heat utilization equipment and the state of the heat medium detected by the sending side detection means and the return side detection means, and the respective exhaust heat utilization means Adjust the flow distribution of the heat medium to the equipment and the bypass path.

【0013】このようにして、需要と供給に応じて排熱
を分配し排熱供給源の温度を安定させることができ、ポ
ンプおよび循環経路を簡略にすることで排熱供給源の小
型化が容易となり、メンテナンス負担の軽減が図れる。
In this manner, the exhaust heat can be distributed according to the demand and supply, and the temperature of the exhaust heat source can be stabilized, and the size of the exhaust heat source can be reduced by simplifying the pump and the circulation path. It becomes easy and the maintenance burden can be reduced.

【0014】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に排熱供給源と排熱利用機器を接続する
だけで、望みの排熱利用システムを容易に設置すること
ができる。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, it is only necessary to connect the exhaust heat supply source and the exhaust heat utilization equipment to the exhaust heat distribution device having appropriate specifications. In addition, a desired exhaust heat utilization system can be easily installed.

【0015】[0015]

【発明の実施の形態】請求項1に記載の発明は、ポンプ
と、熱媒体の分岐手段と、ポンプと分岐手段の間に送り
側検出手段と、分岐した経路を再び合流させ排熱供給源
へ導く合流手段と、分岐手段から分岐し排熱利用機器へ
接続される各経路上に設けられた流量調整手段と、分岐
手段から分岐し合流手段へ直結するバイパス経路と、バ
イパス経路上に設けられたバイパス流量調整手段と、合
流手段と排熱供給源との間に戻り側検出手段と、排熱需
要と前記送り側検出手段および前記戻り側検出手段の出
力信号とに基づき、前記流量調整手段と前記バイパス流
量調整手段とを制御する制御手段を備えたものである。
According to the first aspect of the present invention, a pump, a heat medium branching means, a feed side detecting means between the pump and the branching means, and a branched path are re-joined to generate an exhaust heat supply source. A flow path adjusting means provided on each path branched from the branching means and connected to the exhaust heat utilization device; a bypass path branched from the branching means and directly connected to the merging means; provided on the bypass path Bypass flow rate adjusting means, a return side detecting means between the merging means and the exhaust heat supply source, and the flow rate adjustment based on exhaust heat demand and output signals of the sending side detecting means and the return side detecting means. And control means for controlling said bypass flow rate adjusting means.

【0016】この構成によれば、需要と供給に応じて排
熱を分配することで排熱供給源の温度を安定させること
ができ、ポンプおよび循環経路を簡略にすることで排熱
供給源の小型化が容易となり、メンテナンス負担の軽減
が図れる。
According to this configuration, the temperature of the exhaust heat source can be stabilized by distributing the exhaust heat according to the demand and supply, and the pump and the circulation path can be simplified to simplify the exhaust heat source. The downsizing becomes easy and the maintenance burden can be reduced.

【0017】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に排熱供給源と排熱利用機器を接続する
だけで、望みの排熱利用システムを容易に設置すること
ができる。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, it is only necessary to connect the exhaust heat supply source and the exhaust heat utilization equipment to the exhaust heat distribution device having appropriate specifications. In addition, a desired exhaust heat utilization system can be easily installed.

【0018】請求項2に記載の発明は、ポンプと、熱媒
体の分岐手段と、ポンプと分岐手段の間に送り側検出手
段と、分岐した経路を再び合流させ排熱供給源へ導く合
流手段と、分岐手段から分岐し排熱利用機器へ接続され
る各経路上に設けられた流量調整手段と、分岐手段から
分岐し合流手段へ直結するバイパス経路と、バイパス経
路上に設けられたバイパス流量調整手段と、分岐手段か
ら分岐した1経路が接続される放熱手段と、分岐手段か
ら放熱手段へ接続される経路上に設けられた放熱器流量
調整手段と、合流手段と排熱供給源との間に戻り側検出
手段と、排熱需要と前記送り側検出手段および前記戻り
側検出手段の出力信号とに基づき、前記流量調整手段と
前記バイパス流量調整手段とを制御する制御手段を備え
たものである。
According to a second aspect of the present invention, there is provided a pump, a heat medium branching means, a feed side detecting means between the pump and the branching means, and a merging means for joining the branched paths again to the exhaust heat supply source. And a flow rate adjusting means provided on each path branched from the branching means and connected to the exhaust heat utilization device; a bypass path branched from the branching means and directly connected to the merging means; and a bypass flow rate provided on the bypass path. An adjusting unit, a radiating unit to which one path branched from the branching unit is connected, a radiator flow adjusting unit provided on a path connected to the radiating unit from the branching unit, a merging unit, and a waste heat supply source. Return side detecting means, and control means for controlling the flow rate adjusting means and the bypass flow rate adjusting means based on exhaust heat demand and output signals of the sending side detecting means and the return side detecting means. It is.

【0019】この構成によれば、需要と供給に応じて排
熱を分配することで排熱供給源の温度を安定させること
ができ、ポンプおよび循環経路を簡略にすることで排熱
供給源の小型化が容易となり、メンテナンス負担の軽減
が図れる。
According to this configuration, the temperature of the exhaust heat supply source can be stabilized by distributing the exhaust heat according to the demand and supply, and the pump and the circulation path can be simplified to simplify the exhaust heat supply source. The downsizing becomes easy and the maintenance burden can be reduced.

【0020】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に排熱供給源と排熱利用機器を接続する
だけで、望みの排熱利用システムを容易に設置すること
ができる。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, it is only necessary to connect the exhaust heat supply source and the exhaust heat utilization equipment to the exhaust heat distribution device having appropriate specifications. In addition, a desired exhaust heat utilization system can be easily installed.

【0021】さらに、放熱手段と放熱器流量調整手段の
付加により、排熱が過剰供給な場合でも安定して排熱を
分配・放出することができる。
Further, by adding the heat radiating means and the radiator flow rate adjusting means, even if the exhaust heat is excessively supplied, the exhaust heat can be stably distributed and discharged.

【0022】請求項3に記載の発明は、ポンプと、熱媒
体の分岐手段と、ポンプと分岐手段の間に送り側検出手
段と、分岐した経路を再び合流させ排熱供給源へ導く合
流手段と、分岐手段から分岐し排熱利用機器へ接続され
る各経路上に設けられた流量調整手段と、各排熱利用機
器と合流手段との間に設けられた経路別検出手段と、分
岐手段から分岐し合流手段へ直結するバイパス経路と、
バイパス経路上に設けられたバイパス流量調整手段と、
合流手段と排熱供給源との間に戻り側検出手段と、排熱
需要と前記送り側検出手段および前記戻り側検出手段の
出力信号とに基づき、前記流量調整手段と前記バイパス
流量調整手段とを制御する制御手段を備えたものであ
る。
According to a third aspect of the present invention, there is provided a pump, a branching means for a heat medium, a feed-side detecting means between the pump and the branching means, and a merging means for joining the branched paths again and leading to a waste heat supply source. A flow control means provided on each path branched from the branch means and connected to the waste heat utilization device; a path-specific detection means provided between each waste heat utilization device and the joining means; A bypass route that branches off from the
Bypass flow rate adjusting means provided on the bypass path;
Return side detecting means between the confluent means and the exhaust heat supply source, based on exhaust heat demand and output signals of the sending side detecting means and the return side detecting means, the flow rate adjusting means and the bypass flow rate adjusting means; Is provided.

【0023】この構成によれば、需要と供給に応じて排
熱を分配することで排熱供給源の温度を安定させること
ができ、ポンプおよび循環経路を簡略にすることで排熱
供給源の小型化が容易となり、メンテナンス負担の軽減
が図れる。
According to this configuration, the temperature of the exhaust heat source can be stabilized by distributing the exhaust heat according to the demand and supply, and the pump and the circulation path can be simplified to simplify the exhaust heat source. The downsizing becomes easy and the maintenance burden can be reduced.

【0024】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に排熱供給源と排熱利用機器を接続する
だけで、望みの排熱利用システムを容易に設置すること
ができる。
Furthermore, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, it is only necessary to connect the exhaust heat supply source and the exhaust heat utilization equipment to an exhaust heat distribution device having appropriate specifications. In addition, a desired exhaust heat utilization system can be easily installed.

【0025】さらに、経路別検出手段の付加により、各
機器での排熱利用量が正確にわかり、各排熱利用機器へ
の排熱分配を高精度に行うことができる。
Further, by adding the path-specific detection means, the amount of waste heat used in each device can be accurately determined, and the exhaust heat can be distributed to each waste heat utilization device with high accuracy.

【0026】請求項4に記載の発明は、ポンプと、熱媒
体の分岐手段と、ポンプと分岐手段の間に送り側検出手
段と、分岐した経路を再び合流させ排熱供給源へ導く合
流手段と、分岐手段から分岐し排熱利用機器へ接続され
る各経路上に設けられた流量調整手段と、各排熱利用機
器と合流手段との間に設けられた経路別検出手段と、分
岐手段から分岐し合流手段へ直結するバイパス経路と、
バイパス経路上に設けられたバイパス流量調整手段と、
分岐手段から分岐した1経路が接続される放熱手段と、
分岐手段から放熱手段へ接続される経路上に設けられた
放熱器流量調整手段と、合流手段と排熱供給源との間に
戻り側検出手段と、排熱需要と前記送り側検出手段およ
び前記戻り側検出手段の出力信号とに基づき、前記流量
調整手段と前記バイパス流量調整手段とを制御する制御
手段を備えたものである。
According to a fourth aspect of the present invention, there is provided a pump, a heat medium branching means, a feed side detecting means between the pump and the branching means, and a merging means for re-merging the branched path and leading to a waste heat supply source. A flow control means provided on each path branched from the branch means and connected to the waste heat utilization device; a path-specific detection means provided between each waste heat utilization device and the joining means; A bypass route that branches off from the
Bypass flow rate adjusting means provided on the bypass path;
Radiating means to which one path branched from the branching means is connected;
A radiator flow adjusting means provided on a path connected to the radiating means from the branch means; a return side detecting means between the merging means and the exhaust heat supply source; an exhaust heat demand and the sending side detecting means; A control means for controlling the flow rate adjusting means and the bypass flow rate adjusting means based on an output signal of the return side detecting means.

【0027】この構成によれば、需要と供給に応じて排
熱を分配することで排熱供給源の温度を安定させること
ができ、ポンプおよび循環経路を簡略にすることで排熱
供給源の小型化が容易となり、メンテナンス負担の軽減
が図れる。
According to this configuration, the temperature of the exhaust heat source can be stabilized by distributing the exhaust heat according to the demand and supply, and the pump and the circulation path can be simplified to simplify the exhaust heat source. The downsizing becomes easy and the maintenance burden can be reduced.

【0028】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に排熱供給源と排熱利用機器を接続する
だけで、望みの排熱利用システムを容易に設置すること
ができる。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, it is only necessary to connect the exhaust heat supply source and the exhaust heat utilization equipment to the exhaust heat distribution device having appropriate specifications. In addition, a desired exhaust heat utilization system can be easily installed.

