CN113972389B - A water and heat management integrated device and working method for a multi-stack fuel cell system - Google Patents
A water and heat management integrated device and working method for a multi-stack fuel cell system Download PDFInfo
- Publication number
- CN113972389B CN113972389B CN202111250548.8A CN202111250548A CN113972389B CN 113972389 B CN113972389 B CN 113972389B CN 202111250548 A CN202111250548 A CN 202111250548A CN 113972389 B CN113972389 B CN 113972389B
- Authority
- CN
- China
- Prior art keywords
- stack
- fuel cell
- water
- intercooler
- thermostat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 158
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002826 coolant Substances 0.000 claims abstract description 87
- 239000000110 cooling liquid Substances 0.000 claims abstract description 54
- 238000004891 communication Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 12
- 230000032258 transport Effects 0.000 claims description 8
- 230000017525 heat dissipation Effects 0.000 description 8
- 238000003487 electrochemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04044—Purification of heat exchange media
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明涉及燃料电池技术领域,特别是涉及一种多堆燃料电池系统的水热管理集成装置及其工作方法。The invention relates to the technical field of fuel cells, in particular to a hydrothermal management integrated device for a multi-stack fuel cell system and a working method thereof.
背景技术Background technique
作为以氢气为燃料的能量转换装置,质子交换膜燃料电池具有工作温度低、比能量高、启动速度快和寿命较长等优点,在包括汽车动力源在内的多个领域都得到了广泛应用。多个单堆燃料电池进行组合后构成多堆燃料电池系统不仅可以提高燃料电池系统的输出功率从而满足高功率需求,还可以增加系统输出的冗余度,提高系统工作的可靠性。As an energy conversion device using hydrogen as fuel, proton exchange membrane fuel cells have the advantages of low operating temperature, high specific energy, fast start-up speed and long life, and have been widely used in many fields including automobile power sources. . Combining multiple single-stack fuel cells to form a multi-stack fuel cell system can not only increase the output power of the fuel cell system to meet high power requirements, but also increase the redundancy of the system output and improve the reliability of the system.
燃料电池的工作过程是一个产热过程,其产热量与输出功率基本相同,因此需要配置一个热管理子系统来维持电堆的工作温度始终保持在合理的区间。多堆燃料电池系统的水热耦合强、迟滞大且各燃料电池单堆会由于老化程度不同,产热量有所不同,也需要用冷却液循环来保证各单堆温度均一化,防止出现局部热点,影响多堆燃料电池系统性能。尽管目前市面上的单电堆水热管理子系统已经有了成熟的方案,但是从结构设计和成本等角度考虑,目前的方案并不适合直接移植到多堆燃料电池系统上。另外,现有的水热管理子系统在应用到多堆燃料电池系统中时,无法解决多堆燃料电池系统在启动阶段因冷却液温度较低而导致启动速度慢的问题,也无法解决因冷却液中含有导电离子而影响多堆燃料电池的正常电化学反应、进而导致多堆燃料电池系统运行稳定性较低的问题。The working process of the fuel cell is a heat production process, and its heat production is basically the same as the output power. Therefore, a thermal management subsystem needs to be configured to maintain the working temperature of the stack at a reasonable range. The multi-stack fuel cell system has strong hydrothermal coupling and large hysteresis, and each fuel cell stack will have different heat production due to different aging degrees. It is also necessary to use coolant circulation to ensure that the temperature of each single stack is uniform and prevent local hot spots. , affecting the performance of the multi-stack fuel cell system. Although there are already mature solutions for the single-stack water-heat management subsystem on the market, the current solution is not suitable for direct transplantation to multi-stack fuel cell systems from the perspectives of structural design and cost. In addition, when the existing water and heat management subsystem is applied to a multi-stack fuel cell system, it cannot solve the problem of slow start-up due to low coolant temperature during the start-up phase of the multi-stack fuel cell system, nor can it solve the problem of slow start-up due to cooling The conductive ions contained in the liquid affect the normal electrochemical reaction of the multi-stack fuel cell, which in turn leads to the problem of low operating stability of the multi-stack fuel cell system.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明要解决的技术问题在于提供一种多堆燃料电池系统的水热管理集成装置,该水热管理集成装置能使多堆燃料电池系统快速启动、并能提高多堆燃料电池系统运行的稳定性。In view of the above-mentioned shortcomings of the prior art, the technical problem to be solved by the present invention is to provide a hydrothermal management integrated device for a multi-stack fuel cell system, which can enable the multi-stack fuel cell system to start quickly, and The operation stability of the multi-stack fuel cell system can be improved.
