JP7114502B2 - fuel cell system - Google Patents

fuel cell system Download PDF

Info

Publication number
JP7114502B2
JP7114502B2 JP2019017386A JP2019017386A JP7114502B2 JP 7114502 B2 JP7114502 B2 JP 7114502B2 JP 2019017386 A JP2019017386 A JP 2019017386A JP 2019017386 A JP2019017386 A JP 2019017386A JP 7114502 B2 JP7114502 B2 JP 7114502B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
cell body
operating state
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017386A
Other languages
Japanese (ja)
Other versions
JP2020126727A (en
Inventor
もも 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019017386A priority Critical patent/JP7114502B2/en
Publication of JP2020126727A publication Critical patent/JP2020126727A/en
Application granted granted Critical
Publication of JP7114502B2 publication Critical patent/JP7114502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

実施形態は、燃料電池システムに関する。 Embodiments relate to fuel cell systems.

燃料電池は、水素と酸素との電気化学的反応により発電する装置である。燃料電池は、電気的化学反応を発生させる際に発熱する。燃料電池の発電を継続するには、燃料電池を所定の温度に維持する必要があり、冷却水を供給することで燃料電池の冷却を行っている。燃料電池で発生した熱を有効利用すべく、必要に応じて熱需要に供給するシステムとするのが一般的である。 A fuel cell is a device that generates electricity through an electrochemical reaction between hydrogen and oxygen. Fuel cells generate heat as they generate electrical chemical reactions. In order for the fuel cell to continue power generation, it is necessary to maintain the fuel cell at a predetermined temperature, and the fuel cell is cooled by supplying cooling water. In order to make effective use of the heat generated by the fuel cell, it is common to have a system that supplies heat as needed.

従来の燃料電池システムは、例えば、特許文献1に示すように、燃料電池の冷却を行う電池冷却ラインと、電池冷却ラインから熱を回収する排熱回収ラインの2つのラインを備えることが多い。電池冷却ラインにて燃料電池の冷却を行い、電池冷却ラインの熱を電池冷却ライン上に設けた熱交換器を介して排熱回収ラインへ受け渡す。熱交換器は、排熱回収ラインを構成する機器でもある。そして、排熱回収ライン上の客先利用熱交換器にて、客先に熱を供給することで熱を利用する。 Conventional fuel cell systems often include two lines, a cell cooling line for cooling the fuel cell and an exhaust heat recovery line for recovering heat from the cell cooling line, as shown in Patent Document 1, for example. The fuel cell is cooled in the battery cooling line, and the heat in the battery cooling line is transferred to the exhaust heat recovery line via a heat exchanger provided on the battery cooling line. A heat exchanger is also a device that constitutes an exhaust heat recovery line. Then, the heat is utilized by supplying the heat to the customer in the customer-use heat exchanger on the exhaust heat recovery line.

特許第5092960号公報Japanese Patent No. 5092960

前記のような技術においては、全く独立した2つのラインが熱交換器で接続されていたが、このような2つのラインを設けることは、常時排熱を利用することの可能な排熱理由率の高いシステムにあっては有効である。しかし、排熱利用率が低く、排熱回収ラインの規模や利用率が低いシステムにおいては、独立した2つのラインを設けることはシステム全体の構成が複雑になり、コストアップの要因となる。特に、従来技術では、熱交換器を介して2つのライン間の熱移動を行うことから、排熱を客先の放熱手段に直接供給する構成に比較してシステムが大型化すると共に、熱交換による損失も多く、熱利用率が低い、言い換えれば利用可能な熱エネルギーが少ないシステムには不適当であった。 In the technique described above, two completely independent lines are connected by a heat exchanger, but the provision of such two lines enables the constant utilization of waste heat. It is effective in a system with a high However, in a system where the exhaust heat utilization rate is low and the scale and utilization rate of the exhaust heat recovery line are low, the provision of two independent lines complicates the configuration of the entire system and causes an increase in cost. In particular, in the conventional technology, since heat is transferred between two lines via a heat exchanger, the system becomes larger than a configuration in which waste heat is directly supplied to the customer's heat dissipation means, and the heat exchange It is also unsuitable for systems with low heat utilization, in other words, with little available heat energy.