【0029】さらに、経路別検出手段の付加により、各
機器での排熱利用量が正確にわかり、各排熱利用機器へ
の排熱分配を高精度に行うことができる。
Further, by adding the path-specific detecting means, the amount of waste heat used by each device can be accurately determined, and the exhaust heat can be distributed to each waste heat utilizing device with high accuracy.

【0030】さらに、放熱手段と放熱器流量調整手段の
付加により、排熱が過剰供給な場合でも安定して排熱を
分配・放出することができる。
Further, by adding the heat radiating means and the radiator flow rate adjusting means, even if the exhaust heat is excessively supplied, the exhaust heat can be stably distributed and discharged.

【0031】請求項5に記載の発明は、排熱供給源と、
排熱の分配・調整が可能な排熱分配装置と、熱交換器と
排熱利用機器を備え、排熱供給源と排熱分配装置とを熱
交換器を介して接続したものである。
According to a fifth aspect of the present invention, there is provided an exhaust heat supply source,
An exhaust heat distribution device capable of distributing and adjusting exhaust heat, a heat exchanger and an exhaust heat utilization device are provided, and an exhaust heat supply source and an exhaust heat distribution device are connected via a heat exchanger.

【0032】この構成によれば、接続機器を減らせるこ
とや排熱供給源と排熱利用側で循環媒体が分離されるた
め、循環媒体の汚染を少なくしメンテナンス負担の軽減
が図れる。
According to this configuration, the number of connected devices can be reduced, and the circulating medium is separated on the exhaust heat supply source and the exhaust heat utilization side, so that the contamination of the circulating medium can be reduced and the maintenance burden can be reduced.

【0033】また、排熱供給源と排熱利用側で循環媒体
が分離されることから、それぞれの循環系で循環媒体の
種類を自由に変えることができる。
Further, since the circulating medium is separated between the exhaust heat supply source and the exhaust heat utilization side, the type of the circulating medium can be freely changed in each circulating system.

【0034】加えて、排熱利用機器の数や形態に応じて
排熱分配装置を変更すれば、望みの排熱利用システムを
容易に構成できる。
In addition, if the exhaust heat distribution device is changed according to the number and form of the exhaust heat utilization devices, a desired exhaust heat utilization system can be easily configured.

【0035】さらに、請求項1に記載の排熱分配装置を
用いれば、需要と供給に応じて排熱を分配することで排
熱供給源の温度を安定させることができ、ポンプおよび
循環経路を簡略にすることで排熱供給源の小型化が容易
となる。
Further, by using the exhaust heat distribution device according to the first aspect, it is possible to stabilize the temperature of the exhaust heat supply source by distributing the exhaust heat in accordance with demand and supply, and to provide a pump and a circulation path. The simplification makes it easier to reduce the size of the exhaust heat supply source.

【0036】さらに、請求項2に記載の排熱分配装置を
用いれば、放熱手段と放熱器流量調整手段の付加によ
り、排熱が過剰供給な場合でも安定して排熱を分配・放
出することができる。
Further, if the exhaust heat distribution device according to the second aspect is used, the heat radiation means and the radiator flow rate adjusting means can be added to stably distribute and discharge the exhaust heat even when the exhaust heat is excessively supplied. Can be.

【0037】さらに、請求項3に記載の排熱分配装置を
用いれば、経路別検出手段の付加により、各機器での排
熱利用量が正確にわかり、各排熱利用機器への排熱分配
を高精度に行うことができる。
Furthermore, if the exhaust heat distribution device according to the third aspect is used, the amount of exhaust heat used in each device can be accurately determined by the addition of the detection means for each path, and the exhaust heat distribution to each exhaust heat utilization device can be performed. Can be performed with high accuracy.

【0038】さらに、請求項4に記載の排熱分配装置を
用いれば、経路別検出手段の付加により、各機器での排
熱利用量が正確にわかり、各排熱利用機器への排熱分配
を高精度に行うことができるとともに、放熱手段と放熱
器流量調整手段の付加により、排熱が過剰供給な場合で
も安定して排熱を分配・放出することができる。
Further, if the exhaust heat distribution device according to the fourth aspect is used, the amount of exhaust heat used in each device can be accurately determined by the addition of the detection means for each route, and the exhaust heat distribution to each exhaust heat utilizing device can be performed. Can be performed with high accuracy, and the addition of the heat radiating means and the radiator flow rate adjusting means can stably distribute and discharge the exhaust heat even when the exhaust heat is excessively supplied.

【0039】[0039]

【実施例】以下本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0040】(実施例1)図1に示す様に実施例1にお
いて、本発明の排熱分配装置101は、ポンプ111
と、送り側検出手段に相当する温度流量センサー113
と、循環媒体である水を分岐する送り側ヘッダ115
と、流量調整手段に相当する流量調整弁117a,11
7bと、バイパス流量調整弁119と、戻り側ヘッダー
125と、戻り側検出手段に相当する温度流量センサー
121と制御手段に相当する主演算装置123で構成さ
れている。
(Embodiment 1) As shown in FIG. 1, in Embodiment 1, the exhaust heat distribution device 101 of the present invention includes a pump 111
And a temperature flow sensor 113 corresponding to a sending side detecting means.
And a feed-side header 115 for branching water as a circulating medium.
And flow control valves 117a, 11 corresponding to flow control means.
7b, a bypass flow rate adjusting valve 119, a return side header 125, a temperature flow rate sensor 121 corresponding to a return side detecting means, and a main arithmetic unit 123 corresponding to a control means.

【0041】ポンプと流量・排熱の調整手段を1つにま
とめているので、燃料電池102の排熱系の構成を簡略
化でき、小型化が容易にできる。また、適切な仕様の排
熱分配装置を選択し、燃料電池などの排熱供給源と、温
水パネルや貯湯槽など排熱利用機器を接続するだけで、
望みの排熱利用システムが容易に構成できる。
Since the pump and the flow rate / exhaust heat adjusting means are integrated into one, the configuration of the exhaust system of the fuel cell 102 can be simplified and the size can be easily reduced. In addition, simply select an exhaust heat distribution device with appropriate specifications and connect an exhaust heat supply source such as a fuel cell to a waste heat utilization device such as a hot water panel or hot water tank.
A desired exhaust heat utilization system can be easily configured.

【0042】ポンプ111は温水を、排熱供給源である
固体高分子型の燃料電池102から取り出し、温度流量
センサー113を経て温水を分岐する送り側ヘッダー1
15へ送る。この時、温度流量センサー113では温水
の温度と流量が検出され、その検出信号137が主演算
装置123へ送られる。
The pump 111 takes out hot water from the polymer electrolyte fuel cell 102 as a waste heat supply source, and branches the hot water through the temperature flow sensor 113 into the feed header 1.
Send to 15. At this time, the temperature and flow rate sensor 113 detects the temperature and flow rate of the hot water, and the detection signal 137 is sent to the main processing unit 123.

【0043】送り側ヘッダー115で温水は、流量調整
弁117aを経て排熱利用機器である温水パネル103
aへの経路と、流量調整弁117bを経て排熱利用機器
である貯湯槽103bへの経路と、バイパス流量調整弁
119を経て戻り側ヘッダー125へ戻る経路の3つに
分けられる。流量調整弁117a,117bおよびバイ
パス流量調整弁119は、主演算装置123からの制御
指令141,143,145に従って開度を設定し、温
水パネル103a,貯湯槽103bへの温水流量および
バイパス流量の配分を調整する。
In the header 115 on the feed side, hot water flows through the flow control valve 117a, and the hot water panel 103, which is a waste heat utilization device,
a, a route to the hot water storage tank 103b, which is a waste heat utilization device via the flow rate control valve 117b, and a route to the return side header 125 via the bypass flow rate control valve 119. The flow control valves 117a and 117b and the bypass flow control valve 119 set the opening degree according to the control commands 141, 143 and 145 from the main processing unit 123, and distribute the hot water flow and the bypass flow to the hot water panel 103a and the hot water tank 103b. To adjust.

【0044】3つの経路を流れてきた温水は、戻り側ヘ
ッダー125で再び1つに合流し、温度流量センサー1
21を経て燃料電池102へ戻る。この時、温度流量セ
ンサー121では温水の温度と流量が検出され、その検
出信号139が主演算装置123へ送られる。
The hot water that has flowed through the three paths merges again at the return side header 125, and the temperature flow sensor 1
The process returns to the fuel cell 102 via 21. At this time, the temperature and flow rate of the hot water are detected by the temperature flow sensor 121, and a detection signal 139 thereof is sent to the main processing unit 123.

【0045】主演算装置123は外部機器と通信を行
い、温水パネル103aや貯湯槽103bの排熱利用情
報135を得る。そして、この情報と温度流量センサー
113,121からの検出信号137,139とに基づ
いて各々の制御指令141,143,145を出す。
The main processing unit 123 communicates with an external device to obtain exhaust heat utilization information 135 of the hot water panel 103a and the hot water tank 103b. Then, based on this information and the detection signals 137 and 139 from the temperature and flow sensors 113 and 121, respective control commands 141, 143 and 145 are issued.

【0046】一般に、固体高分子型の燃料電池におい
て、その発電部の温度は常温〜120℃が運転温度とさ
れているが、コージェネとして考えた場合、温水パネル
や貯湯といった排熱の用途を考えると60℃〜90℃が
望ましい。温度が低すぎると排熱の利用効率が低下し、
高すぎると固体高分子膜の加湿に大きなエネルギーを必
要とし発電効率が落ちるためである。
In general, in a polymer electrolyte fuel cell, the operating temperature of the power generation section is from room temperature to 120 ° C. However, when it is considered as a cogeneration system, the use of exhaust heat such as a hot water panel or hot water storage is considered. And 60 ° C to 90 ° C. If the temperature is too low, the efficiency of using waste heat decreases,
If the temperature is too high, a large amount of energy is required to humidify the solid polymer film, and the power generation efficiency is reduced.

【0047】そこで、燃料電池102の発電部の温度を
適切な温度に保つため、発熱量に見合った排熱の利用を
行わなければならない。もし、発電部の温度が低かった
り、発熱量に対して排熱利用量が多い場合には、バイパ
ス流量を増し、温水パネル103a,貯湯槽103bへ
の流量を少なくする。逆に、発電部の温度が高かった
り、発熱量に対して排熱利用量が少ない場合には、バイ
パス流量を減らし、温水パネル103a,貯湯槽103
bへの流量を多くする。
Therefore, in order to keep the temperature of the power generation section of the fuel cell 102 at an appropriate temperature, it is necessary to use exhaust heat corresponding to the amount of heat generated. If the temperature of the power generation unit is low or the amount of waste heat used is large relative to the amount of heat generation, the bypass flow rate is increased, and the flow rates to the hot water panel 103a and the hot water tank 103b are reduced. Conversely, when the temperature of the power generation unit is high or the amount of waste heat used is small relative to the amount of heat generated, the bypass flow rate is reduced, and the hot water panel 103a and the hot water tank 103
Increase the flow rate to b.