为实现上述目的,本发明提供一种多堆燃料电池系统的水热管理集成装置,包括:To achieve the above purpose, the present invention provides a hydrothermal management integrated device for a multi-stack fuel cell system, including:
热交换单元,包括节温器、与节温器的一个流道阀口相连通的加热器、与节温器的另一个流道阀口相连通的散热器、与加热器相连通的去离子器、水箱、与水箱相连接的水泵、及与水泵相连接的热交换旁通阀,且所述去离子器和散热器均与水箱相连通;The heat exchange unit includes a thermostat, a heater connected to one flow channel valve port of the thermostat, a radiator connected to the other flow channel valve port of the thermostat, and a deionization device connected to the heater. A water tank, a water pump connected to the water tank, and a heat exchange bypass valve connected to the water pump, and both the deionizer and the radiator communicate with the water tank;
空气中冷单元,包括中冷器组,所述中冷器组的进水端与热交换旁通阀的一个出水端相连接,所述中冷器组的出水端与节温器的进水阀口相连通;The air intercooler unit includes an intercooler group, the water inlet end of the intercooler group is connected to a water outlet end of the heat exchange bypass valve, and the water outlet end of the intercooler group is connected to the water inlet of the thermostat The valve ports are connected;
并联冷却液管道单元,包括入堆冷却液管路和出堆冷却液管路,所述入堆冷却液管路和出堆冷却液管路的数量均与多堆燃料电池中的燃料电池单堆的数量相等;全部入堆冷却液管路分别与全部燃料电池单堆的入口相连通,且全部入堆冷却液管路均与热交换旁通阀的另一个出水端相连接;全部出堆冷却液管路分别与全部燃料电池单堆的出口相连通,且全部出堆冷却液管路均与节温器的进水阀口相连通。Parallel coolant pipeline unit, including stack-in coolant pipelines and stack-out coolant pipelines, the number of the stack-in coolant pipelines and stack-out coolant pipelines is the same as that of a single fuel cell stack in a multi-stack fuel cell The quantity of the cooling liquid in the stack is equal; all the coolant pipes entering the stack are respectively connected with the inlets of all fuel cell single stacks, and all the cooling liquid pipes entering the stack are connected to the other water outlet port of the heat exchange bypass valve; The liquid pipelines are respectively connected with the outlets of all fuel cell single stacks, and all the coolant pipelines out of the stack are connected with the water inlet valve port of the thermostat.
进一步地,所述散热器包括散热风扇。Further, the radiator includes a cooling fan.
进一步地,所述空气中冷单元还包括中冷器入口旁通阀组,所述中冷器组的进水端通过中冷器入口旁通阀组与热交换旁通阀的一个出水端相连接。Further, the air intercooler unit also includes an intercooler inlet bypass valve group, and the water inlet end of the intercooler group is connected to a water outlet end of the heat exchange bypass valve through the intercooler inlet bypass valve group. connect.
进一步地,所述空气中冷单元还包括中冷器出口混合器,所述中冷器组中全部中冷器的出水口均与中冷器出口混合器相连通,且所述中冷器出口混合器与节温器的进水阀口相连通。Further, the air intercooler unit also includes an intercooler outlet mixer, the water outlets of all intercoolers in the intercooler group are connected to the intercooler outlet mixer, and the intercooler outlet The mixer communicates with the water inlet valve port of the thermostat.
进一步地,所述空气中冷单元还包括空气进气模块,所述空气进气模块与中冷器组相连通。Further, the air intercooler unit further includes an air intake module, and the air intake module communicates with the intercooler group.
进一步地,所述空气进气模块与中冷器组之间的连通管路上设有空气流量传感器和空气压力表。Further, an air flow sensor and an air pressure gauge are provided on the communication pipeline between the air intake module and the intercooler group.
进一步地,所述并联冷却液管道单元还包括分流器组,全部所述入堆冷却液管路通过分流器组与热交换旁通阀的另一个出水端相连接。Further, the parallel coolant pipeline unit further includes a diverter group, and all the coolant pipelines entering the stack are connected to the other water outlet end of the heat exchange bypass valve through the diverter group.
进一步地,所述多堆燃料电池系统的水热管理集成装置,还包括控制器,所述节温器、散热器、水泵、热交换旁通阀及分流器组均与控制器相连接。Further, the integrated water and heat management device of the multi-stack fuel cell system further includes a controller, and the thermostat, radiator, water pump, heat exchange bypass valve and flow divider group are all connected to the controller.
进一步地,所述并联冷却液管道单元还包括出堆混合器,全部所述出堆冷却液管路均与出堆混合器相连通,所述出堆混合器与节温器的进水阀口相连通。Further, the parallel coolant pipeline unit also includes a stack outlet mixer, all of the stack outlet coolant pipelines are connected to the stack outlet mixer, and the stack outlet mixer is connected to the water inlet valve port of the thermostat connected.