本実施形態の燃料電池システムは、上記のような従来技術の問題点を解決するために提案されたものであり、燃料電池で発生した排熱を単純な構成により効率よく利用可能とする燃料電池システムを提供する。 The fuel cell system of this embodiment has been proposed to solve the above-described problems of the prior art. provide the system.

実施形態の燃料電池システムは、次のような構成を有する。
(1)燃料電池本体からの冷却水を、放熱手段を経由して前記燃料電池本体に循環させる排熱回収ライン。
(2)前記燃料電池本体を冷却する冷却水を、前記放熱手段を経由することなく循環させる冷却ライン。
(3)前記燃料電池本体から流出した冷却水を前記排熱回収ラインと冷却ラインに分岐させる三方調整弁。
(4)前記三方調整弁の前記冷却ライン側と前記排熱回収ライン側に対する開度を制御する制御部。
(5)前記燃料電池本体から流出する冷却水の持つ放熱能力を検出する熱量検出手段。
(6)前記制御部は、前記熱量検出手段によって検出された前記燃料電池本体から流出する冷却水の放熱能力に従って、前記冷却ライン側と前記排熱回収ライン側に対する開度を制御する。
(7)前記熱量検出手段が、燃料電池本体の運転状態の検出手段と、前記燃料電池本体の運転状態において燃料電池本体から流出する冷却水温度との対応関係を示すデータの記憶部である。
(8)前記制御部は、前記運転状態検出手段が検出した燃料電池本体の運転状態と、その運転状態に対応して前記記憶部に記憶されている冷却水温度のデータに基づいて、前記三方調整弁の開度を制御する。
The fuel cell system of the embodiment has the following configuration.
(1) An exhaust heat recovery line for circulating the cooling water from the fuel cell main body to the fuel cell main body via heat dissipation means.
(2) A cooling line for circulating cooling water for cooling the fuel cell main body without passing through the heat radiation means.
(3) A three-way control valve that branches the cooling water flowing out of the fuel cell main body to the exhaust heat recovery line and the cooling line.
(4) A control unit that controls opening degrees of the three-way control valve with respect to the cooling line side and the exhaust heat recovery line side.
(5) calorie detection means for detecting heat radiation capability of cooling water flowing out from the fuel cell main body;
(6) The control section controls the opening degrees of the cooling line side and the exhaust heat recovery line side according to the heat radiation capacity of the cooling water flowing out of the fuel cell main body detected by the heat quantity detecting means.
(7) The calorie detection means is a data storage unit that stores data indicating the correspondence relationship between the operation state detection means of the fuel cell body and the temperature of cooling water flowing out of the fuel cell body in the operation state of the fuel cell body.
(8) The control unit detects the operating state of the fuel cell body detected by the operating state detection means and the cooling water temperature data stored in the storage unit corresponding to the operating state. Controls the opening of the regulating valve.

第1実施形態の配管図である。It is a piping diagram of a 1st embodiment. 第2実施形態の配管図である。It is a piping diagram of a 2nd embodiment. 第3実施形態の配管図である。It is a piping diagram of 3rd Embodiment. 第4実施形態の配管図である。It is a piping diagram of a 4th embodiment.

以下、実施形態について図面を参照しながら説明する。図面中の同一部分には、同一番号を付してその詳しい説明は適宜省略し、異なる部分について説明する。 Hereinafter, embodiments will be described with reference to the drawings. The same parts in the drawings are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate, and different parts will be described.