【0048】これにより、安定して排熱を分配できるた
め、総合効率の高い運転ができる。実施例中において、
温度流量センサー113および温度流量センサー121
は温水の温度と流量を検出して、燃料電池102の発熱
量と排熱利用量のバランスをとるための情報としてい
た。この方法によれば、排熱の分配を正確に行うだけで
なく、循環系の圧力損失やポンプ111のポンプ性能な
どの経時的変化や異常を推定することができ、信頼性の
向上も望める。
As a result, since the exhaust heat can be stably distributed, the operation can be performed with high overall efficiency. In the examples,
Temperature flow sensor 113 and temperature flow sensor 121
Detected the temperature and flow rate of the hot water, and used the information to balance the amount of heat generated by the fuel cell 102 and the amount of waste heat used. According to this method, it is possible to not only accurately perform the distribution of the exhaust heat, but also to estimate a temporal change or an abnormality such as a pressure loss of the circulation system or the pump performance of the pump 111, and expect improvement in reliability.

【0049】しかし、温水の送り側および戻り側の温度
だけを検出し、それぞれの検出値が所定の温度になるよ
う流量調整弁117a,117bおよびバイパス流量調
整弁119を制御することで発明の目的とする効果を得
ることができる。排熱の分配精度よりも装置のコストを
重視する場合、この方法は特に有効である。
However, an object of the present invention is to detect only the temperature of the feed side and the return side of the hot water and to control the flow rate regulating valves 117a and 117b and the bypass flow rate regulating valve 119 so that the respective detected values become predetermined temperatures. Can be obtained. This method is particularly effective when the cost of the apparatus is more important than the accuracy of distributing the exhaust heat.

【0050】また、送り側の温水流量と戻り側の温水温
度だけを検出する方法や、送り側の温度と戻り側の流量
だけを検出することでも発明の目的とする効果を得るこ
とができる。
Further, the effect of the present invention can be obtained by detecting only the flow rate of the hot water on the feed side and the temperature of the hot water on the return side, or by detecting only the temperature on the feed side and the flow rate on the return side.

【0051】なお実施例において排熱供給源として固体
高分子型の燃料電池を用いたが、リン酸型など他の燃料
電池であっても、内燃機関であっても容易に実施でき
る。
Although a solid polymer fuel cell is used as the exhaust heat supply source in the embodiment, the present invention can be easily applied to other fuel cells such as a phosphoric acid fuel cell and an internal combustion engine.

【0052】(実施例2)図2に示す様に実施例2にお
いて、本発明の排熱分配装置201は、ポンプ211
と、送り側検出手段に相当する温度流量センサー213
と、循環媒体である水を分岐する送り側ヘッダー215
と、流量調整手段に相当する流量調整弁217,217
bと、流量調整手段に相当する流量調整弁227ファン
コイル229と、バイパス流量調整弁219と、戻り側
ヘッダー225と、戻り側検出手段に相当する温度流量
センサー221と制御手段に相当する主演算装置223
で構成されている。
(Embodiment 2) As shown in FIG. 2, in Embodiment 2, the exhaust heat distribution device 201 of the present invention
And a temperature flow sensor 213 corresponding to the sending side detecting means.
And a feed header 215 for branching water as a circulating medium.
And flow control valves 217, 217 corresponding to flow control means.
b, a flow control valve 227 corresponding to a flow control means, a fan coil 229, a bypass flow control valve 219, a return header 225, a temperature flow sensor 221 corresponding to a return detection means, and a main operation corresponding to a control means. Device 223
It is composed of

【0053】ポンプと流量・排熱の調整手段を1つにま
とめているので、燃料電池202の排熱系の構成を簡略
化でき、小型化が容易にできる。また、適切な仕様の排
熱分配装置を選択し、燃料電池などの排熱供給源と、温
水パネルや貯湯槽など排熱利用機器を接続するだけで、
望みの排熱利用システムが容易に構成できる。
Since the pump and the flow rate / exhaust heat adjusting means are integrated into one, the configuration of the exhaust system of the fuel cell 202 can be simplified and the size can be easily reduced. In addition, simply select an exhaust heat distribution device with appropriate specifications and connect an exhaust heat supply source such as a fuel cell to a waste heat utilization device such as a hot water panel or hot water tank.
A desired exhaust heat utilization system can be easily configured.

【0054】ポンプ211は温水を、排熱供給源である
固体高分子型の燃料電池202から取り出し、温度流量
センサー213を経て温水を分岐する送り側ヘッダー2
15へ送る。この時、温度流量センサー213では温水
の温度と流量が検出され、その検出信号237が主演算
装置223へ送られる。
The pump 211 takes out hot water from the polymer electrolyte fuel cell 202 which is a waste heat supply source, and feeds the feed header 2 which branches the hot water through the temperature flow sensor 213.
Send to 15. At this time, the temperature and flow rate of the hot water are detected by the temperature and flow sensor 213, and the detection signal 237 is sent to the main processing unit 223.

【0055】送り側ヘッダー215で温水は、流量調整
弁217aを経て排熱利用機器である温水パネル203
aへの経路と、流量調整弁217bを経て排熱利用機器
である貯湯槽203bへの経路と、流量調整弁227を
経てファンコイル229への経路と、バイパス流量調整
弁219を経て戻り側ヘッダー225へ戻る経路の4つ
に分けられる。流量調整弁217a,217b,227
およびバイパス流量調整弁219は、主演算装置223
からの制御指令241,243,245,247に従っ
て開度を設定し、温水パネル203a,貯湯槽203b
への温水流量と、ファンコイル229の温水量およびバ
イパス流量の配分を調整する。
The hot water in the feed-side header 215 passes through the flow control valve 217a, and the hot water
a, a path to the hot water storage tank 203b, which is a waste heat utilization device, via the flow control valve 217b, a path to the fan coil 229, via the flow control valve 227, and a return header via the bypass flow control valve 219. There are four routes to return to 225. Flow control valves 217a, 217b, 227
And the main body 223
The opening degree is set according to the control commands 241, 243, 245, and 247 from the hot water panel 203a and the hot water tank 203b.
And the distribution of the hot water flow to the fan coil 229 and the distribution of the bypass flow.

【0056】4つの経路を流れてきた温水は、戻り側ヘ
ッダー225で再び1つに合流し、温度流量センサー2
21を経て燃料電池202へ戻る。この時、温度流量セ
ンサー221では温水の温度と流量が検出され、その検
出信号239が主演算装置223へ送られる。
The hot water that has flowed through the four paths merges again at the return header 225, and is returned to the temperature flow sensor 2.
The process returns to the fuel cell 202 via 21. At this time, the temperature and the flow rate of the hot water are detected by the temperature flow sensor 221, and the detection signal 239 is sent to the main processing unit 223.

【0057】主演算装置223は外部機器と通信を行
い、燃料電池202の運転情報や、温水パネル203a
や貯湯槽203bの排熱利用情報235を得る。そし
て、この情報と温度流量センサー213,221からの
検出信号237,239とに基づいて各々の制御指令2
41,243,245,247を出す。
The main processing unit 223 communicates with external devices to operate the fuel cell 202 and obtain information on the hot water panel 203a.
And the exhaust heat utilization information 235 of the hot water storage tank 203b. Then, based on this information and the detection signals 237 and 239 from the temperature and flow sensors 213 and 221, each control command 2
41, 243, 245, 247 are issued.

【0058】一般に、固体高分子型の燃料電池におい
て、その発電部の温度は常温〜120℃が運転温度とさ
れているが、コージェネとして考えた場合、温水パネル
や貯湯といった排熱の用途を考えると60℃〜90℃が
望ましい。温度が低すぎると排熱の利用効率が低下し、
高すぎると固体高分子膜の加湿に大きなエネルギーを必
要とし発電効率が落ちるためである。
In general, in a polymer electrolyte fuel cell, the operating temperature of the power generation section is from room temperature to 120 ° C. However, when it is considered as a cogeneration system, the use of exhaust heat such as a hot water panel or hot water storage is considered. And 60 ° C to 90 ° C. If the temperature is too low, the efficiency of using waste heat decreases,
If the temperature is too high, a large amount of energy is required to humidify the solid polymer film, and the power generation efficiency is reduced.

【0059】そこで、燃料電池202の発電部の温度を
適切な温度に保つため、発熱量に見合った排熱の利用を
行わなければならない。もし、発電部の温度が低かった
り、発熱量に対して排熱利用量が多い場合には、バイパ
ス流量を増し、温水パネル203a,貯湯槽203bへ
の流量を少なくする。逆に、発電部の温度が高かった
り、発熱量に対して排熱利用量が少ない場合には、バイ
パス流量を減らし、温水パネル203a,貯湯槽203
bへの流量を多くする。
Therefore, in order to maintain the temperature of the power generation section of the fuel cell 202 at an appropriate temperature, it is necessary to use the exhaust heat corresponding to the amount of generated heat. If the temperature of the power generation unit is low or the amount of waste heat used is large relative to the amount of generated heat, the bypass flow rate is increased, and the flow rates to the hot water panel 203a and the hot water tank 203b are reduced. Conversely, when the temperature of the power generation unit is high or the amount of waste heat used is small relative to the amount of heat generation, the bypass flow rate is reduced, and the hot water panel 203a and the hot water storage tank 203 are reduced.
Increase the flow rate to b.

【0060】そして、排熱の需要が無く熱が余ってしま
う場合は、ファンコイル229へ適正な量の温水を供給
して放熱を行う。
When there is no demand for exhaust heat and there is excess heat, an appropriate amount of hot water is supplied to the fan coil 229 to release heat.

【0061】これにより、排熱需要が無い場合にも放熱
することができ安定して排熱を分配できるため、総合効
率の高い運転ができる。
As a result, even when there is no demand for exhaust heat, heat can be radiated and the exhaust heat can be distributed stably, so that operation with high overall efficiency can be performed.

【0062】実施例中において、温度流量センサー21
3および温度流量センサー221は温水の温度と流量を
検出して、燃料電池202の発熱量と排熱利用量のバラ
ンスをとるための情報としていた。この方法によれば、
排熱の分配を正確に行うだけでなく、循環系の圧力損失
やポンプ211のポンプ性能などの経時的変化や異常を
推定することができ、信頼性の向上も望める。
In the embodiment, the temperature flow sensor 21
3 and the temperature flow sensor 221 detect the temperature and flow rate of the hot water, and use the information as information for balancing the heat generation amount of the fuel cell 202 and the waste heat utilization amount. According to this method,
In addition to accurately performing the distribution of the exhaust heat, it is possible to estimate a temporal change or an abnormality such as a pressure loss of the circulating system and a pump performance of the pump 211, so that an improvement in reliability can be expected.

【0063】しかし、温水の送り側および戻り側の温度
だけを検出し、それぞれの検出値が所定の温度になるよ
う流量調整弁217a,217bおよびバイパス流量調
整弁219を制御することで発明の目的とする効果を得
ることができる。排熱の分配精度よりも装置のコストを
重視する場合、この方法は特に有効である。
However, an object of the present invention is to detect only the temperature of the supply side and the return side of the hot water and control the flow rate regulating valves 217a, 217b and the bypass flow rate regulating valve 219 so that the respective detected values become predetermined temperatures. Can be obtained. This method is particularly effective when the cost of the apparatus is more important than the accuracy of distributing the exhaust heat.

【0064】また、送り側の温水流量と戻り側の温水温
度だけを検出する方法や、送り側の温度と戻り側の流量
だけを検出することでも発明の目的とする効果を得るこ
とができる。
Further, the effects of the present invention can be obtained by detecting only the flow rate of the hot water on the feed side and the temperature of the hot water on the return side, or by detecting only the temperature on the feed side and the flow rate on the return side.