如上所述,本发明涉及的水热管理集成装置,具有以下有益效果:As mentioned above, the hydrothermal management integrated device involved in the present invention has the following beneficial effects:
本多堆燃料电池系统的水热管理集成装置的工作原理为:在多堆燃料电池系统启动阶段,且当多堆燃料电池系统中的冷却液的温度小于或等于设定温度值时;热交换单元中的节温器,关闭流向散热器方向的流道阀口、并开启流向加热器方向的流道阀口,多堆燃料电池中流出的冷却液依次经过节温器、加热器、以及去离子器后流入水箱,且加热器对流经的冷却液进行加热,去离子器去除流经的冷却液中的导电离子,水泵再将水箱中冷却液输送至多堆燃料电池中;而在启动成功后或多堆燃料电池正常输出功率阶段,冷却液的温度处于设定温度范围,热交换单元中的节温器,关闭流向加热器方向的流道阀口、并开启流向散热器方向的流道阀口,多堆燃料电池中流出的冷却液依次经过节温器、散热器后流入水箱,水泵再将水箱中冷却液输送至多堆燃料电池中,且冷却液流经散热器后会降温。本水热管理集成装置,通过设置加热器能在启动阶段,对冷却液进行加热,以保证多堆燃料电池系统能快速、顺利启动;同时利用去离子器去除冷却液中的导电离子,以避免导电离子随冷却液进入多堆燃料电池中时,对多堆燃料电池的正常电化学反应造成影响,提高了多堆燃料电池系统运行的稳定性。The working principle of the water heat management integrated device of the multi-stack fuel cell system is as follows: in the start-up phase of the multi-stack fuel cell system, and when the temperature of the coolant in the multi-stack fuel cell system is less than or equal to the set temperature value; heat exchange The thermostat in the unit closes the flow channel valve port that flows to the direction of the radiator, and opens the flow channel valve port that flows to the direction of the heater. The coolant flowing out of the multi-stack fuel cells passes through the thermostat, heater, and to the After the ionizer flows into the water tank, the heater heats the cooling liquid flowing through, the deionizer removes the conductive ions in the cooling liquid flowing through, and the water pump transports the cooling liquid in the water tank to the multi-stack fuel cells; and after the startup is successful During the normal output power stage of multi-stack fuel cells, the temperature of the coolant is within the set temperature range, and the thermostat in the heat exchange unit closes the flow channel valve opening to the direction of the heater, and opens the flow channel valve to the direction of the radiator The coolant flowing out of the multi-stack fuel cells passes through the thermostat and radiator in turn and then flows into the water tank. The water pump then transports the coolant in the water tank to the multi-stack fuel cells, and the coolant will cool down after passing through the radiator. The water heat management integrated device can heat the coolant during the start-up stage by setting the heater to ensure that the multi-stack fuel cell system can be started quickly and smoothly; at the same time, the deionizer is used to remove the conductive ions in the coolant to avoid When the conductive ions enter the multi-stack fuel cells along with the cooling liquid, they will affect the normal electrochemical reactions of the multi-stack fuel cells and improve the stability of the multi-stack fuel cell system.
本发明要解决的另一个技术问题在于提供一种能使多堆燃料电池系统快速启动、并能提高多堆燃料电池系统运行稳定性的工作方法。Another technical problem to be solved by the present invention is to provide a working method that can quickly start the multi-stack fuel cell system and improve the operation stability of the multi-stack fuel cell system.