[1.第1実施形態]
[1-1.構成]
図1に示すように、本実施形態の燃料電池システムでは、燃料電池本体1と、燃料電池本体1に対して冷却水を供給するポンプ2、燃料電池本体1によって加熱された冷却水の排熱を利用する放熱器3を結ぶ排熱回収ラインHLを備える。放熱器3としては、例えば、空冷ファン、ラジエター、熱交換器などの公知の放熱手段を適宜使用することができる。
[1. First Embodiment]
[1-1. Constitution]
As shown in FIG. 1, the fuel cell system of this embodiment includes a fuel cell body 1, a pump 2 that supplies cooling water to the fuel cell body 1, and exhaust heat from the cooling water heated by the fuel cell body 1. is provided with an exhaust heat recovery line HL that connects the radiators 3 that utilize As the heat radiator 3, for example, a known heat radiation means such as an air cooling fan, radiator, or heat exchanger can be appropriately used.

燃料電池システムは、排熱回収ラインHLの放熱器3を経由することなく、排熱回収ラインHLのバイパスとして、燃料電池本体1とポンプ2との間で冷却水を循環させる冷却ラインBLを備える。排熱回収ラインHLと冷却ラインBLの分岐部分には、燃料電池本体1から流出する冷却水を2つのラインに分流する三方調整弁4が設けられる。 The fuel cell system includes a cooling line BL that circulates cooling water between the fuel cell body 1 and the pump 2 as a bypass of the exhaust heat recovery line HL without passing through the radiator 3 of the exhaust heat recovery line HL. . A three-way control valve 4 that divides the cooling water flowing out of the fuel cell body 1 into two lines is provided at the branched portion of the exhaust heat recovery line HL and the cooling line BL.

三方調整弁4は、その開度を調整する制御部5を備える。制御部5は、手動或いは各種のセンサや検出器からのデータ、或いは燃料電池本体1の運転状況に関するデータに基づいて、冷却水の流れを排熱回収ラインHLと冷却ラインBLで切り換えたり、あるいは、排熱回収ラインHLと冷却ラインBLに流れる冷却水の流量配分を調整するための手段である。 The three-way regulating valve 4 has a control section 5 that adjusts the degree of opening thereof. The control unit 5 switches the cooling water flow between the exhaust heat recovery line HL and the cooling line BL manually or based on data from various sensors and detectors, or data on the operating status of the fuel cell body 1, or , means for adjusting the flow distribution of the cooling water flowing through the exhaust heat recovery line HL and the cooling line BL.

本実施形態において、制御部5は、放熱器3に設けられた運転スイッチであって、システムの利用者が放熱器3において冷却水の排熱を利用するにあたってその運転スイッチを投入すると、三方調整弁4が排熱回収ラインHL側に切り換わり、冷却水が排熱回収ラインHL側に流れる。また、運転スイッチとして、強、中、弱などのように運転レベルが選択可能なものを使用した場合には、その運転レベルに応じて三方調整弁4の開度が変化して、排熱回収ラインHLに流れる冷却水の分流レベルが調整される。 In this embodiment, the control unit 5 is an operation switch provided on the radiator 3. When the user of the system turns on the operation switch to utilize the waste heat of the cooling water in the radiator 3, three-way adjustment is performed. The valve 4 is switched to the exhaust heat recovery line HL side, and the cooling water flows to the exhaust heat recovery line HL side. In addition, when a switch that allows selection of operation levels such as strong, medium, and weak is used as the operation switch, the opening of the three-way control valve 4 changes according to the operation level, thereby recovering exhaust heat. The diversion level of the cooling water flowing in line HL is adjusted.

特に図示しないが、排熱回収ラインHLには、ユーザが利用する排熱のための放熱器3に加えて、従来公知の各種放熱器や熱交換器(例えば、ユーザ用熱交換器、機器保護用熱交換器)を設けることができる。また、燃料電池システムにおいて排熱回収ラインHLに設けられる各種装置、例えば、水処理装置、流量計、圧力弁、冷却水の漏洩監視装置、警報装置などを設けることもできる。 Although not shown in particular, in the exhaust heat recovery line HL, in addition to the radiator 3 for exhaust heat used by the user, various conventionally known radiators and heat exchangers (for example, a user heat exchanger, a device protection heat exchanger) can be provided. Various devices provided in the exhaust heat recovery line HL in the fuel cell system, such as a water treatment device, a flow meter, a pressure valve, a cooling water leakage monitoring device, and an alarm device, can also be provided.

