JP2006105452A - Cogeneration system and its control method - Google Patents

Cogeneration system and its control method Download PDF

Info

Publication number
JP2006105452A
JP2006105452A JP2004290999A JP2004290999A JP2006105452A JP 2006105452 A JP2006105452 A JP 2006105452A JP 2004290999 A JP2004290999 A JP 2004290999A JP 2004290999 A JP2004290999 A JP 2004290999A JP 2006105452 A JP2006105452 A JP 2006105452A
Authority
JP
Japan
Prior art keywords
heat source
source water
heat
cogeneration system
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290999A
Other languages
Japanese (ja)
Inventor
Keizo Hoshijima
惠三 星島
Kazuki Kudo
一樹 工藤
Masatsugu Hirano
政嗣 平野
Noboru Makita
昇 牧田
Junji Masuda
淳二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Ebara Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Nippon Telegraph and Telephone Corp filed Critical Ebara Corp
Priority to JP2004290999A priority Critical patent/JP2006105452A/en
Publication of JP2006105452A publication Critical patent/JP2006105452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system having lower manufacturing cost and a smaller installation area. <P>SOLUTION: The cogeneration system comprises a fuel cell 1 having a fuel treatment device 2 for inputting fuel and taking hydrogen, a stack 3 for taking DC power out of hydrogen and oxygen from the fuel treatment device 2, and an inverter 4 for inverting the DC power into AC power, a heat exchanger 5 provided in a pipeline 21 connected to the stack 3, a heat source water pipeline 18 connecting the heat exchanger 5 to an absorption refrigerator 6, a cooling water pipeline 19 connecting the absorption refrigerator 6 to a cooling tower 12, a heat exchanger 14 provided in the cooling water pipeline 19, a pipeline 22 connecting the heat exchanger 14 to the heat source water pipeline 18, a three-way valve 9 provided in the heat source water pipeline 18 and adapted to be controlled corresponding to a heat source water return temperature T1 to supply heat source water from the absorption refrigerator 6 to the heat exchanger 5 and the heat exchanger 14 in a branching manner, and a cold water pipeline 20 connecting the absorption refrigerator 6 to a plurality of fan coil units 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は吸収冷凍機を有するコージェネレーションシステムおよびその制御方法に関するものである。   The present invention relates to a cogeneration system having an absorption refrigerator and a control method thereof.

図6は従来のコージェネレーションシステムを示す図である。図に示すように、固体高分子形の燃料電池1は燃料処置装置2、スタック3およびインバータ4を有しており、燃料処理装置2は燃料を入力して水素を取り出し、スタック3は燃料処理装置2からの水素と酸素とから直流電力を取り出し、インバータ4は直流電力を交流電力に変換し、交流電力を負荷へ出力する。また、スタック3に接続された管路21に2基の熱交換器5、31が設けられ、熱交換器5と燃料電池1の排熱を利用する吸収冷凍機6とを接続する熱源水管路18が設けられ、熱源水管路18に熱源水ポンプ7が設けられ、熱源水管路18に第2の三方弁8が設けられ、三方弁8の開度は熱源水管路18内の熱源水の温度を測定する温度計10によって測定された温度すなわち熱源水戻り温度T1に応じて制御される。また、吸収冷凍機6と冷却塔12とを接続する冷却水管路19が設けられ、冷却水管路19に冷却水ポンプ13が設けられている。また、吸収冷凍機6と複数のファンコイルユニット15とを接続する冷水管路20が設けられ、冷水管路20に冷水ポンプ16が設けられている。また、熱源水管路18に第3の三方弁11が設けられ、三方弁11の開度は冷水管路20内の冷水の温度を測定する温度計17によって測定された温度すなわち冷水出口温度T2に応じて制御される。また、熱交換器31と冷却塔32とを接続する冷却水管路33が設けられている。   FIG. 6 is a diagram showing a conventional cogeneration system. As shown in the figure, a polymer electrolyte fuel cell 1 has a fuel treatment device 2, a stack 3, and an inverter 4. The fuel processing device 2 inputs fuel and takes out hydrogen, and the stack 3 performs fuel processing. DC power is taken out from the hydrogen and oxygen from the device 2, and the inverter 4 converts the DC power into AC power and outputs the AC power to the load. Further, two heat exchangers 5 and 31 are provided in the pipe line 21 connected to the stack 3, and a heat source water pipe line that connects the heat exchanger 5 and the absorption refrigerator 6 that uses the exhaust heat of the fuel cell 1. 18, the heat source water pump 18 is provided in the heat source water pipe 18, the second three-way valve 8 is provided in the heat source water pipe 18, and the opening degree of the three-way valve 8 is the temperature of the heat source water in the heat source water pipe 18. The temperature is controlled according to the temperature measured by the thermometer 10 that measures the heat source water return temperature T1. A cooling water pipe 19 that connects the absorption refrigerator 6 and the cooling tower 12 is provided, and a cooling water pump 13 is provided in the cooling water pipe 19. Further, a chilled water pipe 20 connecting the absorption refrigerator 6 and the plurality of fan coil units 15 is provided, and a chilled water pump 16 is provided in the chilled water pipe 20. Further, the heat source water pipe 18 is provided with a third three-way valve 11, and the opening degree of the three-way valve 11 is the temperature measured by the thermometer 17 for measuring the temperature of the cold water in the cold water pipe 20, that is, the cold water outlet temperature T2. Is controlled accordingly. Further, a cooling water pipe 33 that connects the heat exchanger 31 and the cooling tower 32 is provided.