为实现上述目的,本发明提供一种所述多堆燃料电池系统的水热管理集成装置的工作方法,包括如下步骤:In order to achieve the above object, the present invention provides a working method of the hydrothermal management integrated device of the multi-stack fuel cell system, which includes the following steps:
在多堆燃料电池系统启动阶段,且当多堆燃料电池系统中的冷却液的温度小于或等于设定温度值时;热交换单元中的节温器,关闭流向散热器方向的流道阀口、并开启流向加热器方向的流道阀口,多堆燃料电池中流出的冷却液依次经过节温器、加热器、以及去离子器后流入水箱,且加热器对流经的冷却液进行加热,去离子器去除流经的冷却液中的导电离子,水泵再将水箱中冷却液输送至多堆燃料电池中;In the start-up phase of the multi-stack fuel cell system, and when the temperature of the coolant in the multi-stack fuel cell system is less than or equal to the set temperature value; the thermostat in the heat exchange unit closes the flow channel valve port flowing to the radiator , and open the flow channel valve port flowing in the direction of the heater, the coolant flowing out of the multi-stack fuel cells passes through the thermostat, the heater, and the deionizer in sequence, and then flows into the water tank, and the heater heats the coolant flowing through, The deionizer removes the conductive ions in the passing coolant, and the water pump transports the coolant in the water tank to multiple stacks of fuel cells;
在多堆燃料电池系统启动成功后或多堆燃料电池正常输出功率阶段,冷却液的温度处于设定温度范围,热交换单元中的节温器,关闭流向加热器方向的流道阀口、并开启流向散热器方向的流道阀口,多堆燃料电池中流出的冷却液依次经过节温器、散热器后流入水箱,水泵再将水箱中冷却液输送至多堆燃料电池中,且冷却液流经散热器后会降温。After the multi-stack fuel cell system starts successfully or the multi-stack fuel cell output power stage is normal, the temperature of the coolant is within the set temperature range, the thermostat in the heat exchange unit closes the flow path valve port flowing to the heater, and Open the flow channel valve port that flows in the direction of the radiator, the coolant flowing out of the multi-stack fuel cells passes through the thermostat and the radiator in sequence, and then flows into the water tank, and the water pump transports the coolant in the water tank to the multi-stack fuel cells, and the coolant flows It will cool down after passing through the radiator.
如上所述,本发明涉及的工作方法,具有以下有益效果:As mentioned above, the working method involved in the present invention has the following beneficial effects:
本工作方法,在多堆燃料电池启动阶段,利用加热器对冷却液进行加热,使得冷却液及多堆燃料电池快速升温,进而使得多堆燃料电池能快速顺利启动;同时,利用去离子器去除冷却液中的导电离子,以避免导电离子随冷却液进入多堆燃料电池时对其电化学反应造成影响,进而提高多堆燃料电池系统运行的稳定性。In this working method, during the start-up phase of the multi-stack fuel cells, the heater is used to heat the coolant, so that the cooling liquid and the multi-stack fuel cells can be heated up rapidly, thereby enabling the multi-stack fuel cells to start quickly and smoothly; at the same time, the deionizer is used to remove The conductive ions in the cooling liquid are used to prevent the conductive ions from affecting the electrochemical reactions of the multi-stack fuel cells when they enter the multi-stack fuel cells with the cooling liquid, thereby improving the stability of the multi-stack fuel cell system.
附图说明Description of drawings
图1为本发明实施例中多堆燃料电池系统的水热管理集成装置的结构示意图。Fig. 1 is a schematic structural diagram of a hydrothermal management integrated device for a multi-stack fuel cell system in an embodiment of the present invention.
图2为本实施例采用本水热管理集成装置测试电流负载工况的示意图。FIG. 2 is a schematic diagram of testing a current load working condition by using the hydrothermal management integrated device in this embodiment.
图3为本实施例采用本水热管理集成装置测试对多堆燃料电池的温度控制效果示意图。FIG. 3 is a schematic diagram of the temperature control effect of the multi-stack fuel cells tested by using the hydrothermal management integrated device in this embodiment.
元件标号说明Component designation description
1 空气进气模块 17 第五流量传感器1
2 空气流量传感器 18 分流器组2
3 空气压力表 19 入堆冷却液管路3
4 节温器 20 入堆流量传感器4
5 加热器 21 多堆燃料电池5
6 第一流量传感器 22 燃料电池单堆6
7 散热风扇 23 出堆冷却液管路7
8 第一温度传感器 24 出堆混合器8
9 去离子器 25 第四温度传感器9 Deionizer 25 Fourth temperature sensor
10 第二温度传感器 26 第四流量传感器10
11 水箱 27 出堆流量传感器11
12 水泵 28 出堆温度传感器12
13 第二流量传感器 29 中冷器入口旁通阀组13
14 第三温度传感器 30 中冷器出口混合器14
15 第三流量传感器 31 中冷器组15
16 热交换旁通阀16 Heat exchange bypass valve
具体实施方式Detailed ways
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。The implementation of the present invention will be illustrated by specific specific examples below, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.
须知,本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等用语,亦仅为便于叙述明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。It should be noted that the structures, proportions, sizes, etc. shown in the drawings of this specification are only used to match the content disclosed in the specification, for those who are familiar with this technology to understand and read, and are not used to limit the conditions for the implementation of the present invention , so it has no technical substantive meaning, and any modification of structure, change of proportional relationship or adjustment of size shall still fall within the scope of the disclosure of the present invention without affecting the functions and objectives of the present invention. within the range covered by the technical content. At the same time, terms such as "upper", "lower", "left", "right", "middle" and "one" quoted in this specification are only for convenience of description and are not used to limit the scope of the present invention. The scope of implementation and the change or adjustment of its relative relationship shall also be regarded as the scope of implementation of the present invention without substantive changes in technical content.