[1-2.作用・効果]
以上のような構成を有する本実施形態の燃料電池システムでは、排熱回収ラインHLに対して冷却ラインBLをバイパス接続したことにより、冷却ラインBLに対して熱交換器を介して排熱回収ラインHLを接続した従来技術に比較して熱交換器が不要となり、システムの構成が単純化する。また、排熱の利用時には、燃料電池本体1からの冷却水を直接放熱器3に供給することができるので、熱効率も良い。
[1-2. Action/effect]
In the fuel cell system of this embodiment having the configuration described above, the cooling line BL is bypass-connected to the exhaust heat recovery line HL. As compared with the conventional technology in which the HL is connected, no heat exchanger is required, which simplifies the system configuration. In addition, when the exhaust heat is used, the cooling water from the fuel cell body 1 can be directly supplied to the radiator 3, so the heat efficiency is also good.

本実施形態では、排熱が多い場合には冷却水を排熱回収ラインHLに流し、排熱が少ない場合には冷却水を冷却ラインBLに流すという処理を、三方調整弁4という比較的単純で小型の部品によって行える利点がある。そのため、本実施形態によれば、排熱の利用頻度が低い、すなわち、冷却水に含まれる排熱の熱量が少なく、コスト的あるいは使用頻度的な見地から大掛かりな排熱回収ラインHLを設けることが不可能なシステムであっても、排熱の効果的な利用が可能となる。 In this embodiment, the three-way regulating valve 4 is relatively simple in that the cooling water is passed through the exhaust heat recovery line HL when the amount of exhaust heat is large, and the cooling water is allowed to flow through the cooling line BL when the amount of exhaust heat is small. It has the advantage that it can be done with small parts. Therefore, according to the present embodiment, the frequency of use of exhaust heat is low, that is, the amount of heat contained in the cooling water is small. Even in a system incapable of

更に、従来の小規模な燃料電池システムでは、利用する排熱量が少ないため、排熱回収ラインのみを設けて冷却水を常時放熱器3に供給することも考えられるが、放熱器3に常時冷却水を供給すると、燃料電池本体1の運転状況によっては放熱器3に温度の低い冷却水が供給され、ユーザが不快感を感じるような不都合が発生するが、本実施形態では、排熱回収ラインHLには放熱用の熱量を有する冷却水のみが供給されるので、そのような不都合は生じない。 Furthermore, in a conventional small-scale fuel cell system, since the amount of exhaust heat to be used is small, it is conceivable to provide only an exhaust heat recovery line to constantly supply cooling water to the radiator 3. If water is supplied, cooling water with a low temperature may be supplied to the radiator 3 depending on the operating conditions of the fuel cell body 1, which may cause inconvenience to the user. Since the HL is supplied only with cooling water having a heat quantity for heat release, such inconvenience does not occur.

[2.第2実施形態]
図2に示す第2実施形態は、三方調整弁4の開度を自動的に調整するものである。本実施形態では、燃料電池本体1から流出する冷却水の持つ放熱能力を検出する熱量検出手段として、燃料電池本体1の後段に温度計6が設けられる。制御部5は、温度計6の検出結果に基づいて三方調整弁4の開度を制御する。すなわち、温度計6によって燃料電池本体1から流出する冷却水の温度が高い場合には、利用できる排熱の熱量が大きいことから、制御部5は三方調整弁4を排熱回収ラインHL側に切り換え、高温の冷却水を放熱器3側に流して、ユーザが利用できるようにする。
[2. Second Embodiment]
2nd Embodiment shown in FIG. 2 adjusts the opening degree of the three-way control valve 4 automatically. In this embodiment, a thermometer 6 is provided after the fuel cell body 1 as heat quantity detection means for detecting the heat dissipation capability of the cooling water flowing out of the fuel cell body 1 . The control unit 5 controls the opening degree of the three-way control valve 4 based on the detection result of the thermometer 6 . That is, when the temperature of the cooling water flowing out of the fuel cell main body 1 is high as indicated by the thermometer 6, the amount of usable exhaust heat is large. By switching over, high-temperature cooling water is allowed to flow to the side of the radiator 3 so that it can be used by the user.