このコージェネレーションシステムにおいては、スタック3において発生する熱は熱交換器5により吸収冷凍機6へ取り出され、吸収冷凍機6の内部でリチウムブロマイド溶液の再生に利用され、一定温度の熱源水が熱交換器5に戻される。また、吸収冷凍機6の内部では蒸発によりたとえば7℃の冷水が作られ、冷水がファンコイルユニット15に送られ、冷房として使用される。また、吸収冷凍機6が停止している場合、あるいは吸収冷凍機6の負荷が小さい場合には、熱交換器31により熱が取り出され、冷却塔32により放熱される。また、吸収冷凍機6から発生する熱は冷却塔12により放熱される。   In this cogeneration system, the heat generated in the stack 3 is taken out to the absorption refrigerator 6 by the heat exchanger 5 and used for the regeneration of the lithium bromide solution inside the absorption refrigerator 6, and the heat source water at a constant temperature is heated. Returned to the exchanger 5. Further, inside the absorption refrigerator 6, for example, cold water of 7 ° C. is produced by evaporation, and the cold water is sent to the fan coil unit 15 to be used for cooling. Further, when the absorption refrigerator 6 is stopped or when the load of the absorption refrigerator 6 is small, heat is extracted by the heat exchanger 31 and is radiated by the cooling tower 32. The heat generated from the absorption refrigerator 6 is radiated by the cooling tower 12.

特開平9−236352号公報JP-A-9-236352

図6に示す従来のコージェネレーションシステムにおいては、吸収冷凍機6の排熱を放熱するための冷却塔12に加え、燃料電池1の排熱を放熱するための冷却塔32が必要であり、その設備費用が必要となる上に、設置面積が広くなる。また、燃料電池1および吸収冷凍機6が最大出力で運転している際には、冷却塔12、22は停止した状態となり、設備的な無駄が生じている。   In the conventional cogeneration system shown in FIG. 6, in addition to the cooling tower 12 for dissipating the exhaust heat of the absorption refrigerator 6, a cooling tower 32 for dissipating the exhaust heat of the fuel cell 1 is required. In addition to requiring equipment costs, the installation area is increased. In addition, when the fuel cell 1 and the absorption refrigerator 6 are operating at the maximum output, the cooling towers 12 and 22 are stopped, and equipment is wasted.

本発明は上述の課題を解決するためになされたもので、製造コストが安価であり、また設置面積を狭くすることができるコージェネレーションシステムおよびその制御方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cogeneration system that can be manufactured at low cost and can be reduced in installation area, and a control method therefor.

この目的を達成するため、本発明においては、発電装置、上記発電装置の排熱を利用する吸収冷凍機および上記吸収冷凍機で生成される冷水を利用する冷水利用装置を有するコージェネレーションシステムにおいて、上記吸収冷凍機の放熱装置を上記発電装置の放熱装置として兼用する。   In order to achieve this object, in the present invention, in a cogeneration system having a power generation device, an absorption refrigerator that uses exhaust heat of the power generation device, and a cold water utilization device that uses cold water generated by the absorption refrigerator, The heat dissipation device of the absorption refrigerator is also used as the heat dissipation device of the power generator.

この場合、上記吸収冷凍機と上記放熱装置とを接続する冷却水管路に熱交換器を設け、上記発電装置と上記吸収冷凍機とを接続する熱源水管路に、上記熱源水管路内の熱源水戻り温度が予め設定した第1の設定温度以上になったときに上記熱源水戻り温度の上昇に応じて開度が大きくなり、上記吸収冷凍機からの熱源水の一部を上記熱交換器に供給する第1の三方弁を設けてもよい。   In this case, a heat exchanger is provided in the cooling water line connecting the absorption chiller and the heat dissipation device, and the heat source water in the heat source water line is connected to the heat source water line connecting the power generation device and the absorption chiller. When the return temperature becomes equal to or higher than the first preset temperature set in advance, the opening degree increases as the heat source water return temperature increases, and a part of the heat source water from the absorption chiller is transferred to the heat exchanger. A first three-way valve to supply may be provided.