【0065】なお実施例において排熱供給源として固体
高分子型の燃料電池を用いたが、リン酸型など他の燃料
電池であっても、内燃機関であっても容易に実施でき
る。
Although a solid polymer fuel cell is used as an exhaust heat supply source in the embodiment, the present invention can be easily applied to other fuel cells such as a phosphoric acid fuel cell and an internal combustion engine.

【0066】(実施例3)図3に示す様に実施例3にお
いて、本発明の排熱分配装置301は、ポンプ311
と、送り側検出手段に相当する温度流量センサー313
と、循環媒体である水を分岐する送り側ヘッダー315
と、流量調整手段に相当する流量調整弁317a,31
7bと、経路別検出手段に相当する温度流量センサー3
31a,331bと、バイパス流量調整弁319と、戻
り側ヘッダー325と、戻り側検出手段に相当する温度
流量センサー321と制御手段に相当する主演算装置3
23で構成されている。
(Embodiment 3) As shown in FIG. 3, in Embodiment 3, the exhaust heat distribution device 301 of the present invention comprises a pump 311
And a temperature flow sensor 313 corresponding to a sending side detecting unit.
And a feed header 315 for branching water as a circulating medium.
And flow control valves 317a and 317 corresponding to flow control means.
7b and a temperature flow sensor 3 corresponding to a path-specific detecting means
31a and 331b, a bypass flow control valve 319, a return header 325, a temperature flow sensor 321 corresponding to a return detection unit, and a main processing unit 3 corresponding to a control unit.
23.

【0067】ポンプと流量・排熱の調整手段を1つにま
とめているので、燃料電池302の排熱系の構成を簡略
化でき、小型化が容易にできる。また、適切な仕様の排
熱分配装置を選択し、燃料電池などの排熱供給源と、温
水パネルや貯湯槽など排熱利用機器を接続するだけで、
望みの排熱利用システムが容易に構成できる。
Since the pump and the flow rate / exhaust heat adjusting means are integrated into one, the configuration of the exhaust system of the fuel cell 302 can be simplified and the size can be easily reduced. In addition, simply select an exhaust heat distribution device with appropriate specifications and connect an exhaust heat supply source such as a fuel cell to a waste heat utilization device such as a hot water panel or hot water tank.
A desired exhaust heat utilization system can be easily configured.

【0068】ポンプ311は温水を、排熱供給源である
固体高分子型の燃料電池302から取り出し、温度流量
センサー313を経て温水を分岐する送り側ヘッダー3
15へ送る。この時、温度流量センサー313では温水
の温度と流量が検出され、その検出信号337が主演算
装置323へ送られる。
The pump 311 takes out hot water from the polymer electrolyte fuel cell 302 which is an exhaust heat supply source, and branches the hot water through the temperature flow sensor 313 into the feed header 3.
Send to 15. At this time, the temperature and flow rate of the hot water are detected by the temperature and flow sensor 313, and the detection signal 337 is sent to the main arithmetic unit 323.

【0069】送り側ヘッダー315で温水は、流量調整
弁317aを経て排熱利用機器である温水パネル303
aへの経路と、流量調整弁317bを経て排熱利用機器
である貯湯槽303bへの経路と、バイパス流量調整弁
319を経て戻り側ヘッダー325へ戻る経路の3つに
分けられる。流量調整弁317a,317bおよびバイ
パス流量調整弁319は、主演算装置323からの制御
指令341,343,345に従って開度を設定し、温
水パネル303a,貯湯槽303bへの温水流量および
バイパス流量の配分を調整する。
The hot water in the feed-side header 315 passes through the flow control valve 317a and passes through the hot water panel 303, which is a waste heat utilization device.
a, a path to the hot water storage tank 303b, which is a waste heat utilization device via the flow rate control valve 317b, and a path to the return side header 325 via the bypass flow rate control valve 319. The flow rate adjusting valves 317a, 317b and the bypass flow rate adjusting valve 319 set the opening in accordance with the control commands 341, 343, 345 from the main processing unit 323, and distribute the hot water flow rate and the bypass flow rate to the hot water panel 303a and the hot water tank 303b. To adjust.

【0070】温水パネル303a,貯湯槽303bを出
た温水は、それぞれ温度流量センサー331a,331
bを経て戻り側ヘッダー325へ送られる。この時、温
度流量センサー331aが温度パネル303aを出た後
の温水温度および流量を、温度流量センサー331bが
貯湯槽303bを出た後の温水温度および流量を検出し
検出信号333a,333bが主演算装置323へ送ら
れる。
The hot water flowing out of the hot water panel 303a and the hot water tank 303b is supplied to the temperature flow sensors 331a and 331, respectively.
b to the return header 325. At this time, the temperature and flow rate sensor 331a detects the temperature and flow rate of the hot water after exiting the temperature panel 303a, and the temperature and flow rate sensor 331b detects the temperature and flow rate of the hot water after exiting the hot water tank 303b, and the detection signals 333a and 333b are the main calculations. Sent to the device 323.

【0071】3つの経路を流れてきた温水は、戻り側ヘ
ッダー325で再び1つに合流し、温度流量センサー3
21を経て燃料電池302へ戻る。この時、温度流量セ
ンサー321では温水の温度と流量が検出され、その検
出信号339が主演算装置323へ送られる。
The hot water flowing through the three paths joins again at the return side header 325, and the temperature flow sensor 3
The process returns to the fuel cell 302 via 21. At this time, the temperature and flow rate of the hot water are detected by the temperature and flow rate sensor 321, and the detection signal 339 is sent to the main arithmetic unit 323.

【0072】主演算装置323は外部機器と通信を行
い、燃料電池302の運転情報や、温水パネル303a
や貯湯槽303bの排熱需要情報335を得る。そし
て、この情報と温度流量センサー313,321からの
検出信号337,339,温度流量センサー331a,
331bからの検出信号333a,333bに基づいて
各々の制御指令341,343,345を出す。
The main processing unit 323 communicates with external devices, and operates the fuel cell 302 and the hot water panel 303a.
And the exhaust heat demand information 335 of the hot water storage tank 303b. Then, this information and the detection signals 337 and 339 from the temperature flow sensors 313 and 321, the temperature flow sensor 331 a,
The control commands 341, 343, and 345 are issued based on the detection signals 333 a and 333 b from the 331 b.

【0073】一般に、固体高分子型の燃料電池におい
て、その発電部の温度は常温〜120℃が運転温度とさ
れているが、コージェネとして考えた場合、温水パネル
や貯湯といった排熱の用途を考えると60℃〜90℃が
望ましい。温度が低すぎると排熱の利用効率が低下し、
高すぎると固体高分子膜の加湿に大きなエネルギーを必
要とし発電効率が落ちるためである。
Generally, in a polymer electrolyte fuel cell, the operating temperature of the power generation section is from room temperature to 120 ° C., but when it is considered as a cogeneration, it is considered that the waste heat is used as a hot water panel or hot water storage. And 60 ° C to 90 ° C. If the temperature is too low, the efficiency of using waste heat decreases,
If the temperature is too high, a large amount of energy is required to humidify the solid polymer film, and the power generation efficiency is reduced.

【0074】そこで、燃料電池302の発電部の温度を
適切な温度に保つため、発熱量に見合った排熱の利用を
行わなければならない。もし、発電部の温度が低かった
り、発熱量に対して排熱利用量が多い場合には、バイパ
ス流量を増し、温水パネル303a,貯湯槽303bへ
の流量を少なくする。逆に、発電部の温度が高かった
り、発熱量に対して排熱利用量が少ない場合には、バイ
パス流量を減らし、温水パネル303a,貯湯槽303
bへの流量を多くする。
Therefore, in order to keep the temperature of the power generation section of the fuel cell 302 at an appropriate temperature, it is necessary to use exhaust heat corresponding to the amount of heat generated. If the temperature of the power generation unit is low or the amount of waste heat used is large relative to the amount of generated heat, the bypass flow rate is increased, and the flow rates to the hot water panel 303a and the hot water tank 303b are reduced. Conversely, when the temperature of the power generation unit is high or the amount of waste heat used is small relative to the amount of heat generation, the bypass flow rate is reduced, and the hot water panel 303a and the hot water tank 303
Increase the flow rate to b.

【0075】さらに、温度流量センサー331a,33
1bが検出した温水温度および流量から、温水パネル3
03a,貯湯槽303bにおける排熱利用量をそれぞれ
計算することができ、より正確な排熱の分配を行うこと
ができる。
Further, the temperature and flow sensors 331a, 33
From the hot water temperature and flow rate detected by 1b, the hot water panel 3
03a and the amount of waste heat used in the hot water storage tank 303b can be calculated, respectively, and more accurate distribution of waste heat can be performed.

【0076】これにより、高い分配精度で安定して排熱
を分配できるため、総合効率の高い運転ができる。
As a result, since the exhaust heat can be stably distributed with high distribution accuracy, the operation can be performed with high overall efficiency.

【0077】実施例中において、温度流量センサー31
3および温度流量センサー321は温水の温度と流量を
検出して、燃料電池302の発熱量と排熱利用量のバラ
ンスをとるための情報としていた。この方法によれば、
排熱の分配を正確に行うだけでなく、循環系の圧力損失
やポンプ311のポンプ性能などの経時的変化や異常を
推定することができ、信頼性の向上も望める。
In the embodiment, the temperature flow sensor 31
3 and the temperature flow sensor 321 detect the temperature and flow rate of the hot water, and use the information as information for balancing the heat generation amount and the exhaust heat utilization amount of the fuel cell 302. According to this method,
In addition to accurately performing the distribution of the exhaust heat, it is possible to estimate a temporal change or abnormality such as a pressure loss of the circulating system and a pump performance of the pump 311, and it is possible to expect an improvement in reliability.

【0078】しかし、温水の送り側および戻り側の温度
だけを検出し、それぞれの検出値が所定の温度になるよ
う流量調整弁317a,317bおよびバイパス流量調
整弁319を制御することで発明の目的とする効果を得
ることができる。排熱の分配精度よりも装置のコストを
重視する場合、この方法は特に有効である。
However, the object of the present invention is to detect only the temperature of the feed side and the return side of the hot water and control the flow regulating valves 317a and 317b and the bypass flow regulating valve 319 so that the respective detected values become the predetermined temperatures. Can be obtained. This method is particularly effective when the cost of the apparatus is more important than the accuracy of distributing the exhaust heat.

【0079】また、送り側の温水流量と戻り側の温水温
度だけを検出する方法や、送り側の温度と戻り側の流量
だけを検出することでも発明の目的とする効果を得るこ
とができる。
Further, the effect aimed at by the present invention can be obtained by detecting only the flow rate of hot water on the feed side and the temperature of hot water on the return side, or by detecting only the temperature on the feed side and the flow rate on the return side.

【0080】同様に温度流量センサー331a,331
bについても、温度だけを検出し、流量は流量調整弁3
17a,317bおよびバイパス流量調整弁319の指
令信号値から推定する方法などが可能である。
Similarly, temperature flow sensors 331a, 331
As for b, only the temperature is detected, and the flow rate is determined by the flow control valve 3
A method of estimating from the command signal values of the bypass flow rate adjustment valve 319 and the bypass flow rate adjustment valve 319 is possible.