この場合、制御部5は温度計6が検出した冷却水の温度が一定値以上の場合に、三方調整弁4を冷却ラインBL側から排熱回収ラインHL側に全部切り換えても良いし、予め設定した温度レベルに応じて三方調整弁4による分流量を調整しても良い。 In this case, when the temperature of the cooling water detected by the thermometer 6 is equal to or higher than a certain value, the control unit 5 may switch all three-way control valves 4 from the cooling line BL side to the exhaust heat recovery line HL side. The diversion flow rate by the three-way control valve 4 may be adjusted according to the set temperature level.

このような構成を有する第2実施形態によれば、三方調整弁4の開度が燃料電池本体1から送出される冷却水の温度に応じて自動的に調整される。その結果、ユーザが特に燃料電池の運転状況を監視していなくても、利用できる排熱の熱量に応じて放熱器3に利用可能な熱量を有する冷却水が供給されるため、取り扱いが容易な排熱利用可能な燃料電池システムを得ることができる。
[3.第3実施形態]
図3に示す第3実施形態は、燃料電池本体1から流出する冷却水の持つ放熱能力を検出する熱量検出手段として、放熱器3の後段に温度計6が設けられる。制御部5は、温度計6の検出結果に基づいて三方調整弁4の開度を制御する。すなわち、温度計6によって放熱器3から流出する冷却水の温度が高い場合には、放熱器3において廃熱を回収して利用した後であっても、排熱回収ラインHL内を流れる冷却水の温度が高い、言い換えると燃料電池本体1から送出された冷却水の温度が高いことが分かる。
According to the second embodiment having such a configuration, the degree of opening of the three-way regulating valve 4 is automatically adjusted according to the temperature of the coolant sent from the fuel cell body 1 . As a result, even if the user does not specifically monitor the operating conditions of the fuel cell, cooling water having a usable heat quantity is supplied to the radiator 3 in accordance with the heat quantity of the usable exhaust heat. A fuel cell system capable of utilizing waste heat can be obtained.
[3. Third Embodiment]
In the third embodiment shown in FIG. 3, a thermometer 6 is provided downstream of the radiator 3 as heat quantity detection means for detecting the heat dissipation capability of the cooling water flowing out of the fuel cell main body 1 . The control unit 5 controls the opening degree of the three-way control valve 4 based on the detection result of the thermometer 6 . That is, when the temperature of the cooling water flowing out of the radiator 3 is high according to the thermometer 6, even after the waste heat is recovered and used in the radiator 3, the cooling water flowing through the exhaust heat recovery line HL is high, in other words, the temperature of the cooling water sent from the fuel cell body 1 is high.

そこで、冷却水の利用できる排熱の熱量を放熱器3の後段の温度計6の検出結果から推測し、排熱の熱量が大きい場合には、制御部5は三方調整弁4を排熱回収ラインHL側に切り換え、高温の冷却水を放熱器3側に流して、ユーザが利用できるようにする。 Therefore, the heat quantity of exhaust heat that can be used by the cooling water is estimated from the detection result of the thermometer 6 at the rear stage of the radiator 3. It is switched to the line HL side, and high-temperature cooling water is flowed to the radiator 3 side so that it can be used by the user.

このような構成を有する第3実施形態によれば、三方調整弁4の開度が放熱器3による排熱利用後の冷却水の温度に応じて自動的に調整される。その結果、第2実施形態と同様に、取り扱いが容易な排熱利用可能な燃料電池システムを得ることができる。また、放熱器3の後段という排熱利用箇所に近い部分の温度を検出することで、放熱器3の運転状況を加味した三方調整弁4の制御が可能となることから、ユーザの排熱利用量に応じた精度の高い流量調整が可能となる。 According to the third embodiment having such a configuration, the degree of opening of the three-way regulating valve 4 is automatically adjusted according to the temperature of the cooling water after exhaust heat is utilized by the radiator 3 . As a result, similarly to the second embodiment, it is possible to obtain an easily handled fuel cell system capable of utilizing waste heat. In addition, by detecting the temperature of the part near the point where waste heat is used, which is the latter stage of the radiator 3, it is possible to control the three-way control valve 4 in consideration of the operating conditions of the radiator 3. It is possible to adjust the flow rate with high accuracy according to the amount.