如图1所示,本实施例提供一种多堆燃料电池系统的水热管理集成装置,包括:As shown in Figure 1, this embodiment provides an integrated device for hydrothermal management of a multi-stack fuel cell system, including:
热交换单元,包括节温器4、与节温器4的一个流道阀口相连通的加热器5、与节温器4的另一个流道阀口相连通的散热器、与加热器5相连通的去离子器9、水箱11、与水箱11相连接的水泵12、及与水泵12相连接的热交换旁通阀16;且去离子器9和散热器均与水箱11相连通;The heat exchange unit includes a
空气中冷单元,包括中冷器组31,中冷器组31的进水端与热交换旁通阀16的一个出水端相连接,中冷器组31的出水端与节温器4的进水阀口相连通;The air intercooler unit includes an
并联冷却液管道单元,包括入堆冷却液管路19和出堆冷却液管路23,入堆冷却液管路19和出堆冷却液管路23的数量均与多堆燃料电池21中的燃料电池单堆22的数量相等;全部入堆冷却液管路19分别与全部燃料电池单堆22的入口相连通,且全部入堆冷却液管路19均与热交换旁通阀16的另一个出水端相连接;全部出堆冷却液管路23分别与全部燃料电池单堆22的出口相连通,且全部出堆冷却液管路23均与节温器4的进水阀口相连通。The parallel coolant pipeline unit includes the stack-in
本多堆燃料电池系统的水热管理集成装置的工作原理为:在多堆燃料电池系统启动阶段,且当多堆燃料电池系统中的冷却液的温度小于或等于设定温度值时;热交换单元中的节温器4,关闭流向散热器方向的流道阀口、并开启流向加热器5方向的流道阀口,多堆燃料电池21中流出的冷却液依次经过节温器4、加热器5、以及去离子器9后流入水箱11,且加热器5对流经的冷却液进行加热,去离子器9去除流经的冷却液中的导电离子,水泵12再将水箱11中冷却液输送至多堆燃料电池21中;而在启动成功后或多堆燃料电池21正常输出功率阶段,冷却液的温度处于设定温度范围,热交换单元中的节温器4,关闭流向加热器5方向的流道阀口、并开启流向散热器方向的流道阀口,多堆燃料电池21中流出的冷却液依次经过节温器4、散热器后流入水箱11,水泵12再将水箱11中冷却液输送至多堆燃料电池21中,且冷却液流经散热器后会降温。本水热管理集成装置,通过设置加热器5能在启动阶段,对冷却液进行加热,以保证多堆燃料电池系统能快速、顺利启动;同时利用去离子器9去除冷却液中的导电离子,以避免导电离子随冷却液进入多堆燃料电池21中时,对多堆燃料电池21的正常电化学反应造成影响,提高了多堆燃料电池系统运行的稳定性。The working principle of the water heat management integrated device of the multi-stack fuel cell system is as follows: in the start-up phase of the multi-stack fuel cell system, and when the temperature of the coolant in the multi-stack fuel cell system is less than or equal to the set temperature value; heat exchange The
如图1所示,本实施例中散热器包括散热风扇7,以利用该散热风扇7对经流的冷却液进行降温处理。同时,散热器与节温器4之间的连通管路上设有第一流量传感器6,散热器与水箱11之间的连通管路上设有第一温度传感器8。去离子器9与水箱11之间的连通管路上设有第二温度传感器10。水泵12与热交换旁通阀16之间的连通管路上设有第二流量传感器13和第三温度传感器14。本实施例中热交换单元利用热量交换为循环的冷却液降温或升温。As shown in FIG. 1 , in this embodiment, the radiator includes a heat dissipation fan 7 , so that the heat dissipation fan 7 can be used to lower the temperature of the flowing coolant. Meanwhile, a
如图1所示,本实施例中空气中冷单元还包括中冷器入口旁通阀组29、中冷器出口混合器30、及空气进气模块1,中冷器组31的进水端通过中冷器入口旁通阀组29与热交换旁通阀16的一个出水端相连接,中冷器组31中全部中冷器的出水口均与中冷器出口混合器30相连通,且中冷器出口混合器30与节温器4的进水阀口相连通,空气进气模块1与中冷器组31相连通。具体地,空气进气模块1与中冷器组31之间的连通管路上设有空气流量传感器2和空气压力表3。中冷器入口旁通阀组29与热交换旁通阀16之间的连通管路上设有第三流量传感器15。冷却液经过热交换单元散热降温后,依次经过中冷器入口旁通阀组29、中冷器组31、中冷器出口混合器30后流入到热交换单元中的节温器4。其中,空气进气模块1提供的高温压缩空气,经过中冷器组31冷却降温到合适的温度后供给多堆燃料电池21。As shown in Figure 1, the air intercooler unit in this embodiment also includes an intercooler inlet
如图1所示,并联冷却液管道单元还包括分流器组18和出堆混合器24,全部入堆冷却液管路19通过分流器组18与热交换旁通阀16的另一个出水端相连接,全部出堆冷却液管路23均与出堆混合器24相连通,出堆混合器24的出口与节温器4的进水阀口相连通。分流器组18与热交换旁通阀16之间的连通管路上设有第五流量传感器17。每个入堆冷却液管路19上设有入堆流量传感器20。每个出堆冷却液管路23上设有出堆流量传感器27和出堆温度传感器28。出堆混合器24与节温器4之间的连通管路上设有第四温度传感器25和第四流量传感器26。冷却液由热交换单元升温或散热降温后经热交换旁通阀16流出,依次经过分流器组18、入堆冷却液管路19、多堆燃料电池21、出堆冷却液管路23、出堆混合器24后再流回到热交换单元中的节温器4,回到热交换单元。本实施例中分流器组18能控制流入多堆燃料电池系统中各燃料电池单堆22的冷却液流量。出堆混合器24对从各燃料电池单堆22流出的冷却液进行收集、混合,保证冷却液温度的均一化。本实施例中并联冷却液管道单元分配一定温度和流量的冷却液,流入多堆燃料电池系统各燃料电池单堆22,且将各燃料电池单堆22流出的冷却液汇集、混合均匀后流向热交换单元,保证多堆燃料电池21在合适的水热环境下进行电化学反应输出电功率。As shown in Figure 1, the parallel cooling liquid pipeline unit also includes a