この場合、上記熱源水管路に、上記熱源水戻り温度が上記第1の設定温度より低下したときに上記熱源水戻り温度の低下に応じて開度が大きくなり、上記発電装置からの上記熱源水の一部を上記発電装置に戻る上記熱源水に混ぜる第2の三方弁を設けてもよい。   In this case, when the heat source water return temperature falls below the first set temperature in the heat source water pipe, the opening degree increases according to the decrease in the heat source water return temperature, and the heat source water from the power generator A second three-way valve that mixes a part of the heat source water with the heat source water returning to the power generation device may be provided.

これらの場合、上記熱源水管路に、上記吸収冷凍機と上記冷水利用装置とを接続する冷水管路内の冷水出口温度が予め設定した第2の設定温度より低下したときに上記冷水出口温度の低下に応じて開度が大きくなり、上記発電装置からの上記熱源水の一部を上記発電装置に戻る上記熱源水に混ぜる第3の三方弁を設けてもよい。   In these cases, when the chilled water outlet temperature in the chilled water pipe connecting the absorption refrigerator and the chilled water utilization device to the heat source water pipe is lower than a preset second set temperature, the chilled water outlet temperature A third three-way valve may be provided that increases the opening according to the decrease and mixes part of the heat source water from the power generation device with the heat source water that returns to the power generation device.

こられの場合、上記発電装置として燃料電池を用いてもよい。   In such a case, a fuel cell may be used as the power generator.

また、上記のコージェネレーションシステムを制御する方法において、上記吸収冷凍機で利用しなかった上記発電装置の排熱を第1の三方弁を利用して上記放熱装置で放熱して、熱源水戻り温度を一定に保持する。   Further, in the method for controlling the cogeneration system, the exhaust heat of the power generation device not used in the absorption refrigerator is radiated by the heat dissipation device using the first three-way valve, and the heat source water return temperature is obtained. Is kept constant.

また、上記のコージェネレーションシステムを制御する方法において、上記熱源水戻り温度が上記第1の設定温度以上になったときに、上記第1の三方弁により上記吸収冷凍機からの熱源水の一部を上記熱交換器に供給して、上記熱源水戻り温度を一定に保持する。   Moreover, in the method for controlling the cogeneration system, when the heat source water return temperature is equal to or higher than the first set temperature, a part of the heat source water from the absorption refrigerator is caused by the first three-way valve. Is supplied to the heat exchanger to maintain the heat source water return temperature constant.

また、発電装置、上記発電装置の排熱を利用する吸収冷凍機、上記発電装置を冷却する放熱装置、上記吸収冷凍機を冷却する放熱装置および上記吸収冷凍機で生成される冷水を利用する冷水利用装置を有するコージェネレーションシステムにおいて、上記吸収冷凍機を冷却する冷却塔と上記発電装置を冷却する冷却塔とを兼用する。   Further, a power generator, an absorption refrigerator that uses exhaust heat of the power generator, a heat dissipation device that cools the power generator, a heat radiator that cools the absorption refrigerator, and cold water that uses cold water generated by the absorption refrigerator In a cogeneration system having a utilization device, a cooling tower that cools the absorption chiller and a cooling tower that cools the power generation device are combined.

この場合、上記発電装置として燃料電池を用いてもよい。   In this case, a fuel cell may be used as the power generator.

これらの場合、上記吸収冷凍機からの熱源水を上記発電装置と上記放熱装置側とに分岐して供給する第1の三方弁を設けてもよい。   In these cases, a first three-way valve may be provided in which the heat source water from the absorption refrigerator is branched and supplied to the power generation device and the heat dissipation device side.

本発明に係るコージェネレーションシステムにおいては、発電装置の排熱を放熱するための放熱装置を設ける必要がないから、製造コストが安価になるとともに、設置面積を狭くすることができる。   In the cogeneration system according to the present invention, it is not necessary to provide a heat radiating device for radiating the exhaust heat of the power generation device, so that the manufacturing cost can be reduced and the installation area can be reduced.

また、第3の三方弁を設けたときには、冷水出口温度が第2の設定温度より低下したときに、冷水出口温度を第2の設定温度に上昇させることができるから、吸収冷凍機の冷房能力を調整することができる。   In addition, when the third three-way valve is provided, the cooling water outlet temperature can be raised to the second set temperature when the cold water outlet temperature falls below the second set temperature. Can be adjusted.