[4.第4実施形態]
図4に示す第4実施形態は、燃料電池本体1から流出する冷却水の持つ放熱能力を検出する熱量検出手段として、燃料電池本体1の運転状況を利用したものである。すなわち、燃料電池本体1の運転状況に応じて燃料電池本体1の出口温度が決まるので、運転状況に応じた流量分が排熱回収ラインHLに流れるように三方調整弁4の開度を調整する。
[4. Fourth Embodiment]
The fourth embodiment shown in FIG. 4 utilizes the operating conditions of the fuel cell body 1 as heat quantity detection means for detecting the heat radiation capability of the cooling water flowing out of the fuel cell body 1 . That is, since the outlet temperature of the fuel cell body 1 is determined according to the operating conditions of the fuel cell body 1, the opening degree of the three-way control valve 4 is adjusted so that the amount of flow corresponding to the operating conditions flows into the exhaust heat recovery line HL. .

そのため、本実施形態では、熱量検出手段として、燃料電池本体1の運転状態の検出装置7を設ける。この検出装置7としては、燃料電池本体1の運転レベルやポンプ2の運転速度などを検出するものが使用できる。制御部5には、検出装置7が検出した燃料電池本体1の各運転状態において、燃料電池本体1から流出する冷却水温度との対応関係を示すデータの記憶部8が設けられる。 Therefore, in this embodiment, the operating state detection device 7 of the fuel cell main body 1 is provided as a heat amount detection means. As the detection device 7, a device that detects the operating level of the fuel cell body 1, the operating speed of the pump 2, and the like can be used. The control unit 5 is provided with a storage unit 8 for storing data indicating the relationship between the temperature of the cooling water flowing out of the fuel cell body 1 and the operating state of the fuel cell body 1 detected by the detection device 7 .

このような構成を有する本実施形態では、制御部5は、検出装置7が検出した燃料電池本体1の運転状態と、その運転状態に対応して記憶部8に記憶されている冷却水温度のデータに基づいて、三方調整弁4の開度を制御する。 In this embodiment having such a configuration, the control unit 5 determines the operating state of the fuel cell body 1 detected by the detecting device 7 and the cooling water temperature stored in the storage unit 8 corresponding to the operating state. Based on the data, the opening degree of the three-way control valve 4 is controlled.

本実施形態によれば、三方調整弁4の開度が燃料電池本体1の運転状況に応じて自動的に調整される結果、第2実施形態と同様に、取り扱いが容易な排熱利用可能な燃料電池システムを得ることができる。また、第2実施形態や第3実施形態のような温度計6などの別機器を設けることなく、燃料電池本体1の運転状況の検出装置7も、燃料電池本体1やポンプ2の運転制御装置に設けられている検出装置を、そのまま利用することが可能である。 According to this embodiment, the degree of opening of the three-way regulating valve 4 is automatically adjusted according to the operating conditions of the fuel cell body 1. As a result, similar to the second embodiment, an easy-to-handle exhaust heat utilization is possible. A fuel cell system can be obtained. Further, the device 7 for detecting the operational status of the fuel cell body 1 can also be used as the operation control device for the fuel cell body 1 and the pump 2 without providing a separate device such as the thermometer 6 as in the second and third embodiments. can be used as it is.

[他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other embodiments]
Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

HL…排熱回収ライン
BL…冷却ライン
1…燃料電池本体
2…ポンプ
3…放熱器
4…三方流調弁
5…制御部
6…温度計
7…運転状況の検出装置
8…記憶部
9a~9c…圧力計
HL Exhaust heat recovery line BL Cooling line 1 Fuel cell body 2 Pump 3 Radiator 4 Three-way control valve 5 Control unit 6 Thermometer 7 Operation status detection device 8 Storage units 9a to 9c …pressure gauge

Claims (4)

燃料電池本体からの冷却水を、放熱手段を経由して前記燃料電池本体に循環させる排熱回収ラインと
前記燃料電池本体を冷却する冷却水を、前記放熱手段を経由することなく循環させる冷却ラインと、
前記燃料電池本体から流出した冷却水を前記排熱回収ラインと冷却ラインに分岐させる三方調整弁と、
前記三方調整弁の前記冷却ライン側と前記排熱回収ライン側に対する開度を制御する制御部と、
前記燃料電池本体から流出する冷却水の持つ放熱能力を検出する熱量検出手段と、を備え、
前記制御部は、前記熱量検出手段によって検出された前記燃料電池本体から流出する冷却水の放熱能力に従って、前記冷却ライン側と前記排熱回収ライン側に対する開度を制御し、
前記熱量検出手段が、燃料電池本体の運転状態の検出手段と、前記燃料電池本体の運転状態において燃料電池本体から流出する冷却水温度との対応関係を示すデータの記憶部であり、
前記制御部は、前記運転状態検出手段が検出した燃料電池本体の運転状態と、その運転状態に対応して前記記憶部に記憶されている冷却水温度のデータに基づいて、前記三方調整弁の開度を制御することを特徴とする燃料電池システム。
an exhaust heat recovery line for circulating cooling water from a fuel cell body to the fuel cell body via a heat dissipation means ;
a cooling line for circulating cooling water for cooling the fuel cell main body without passing through the heat radiation means;
a three-way control valve for branching the cooling water flowing out of the fuel cell main body to the exhaust heat recovery line and the cooling line;
a control unit that controls opening degrees of the three-way control valve with respect to the cooling line side and the exhaust heat recovery line side ;
a calorie detection means for detecting the heat dissipation capability of the cooling water flowing out of the fuel cell body,
The control unit controls opening degrees to the cooling line side and the exhaust heat recovery line side according to the heat radiation capacity of the cooling water flowing out of the fuel cell main body detected by the heat amount detecting means,
wherein the heat amount detection means is a data storage unit that stores data indicating a correspondence relationship between the operating state detection means of the fuel cell body and the temperature of cooling water flowing out of the fuel cell body in the operating state of the fuel cell body;
The control unit controls the operation of the three-way control valve based on the operating state of the fuel cell body detected by the operating state detecting means and the cooling water temperature data stored in the storage unit corresponding to the operating state. A fuel cell system characterized by controlling the degree of opening .
前記熱量検出手段が、前記燃料電池本体の後段に設けられた温度計であり、前記制御部は前記温度計の検出結果に基づいて前記三方調整弁の開度を制御する請求項に記載の燃料電池システム。 2. The apparatus according to claim 1 , wherein said heat amount detection means is a thermometer provided at a stage subsequent to said fuel cell body, and said control section controls the degree of opening of said three-way regulating valve based on the detection result of said thermometer. fuel cell system. 前記熱量検出手段が、前記排熱回収ラインに設けられた前記放熱手段の後段に設けられた温度計であり、前記制御部は前記温度計の検出結果に基づいて前記三方調整弁の開度を制御する請求項に記載の燃料電池システム。 The heat amount detection means is a thermometer provided downstream of the heat dissipation means provided in the exhaust heat recovery line, and the control unit adjusts the opening of the three-way control valve based on the detection result of the thermometer. The fuel cell system according to claim 1 , which controls. 前記熱量検出手段が、燃料電池本体の運転状態の検出手段と、前記燃料電池本体の運転状態において燃料電池本体から流出する冷却水温度との対応関係を示すデータの記憶部であり、
前記制御部は、前記運転状態検出手段が検出した燃料電池本体の運転状態と、その運転状態に対応して前記記憶部に記憶されている冷却水温度のデータに基づいて、前記三方調整弁の開度を制御する請求項に記載の燃料電池システム。
wherein the heat amount detection means is a data storage unit that stores data indicating a correspondence relationship between the operating state detection means of the fuel cell body and the temperature of cooling water flowing out of the fuel cell body in the operating state of the fuel cell body;
The control unit controls the operation of the three-way control valve based on the operating state of the fuel cell body detected by the operating state detecting means and the cooling water temperature data stored in the storage unit corresponding to the operating state. 2. The fuel cell system according to claim 1 , wherein the degree of opening is controlled.
JP2019017386A 2019-02-01 2019-02-01 fuel cell system Active JP7114502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019017386A JP7114502B2 (en) 2019-02-01 2019-02-01 fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017386A JP7114502B2 (en) 2019-02-01 2019-02-01 fuel cell system