【0081】なお実施例において排熱供給源として固体
高分子型の燃料電池を用いたが、リン酸型など他の燃料
電池であっても、内燃機関であっても容易に実施でき
る。
Although a solid polymer fuel cell is used as a waste heat supply source in the embodiment, the present invention can be easily applied to other fuel cells such as a phosphoric acid fuel cell and an internal combustion engine.

【0082】(実施例4)図4に示す様に実施例4にお
いて、本発明の排熱分配装置401は、ポンプ411
と、送り側検出手段に相当する温度流量センサー413
と、循環媒体である水を分岐する送り側ヘッダ415
と、流量調整手段に相当する流量調整弁417a,41
7bと、経路別検出手段に相当する温度流量センサー4
31a,431bと、流量調整手段に相当する流量調整
弁427ファンコイル429と、バイパス流量調整弁4
19と、戻り側ヘッダー425と、戻り側検出手段に相
当する温度流量センサー421と制御手段に相当する主
演算装置423で構成されている。
(Embodiment 4) As shown in FIG. 4, in Embodiment 4, the exhaust heat distribution device 401 of the present invention includes a pump 411.
And a temperature flow sensor 413 corresponding to a sending side detecting unit.
And a feed header 415 for branching water as a circulating medium.
And flow control valves 417a, 41 corresponding to flow control means.
7b and a temperature flow sensor 4 corresponding to a path-specific detecting means
31a and 431b, a flow control valve 427 corresponding to a flow control means, a fan coil 429, and a bypass flow control valve 4
19, a return side header 425, a temperature flow sensor 421 corresponding to the return side detecting means, and a main processing unit 423 corresponding to the control means.

【0083】ポンプと流量・排熱の調整手段を1つにま
とめているので、燃料電池402の排熱系の構成を簡略
化でき、小型化が容易にできる。また、適切な仕様の排
熱分配装置を選択し、燃料電池などの排熱供給源と、温
水パネルや貯湯槽など排熱利用機器を接続するだけで、
望みの排熱利用システムが容易に構成できる。
Since the pump and the flow rate / exhaust heat adjusting means are combined into one, the structure of the exhaust heat system of the fuel cell 402 can be simplified and the size can be easily reduced. In addition, simply select an exhaust heat distribution device with appropriate specifications and connect an exhaust heat supply source such as a fuel cell to a waste heat utilization device such as a hot water panel or hot water tank.
A desired exhaust heat utilization system can be easily configured.

【0084】ポンプ411は温水を、排熱供給源である
固体高分子型の燃料電池402から取り出し、温度流量
センサー413を経て温水を分岐する送り側ヘッダー4
15へ送る。この時、温度流量センサー413では温水
の温度と流量が検出され、その検出信号437が主演算
装置423へ送られる。
The pump 411 takes out hot water from the polymer electrolyte fuel cell 402 which is a waste heat supply source, and branches the hot water via the temperature flow sensor 413 into the feed header 4.
Send to 15. At this time, the temperature and flow rate sensor 413 detects the temperature and flow rate of the hot water, and the detection signal 437 is sent to the main processing unit 423.

【0085】送り側ヘッダー415で温水は、流量調整
弁417aを経て排熱利用機器である温水パネル403
aへの経路と、流量調整弁417bを経て排熱利用機器
である貯湯槽403bへの経路と、流量調整弁427を
経てファンコイル429への経路と、バイパス流量調整
弁419を経て戻り側ヘッダー425へ戻る経路の4つ
に分けられる。流量調整弁417a,417b,427
およびバイパス流量調整弁419は、主演算装置423
からの制御指令441,443,445,447に従っ
て開度を設定し、温度パネル403a,貯湯槽403b
への温水流量と、ファンコイル429への温水量および
バイパス流量の配分を調整する。
The hot water in the feed-side header 415 passes through the flow control valve 417a, and flows through the hot water panel 403, which is a waste heat utilization device.
a, a path to the hot water storage tank 403b, which is a waste heat utilization device, via the flow rate control valve 417b, a path to the fan coil 429, via the flow rate control valve 427, and a return header via the bypass flow rate control valve 419. 425 is divided into four routes. Flow control valves 417a, 417b, 427
And the main flow control device 423
The opening degree is set according to the control commands 441, 443, 445, 447 from the temperature panel 403a and the hot water tank 403b.
And the distribution of the amount of hot water to the fan coil 429 and the distribution of the bypass flow rate.

【0086】温水パネル403a,貯湯槽403bを出
た温水は、それぞれ温度流量センサー431a,431
bを経て戻り側ヘッダー425へ送られる。この時、温
度流量センサー431aが温水パネル403aを出た後
の温水温度および流量を、温度流量センサー431bが
貯湯槽403bを出た後の温水温度および流量を検出し
検出信号433a,433bが主演算装置423へ送ら
れる。
Hot water exiting the hot water panel 403a and the hot water storage tank 403b is supplied to the temperature flow sensors 431a and 431, respectively.
b to the return header 425. At this time, the temperature and flow rate sensor 431a detects the temperature and flow rate of the hot water after exiting the hot water panel 403a, and the temperature and flow rate sensor 431b detects the temperature and flow rate of the hot water after exiting the hot water tank 403b, and the detection signals 433a and 433b are the main calculations. It is sent to the device 423.

【0087】4つの経路を流れてきた温水は、戻り側ヘ
ッダー425で再び1つに合流し、温度流量センサー4
21を経て燃料電池402へ戻る。この時、温度流量セ
ンサー421では温水の温度と流量が検出され、その検
出信号439が主演算装置423へ送られる。
The hot water that has flowed through the four paths merges again at the return header 425,
The process returns to the fuel cell 402 via 21. At this time, the temperature and flow rate of the hot water are detected by the temperature and flow rate sensor 421, and the detection signal 439 is sent to the main processing unit 423.

【0088】主演算装置423は外部機器と通信を行
い、燃料電池402の運転情報や、温水パネル403a
や貯湯槽403bの排熱利用情報435を得る。そし
て、この情報と温度流量センサー413,421,43
1a,431bからの検出信号437,439,433
a,433bとに基づいて各々の制御指令441,44
3,445,447を出す。
The main processing unit 423 communicates with external devices to operate the fuel cell 402 and the hot water panel 403a.
And the exhaust heat utilization information 435 of the hot water storage tank 403b. Then, this information and the temperature and flow rate sensors 413, 421, 43
Detection signals 437, 439, 433 from 1a, 431b
a, 433b, and the respective control commands 441, 44
Issue 3,445,447.

【0089】一般に、固体高分子型の燃料電池におい
て、その発電部の温度は常温〜120℃が運転温度とさ
れているが、コージェネとして考えた場合、温水パネル
や貯湯といった排熱の用途を考えると60℃〜90℃が
望ましい。温度が低すぎると排熱の利用効率が低下し、
高すぎると固体高分子膜の加湿に大きなエネルギーを必
要とし発電効率が落ちるためである。
Generally, in a polymer electrolyte fuel cell, the operating temperature of the power generation section is from room temperature to 120 ° C. However, when it is considered as a cogeneration system, the use of exhaust heat such as a hot water panel or hot water storage is considered. And 60 ° C to 90 ° C. If the temperature is too low, the efficiency of using waste heat decreases,
If the temperature is too high, a large amount of energy is required to humidify the solid polymer film, and the power generation efficiency is reduced.

【0090】そこで、燃料電池402の発電部の温度を
適切な温度に保つため、発熱量に見合った排熱の利用を
行わなければならない。もし、発電部の温度が低かった
り、発熱量に対して排熱利用量が多い場合には、バイパ
ス流量を増し、温水パネル403a,貯湯槽403bへ
の流量を少なくする。逆に、発電部の温度が高かった
り、発熱量に対して排熱利用量が少ない場合には、バイ
パス流量を減らし、温水パネル403a,貯湯槽403
bへの流量を多くする。
Therefore, in order to keep the temperature of the power generation section of the fuel cell 402 at an appropriate temperature, it is necessary to use exhaust heat corresponding to the amount of generated heat. If the temperature of the power generation unit is low or the amount of waste heat used is large relative to the amount of generated heat, the bypass flow rate is increased, and the flow rates to the hot water panel 403a and the hot water tank 403b are reduced. Conversely, when the temperature of the power generation unit is high or the amount of waste heat used is small relative to the amount of heat generated, the bypass flow rate is reduced, and the hot water panel 403a and the hot water tank 403 are used.
Increase the flow rate to b.

【0091】そして、排熱の需要が無く熱が余ってしま
う場合は、ファンコイル429へ適正な量の温水を供給
して放熱を行う。
Then, when there is no demand for exhaust heat and there is excess heat, an appropriate amount of hot water is supplied to the fan coil 429 to radiate heat.

【0092】さらに、温度流量センサー431a,43
1bが検出した温水温度および流量から、温水パネル4
03a,貯湯槽403bにおける排熱利用量をそれぞれ
計算することができ、より正確な排熱の分配を行うこと
ができる。
Further, the temperature and flow sensors 431a, 43
From the hot water temperature and flow rate detected by 1b, the hot water panel 4
03a and the amount of exhaust heat used in the hot water storage tank 403b can be calculated respectively, and more accurate exhaust heat distribution can be performed.

【0093】これにより、排熱需要が無い場合にも放熱
することができ、高い分配精度で安定して排熱を分配で
きるため、総合効率の高い運転ができる。
As a result, even when there is no demand for exhaust heat, heat can be dissipated, and the exhaust heat can be stably distributed with high distribution accuracy, so that operation with high overall efficiency can be performed.

【0094】実施例中において、温度流量センサー41
3および温度流量センサー421は温水の温度と流量を
検出して、燃料電池402の発熱量と排熱利用量のバラ
ンスをとるための情報としていた。この方法によれば、
排熱の分配を正確に行うだけでなく、循環系の圧力損失
やポンプ411のポンプ性能などの経時的変化や異常を
推定することができ、信頼性の向上も望める。
In the embodiment, the temperature flow sensor 41
3 and the temperature / flow rate sensor 421 detect the temperature and flow rate of the hot water, and use it as information for balancing the calorific value of the fuel cell 402 and the amount of waste heat used. According to this method,
In addition to accurately performing the distribution of the exhaust heat, it is possible to estimate a temporal change or an abnormality such as a pressure loss of the circulating system or the pump performance of the pump 411, so that improvement in reliability can be expected.

【0095】しかし、温水の送り側および戻り側の温度
だけを検出し、それぞれの検出値が所定の温度になるよ
う流量調整弁417a,417bおよびバイパス流量調
整弁419を制御することで発明の目的とする効果を得
ることができる。排熱の分配精度よりも装置のコストを
重視する場合、この方法は特に有効である。
However, the object of the present invention is to detect only the temperature of the sending side and the returning side of the hot water and control the flow rate adjusting valves 417a and 417b and the bypass flow rate adjusting valve 419 so that the respective detected values become predetermined temperatures. Can be obtained. This method is particularly effective when the cost of the apparatus is more important than the accuracy of distributing the exhaust heat.

【0096】また、送り側の温水流量と戻り側の温水温
度だけを検出する方法や、送り側の温度と戻り側の流量
だけを検出することでも発明の目的とする効果を得るこ
とができる。
[0096] Further, the effect of the present invention can be obtained by detecting only the flow rate of the hot water on the feed side and the temperature of the hot water on the return side, or by detecting only the temperature on the feed side and the flow rate on the return side.

【0097】同様に温度流量センサー431a,431
bについても、温度だけを検出し、流量は流量調整弁4
17a,417bおよびバイパス流量調整弁419の指
令信号値から推定する方法などが可能である。
Similarly, temperature flow sensors 431a, 431
For b, only the temperature is detected and the flow rate is
For example, a method of estimating from the command signal values of the bypass flow rate adjusting valve 419 and the bypass flow rate adjusting valve 419 is possible.

【0098】なお実施例において排熱供給源として固体
高分子型の燃料電池を用いたが、リン酸型など他の燃料
電池であっても、内燃機関であっても容易に実施でき
る。
Although the solid polymer fuel cell is used as the exhaust heat supply source in the embodiment, the present invention can be easily applied to other fuel cells such as a phosphoric acid fuel cell and an internal combustion engine.

【0099】(実施例5)図5に示す様に実施例5にお
いて、本発明の排熱利用システム551は、排熱供給源
に相当する固体高分子型の燃料電池本体553と、電池
本体側のポンプ555と、熱交換器557と排熱分配装
置501で構成されている。
(Embodiment 5) As shown in FIG. 5, in Embodiment 5, an exhaust heat utilization system 551 of the present invention comprises a polymer electrolyte fuel cell main body 553 corresponding to an exhaust heat supply source and a battery main body side. 555, a heat exchanger 557, and an exhaust heat distribution device 501.

【0100】図5のように排熱分配装置501を燃料電
池502の中に設けることも可能で、用途に合わせて異
仕様の排熱分配装置を変更することで、燃料電池502
のバリエーションを簡単に増やせる。
The exhaust heat distribution device 501 can be provided in the fuel cell 502 as shown in FIG. 5, and by changing the exhaust heat distribution device of different specifications according to the application, the fuel cell 502
Can be easily increased.

【0101】熱交換器557を挟んで、燃料電池本体側
ではポンプ555により、燃料電池本体553から温度
上昇した冷却水を取り出し熱交換器557へ供給する。
熱交換器557で冷却水と排熱分配装置501から送ら
れた熱交換水との間で熱交換が行われた後、温度の下が
った冷却水が燃料電池本体553へと戻る。
On the fuel cell main body side with the heat exchanger 557 interposed therebetween, the pump 555 takes out cooling water whose temperature has risen from the fuel cell main body 553 and supplies it to the heat exchanger 557.
After heat exchange is performed between the cooling water and the heat exchange water sent from the exhaust heat distribution device 501 in the heat exchanger 557, the cooled water whose temperature has dropped returns to the fuel cell main body 553.

【0102】排熱分配装置501の側では、熱交換器5
57で温度上昇し温水となった熱交換水を受け取り、排
熱利用装置である温水パネル503aおよび貯湯槽50
3bへ、温水を送る。この時、温水パネル503aおよ
び貯湯槽503bへ送られる温水の流量は、それぞれの
機器の排熱需要に応じて、なおかつ供給された排熱をち
ょうど使い切るように排熱分配装置501により分配さ
れる。
On the side of the exhaust heat distribution device 501, the heat exchanger 5
The heat-exchanged water, which has been heated at 57 and becomes hot water, is received, and the hot water panel 503a and the hot water storage tank 50 serving as the exhaust heat utilization device
Send warm water to 3b. At this time, the flow rate of the hot water sent to the hot water panel 503a and the hot water storage tank 503b is distributed by the exhaust heat distribution device 501 in accordance with the exhaust heat demand of each device and so that the supplied exhaust heat is used up.

【0103】一般に、固体高分子型の燃料電池におい
て、その発電部の温度は常温〜120℃が運転温度とさ
れているが、コージェネとして考えた場合、温水パネル
や貯湯といった排熱の用途を考えると60℃〜90℃が
望ましい。温度が低すぎると排熱の利用効率が低下し、
高すぎると固体高分子膜の加湿に大きなエネルギーを必
要とし発電効率が落ちるためである。
In general, in a polymer electrolyte fuel cell, the operating temperature of the power generation section is from room temperature to 120 ° C. However, when it is considered as a cogeneration system, the use of exhaust heat such as a hot water panel or hot water storage is considered. And 60 ° C to 90 ° C. If the temperature is too low, the efficiency of using waste heat decreases,
If the temperature is too high, a large amount of energy is required to humidify the solid polymer film, and the power generation efficiency is reduced.

【0104】本発明においては、排熱分配装置501の
働きにより、燃料電池本体553の温度は概略一定に保
たれ、総合エネルギー効率の高いコージェネシステムを
得ることができる。
In the present invention, the temperature of the fuel cell main body 553 is kept substantially constant by the operation of the exhaust heat distribution device 501, and a cogeneration system with high overall energy efficiency can be obtained.

【0105】ここで、排熱分配装置501に実施例1〜
4のいずれかの排熱分配装置を用いれば、それぞれの排
熱分配装置が持つ効果を得られる。
Here, the first to fifth embodiments are applied to the exhaust heat distribution device 501.
If any one of the exhaust heat distribution devices is used, the effect of each exhaust heat distribution device can be obtained.

【0106】実施例1の排熱分配装置を用いれば、需要
と供給に応じて排熱を分配し燃料電池本体553の温度
を安定させることができ、ポンプおよび循環経路を簡略
にすることで燃料電池本体553をコンパクトにまとめ
ることができる。
By using the exhaust heat distribution device of the first embodiment, the exhaust heat can be distributed according to the demand and supply, and the temperature of the fuel cell main body 553 can be stabilized. Battery body 553 can be compactly assembled.

【0107】実施例2の排熱分配装置を用いれば、ファ
ンコイルとファンコイルへの温水流量を調整する流量調
整弁により、排熱が過剰供給な場合でも安定して排熱を
分配・放出することができる。
When the exhaust heat distribution device of the second embodiment is used, the fan coil and the flow control valve for adjusting the flow rate of hot water to the fan coil can stably distribute and discharge the exhaust heat even when the exhaust heat is excessively supplied. be able to.

【0108】実施例3の排熱分配装置を用いれば、温水
パネル503aおよび給湯器503bから戻ってきた温
水の温度および流量を検地する温度流量センサーを設け
ることで、各機器での排熱利用量が正確にわかり、温水
パネル503aおよび給湯器503bへの排熱分配を高
精度に行うことができる。
If the exhaust heat distribution device of the third embodiment is used, by providing a temperature and flow rate sensor for detecting the temperature and flow rate of the hot water returned from the hot water panel 503a and the water heater 503b, the amount of waste heat used by each device is provided. Can be accurately understood, and the exhaust heat distribution to the hot water panel 503a and the water heater 503b can be performed with high accuracy.

【0109】同様にして実施例4の排熱分配装置を用い
れば、排熱が過剰供給な場合でも安定して排熱を分配・
放出することができるとともに温水パネル503aおよ
び給湯器503bへの排熱分配を高精度に行うことがで
きる。
Similarly, when the exhaust heat distribution device of the fourth embodiment is used, even if the exhaust heat is excessively supplied, the exhaust heat can be stably distributed and distributed.
The heat can be released, and the exhaust heat can be distributed to the hot water panel 503a and the water heater 503b with high accuracy.

【0110】また、熱交換器557により、燃料電池本
体553の側の循環水系と排熱分配装置501の側の循
環水系とが完全に分離されるため、燃料電池本体553
の冷却水の汚染が抑えられ、メンテナンスなどの負担を
軽減することができる。さらに、燃料電池本体553の
側の循環水系と排熱分配装置501の側の循環水系とで
水の成分をそれぞれに適した組成に変えることが可能で
ある。
Further, since the heat exchanger 557 completely separates the circulating water system on the fuel cell main body 553 side from the circulating water system on the exhaust heat distribution device 501 side, the fuel cell main body 553
Cooling water contamination can be suppressed, and the burden of maintenance and the like can be reduced. Further, it is possible to change the components of water in the circulating water system on the side of the fuel cell main body 553 and the circulating water system on the side of the exhaust heat distribution device 501 to compositions suitable for each.

【0111】また、接続経路の数やポンプの吐出圧特性
など仕様の異なる排熱分配装置を予め用意しておけば、
排熱の量や、温水パネル,貯湯槽などの排熱利用機器の
能力や数に応じて排熱分配装置の仕様を選択すること
で、容易に望ましい排熱利用システムを構成することが
できる。
Further, if exhaust heat distribution devices having different specifications such as the number of connection paths and the discharge pressure characteristics of the pump are prepared in advance,
By selecting the specifications of the exhaust heat distribution device according to the amount of exhaust heat and the capacity and number of exhaust heat utilization devices such as hot water panels and hot water storage tanks, it is possible to easily configure a desirable exhaust heat utilization system.

【0112】なお実施例において排熱供給源として固体
高分子型の燃料電池を用いたが、リン酸型など他の燃料
電池であっても、内燃機関であっても容易に実施でき
る。
Although the solid polymer fuel cell is used as the exhaust heat supply source in the embodiment, the present invention can be easily applied to other fuel cells such as a phosphoric acid fuel cell and an internal combustion engine.

【0113】[0113]

【発明の効果】上記実施例から明らかなように、請求項
1に記載の発明は、需要と供給に応じて排熱を分配し、
燃料電池の温度を安定させることができ、ポンプおよび
循環経路を簡略にすることで燃料電池の小型化が容易と
なり、メンテナンス負担の軽減が図れるという効果を奏
する。
As is apparent from the above embodiment, the invention according to claim 1 distributes exhaust heat according to demand and supply,
By stabilizing the temperature of the fuel cell and simplifying the pump and the circulation path, the size of the fuel cell can be easily reduced, and the maintenance load can be reduced.

【0114】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に燃料電池と温水パネルや貯湯槽などの
排熱利用機器を接続するだけで、望みの排熱利用システ
ムを容易に設置できるという効果を奏する。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, the exhaust heat distribution apparatus of appropriate specifications is provided with a fuel cell and exhaust heat utilization equipment such as a hot water panel and a hot water tank. Is connected, the desired exhaust heat utilization system can be easily installed.

【0115】請求項2に記載の発明は、需要と供給に応
じて排熱を分配し、燃料電池の温度を安定させることが
でき、ポンプおよび循環経路を簡略にすることで燃料電
池の小型化が容易となり、メンテナンス負担の軽減が図
れるという効果を奏する。
According to the second aspect of the present invention, the exhaust heat can be distributed according to demand and supply, the temperature of the fuel cell can be stabilized, and the size of the fuel cell can be reduced by simplifying the pump and the circulation path. This makes it easier to reduce the maintenance burden.

【0116】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に燃料電池と温水パネルや貯湯槽などの
排熱利用機器を接続するだけで、望みの排熱利用システ
ムを容易に設置できるという効果を奏する。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, the exhaust heat distribution apparatus having appropriate specifications is provided with a fuel cell and exhaust heat utilization equipment such as a hot water panel and a hot water tank. Is connected, the desired exhaust heat utilization system can be easily installed.