図1は本発明に係るコージェネレーションシステムを示す図である。図に示すように、冷却水管路19の冷却塔12より上流側に熱交換器14が設けられ、熱交換器14と熱源水管路18とを接続する管路22が設けられ、熱源水管路18に第1の三方弁9が設けられ、三方弁9の開度は熱源水戻り温度T1に応じて制御され、三方弁9が開のときには、三方弁9は吸収冷凍機6からの熱源水を燃料電池1(熱交換器5)と冷却塔12側すなわち熱交換器14とに分岐して供給する。   FIG. 1 is a diagram showing a cogeneration system according to the present invention. As shown in the figure, a heat exchanger 14 is provided upstream of the cooling tower 12 in the cooling water pipe 19, a pipe 22 connecting the heat exchanger 14 and the heat source water pipe 18 is provided, and the heat source water pipe 18. The first three-way valve 9 is provided, and the opening degree of the three-way valve 9 is controlled in accordance with the heat source water return temperature T1, and when the three-way valve 9 is open, the three-way valve 9 receives the heat source water from the absorption refrigerator 6. The fuel cell 1 (heat exchanger 5) and the cooling tower 12 side, that is, the heat exchanger 14 are branched and supplied.

図1に示したコージェネレーションシステムにおいては、燃料電池1で発生した熱エネルギーは熱源水として吸収冷凍機6側に取り出され、吸収冷凍機6の内部でリチウムブロマイド溶液の再生に利用される。これにより、たとえば71.1℃といった一定の低温水が燃料電池1側に戻される。また、吸収冷凍機1の内部では蒸発によりたとえは7℃の冷水が作られ、この冷水がファンコイルユニット15に送られ、冷房として使用される。また、三方弁9が開のときには、吸収冷凍機6からの熱源水の一部が熱交換器14に供給され、熱交換器14において熱源水の熱が管路19内の冷却水に取り出され、冷却水の熱は冷却塔12により放熱される。このように、吸収冷凍機6の冷却塔12を燃料電池1の冷却塔として兼用している。すなわち、吸収冷凍機6を冷却する冷却塔と燃料電池1を冷却する冷却塔とを兼用している。   In the cogeneration system shown in FIG. 1, the thermal energy generated in the fuel cell 1 is taken out as heat source water to the absorption refrigerator 6 side and used for regeneration of the lithium bromide solution inside the absorption refrigerator 6. Thereby, for example, a constant low temperature water of 71.1 ° C. is returned to the fuel cell 1 side. Further, inside the absorption refrigerator 1, for example, cold water of 7 ° C. is produced by evaporation, and this cold water is sent to the fan coil unit 15 and used as cooling. Further, when the three-way valve 9 is open, a part of the heat source water from the absorption refrigerator 6 is supplied to the heat exchanger 14, and the heat source water heat is taken out to the cooling water in the pipe line 19 in the heat exchanger 14. The heat of the cooling water is radiated by the cooling tower 12. Thus, the cooling tower 12 of the absorption refrigerator 6 is also used as the cooling tower of the fuel cell 1. That is, the cooling tower that cools the absorption refrigerator 6 and the cooling tower that cools the fuel cell 1 are combined.

図2は熱源水戻り温度T1と三方弁8の開度との関係を示すグラフである。このグラフから明らかなように、熱源水戻り温度T1が予め設定した第1の設定温度たとえば71.1℃以上のときには三方弁8は閉であり、熱源水戻り温度T1が71.1℃より低下したときに、熱源水戻り温度T1の低下に応じて三方弁8の開度が大きくなる。なお、図2の点A、Bでの熱源水の流れは各々図5の矢印A、矢印Bで示される。このため、吸収冷凍機6あるいは冷却塔12の動作により、熱源水戻り温度T1が71.1℃より低下したときに、燃料電池1からの熱源水がバイパスを通って燃料電池1へ戻る熱源水に混ざるから、熱源水戻り温度T1を71.1℃に上昇させることができる。   FIG. 2 is a graph showing the relationship between the heat source water return temperature T1 and the opening of the three-way valve 8. As is apparent from this graph, when the heat source water return temperature T1 is a first preset temperature set in advance, for example, 71.1 ° C or higher, the three-way valve 8 is closed and the heat source water return temperature T1 is lower than 71.1 ° C. When the heat source water return temperature T1 decreases, the opening degree of the three-way valve 8 increases. The flow of the heat source water at points A and B in FIG. 2 is indicated by arrows A and B in FIG. Therefore, when the heat source water return temperature T1 falls below 71.1 ° C. due to the operation of the absorption refrigerator 6 or the cooling tower 12, the heat source water from the fuel cell 1 returns to the fuel cell 1 through the bypass. Therefore, the heat source water return temperature T1 can be raised to 71.1 ° C.