本实施例中水泵12、热交换旁通阀16、分流器组18、入堆冷却液管路19、多堆燃料电池21、出堆冷却液管路23、出堆混合器24、节温器4、散热风扇7以及水箱11依次相连,并构成冷却液大循环。水泵12、热交换旁通阀16、分流器组18、入堆冷却液管路19、多堆燃料电池21、出堆冷却液管路23、出堆混合器24、节温器4、加热器5、去离子器9及水箱11依次相连构成冷却液小循环。In this embodiment, a
本实施例中水泵12具体采用离心式结构,通过调节水泵12的转速能控制冷却液的总流量。热交换旁通阀16能调节流入空气中冷单元的中冷器组31和经并联冷却液管道单元中的分流器组18流入多堆燃料电池21的冷却液流量。其中,节温器4,能调节大小循环冷却液,在低温或启动阶段,采用小循环结构中的加热器5加热,快速提升冷却液温度,在正常工作阶段,采用大循环结构中的散热风扇7为冷却液散热降温。In this embodiment, the
同时,本实施例还提供一种所述多堆燃料电池系统的水热管理集成装置的工作方法,包括如下步骤:At the same time, this embodiment also provides a working method of the hydrothermal management integrated device of the multi-stack fuel cell system, including the following steps:
在低温或多堆燃料电池系统启动阶段,且当多堆燃料电池系统中的冷却液的温度小于或等于设定温度值时,即冷却液温度还未达到设定温度范围时;热交换单元中的节温器4,关闭流向散热器方向的流道阀口、并开启流向加热器5方向的流道阀口,多堆燃料电池21中流出的冷却液依次经过出堆冷却液管路23、出堆混合器24、节温器4、加热器5、以及去离子器9后流入水箱11,且加热器5对流经的冷却液进行加热,去离子器9去除流经的冷却液中的导电离子,水泵12再将水箱11中冷却液输送至多堆燃料电池21中;此阶段,利用小循环冷却液为燃料电池单堆22升温;At the start-up stage of the low temperature or multi-stack fuel cell system, and when the temperature of the coolant in the multi-stack fuel cell system is less than or equal to the set temperature value, that is, when the temperature of the coolant has not reached the set temperature range; in the heat exchange unit The
在多堆燃料电池系统启动成功后或多堆燃料电池21正常输出功率阶段,冷却液的温度处于设定温度范围,热交换单元中的节温器4,关闭流向加热器5方向的流道阀口、并开启流向散热器方向的流道阀口,多堆燃料电池21中流出的冷却液依次经过出堆冷却液管路23、出堆混合器24、节温器4、散热器后流入水箱11,水泵12再将水箱11中冷却液输送至多堆燃料电池21中,且冷却液流经散热器后会降温;此阶段,利用大循环冷却液为燃料电池单堆22降温。After the multi-stack fuel cell system is successfully started or the
本多堆燃料电池系统的水热管理集成装置还包括控制器,上述节温器4、散热器、水泵12、热交换旁通阀16、分流器组18、以及全部传感器均与控制器相连接。本实施例的工作方法中,利用控制器控制各个单元中的执行器,包括水泵12、散热风扇7、中冷器入口旁通阀组29、热交换旁通阀16及分流器组18,通过控制流经多堆燃料电池21的冷却液流量,使各燃料电池单堆22在工作时维持在合适的温度范围内。本实施例利用热交换旁通阀16和分流器组18来分配冷却液在不同燃料电池单堆22和不同中冷器之间的流动,对不同数目燃料电池单堆22、额定功率的多堆燃料电池系统,能够分别调控各个燃料电池单堆22的温度,便于在各燃料电池单堆22特性不一致的前提下的控制器设计。具体地,控制器,用于控制水泵12转速、散热风扇7转速、热交换旁通阀16开度及分流器开度,调节多堆燃料电池系统各燃料电池单堆22温度和入堆空气温度。本工作方法,根据实际工况需求,以热交换单元中的散热风扇7转速、水泵12转速以及并联冷却液管道单元中的分流器组18的开度为控制器输出,以多堆燃料电池系统中各燃料电池单堆22的温度为控制器的控制目标输入,采用适当的控制算法,比如采用模型预测控制(MPC)算法,将多堆燃料电池系统中的各燃料电池单堆22温度维持在最优范围内。具体的操作方法为:通过合理控制节温器4的开度和散热风扇7的转速,控制流入多堆燃料电池系统中各燃料电池单堆22的冷却液温度,通过调节水泵12的转速、热交换旁通阀16的开度、中冷器入口旁通阀组29的开度和分流器组18的开度,控制流经中冷器组31和各燃料电池单堆22的冷却液流量,将燃料电池单堆22温度维持在最优范围内。同时,控制器收集上述全部传感器反馈的信号,并控制各个执行单元进行反馈调节,保证多堆燃料电池系统的水热管理集成装置处于正常工作状态。The hydrothermal management integrated device of the multi-stack fuel cell system also includes a controller, and the above-mentioned
本实施例对于不同的应用场景或负载工况,给出了集成化程度高、结构紧凑的多堆燃料电池水热管理装置,利用旁通阀和分流器来分配冷却液在不同燃料电池单堆22和不同中冷器之间的流动,并应用适当的控制方法解决多堆燃料电池21水热耦合性强、迟滞性大问题,能够满足多堆燃料电池21的热管理需求。本实施例中水热管理集成装置及其工作方法,能够分别调控各个燃料电池单堆22的温度,便于在各燃料电池单堆22特性不一致的前提下的控制器设计,并且对不同数目单堆、额定功率的多堆燃料电池系统也具有一定的普适性。For different application scenarios or load conditions, this embodiment provides a highly integrated and compact multi-stack fuel cell water and heat management device, which uses bypass valves and flow dividers to distribute cooling fluid among different fuel cell stacks. 22 and the flow between different intercoolers, and apply appropriate control methods to solve the problems of strong water-thermal coupling and large hysteresis of the