【0117】さらに、ファンコイルと流量調整弁の付加
により、排熱が過剰供給な場合でも安定して排熱を分配
・放出できるという効果を奏する。
Further, the addition of the fan coil and the flow control valve has an effect that the exhaust heat can be stably distributed and released even when the exhaust heat is excessively supplied.

【0118】請求項3に記載の発明は、この構成によれ
ば、需要と供給に応じて排熱を分配し燃料電池の温度を
安定させることができ、ポンプおよび循環経路を簡略に
することで燃料電池の小型化が容易となり、メンテナン
ス負担の軽減が図れるという効果を奏する。
According to the third aspect of the present invention, according to this structure, the exhaust heat can be distributed according to the demand and the supply, the temperature of the fuel cell can be stabilized, and the pump and the circulation path can be simplified. This has the effect of reducing the size of the fuel cell and reducing the maintenance burden.

【0119】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に燃料電池と温水パネルや貯湯槽などの
排熱利用機器を接続するだけで、望みの排熱利用システ
ムを容易に設置できるという効果を奏する。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, the exhaust heat distribution apparatus having appropriate specifications is provided with a fuel cell and exhaust heat utilization equipment such as a hot water panel and a hot water tank. Is connected, the desired exhaust heat utilization system can be easily installed.

【0120】さらに、経路別検出手段の付加により、各
機器での排熱利用量が正確にわかり、各温水パネルや貯
湯槽などの排熱利用機器への排熱分配を高精度に行える
という効果を奏する。
Further, by adding the path-specific detecting means, the amount of waste heat used in each device can be accurately determined, and the exhaust heat can be distributed to the waste heat utilizing devices such as hot water panels and hot water tanks with high accuracy. To play.

【0121】請求項4に記載の発明は、この構成によれ
ば需要と供給に応じて排熱を分配し燃料電池の温度を安
定させることができ、ポンプおよび循環経路を簡略にす
ることで燃料電池の小型化が容易となり、メンテナンス
負担の軽減が図れるという効果を奏する。
According to the fourth aspect of the present invention, according to this configuration, the exhaust heat can be distributed according to the demand and supply, and the temperature of the fuel cell can be stabilized, and the fuel pump can be simplified by simplifying the pump and the circulation path. This has the effect of making it easier to reduce the size of the battery and reducing the maintenance burden.

【0122】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に燃料電池と温水パネルや貯湯槽などの
排熱利用機器を接続するだけで、望みの排熱利用システ
ムを容易に設置できるという効果を奏する。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, the exhaust heat distribution apparatus having appropriate specifications is provided with a fuel cell and exhaust heat utilization equipment such as a hot water panel and a hot water tank. Is connected, the desired exhaust heat utilization system can be easily installed.

【0123】さらに、経路別検出手段の付加により、各
機器での排熱利用量が正確にわかり、各温水パネルや貯
湯槽などの排熱利用機器への排熱分配を高精度に行える
という効果を奏する。
Further, by adding the path-specific detection means, the amount of waste heat used in each device can be accurately determined, and the waste heat can be distributed to the waste heat utilization devices such as hot water panels and hot water tanks with high accuracy. To play.

【0124】さらに、ファンコイルと放熱器流量調整手
段の付加により、排熱が過剰供給な場合でも安定して排
熱を分配・放出できるという効果を奏する。
Further, the addition of the fan coil and the radiator flow rate adjusting means has an effect that the exhaust heat can be stably distributed and released even when the exhaust heat is excessively supplied.

【0125】請求項5に記載の発明は、需要と供給に応
じて排熱を分配し燃料電池の温度を安定させることがで
き、ポンプおよび循環経路を簡略にすることで燃料電池
の小型化が容易となり、メンテナンス負担の軽減が図れ
るという効果を奏する。
According to the fifth aspect of the present invention, the exhaust heat can be distributed in accordance with the demand and the supply, the temperature of the fuel cell can be stabilized, and the pump and the circulation path can be simplified to reduce the size of the fuel cell. This makes it easier to reduce the maintenance burden.

【0126】さらに、排熱利用システムを構成するのに
必要な機器が1つにまとめられているので、適切な仕様
の排熱分配装置に燃料電池と温水パネルや貯湯槽などの
排熱利用機器を接続するだけで、望みの排熱利用システ
ムを容易に設置できるという効果を奏する。
Further, since the equipment necessary for constructing the exhaust heat utilization system is integrated into one, the exhaust heat distribution apparatus having appropriate specifications is provided with a fuel cell and exhaust heat utilization equipment such as a hot water panel and a hot water tank. Is connected, the desired exhaust heat utilization system can be easily installed.

【0127】さらに、接続機器が最小限にできるため汚
染を少なくすることができ、燃料電池と排熱利用側で循
環媒体の種類を温水パネルや貯湯槽などの排熱利用機器
の条件に応じて変えることができる。
Furthermore, since the number of connected devices can be minimized, pollution can be reduced, and the type of circulating medium on the fuel cell and the exhaust heat utilization side can be changed according to the conditions of the exhaust heat utilization devices such as hot water panels and hot water storage tanks. Can be changed.

【0128】さらに、接続する温水パネルや貯湯槽など
の排熱利用機器の数や形態に応じて排熱分配装置を変更
すれば、望みの排熱利用システムを容易に構成できる。
Further, by changing the exhaust heat distribution device according to the number and form of the exhaust heat utilization devices such as hot water panels and hot water tanks to be connected, a desired exhaust heat utilization system can be easily configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排熱分配装置の一実施例を示す説明図FIG. 1 is an explanatory view showing one embodiment of a waste heat distribution device of the present invention.

【図2】本発明の排熱分配装置の一実施例を示す説明図FIG. 2 is an explanatory view showing one embodiment of the exhaust heat distribution device of the present invention.

【図3】本発明の排熱分配装置の一実施例を示す説明図FIG. 3 is an explanatory view showing one embodiment of the exhaust heat distribution device of the present invention.

【図4】本発明の排熱分配装置の一実施例を示す説明図FIG. 4 is an explanatory view showing one embodiment of the exhaust heat distribution device of the present invention.

【図5】本発明の排熱利用システムの実施例を示す説明
FIG. 5 is an explanatory view showing an embodiment of a waste heat utilization system of the present invention.

【図6】従来例を示す燃料電池システムの説明図FIG. 6 is an explanatory diagram of a fuel cell system showing a conventional example.

【符号の説明】[Explanation of symbols]

101,201,301,401,501 排熱分配装
置 102,202,302,402 燃料電池 103a,203a,303a,403a 温水パネル 103b,203b,303b,403b 貯湯槽 111,211,311,411 ポンプ 113,213,313,413 送り側温度流量セン
サー 117a,217a,317a,417a,117b,
217b,317b,417b 流量調整弁 119,219,319,419 バイパス流量調整弁 121,221,321,421 戻り側温度流量セン
サー 123,223,323,423 主演算装置 227,427 放熱器流量調整弁 229,429 ファンコイル 331a,431a,331b,431b 温度流量セ
ンサー 553 燃料電池本体 555 ポンプ 557 熱交換器
101, 201, 301, 401, 501 Exhaust heat distribution device 102, 202, 302, 402 Fuel cell 103a, 203a, 303a, 403a Hot water panel 103b, 203b, 303b, 403b Hot water tank 111, 211, 311, 411 Pump 113, 213, 313, 413 Sending-side temperature flow sensor 117a, 217a, 317a, 417a, 117b,
217b, 317b, 417b Flow control valve 119, 219, 319, 419 Bypass flow control valve 121, 221, 321, 421 Return side temperature flow sensor 123, 223, 323, 423 Main processing unit 227, 427 Radiator flow control valve 229 , 429 Fan coil 331a, 431a, 331b, 431b Temperature flow sensor 553 Fuel cell body 555 Pump 557 Heat exchanger