Publications (2)

Publication Number Publication Date
JP2020126727A JP2020126727A (en) 2020-08-20
JP7114502B2 true JP7114502B2 (en) 2022-08-08

Family

ID=72084110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017386A Active JP7114502B2 (en) 2019-02-01 2019-02-01 fuel cell system

Country Status (1)

Country Link
JP (1) JP7114502B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037302A (en) 2006-08-08 2008-02-21 Nissan Motor Co Ltd Vehicle cooling system
US20080299423A1 (en) 2007-05-30 2008-12-04 Laven Arne Fuel cell systems with maintenance hydration
US20180019485A1 (en) 2016-07-15 2018-01-18 Ford Global Technologies, Llc Control of fuel cell cooling system in a vehicle
JP2018073587A (en) 2016-10-27 2018-05-10 株式会社デンソー Fuel cell system
JP2018106900A (en) 2016-12-26 2018-07-05 株式会社デンソー Fuel cell cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037302A (en) 2006-08-08 2008-02-21 Nissan Motor Co Ltd Vehicle cooling system
US20080299423A1 (en) 2007-05-30 2008-12-04 Laven Arne Fuel cell systems with maintenance hydration
US20180019485A1 (en) 2016-07-15 2018-01-18 Ford Global Technologies, Llc Control of fuel cell cooling system in a vehicle
JP2018073587A (en) 2016-10-27 2018-05-10 株式会社デンソー Fuel cell system
JP2018106900A (en) 2016-12-26 2018-07-05 株式会社デンソー Fuel cell cooling system

Also Published As

Publication number Publication date
JP2020126727A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6208520B2 (en) Cogeneration system
JP6766638B2 (en) Fuel cell cooling system
US7147951B1 (en) Cogeneration device
JP2017054648A (en) Fuel cell system
JP6766639B2 (en) Fuel cell cooling system
KR101908788B1 (en) Integrated heat pump and fuel cell power plant
JP2005100873A (en) Fuel cell system
CN114068986B (en) Solid alloy hydrogen storage and multi-stack fuel cell thermal management system
JP2021082572A (en) Thermal management system of fuel cell vehicle
CN111584898B (en) Fuel cell system
JP2006024431A (en) Fuel cell system
JP7114502B2 (en) fuel cell system
JP6997714B2 (en) Power generation system
JP4050919B2 (en) Fuel cell system and operation method thereof
JP4208792B2 (en) Cogeneration system
JP2018116873A (en) Fuel battery device, fuel battery system, and controller
CN115810772A (en) Fuel cell heat management system with cold accumulation function
JP2006105452A (en) Cogeneration system and its control method
JP2022157407A (en) Method for operating a fuel cell system
JP2008147121A (en) Fuel cell evaluation device
JP5369752B2 (en) Fuel cell power generator
JP4408269B2 (en) Waste heat recovery system and cogeneration system
TWI385847B (en) Stage fuel cell system for loading system components and methods thereof
JP2022065685A (en) Fuel cell system
JP2005129537A (en) Fuel cell having heating and/or cooling circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190610

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220727

R150 Certificate of patent or registration of utility model

Ref document number: 7114502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150