図3は熱源水戻り温度T1と三方弁9の開度との関係を示すグラフである。このグラフから明らかなように、熱源水戻り温度T1が第1の設定温度である71.1℃より低下したときには三方弁9は閉であり、熱源水戻り温度T1が71.1℃以上になったときに、熱源水戻り温度T1の上昇に応じて三方弁9の開度が大きくなる。なお、図3の点C、Dでの熱源水の流れは各々図5の矢印C、矢印Dで示される。このため、熱源水戻り温度T1が71.1℃以上になったときに、吸収冷凍機6からの熱源水の一部が熱交換器14に流れ、熱交換器14で冷却水に熱交換され、冷却塔12により放熱されるから、熱源水戻り温度T1を71.1℃に低下させることができる。   FIG. 3 is a graph showing the relationship between the heat source water return temperature T1 and the opening of the three-way valve 9. As is apparent from this graph, when the heat source water return temperature T1 falls below 71.1 ° C. which is the first set temperature, the three-way valve 9 is closed and the heat source water return temperature T1 becomes 71.1 ° C. or higher. The opening of the three-way valve 9 increases as the heat source water return temperature T1 rises. The flow of the heat source water at points C and D in FIG. 3 is indicated by arrows C and D in FIG. For this reason, when the heat source water return temperature T1 becomes 71.1 ° C. or higher, a part of the heat source water from the absorption refrigerator 6 flows into the heat exchanger 14, and heat is exchanged with the cooling water in the heat exchanger 14. Since the heat is dissipated by the cooling tower 12, the heat source water return temperature T1 can be lowered to 71.1 ° C.

図4は冷水出口温度T2と三方弁11の開度との関係を示すグラフである。このグラフから明らかなように、冷水出口温度T2が予め設定した第2の設定温度たとえば7℃以上のときには三方弁11は閉であり、冷水出口温度T2が7℃より低下したときに、冷水出口温度T2の低下に応じて三方弁11の開度が大きくなる。なお、図4の点E、Fでの熱源水の流れは各々図5の矢印E、矢印Fで示される。このため、冷水出口温度T2が7℃以上のときには燃料電池1からの熱源水は三方弁11側に流れずに吸収冷凍機6に流入するが、冷水出口温度T2が7℃より低下したときに、燃料電池1からの熱源水の一部はバイパスを通って三方弁11側に流れ、燃料電池1へ戻る熱源水に混ざるから、ファンコイルユニット15の冷房負荷が小さくなり、冷水出口温度T2が7℃より低下したときに、吸収冷凍機6の冷房能力を抑えて冷水出口温度T2を7℃に上昇させることができる。   FIG. 4 is a graph showing the relationship between the cold water outlet temperature T2 and the opening degree of the three-way valve 11. As is apparent from this graph, when the chilled water outlet temperature T2 is a second preset temperature set in advance, for example, 7 ° C. or higher, the three-way valve 11 is closed, and when the chilled water outlet temperature T2 falls below 7 ° C., the chilled water outlet The opening degree of the three-way valve 11 increases as the temperature T2 decreases. The flow of the heat source water at points E and F in FIG. 4 is indicated by arrows E and F in FIG. For this reason, when the cold water outlet temperature T2 is 7 ° C. or higher, the heat source water from the fuel cell 1 flows into the absorption refrigerator 6 without flowing to the three-way valve 11 side, but when the cold water outlet temperature T2 falls below 7 ° C. Since a part of the heat source water from the fuel cell 1 flows to the three-way valve 11 side through the bypass and is mixed with the heat source water returning to the fuel cell 1, the cooling load of the fan coil unit 15 is reduced, and the cold water outlet temperature T2 is When the temperature falls below 7 ° C., the cooling capacity of the absorption refrigerator 6 can be suppressed and the cold water outlet temperature T2 can be raised to 7 ° C.

このように、本発明に係るコージェネレーションシステムの制御方法においては、三方弁8、9を熱源水戻り温度T1により制御し、三方弁11を供給冷水温度T2により制御することにより、熱源水戻り温度T1を71.1℃に保持している。すなわち、吸収冷凍機6で利用しなかった燃料電池1の排熱を三方弁9を利用して冷却塔12で放熱し、熱源水戻り温度T1を一定に保持している。   Thus, in the control method of the cogeneration system according to the present invention, the three-way valves 8 and 9 are controlled by the heat source water return temperature T1, and the three-way valve 11 is controlled by the supply cold water temperature T2, thereby the heat source water return temperature. T1 is maintained at 71.1 ° C. That is, the exhaust heat of the fuel cell 1 that is not used in the absorption refrigerator 6 is radiated by the cooling tower 12 using the three-way valve 9, and the heat source water return temperature T1 is kept constant.

このようなコージェネレーションシステムにおいては、吸収冷凍機6の排熱を放熱するための冷却塔12と燃料電池1の排熱を放熱するための冷却塔を兼用しているから、燃料電池1の排熱を放熱するための冷却塔を別に設ける必要がないので、製造コストが安価になるとともに、設置面積を狭くすることができる。また、熱源水戻り温度T1が71.1℃より低下したときに、熱源水戻り温度T1を71.1℃に上昇させることができ、また熱源水戻り温度T1が71.1℃以上になったときに、熱源水戻り温度T1を71.1℃に低下させることができるから、熱源水戻り温度T1を71.1℃に保持することができる。また、冷水出口温度T2が7℃より低下したときに、冷水出口温度T2を7℃に上昇させることができるから、吸収冷凍機6の冷房能力を調整することができる。   In such a cogeneration system, since the cooling tower 12 for radiating the exhaust heat of the absorption refrigerator 6 and the cooling tower for radiating the exhaust heat of the fuel cell 1 are combined, Since there is no need to provide a separate cooling tower for radiating heat, the manufacturing cost can be reduced and the installation area can be reduced. Further, when the heat source water return temperature T1 is lower than 71.1 ° C., the heat source water return temperature T1 can be increased to 71.1 ° C., and the heat source water return temperature T1 is 71.1 ° C. or higher. Sometimes, the heat source water return temperature T1 can be lowered to 71.1 ° C., so that the heat source water return temperature T1 can be maintained at 71.1 ° C. Moreover, since the cold water exit temperature T2 can be raised to 7 degreeC when the cold water exit temperature T2 falls from 7 degreeC, the cooling capacity of the absorption refrigerator 6 can be adjusted.

なお、上述実施の形態においては、発電装置が燃料電池1の場合について説明したが、発電装置が他の発電装置の場合にも本発明を適用することができる。また、上述実施の形態においては、放熱装置が冷却塔12の場合について説明したが、放熱装置が他の放熱装置の場合にも本発明を適用することができる。また、上述実施の形態においては、吸収冷凍機で生成される冷水を利用する冷水利用装置が複数のファンコイルユニット15の場合について説明したが、上記冷水利用装置が他の冷水利用装置の場合にも本発明を適用することができる。   In the above-described embodiment, the case where the power generation device is the fuel cell 1 has been described. However, the present invention can also be applied to a case where the power generation device is another power generation device. In the above-described embodiment, the case where the heat dissipation device is the cooling tower 12 has been described. However, the present invention can also be applied to the case where the heat dissipation device is another heat dissipation device. Moreover, in the said embodiment, although the case where the cold water utilization apparatus using the cold water produced | generated with an absorption refrigerator was the several fan coil unit 15 was demonstrated, when the said cold water utilization apparatus is another cold water utilization apparatus The present invention can also be applied.

本発明に係るコージェネレーションシステムを示す図である。It is a figure which shows the cogeneration system which concerns on this invention. 熱源水戻り温度T1と三方弁8の開度との関係を示すグラフである。It is a graph which shows the relationship between the heat source water return temperature T1 and the opening degree of the three-way valve 8. 熱源水戻り温度T1と三方弁9の開度との関係を示すグラフである。It is a graph which shows the relationship between the heat source water return temperature T1 and the opening degree of the three-way valve 9. 冷水出口温度T2と三方弁11の開度との関係を示すグラフである。It is a graph which shows the relationship between the cold water exit temperature T2 and the opening degree of the three-way valve 11. 図1に示したコージェネレーションシステムの一部を示す拡大図である。It is an enlarged view which shows a part of cogeneration system shown in FIG. 従来のコージェネレーションシステムを示す図である。It is a figure which shows the conventional cogeneration system.

符号の説明Explanation of symbols

1…燃料電池
6…吸収冷凍機
8…第2の三方弁
9…第1の三方弁
11…第3の三方弁
12…冷却塔
14…熱交換器
15…ファンコイルユニット
18…熱源水管路
19…冷却水管路
20…冷水管路
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 6 ... Absorption refrigerator 8 ... Second three-way valve 9 ... First three-way valve 11 ... Third three-way valve 12 ... Cooling tower 14 ... Heat exchanger 15 ... Fan coil unit 18 ... Heat source water line 19 ... Cooling water pipe 20 ... Cooling water pipe

Claims (10)

発電装置、上記発電装置の排熱を利用する吸収冷凍機および上記吸収冷凍機で生成される冷水を利用する冷水利用装置を有するコージェネレーションシステムにおいて、上記吸収冷凍機の放熱装置を上記発電装置の放熱装置として兼用したことを特徴とするコージェネレーションシステム。   In a cogeneration system having a power generation device, an absorption refrigerator that uses exhaust heat of the power generation device, and a cold water utilization device that uses cold water generated by the absorption refrigerator, the heat dissipation device of the absorption refrigerator is connected to the power generation device. A cogeneration system that is also used as a heat dissipation device. 上記吸収冷凍機と上記放熱装置とを接続する冷却水管路に熱交換器を設け、上記発電装置と上記吸収冷凍機とを接続する熱源水管路に、上記熱源水管路内の熱源水戻り温度が予め設定した第1の設定温度以上になったときに上記熱源水戻り温度の上昇に応じて開度が大きくなり、上記吸収冷凍機からの熱源水の一部を上記熱交換器に供給する第1の三方弁を設けたことを特徴とする請求項1に記載のコージェネレーションシステム。   A heat exchanger is provided in a cooling water line connecting the absorption refrigerator and the heat radiating device, and a heat source water return temperature in the heat source water pipe is in a heat source water line connecting the power generation device and the absorption refrigerator. When the temperature becomes equal to or higher than a first preset temperature set in advance, the opening degree increases in accordance with the rise in the heat source water return temperature, and a part of the heat source water from the absorption chiller is supplied to the heat exchanger. The cogeneration system according to claim 1, wherein one three-way valve is provided. 上記熱源水管路に、上記熱源水戻り温度が上記第1の設定温度より低下したときに上記熱源水戻り温度の低下に応じて開度が大きくなり、上記発電装置からの上記熱源水の一部を上記発電装置に戻る上記熱源水に混ぜる第2の三方弁を設けたことを特徴とする請求項2に記載のコージェネレーションシステム。   When the heat source water return temperature falls below the first set temperature in the heat source water pipe, the opening increases in accordance with the decrease in the heat source water return temperature, and a part of the heat source water from the power generator The cogeneration system according to claim 2, further comprising a second three-way valve that mixes the heat source water returning to the power generator with the heat source water. 上記熱源水管路に、上記吸収冷凍機と上記冷水利用装置とを接続する冷水管路内の冷水出口温度が予め設定した第2の設定温度より低下したときに上記冷水出口温度の低下に応じて開度が大きくなり、上記発電装置からの上記熱源水の一部を上記発電装置に戻る上記熱源水に混ぜる第3の三方弁を設けたことを特徴とする請求項2または3に記載のコージェネレーションシステム。   When the chilled water outlet temperature in the chilled water pipe connecting the absorption chiller and the chilled water utilization device to the heat source water pipe is lower than a preset second set temperature, the cold water outlet temperature is reduced. 4. The core according to claim 2, further comprising a third three-way valve for increasing a degree of opening and mixing a part of the heat source water from the power generation device with the heat source water returning to the power generation device. Generation system. 上記発電装置として燃料電池を用いたことを特徴とする請求項1ないし4のいずれかに記載のコージェネレーションシステム。   5. The cogeneration system according to claim 1, wherein a fuel cell is used as the power generation device. 請求項1に記載のコージェネレーションシステムを制御する方法において、上記吸収冷凍機で利用しなかった上記発電装置の排熱を第1の三方弁を利用して上記放熱装置で放熱して、熱源水戻り温度を一定に保持することを特徴とするコージェネレーションシステムの制御方法。   The method for controlling a cogeneration system according to claim 1, wherein the heat generated by the power generation device that has not been used in the absorption chiller is radiated by the heat radiating device using a first three-way valve. A control method for a cogeneration system, characterized in that the return temperature is kept constant. 請求項2ないし4のいずれかに記載のコージェネレーションシステムを制御する方法において、上記熱源水戻り温度が上記第1の設定温度以上になったときに、上記第1の三方弁により上記吸収冷凍機からの熱源水の一部を上記熱交換器に供給して、上記熱源水戻り温度を一定に保持することを特徴とするコージェネレーションシステムの制御方法。   The method for controlling a cogeneration system according to any one of claims 2 to 4, wherein when the heat source water return temperature is equal to or higher than the first set temperature, the absorption chiller is operated by the first three-way valve. A control method for a cogeneration system, wherein a part of the heat source water from the water source is supplied to the heat exchanger, and the heat source water return temperature is kept constant. 発電装置、上記発電装置の排熱を利用する吸収冷凍機、上記発電装置を冷却する放熱装置、上記吸収冷凍機を冷却する放熱装置および上記吸収冷凍機で生成される冷水を利用する冷水利用装置を有するコージェネレーションシステムにおいて、上記吸収冷凍機を冷却する冷却塔と上記発電装置を冷却する冷却塔とを兼用したことを特徴とするコージェネレーションシステム。   Power generation device, absorption refrigerator that uses exhaust heat of power generation device, heat dissipation device that cools power generation device, heat dissipation device that cools absorption refrigerator, and cold water utilization device that uses cold water generated by absorption refrigerator A cogeneration system comprising: a cooling tower that cools the absorption refrigerator and a cooling tower that cools the power generator. 上記発電装置として燃料電池を用いたことを特徴とする請求項8に記載のコージェネレーションシステム。   The cogeneration system according to claim 8, wherein a fuel cell is used as the power generation device. 上記吸収冷凍機からの熱源水を上記発電装置と上記放熱装置側とに分岐して供給する第1の三方弁を備えたことを特徴とする請求項8または9に記載のコージェネレーションシステム。   The cogeneration system according to claim 8 or 9, further comprising a first three-way valve for supplying heat source water from the absorption chiller in a branched manner to the power generation device and the heat dissipation device.
JP2004290999A 2004-10-04 2004-10-04 Cogeneration system and its control method Pending JP2006105452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290999A JP2006105452A (en) 2004-10-04 2004-10-04 Cogeneration system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290999A JP2006105452A (en) 2004-10-04 2004-10-04 Cogeneration system and its control method

Publications (1)

Publication Number Publication Date
JP2006105452A true JP2006105452A (en) 2006-04-20

Family

ID=36375412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290999A Pending JP2006105452A (en) 2004-10-04 2004-10-04 Cogeneration system and its control method

Country Status (1)

Country Link
JP (1) JP2006105452A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015395B1 (en) 2008-06-13 2011-02-22 케이이설비연구소주식회사 A cold and heat room system
KR101397622B1 (en) 2012-06-18 2014-05-23 (주) 씨테크놀로지시스템 Waste heat recovery system for cooling tower of power plant by using feul cell
CN104279788A (en) * 2013-07-08 2015-01-14 北京华航盛世能源技术有限公司 Process system capable of utilizing waste heat and complementary energy of cooling water of blast furnace
JP2015021685A (en) * 2013-07-22 2015-02-02 東洋熱工業株式会社 Free cooling system and free cooling method using the same
JP2017161200A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
JP2017161201A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cooling water manufacturing system
JP2017161199A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
CN115682181A (en) * 2022-09-19 2023-02-03 华能济南黄台发电有限公司 Combined heat and power generation method for combined heat and cold supply

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015395B1 (en) 2008-06-13 2011-02-22 케이이설비연구소주식회사 A cold and heat room system
KR101397622B1 (en) 2012-06-18 2014-05-23 (주) 씨테크놀로지시스템 Waste heat recovery system for cooling tower of power plant by using feul cell
CN104279788A (en) * 2013-07-08 2015-01-14 北京华航盛世能源技术有限公司 Process system capable of utilizing waste heat and complementary energy of cooling water of blast furnace
JP2015021685A (en) * 2013-07-22 2015-02-02 東洋熱工業株式会社 Free cooling system and free cooling method using the same
JP2017161200A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
JP2017161201A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cooling water manufacturing system
JP2017161199A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
CN115682181A (en) * 2022-09-19 2023-02-03 华能济南黄台发电有限公司 Combined heat and power generation method for combined heat and cold supply

Similar Documents

Publication Publication Date Title
US7191858B2 (en) Thermal management system
JP3910612B2 (en) Coolant fan control for fuel cell systems
JP6208520B2 (en) Cogeneration system
CN101960408A (en) Variable flow computer cooling system for a data center and method of operation
JPWO2010109632A1 (en) Temperature adjusting device, fluid supply system, heating system, temperature adjusting device mounting method, and fluid supply method
KR102614152B1 (en) Heat pump system
JP2009002528A (en) Cold water generating device
JP2006105452A (en) Cogeneration system and its control method
WO2016031089A1 (en) Drive system
CN114929000A (en) Power supply water cooling system with mixed WBG (work breakdown voltage) and Si (silicon on insulator) devices and control strategy thereof
JP6921876B2 (en) Heating system
JP2017117694A (en) Fuel cell system
JP4128054B2 (en) Fuel cell system and operating method thereof
JP2008064404A (en) Heat storage medium direct-mixing type temperature regulation method
JP2007052981A (en) Fuel cell power generation system and its operation method
JP2004111209A (en) Fuel cell power generation system
JP6997714B2 (en) Power generation system
JP6116093B2 (en) Heat source system
JP2005140393A (en) Hot water storage type water heater
CN111933968B (en) Fuel cell cooling system and control method thereof
JPH10141137A (en) System for supplying both heat and electricity
JP2017199463A (en) Fuel cell system
JP6558578B2 (en) Cogeneration system, fuel cell system, and operation method of fuel cell system
JP2005134014A (en) Hot water heat source hot water supply device, and energy supply system
JP2006057873A (en) Hot water storage type exhaust heat recovery system