本实施例中多堆燃料电池系统的水热管理集成装置,采用多堆并联共用冷却散热系统的方式,利用二级旁通阀结构作分流器,将冷却液分为N股支流,分别给N个燃料电池单堆22散热,分别调控各个燃料电池单堆22的温度。同时将中冷器也接入冷却回路,新增旁通阀加以控制流入中冷器组31的冷却液流量进而控制入堆空气温度在合适的范围。The integrated water and heat management device of the multi-stack fuel cell system in this embodiment adopts the method of multi-stack parallel connection sharing the cooling and heat dissipation system, uses the secondary bypass valve structure as a flow divider, divides the cooling liquid into N branches, and feeds N respectively. Each
另外,本实施例以总额定功率为210kW,单堆数目为3,每个燃料电池单堆22的额定功率都为70kW的多堆燃料电池系统为例,该多堆燃料电池系统的水热管理集成装置如图1所描述。在给定的如图2所示的测试电流负载工况下,应用本实施例设计的多堆燃料电池系统的水热管理集成装置及其工作方法,能够将3个燃料电池单堆22的温度控制在75℃左右,控制系统的超调量基本在1℃以内,同时,冷却液温度也维持65℃左右,各燃料电池单堆22的温度控制效果如图3所示。据此说明,本发明采用多堆并联共用冷却散热系统的方式,利用二级旁通阀结构,将冷却液分为多股支流,分别给多个燃料电池单堆22散热,能够有效地将各燃料电池单堆22的温度控制在适宜温度范围内。In addition, this embodiment takes a multi-stack fuel cell system with a total rated power of 210kW, a number of single stacks of 3, and a rated power of each fuel cell
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111250548.8A CN113972389B (en) | 2021-10-26 | 2021-10-26 | A water and heat management integrated device and working method for a multi-stack fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111250548.8A CN113972389B (en) | 2021-10-26 | 2021-10-26 | A water and heat management integrated device and working method for a multi-stack fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113972389A CN113972389A (en) | 2022-01-25 |
CN113972389B true CN113972389B (en) | 2023-06-06 |
Family
ID=79588492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111250548.8A Active CN113972389B (en) | 2021-10-26 | 2021-10-26 | A water and heat management integrated device and working method for a multi-stack fuel cell system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113972389B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115084579B (en) * | 2022-06-22 | 2024-04-30 | 深圳市氢蓝时代动力科技有限公司 | Power supply heat management system |
CN115241491B (en) * | 2022-08-15 | 2024-08-27 | 上海重塑能源科技有限公司 | Control method of fuel cell water heat management system |
CN115882014B (en) * | 2023-02-06 | 2023-05-12 | 海卓动力(青岛)能源科技有限公司 | Device and method for controlling air inlet temperature of fuel cell |
CN117878351A (en) * | 2024-03-13 | 2024-04-12 | 氢质氢离(北京)氢能科技有限公司 | Thermal management device of fixed hydrogen fuel cell power station and low-temperature starting method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013054933A (en) * | 2011-09-05 | 2013-03-21 | Suzuki Motor Corp | Temperature and flow controller of fuel cell cooling liquid |
CN108091903A (en) * | 2018-01-19 | 2018-05-29 | 清华大学 | A kind of fuel cell pile heat management device, system and method |
CN112652788A (en) * | 2020-12-22 | 2021-04-13 | 上海重塑能源科技有限公司 | Fuel cell system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7070873B2 (en) * | 2001-10-16 | 2006-07-04 | Honda Giken Kogyo Kabushiki Kaisha | Cooling method for fuel cell |