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】熱を媒介する熱媒介を排熱供給源から取り
出し循環させるポンプと、前記熱媒体の循環流路を分岐
する分岐手段と、前記ポンプと前記分岐手段の間に位置
し前記熱媒体の送り側の状態を検出する送り側検出手段
と、分岐した経路を再び合流させ前記排熱供給源へ導く
合流手段と、前記分岐手段から分岐し排熱利用機器へ接
続する経路に設けられた流量調整手段と、前記分岐手段
から分岐し前記合流手段へ直結するバイパス経路と、前
記バイパス経路に設けられ前記バイパス経路の前記熱媒
体の流量を調整するバイパス流量調整手段と、前記合流
手段から前記排熱供給源までの間に位置し、前記合流手
段に戻ってきた前記熱媒体の状態を検出する戻り側検出
手段と、排熱需要と前記送り側検出手段および前記戻り
側検出手段の出力信号とに基づき前記流量調整手段と前
記バイパス流量調整手段とを制御する制御手段を備えた
ことを特徴とする排熱分配装置。
1. A pump for taking out and circulating heat from a waste heat supply source, branching means for branching a circulation flow path of the heat medium, and the heat medium positioned between the pump and the branching means. A feed-side detecting means for detecting the state of the medium on the feed side; a joining means for joining the branched paths again to guide the exhaust heat supply source; and a path branched from the branch means and connected to the exhaust heat utilization device. Flow rate adjusting means, a bypass path branched from the branching means and directly connected to the merging means, a bypass flow rate adjusting means provided in the bypass path and adjusting a flow rate of the heat medium in the bypass path, and Return-side detection means for detecting the state of the heat medium that has been returned to the joining means and located between the exhaust-heat supply source, and exhaust heat demand and outputs of the feed-side detection means and the return-side detection means Heat distribution device characterized by comprising a control means for controlling said bypass flow rate adjusting means and the flow rate adjusting means based on the item.
【請求項2】熱を媒介する熱媒体を排熱供給源から取り
出し循環させるポンプと、前記熱媒体の循環経路を分岐
する分岐手段と、前記ポンプと前記分岐手段の間に位置
し前記熱媒体の送り側の状態を検出する送り側検出手段
と、分岐した経路を再び合流させ前記排熱供給源へ導く
合流手段と、前記分岐手段から分岐し排熱利用機器へ接
続する経路に設けられた前記熱媒体の流量を調整する流
量調整手段と、前記分岐手段から分岐し前記合流手段へ
直結するバイパス経路と、前記バイパス経路に設けられ
前記熱媒体の流量を調整するバイパス流量調整手段と、
前記分岐手段から分岐した経路の1つが接続された前記
熱媒体の持つ熱を放出する放熱手段と、前記放熱手段へ
の前記熱媒体の流量を調節する放熱器流量調整手段と、
前記合流手段から前記排熱供給源までの間に位置し、前
記合流手段に戻ってきた前記熱媒体の状態を検出する戻
り側検出手段と、排熱需要と前記送り側検出手段および
前記戻り側検出手段の出力信号とに基づき前記流量調整
手段と前記バイパス流量調整手段と前記放熱器流量調整
手段を制御する制御手段を備えたことを特徴とする排熱
分配装置。
2. A pump for removing and circulating a heat medium that mediates heat from an exhaust heat supply source, branching means for branching a circulation path of the heat medium, and the heat medium positioned between the pump and the branching means. Feed-side detecting means for detecting the state of the feed-side, merging means for merging the branched paths again and leading to the exhaust heat supply source, and a path branched from the branch means and connected to the exhaust heat utilization equipment. Flow rate adjusting means for adjusting the flow rate of the heat medium, a bypass path branched from the branching means and directly connected to the merging means, and a bypass flow rate adjusting means provided on the bypass path and adjusting the flow rate of the heat medium,
A radiator for radiating heat of the heat medium to which one of the paths branched from the diverter is connected; a radiator flow controller for adjusting a flow rate of the heat medium to the radiator;
A return-side detection unit that is located between the merging unit and the exhaust heat supply source and detects a state of the heat medium that has returned to the merging unit; exhaust heat demand, the sending-side detecting unit, and the return side An exhaust heat distribution device comprising: a control unit that controls the flow rate adjusting unit, the bypass flow rate adjusting unit, and the radiator flow rate adjusting unit based on an output signal of a detecting unit.
【請求項3】熱を媒介する熱媒体を排熱供給源から取り
出し循環させるポンプと、前記熱媒体の循環経路を分岐
する分岐手段と、前記ポンプと前記分岐手段の間に位置
し前記熱媒体の送り側の状態を検出する送り側検出手段
と、分岐した経路を再び合流させ前記排熱供給源へ導く
合流手段と、前記分岐手段から分岐し排熱利用機器へ接
続する経路に設けられた流量調整手段と、各々の排熱利
用機器と前記合流手段の間に設けられ熱媒体の状態を検
出する経路別検出手段と、前記分岐手段から分岐し前記
合流手段へ直結するバイパス経路と、前記バイパス経路
に設けられバイパス経路の前記熱媒体の流量を調整する
バイパス流量調整手段と、前記合流手段から前記排熱供
給源までの間に位置し、前記合流手段に戻ってきた熱媒
体の状態を検出する戻り側検出手段と、排熱需要と前記
送り側検出手段と前記戻り側検出手段および前記経路別
検出手段の各出力信号とに基づき前記流量調整手段と前
記バイパス流量調整手段と前記放熱器流量調整手段を制
御する制御手段を備えたことを特徴とする排熱分配装
置。
3. A pump for taking out and circulating a heat medium for transferring heat from an exhaust heat supply source, branching means for branching a circulation path of the heat medium, and the heat medium positioned between the pump and the branching means. Feed-side detecting means for detecting the state of the feed-side, merging means for merging the branched paths again and leading to the exhaust heat supply source, and a path branched from the branch means and connected to the exhaust heat utilization equipment. Flow rate adjusting means, a path-specific detecting means provided between each exhaust heat utilization device and the merging means for detecting a state of the heat medium, a bypass path branched from the branching means and directly connected to the merging means, A bypass flow rate adjusting means provided in a bypass path to adjust a flow rate of the heat medium in the bypass path, and a state of the heat medium which is located between the merging means and the exhaust heat supply source and returns to the merging means. Detect Return side detecting means, exhaust heat demand, and the flow rate adjusting means, the bypass flow rate adjusting means, and the radiator flow rate adjusting means based on output signals of the sending side detecting means, the return side detecting means and the path-specific detecting means. An exhaust heat distribution device comprising control means for controlling the means.
【請求項4】熱を媒介する熱媒体を排熱供給源から取り
出し循環させるポンプと、前記熱媒体の循環経路を分岐
する分岐手段と、前記ポンプと前記分岐手段の間に位置
し前記熱媒体の送り側の状態を検出する送り側検出手段
と、分岐した経路を再び合流させ前記排熱供給源へ導く
合流手段と、前記分岐手段から分岐し排熱利用機器へ接
続する経路に設けられ前記熱媒体の流量を調整する流量
調整手段と、各々の排熱利用機器と前記合流手段の間に
設けられた前記熱媒体の状態を検出する経路別検出手段
と、前記分岐手段から分岐し前記合流手段へ直結するバ
イパス経路と、前記バイパス経路に設けられた前記熱媒
体の状態を検出するバイパス流量調整手段と、前記合流
手段から前記排熱供給源までの間に位置し、前記合流手
段に戻ってきた前記熱媒体の状態を検出する戻り側検出
手段と、排熱需要と前記送り側検出手段と前記戻り側検
出手段および前記経路別検出手段の各出力信号とに基づ
き前記流量調整手段と前記バイパス流量調整手段と前記
放熱器流量調整手段を制御する制御手段を備えたことを
特徴とする排熱分配装置。
4. A pump for taking out and circulating a heat medium that mediates heat from an exhaust heat supply source, branching means for branching a circulation path of the heat medium, and the heat medium positioned between the pump and the branching means. Sending side detecting means for detecting the state of the sending side, joining means for joining the branched paths again and leading to the exhaust heat supply source, and a path provided from the branching means and connected to the exhaust heat utilization device, Flow rate adjusting means for adjusting the flow rate of the heat medium, path-specific detecting means for detecting the state of the heat medium provided between each exhaust heat utilization device and the merging means, and branching from the branching means. A bypass path directly connected to the means, a bypass flow rate adjusting means provided in the bypass path for detecting a state of the heat medium, and a path between the joining means and the exhaust heat supply source, returning to the joining means. Before Return side detecting means for detecting the state of the heat medium; exhaust heat demand; and the flow rate adjusting means and the bypass flow rate adjusting means based on output signals of the sending side detecting means, the return side detecting means and the path-specific detecting means. Means and a control means for controlling said radiator flow rate adjusting means.
【請求項5】排熱供給源と、熱交換器と、排熱の分配・
調整が可能で排熱利用機器へ排熱を分配する排熱分配装
置とを備え、前記排熱供給源と前記排熱分配装置とを前
記熱交換器を介して熱的に接続し前記排熱供給源で生じ
た排熱を前記排熱利用機器で利用することを特徴とする
排熱利用システム。
5. An exhaust heat supply source, a heat exchanger, and an exhaust heat distribution
An exhaust heat distribution device that is adjustable and distributes exhaust heat to the exhaust heat utilization device, wherein the exhaust heat supply source and the exhaust heat distribution device are thermally connected to each other through the heat exchanger; An exhaust heat utilization system, wherein exhaust heat generated in a supply source is used by the exhaust heat utilization device.
【請求項6】送り側検出手段と戻り側検出手段が、熱媒
体の温度と流量の少なくとも一方を検出することを特徴
とする請求項1〜4のいずれか一項に記載の排熱分配装
置。
6. The exhaust heat distribution device according to claim 1, wherein the sending side detecting means and the returning side detecting means detect at least one of the temperature and the flow rate of the heat medium. .
【請求項7】経路別検出手段が、熱媒体の温度と流量の
少なくとも一方を検出することを特徴とする請求項3ま
たは4に記載の排熱分配装置。
7. The exhaust heat distribution device according to claim 3, wherein the path-specific detecting means detects at least one of a temperature and a flow rate of the heat medium.
【請求項8】排熱分配装置が請求項1〜4のいずれか一
項に記載の排熱分配装置であることを特徴とした請求項
5に記載の排熱利用システム。
8. The exhaust heat utilization system according to claim 5, wherein the exhaust heat distribution device is the exhaust heat distribution device according to any one of claims 1 to 4.
JP9292166A 1997-10-24 1997-10-24 Exhaust heat distributor and waste heat utilizing system Pending JPH11132105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292166A JPH11132105A (en) 1997-10-24 1997-10-24 Exhaust heat distributor and waste heat utilizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292166A JPH11132105A (en) 1997-10-24 1997-10-24 Exhaust heat distributor and waste heat utilizing system

Publications (1)

Publication Number Publication Date
JPH11132105A true JPH11132105A (en) 1999-05-18

Family

ID=17778415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292166A Pending JPH11132105A (en) 1997-10-24 1997-10-24 Exhaust heat distributor and waste heat utilizing system

Country Status (1)

Country Link
JP (1) JPH11132105A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037361A1 (en) * 1999-11-18 2001-05-25 Matsushita Electric Industrial Co., Ltd. Cogeneration device
WO2002075131A1 (en) * 2001-03-17 2002-09-26 Bayerische Motoren Werke Aktiengesellschaft System consisting of an internal combustion engine and of a fuel cell
JP2002289212A (en) * 2001-03-26 2002-10-04 Toshiba Corp Fuel cell cogeneration system
JP2006299996A (en) * 2005-04-22 2006-11-02 Ebara Corp Exhaust heat utilizing system and its operating method
JP2009245948A (en) * 2009-06-10 2009-10-22 Toshiba Home Technology Corp Fuel cell device
KR100962383B1 (en) * 2009-02-13 2010-06-10 (주)퓨얼셀 파워 Fuel cell package system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037361A1 (en) * 1999-11-18 2001-05-25 Matsushita Electric Industrial Co., Ltd. Cogeneration device
US7147951B1 (en) 1999-11-18 2006-12-12 Matsushita Electric Industrial Co., Ltd. Cogeneration device
WO2002075131A1 (en) * 2001-03-17 2002-09-26 Bayerische Motoren Werke Aktiengesellschaft System consisting of an internal combustion engine and of a fuel cell
US6918365B2 (en) 2001-03-17 2005-07-19 Bayerische Motoren Werke Aktiengesellschaft System having an internal combustion engine and a fuel cell and method of making and using same
JP2002289212A (en) * 2001-03-26 2002-10-04 Toshiba Corp Fuel cell cogeneration system
JP2006299996A (en) * 2005-04-22 2006-11-02 Ebara Corp Exhaust heat utilizing system and its operating method
KR100962383B1 (en) * 2009-02-13 2010-06-10 (주)퓨얼셀 파워 Fuel cell package system
JP2009245948A (en) * 2009-06-10 2009-10-22 Toshiba Home Technology Corp Fuel cell device

Similar Documents

Publication Publication Date Title
CN101331634B (en) Cooling system and method of a fuel cell
US20120125022A1 (en) Cooling system
US8931440B2 (en) Engine cooling system and method for engine cooling
KR101908788B1 (en) Integrated heat pump and fuel cell power plant
JPH11132105A (en) Exhaust heat distributor and waste heat utilizing system
EP2762802B1 (en) Chilled water system and method of operating chilled water system
US11445639B2 (en) Information technology (IT) cooling system with fluid distribution configuration
CN210554237U (en) Fuel cell system and automobile
JP2001241735A (en) Air conditioning system and its controlling method
US11825634B2 (en) Multi-loop cooling configuration for high-density server racks
CN113972389B (en) Water heat management integrated device of multi-stack fuel cell system and working method thereof
JP2020136041A (en) Fuel cell system
WO2022112661A1 (en) A hybrid heating arrangement and a method of operating a hybrid heating arrangement
JP2002277053A (en) Hot-water recovery control device for co-generation system
KR20220080757A (en) Fuel cell-battery system and control method of same
JPH11257096A (en) Gas turbine power plant
JP2020075569A (en) Temperature regulator
JP7114502B2 (en) fuel cell system
RU2777834C2 (en) Modular fuel element system and method for heating fuel element system with several modules
CN117525482A (en) Thermal management system and method for fuel cell, fuel cell and vehicle
US20240083218A1 (en) Control system for thermal management and distribution
JP3577539B2 (en) Control device for gas turbine power plant
CN117748017A (en) Battery temperature adjusting device, control method of battery temperature adjusting device and vehicle
JP2022157510A (en) Method for operating fuel cell system
JP2022157407A (en) Method for operating a fuel cell system