CN103326048B (en) * | 2013-05-24 | 2015-06-17 | 新源动力股份有限公司 | A rapid heating system for fuel cells and a control method thereof |
-
2021
- 2021-10-26 CN CN202111250548.8A patent/CN113972389B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013054933A (en) * | 2011-09-05 | 2013-03-21 | Suzuki Motor Corp | Temperature and flow controller of fuel cell cooling liquid |
CN108091903A (en) * | 2018-01-19 | 2018-05-29 | 清华大学 | A kind of fuel cell pile heat management device, system and method |
CN112652788A (en) * | 2020-12-22 | 2021-04-13 | 上海重塑能源科技有限公司 | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
CN113972389A (en) | 2022-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113972389B (en) | A water and heat management integrated device and working method for a multi-stack fuel cell system | |
CN101331634B (en) | Fuel cell cooling system and method | |
CN113937325B (en) | A fuel cell engine thermal management control method | |
WO2013023415A1 (en) | Flow battery system, and control method and device thereof | |
CN114068986B (en) | Solid alloy hydrogen storage and multi-stack fuel cell thermal management system | |
CN102013504A (en) | Test platform temperature control system and control method for proton exchange membrane fuel cell | |
CN109004250B (en) | Device and method for rapidly adjusting temperature and humidity of pipeline gas | |
CN114220989B (en) | Heat radiation system of fuel cell stack | |
CN113140749A (en) | Low-temperature quick start control method and system for fuel cell | |
CN108550877A (en) | A kind of fuel cell pile distribution cold-starting device, system and method | |
CN112490469A (en) | Temperature control method and system for hydrogen energy automobile electric pile | |
CN116344861A (en) | Proton exchange membrane hydrogen fuel cell cogeneration system | |
CN206574800U (en) | A kind of cold boot of fuel cell system based on liquid organic hydrogen storage | |
CN112397744A (en) | Air supply cooling system of hydrogen fuel cell | |
CN112582642A (en) | Heat preservation heating device for hydrogen supply and hydrogen return of fuel cell | |
CN116053515A (en) | Testing device of battery thermal management system | |
CN113097529A (en) | Fuel cell and internal circulation system thereof | |
CN201838663U (en) | Temperature control system for proton exchange membrane fuel cell testing platform | |
CN217134432U (en) | Fuel cell offline testing equipment | |
CN214672760U (en) | Solid-state battery energy storage system capable of accurately controlling temperature | |
CN114583211B (en) | Fuel cell system and low-temperature starting method thereof | |
CN115600058A (en) | Design method and system of high-power single fuel cell stack system | |
CN115312805A (en) | Multi-stack fuel cell cooling system and water heat management method thereof | |
JP2022157407A (en) | Method for operating a fuel cell system | |
CN220692066U (en) | Fuel cell thermal management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |