JP2008147121A - Fuel cell evaluation device - Google Patents

Fuel cell evaluation device Download PDF

Info

Publication number
JP2008147121A
JP2008147121A JP2006335624A JP2006335624A JP2008147121A JP 2008147121 A JP2008147121 A JP 2008147121A JP 2006335624 A JP2006335624 A JP 2006335624A JP 2006335624 A JP2006335624 A JP 2006335624A JP 2008147121 A JP2008147121 A JP 2008147121A
Authority
JP
Japan
Prior art keywords
fuel cell
coolant
flow path
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335624A
Other languages
Japanese (ja)
Inventor
Atsushi Maeda
篤志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006335624A priority Critical patent/JP2008147121A/en
Publication of JP2008147121A publication Critical patent/JP2008147121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To control temperature of cooling liquid accurately at the time of adjusting of a cooling liquid volume of a cooling liquid circulating system in a fuel cell evaluation device managing temperature of a fuel cell by the cooling liquid circulating system and evaluating performance of the fuel cell. <P>SOLUTION: The fuel cell evaluation device 10 includes a cooling liquid circulating system 12 and a control part 60 for controlling the latter 12. The control part 60 reduces thermal dose by a heater 26 for fine tuning when the control part controls to reduce cooling liquid volume flowing in the fuel cell, and also, it controls to increase radiation heat volume of a heat radiation part 28 provided between the heater 26 for fine tuning and a fuel cell 14. With this, temperature of the cooling liquid sent to the fuel cell 14 does not increase, thus, the temperature of the cooling liquid can be accurately controlled. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池の性能を評価する燃料電池評価装置に関し、特にその燃料電池の温度を管理する冷却液循環系に関する。   The present invention relates to a fuel cell evaluation apparatus that evaluates the performance of a fuel cell, and more particularly to a coolant circulation system that manages the temperature of the fuel cell.

燃料電池は、燃料ガスと酸化ガスを電気化学反応させて発電を行う電池であり、これの性能を、様々な環境条件を設定して評価する燃料電池評価装置が知られている。この燃料電池評価装置において、燃料電池の温度を管理するために、燃料電池に冷却液を循環させる冷却液循環系を有する例がある。   2. Description of the Related Art A fuel cell is a cell that generates electricity by electrochemically reacting a fuel gas and an oxidizing gas, and a fuel cell evaluation device that evaluates the performance of the fuel cell by setting various environmental conditions is known. In this fuel cell evaluation apparatus, there is an example having a coolant circulation system for circulating a coolant through the fuel cell in order to manage the temperature of the fuel cell.

冷却液循環系は、通常、冷却液を循環させるポンプと、冷却液を冷却する熱交換器を有する。ポンプの動作により、熱交換器で冷却された冷却液が、燃料電池を流れ、そこで反応熱を除去し、燃料電池の温度が管理される。また、様々な環境条件を設定するため、熱交換器と燃料電池の間に、冷却液を調整可能に加熱するヒータが設けられる例がある。ヒータは、燃料電池の温度、例えば燃料電池から流れ出る冷却液の温度に基づいて必要な加熱量を冷却液に加える。これにより、様々な環境条件、例えば高温下における燃料電池の運転という環境条件を設定し、燃料電池の性能を評価することができる。   The coolant circulation system usually includes a pump that circulates the coolant and a heat exchanger that cools the coolant. By the operation of the pump, the coolant cooled by the heat exchanger flows through the fuel cell, where the reaction heat is removed, and the temperature of the fuel cell is controlled. In order to set various environmental conditions, there is an example in which a heater that adjustably heats the coolant is provided between the heat exchanger and the fuel cell. The heater adds a necessary heating amount to the coolant based on the temperature of the fuel cell, for example, the temperature of the coolant flowing out of the fuel cell. Thereby, various environmental conditions, for example, environmental conditions such as operation of the fuel cell at high temperature can be set, and the performance of the fuel cell can be evaluated.

下記特許文献1には、温度制御された冷却水により燃料電池を実際の運転温度にして、燃料電池の性能を評価する燃料電池評価装置が記載されている。   Patent Document 1 listed below describes a fuel cell evaluation device that evaluates the performance of a fuel cell by setting the fuel cell to an actual operating temperature with temperature-controlled cooling water.

特開2003−203667号公報JP 2003-203667 A

上述のヒータを設けた冷却液循環系において、さらに様々な環境条件を設定することができるように、燃料電池を流れる冷却液の流量を調整する例がある。この冷却液循環系では、燃料電池を流れる冷却液の流量を減少させる場合、その流量の減少に合わせて、ヒータの加熱量を減少させる制御が行われる。しかしながら、ヒータの加熱量が減少して設定値になるまでに、遅れ時間が発生してしまう。その結果、遅れ時間のあいだに、冷却液に過大な加熱量が加えられ、冷却液の温度が上昇してしまうという問題があった。   There is an example in which the flow rate of the coolant flowing through the fuel cell is adjusted so that various environmental conditions can be set in the coolant circulation system provided with the heater. In this coolant circulation system, when the flow rate of the coolant flowing through the fuel cell is decreased, control is performed to decrease the heating amount of the heater in accordance with the decrease in the flow rate. However, a delay time occurs until the heating amount of the heater decreases to the set value. As a result, there is a problem that during the delay time, an excessive amount of heating is applied to the coolant and the temperature of the coolant rises.

本発明の目的は、燃料電池の温度を管理する冷却液循環系の冷却液量を調整するとき、より精度よく冷却液の温度を制御することができる燃料電池評価試験装置を提供することにある。   An object of the present invention is to provide a fuel cell evaluation and test apparatus that can control the temperature of the coolant more accurately when adjusting the amount of coolant in the coolant circulation system that manages the temperature of the fuel cell. .

本発明は、燃料電池の温度を冷却液循環系により管理し、燃料電池の性能を評価する燃料電池評価装置であって、前記冷却液循環系は、燃料電池を流れる冷却液の流量を調整する流量調整手段と、冷却液を調整可能に加熱する加熱手段と、前記加熱手段と燃料電池の間に設けられ、冷却液の熱を調整可能に放熱する放熱手段と、を有し、前記流量調整手段により冷却液の流量が減少制御されるとき、前記加熱手段による加熱量を減少させるとともに、前記放熱手段の放熱量を増加させる制御部を有する、ことを特徴とする。   The present invention is a fuel cell evaluation apparatus that manages the temperature of a fuel cell by a coolant circulation system and evaluates the performance of the fuel cell, and the coolant circulation system adjusts the flow rate of the coolant flowing through the fuel cell. A flow rate adjusting means; a heating means for heating the cooling liquid in an adjustable manner; and a heat radiating means provided between the heating means and the fuel cell for radiating the heat of the cooling liquid in an adjustable manner. When the flow rate of the cooling liquid is controlled to be reduced by the means, the controller has a control unit that reduces the amount of heating by the heating means and increases the heat radiation amount of the heat radiating means.

また、前記放熱手段は、前記加熱手段から燃料電池へ冷却液が流れる第一流路と、前記第一流路の少なくとも一部を迂回して冷却液が流れる第二流路と、前記第二流路を流れる冷却液の流量を調整する調整弁と、を有し、前記第二流路の放熱量が、当該第二流路に対応する前記第一流路の放熱量より大きくすることもできる。   The heat dissipating means includes a first flow path in which a coolant flows from the heating means to the fuel cell, a second flow path in which the coolant flows around at least a part of the first flow path, and the second flow path. An adjustment valve that adjusts the flow rate of the coolant flowing through the second flow path, and the heat release amount of the second flow path can be made larger than the heat release amount of the first flow path corresponding to the second flow path.

本発明の燃料電池評価装置は、燃料電池の温度を管理する冷却液循環系の冷却液量を調整するとき、より精度よく冷却液の温度を制御することができる。   The fuel cell evaluation apparatus of the present invention can control the temperature of the coolant more accurately when adjusting the amount of coolant in the coolant circulation system that manages the temperature of the fuel cell.

以下、本発明の燃料電池評価装置10について、図に従って説明する。図1は、本実施形態に係る燃料電池評価装置10の冷却液循環系12の概略構成を示す図である。   Hereinafter, the fuel cell evaluation apparatus 10 of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a coolant circulation system 12 of a fuel cell evaluation device 10 according to the present embodiment.

燃料電池評価装置10は、様々な環境条件を設定し、燃料電池14の性能を評価する装置である。本実施形態では、一例として、車載性に優れた固体高分子型の燃料電池を挙げ、これの性能を評価する燃料電池評価装置10について説明する。   The fuel cell evaluation device 10 is a device that sets various environmental conditions and evaluates the performance of the fuel cell 14. In the present embodiment, as an example, a polymer electrolyte fuel cell having excellent in-vehicle properties is cited, and a fuel cell evaluation device 10 that evaluates the performance of the fuel cell evaluation device 10 will be described.

燃料電池評価装置10は、燃料電池14の温度を管理する冷却液循環系12と、燃料電池14に供給される燃料ガスと酸化ガスを管理するガス供給系(図示せず)と、発電により燃料電池14が放電する電力を管理する放電系(図示せず)と、これらの系統の計測及び制御を行う制御部60を有する。設定される環境条件になるように制御部60が上記各系統の計測値に基づいて制御を行い、放電系により燃料電池14で発電された電力が計測され、燃料電池14の性能が評価される。   The fuel cell evaluation apparatus 10 includes a coolant circulation system 12 that manages the temperature of the fuel cell 14, a gas supply system (not shown) that manages fuel gas and oxidant gas supplied to the fuel cell 14, and fuel generated by power generation. It has a discharge system (not shown) for managing the power discharged from the battery 14 and a control unit 60 for measuring and controlling these systems. The control unit 60 performs control based on the measured values of each system so as to satisfy the set environmental conditions, and the power generated by the fuel cell 14 by the discharge system is measured, and the performance of the fuel cell 14 is evaluated. .

燃料電池14は、燃料ガスと酸化ガスを電気化学反応させて発電を行う装置である。一般的に、燃料電池は、電解質膜を燃料極と空気極を挟んで構成される膜−電極接合体(MEA:Membrane-Electrode Assembly)を、二枚のセパレータでさらに挟んだセルを複数有し、これらを積層して構成されるスタックを有する。なお、本発明は、評価される燃料電池14がスタック、またはスタックにされる前の状態、例えばMEA単体の状態でも、適用することができる。   The fuel cell 14 is a device that generates electricity by causing an electrochemical reaction between a fuel gas and an oxidizing gas. Generally, a fuel cell has a plurality of cells in which a membrane-electrode assembly (MEA) composed of an electrolyte membrane sandwiched between a fuel electrode and an air electrode is further sandwiched between two separators. And a stack formed by stacking these. It should be noted that the present invention can also be applied to a state in which the fuel cell 14 to be evaluated is stacked or before the fuel cell 14 is stacked, for example, a state of a single MEA.

燃料電池14における電気化学反応について説明する。セルの燃料極に燃料ガス(水素ガス)が供給され、空気極に酸化ガス(空気)が供給される。燃料極では、燃料ガスが水素イオンと電子に解離され、解離された水素イオンが電解質膜を透過して空気極に移動する。また、解離された電子は、放電系を通って空気極に移動する。一方、空気極では、電解質膜を透過した水素イオンと、放電系を通って供給された電子が、空気に含まれる酸素と反応し、この反応により水が生成される。
燃料極側 : H → 2H + 2e
空気極側 : 2H + 2e + (1/2)O → H
The electrochemical reaction in the fuel cell 14 will be described. Fuel gas (hydrogen gas) is supplied to the fuel electrode of the cell, and oxidizing gas (air) is supplied to the air electrode. At the fuel electrode, the fuel gas is dissociated into hydrogen ions and electrons, and the dissociated hydrogen ions permeate the electrolyte membrane and move to the air electrode. Further, the dissociated electrons move to the air electrode through the discharge system. On the other hand, at the air electrode, hydrogen ions that have permeated through the electrolyte membrane and electrons supplied through the discharge system react with oxygen contained in the air, and water is generated by this reaction.
Fuel electrode side: H 2 → 2H + + 2e
Air electrode side: 2H + + 2e + (1/2) O 2 → H 2 O

この一連の電気化学反応により、セルが発電する。燃料電池14が複数のセルから構成されるスタックの場合は、各セルが電気的に直接接続されているので、各セルにより発電される電力の電圧を加算した電圧が燃料電池14の全体の電圧となる。また、この一連の電気化学反応により、セルが発熱する。セルで発生した熱は、冷却液循環系12の冷却液により除去される。   This series of electrochemical reactions generates electricity in the cell. In the case where the fuel cell 14 is a stack composed of a plurality of cells, each cell is electrically connected directly. Therefore, the voltage obtained by adding the voltage of the power generated by each cell is the total voltage of the fuel cell 14. It becomes. Further, this series of electrochemical reactions generates heat in the cell. The heat generated in the cell is removed by the coolant in the coolant circulation system 12.

冷却液循環系12は、冷却液を冷却する熱交換器18と、冷却液を貯留するタンク22と、冷却液を循環させるポンプ20と、冷却液を加熱する微調用ヒータ26と、冷却液を放熱する放熱部28を有する。また、それらの機器と燃料電池14を順に接続し、冷却液が循環する循環流路16を有する。ポンプ20の動作により、循環流路16を循環する冷却液は、熱交換器18、微調用ヒータ26及び放熱部28により設定温度に調整される。設定温度に調整された冷却液が燃料電池14に送られ、そこで発生する熱を除去し、燃料電池14の温度が管理される。   The coolant circulation system 12 includes a heat exchanger 18 that cools the coolant, a tank 22 that stores the coolant, a pump 20 that circulates the coolant, a fine adjustment heater 26 that heats the coolant, and a coolant. A heat radiating portion 28 for radiating heat is provided. Further, these devices and the fuel cell 14 are connected in order, and a circulation channel 16 through which the coolant circulates is provided. By the operation of the pump 20, the coolant circulating through the circulation flow path 16 is adjusted to a set temperature by the heat exchanger 18, the fine adjustment heater 26 and the heat radiating unit 28. The coolant adjusted to the set temperature is sent to the fuel cell 14, where heat generated therein is removed, and the temperature of the fuel cell 14 is controlled.

循環流路16は、これの管の外周に断熱部材が設けられ、循環流路16を流れる冷却液と循環流路16の外部との熱の移動をさえぎる断熱構造を有している。断熱部材は、熱伝導率の小さい材料からなり、例えば硬質ウレタンホーム、グラスウールなどの断熱材である。このような断熱材が設けられた断熱構造により、冷却液の熱損失を少なくすることができ、燃料電池14に送られる冷却液の温度を精度よく管理することができる。   The circulation channel 16 is provided with a heat insulating member on the outer periphery of the tube, and has a heat insulation structure that blocks heat transfer between the coolant flowing through the circulation channel 16 and the outside of the circulation channel 16. The heat insulating member is made of a material having a low thermal conductivity, and is a heat insulating material such as hard urethane home or glass wool. With the heat insulating structure provided with such a heat insulating material, the heat loss of the coolant can be reduced, and the temperature of the coolant sent to the fuel cell 14 can be accurately managed.

また、冷却循環系12は、燃料電池14を迂回するバイパス流路40を有している。バイパス流路40の両端は、ポンプ20と微調用ヒータ26の間の循環流路16と、燃料電池14と熱交換器18の間の循環流路16にそれぞれ接続される。バイパス流路40の一端がポンプ20と微調用ヒータ26の間の循環流路16に接続される部分は、燃料電池14を流れる冷却液と燃料電池14を迂回する冷却液とが分流する部分であり、ここを以降、分流部16aと記す。一方、バイパス流路40の他端が燃料電池14と熱交換器18の間の循環流路16に接続される部分は、燃料電池14を流れた冷却液と燃料電池14を迂回した冷却液とが合流する部分であり、ここを以降、合流部16bと記す。なお、バイパス流路40は、循環流路16と同様の断熱構造を有している。   The cooling circulation system 12 has a bypass flow path 40 that bypasses the fuel cell 14. Both ends of the bypass flow path 40 are connected to the circulation flow path 16 between the pump 20 and the fine adjustment heater 26 and the circulation flow path 16 between the fuel cell 14 and the heat exchanger 18, respectively. A portion where one end of the bypass passage 40 is connected to the circulation passage 16 between the pump 20 and the fine adjustment heater 26 is a portion where the coolant flowing through the fuel cell 14 and the coolant bypassing the fuel cell 14 are separated. This is hereinafter referred to as a flow dividing portion 16a. On the other hand, the portion where the other end of the bypass flow path 40 is connected to the circulation flow path 16 between the fuel cell 14 and the heat exchanger 18 includes a coolant that flows through the fuel cell 14 and a coolant that bypasses the fuel cell 14. Is a portion that merges, and is hereinafter referred to as a merge portion 16b. The bypass channel 40 has the same heat insulating structure as the circulation channel 16.

バイパス流路40には、バイパス流路二方弁44が配置されている。また、循環流路16であって、分岐部16aと微調用ヒータ26の間の流路には、循環流路二方弁42が配置されている。バイパス流路二方弁44及び循環流路二方弁42は、それらの開度を制御部60が指示し調整することにより、燃料電池14を流れる冷却液の流量を調整する。燃料電池14を流れる冷却液の流量を増加させる場合、循環流路二方弁42の開度が大きくなるとともに、バイパス流路二方弁44の開度が小さくなるように制御部60が制御信号を送る。一方、燃料電池14を流れる冷却液の流量を減少させる場合、循環流路二方弁42の開度が小さくなるとともに、バイパス流路二方弁44の開度が大きくなるように制御部60が制御信号を送る。なお、燃料電池14を流れる冷却液の流量は、循環流路二方弁42と微調用ヒータ26の間の循環流路16に配置される流量センサ46により検出され、検出信号が制御部60に出力される。   A bypass channel two-way valve 44 is disposed in the bypass channel 40. In addition, a circulation flow path two-way valve 42 is disposed in the flow path 16 between the branch portion 16 a and the fine adjustment heater 26. The bypass channel two-way valve 44 and the circulation channel two-way valve 42 adjust the flow rate of the coolant flowing through the fuel cell 14 by the controller 60 instructing and adjusting the opening degree thereof. When the flow rate of the coolant flowing through the fuel cell 14 is increased, the control unit 60 controls the control signal so that the opening degree of the circulation flow path two-way valve 42 increases and the opening degree of the bypass flow path two-way valve 44 decreases. Send. On the other hand, when the flow rate of the coolant flowing through the fuel cell 14 is decreased, the control unit 60 is configured so that the opening degree of the circulation flow path two-way valve 42 is decreased and the opening degree of the bypass flow path two-way valve 44 is increased. Send a control signal. The flow rate of the coolant flowing through the fuel cell 14 is detected by a flow rate sensor 46 disposed in the circulation channel 16 between the circulation channel two-way valve 42 and the fine adjustment heater 26, and a detection signal is sent to the control unit 60. Is output.

熱交換器18は、燃料電池14を流れ、それの反応熱により加熱された冷却液を、液体冷媒との熱交換により冷却する。熱交換器18は、液体冷媒の流量又は温度を調整することにより、冷却量を調整する。   The heat exchanger 18 flows through the fuel cell 14 and cools the coolant heated by the reaction heat by heat exchange with the liquid refrigerant. The heat exchanger 18 adjusts the cooling amount by adjusting the flow rate or temperature of the liquid refrigerant.

タンク22は、冷却液を貯留する容器であり、この容器には、貯留する冷却液を加熱する粗調用ヒータ24が設けられている。   The tank 22 is a container for storing a coolant, and the container is provided with a coarse adjustment heater 24 for heating the stored coolant.

冷却液循環系12には、上述したように粗調用ヒータ24と微調用ヒータ26との二つのヒータが設けられている。これらのヒータ24,26の加熱量は、制御部60の指示による設定温度に合わせて調整可能となっている。粗調用ヒータ24は冷却液の温度をおおまかに調整するのに対し、微調用ヒータ26は冷却液の温度を微調整する。粗調用ヒータ24により加熱され、おおまかに温度を調整された冷却液が、微調用ヒータ26に送られ、その冷却液の温度が設定温度になるように微調整される。そして、設定温度になった冷却液は燃料電池14に送られて、燃料電池14の温度が精度よく管理される。なお、燃料電池14の温度は、燃料電池14と合流部16bの間の循環流路16に配置される燃料電池出口温度センサ48により検出され、検出信号が制御部60に出力される。   As described above, the coolant circulation system 12 is provided with two heaters, the coarse adjustment heater 24 and the fine adjustment heater 26. The heating amounts of the heaters 24 and 26 can be adjusted according to the set temperature according to the instruction from the control unit 60. The coarse adjustment heater 24 roughly adjusts the temperature of the coolant, whereas the fine adjustment heater 26 finely adjusts the temperature of the coolant. The coolant heated by the coarse adjustment heater 24 and roughly adjusted in temperature is sent to the fine adjustment heater 26 and finely adjusted so that the temperature of the coolant becomes the set temperature. Then, the coolant that has reached the set temperature is sent to the fuel cell 14, and the temperature of the fuel cell 14 is managed with high accuracy. The temperature of the fuel cell 14 is detected by a fuel cell outlet temperature sensor 48 disposed in the circulation flow path 16 between the fuel cell 14 and the merging portion 16 b, and a detection signal is output to the control unit 60.

放熱部28は、微調用ヒータ26と燃料電池14の間に設けられている。放熱部28は、微調用ヒータ26から燃料電池14へ冷却液が流れる放熱部メイン流路30と、これの少なくとも一部を迂回して冷却液が流れる放熱部バイパス流路32とを有する。放熱部バイパス流路32の両端は、放熱部メイン流路30に接続される。すなわち、一端が放熱部メイン流路30に配置される三方弁34と、他端が三方弁34より燃料電池14側の放熱部メイン流路30とに接続される。放熱部バイパス流路32の両端を結ぶ放熱部メイン流路30の区間は、放熱部メイン流路30が放熱部バイパス流路32によりバイパスされる区間であり、ここを以降、被バイパス区間30aと記す。   The heat radiating section 28 is provided between the fine adjustment heater 26 and the fuel cell 14. The heat radiating section 28 includes a heat radiating section main flow path 30 through which the coolant flows from the fine adjustment heater 26 to the fuel cell 14, and a heat radiating section bypass flow path 32 through which at least a part of the heat radiating section flows. Both ends of the heat radiating part bypass flow path 32 are connected to the heat radiating part main flow path 30. That is, one end of the three-way valve 34 disposed in the heat radiating part main flow path 30 and the other end of the three-way valve 34 are connected to the heat radiating part main flow path 30 on the fuel cell 14 side. The section of the heat radiating section main flow path 30 connecting both ends of the heat radiating section bypass flow path 32 is a section in which the heat radiating section main flow path 30 is bypassed by the heat radiating section bypass flow path 32, and is hereinafter referred to as a bypassed section 30a. I write.

放熱部メイン流路30は、循環流路16と同じく断熱構造を有している。一方、放熱部バイパス流路32の少なくとも一部は、断熱構造を有していない。すなわち、バイパス流路32の少なくとも一部の外周には、断熱部材が設けられていない。これにより、放熱部バイパス流路32のほうがこれに対応する被バイパス区間30aより、冷却液の熱がより多く放熱される。つまり、放熱部バイパス流路32の放熱量が、被バイパス区間30aの放熱量より大きい。   The heat radiating portion main flow path 30 has a heat insulating structure like the circulation flow path 16. On the other hand, at least a part of the heat radiating unit bypass flow path 32 does not have a heat insulating structure. That is, a heat insulating member is not provided on the outer periphery of at least a part of the bypass flow path 32. Thereby, more heat of the coolant is radiated in the heat dissipating unit bypass flow path 32 than in the bypassed section 30a corresponding thereto. That is, the heat dissipation amount of the heat dissipating unit bypass flow path 32 is larger than the heat dissipation amount of the bypassed section 30a.

三方弁34は、これの開度を制御部60が指示し調整することにより、放熱部バイパス流路32を流れる冷却液の流量を調整する。冷却液の放熱量を増加させる場合、三方弁34の放熱部バイパス流路32側の開度が大きくなるよう制御部60が制御信号を送る。一方、冷却液の放熱量を減少させる場合、三方弁34の放熱部バイパス流路32側の開度が小さくなるよう制御部60が制御信号を送る。   The three-way valve 34 adjusts the flow rate of the coolant flowing through the heat radiating unit bypass flow path 32 by the controller 60 instructing and adjusting the opening degree. When increasing the heat dissipation amount of the coolant, the control unit 60 sends a control signal so that the opening degree of the three-way valve 34 on the side of the heat dissipating unit bypass channel 32 is increased. On the other hand, when decreasing the heat dissipation amount of the coolant, the control unit 60 sends a control signal so that the opening degree of the three-way valve 34 on the side of the heat dissipating unit bypass flow path 32 becomes small.

制御部60は、循環流路16に配置された各種センサが検出した検出信号から現在の冷却液循環系12の状態、例えば冷却液の温度及び流量を認識する。そして、制御部60は、設定される環境条件に基づいて算出された冷却液の温度及び流量となるように各ヒータ24,26、各二方弁42,44及び三方弁34に制御信号を送る。各種センサは、流量センサ46と、燃料電池出口温度センサ48と、微調用ヒータ26と放熱部28の間の循環流路16に配置された微調用ヒータ出口温度センサ50とを含む。   The control unit 60 recognizes the current state of the coolant circulation system 12, for example, the temperature and flow rate of the coolant, from detection signals detected by various sensors arranged in the circulation channel 16. And the control part 60 sends a control signal to each heater 24,26, each two-way valve 42,44, and the three-way valve 34 so that it may become the temperature and flow volume of the coolant calculated based on the set environmental condition. . The various sensors include a flow rate sensor 46, a fuel cell outlet temperature sensor 48, and a fine adjustment heater outlet temperature sensor 50 disposed in the circulation channel 16 between the fine adjustment heater 26 and the heat radiating portion 28.

次に、制御部60の動作について説明する。本実施形態では、一例として燃料電池14を流れる冷却液の流量が減少制御される際の冷却液の温度制御について説明する。   Next, the operation of the control unit 60 will be described. In the present embodiment, temperature control of the coolant when the flow rate of the coolant flowing through the fuel cell 14 is controlled to decrease will be described as an example.

まず、燃料電池14の性能を評価する環境条件が制御部60に設定される。この設定される環境条件に基づいて算出した冷却液の流量が現状より少ない値の場合、制御部60は、循環流路二方弁42及びバイパス流路二方弁44に制御信号を送る。制御部60からの制御信号により、循環流路二方弁42がそれの開度を小さくするよう動作するとともに、バイパス流路二方弁44がそれの開度を小さくするよう動作する。これらの二方弁42,44の動作により、ポンプ20から送り出される冷却液がバイパス流路40により多く流れるようになり、燃料電池14を流れる冷却液の流量が減少する。   First, environmental conditions for evaluating the performance of the fuel cell 14 are set in the control unit 60. When the coolant flow rate calculated based on the set environmental conditions is smaller than the current value, the control unit 60 sends a control signal to the circulation flow path two-way valve 42 and the bypass flow path two-way valve 44. In response to a control signal from the control unit 60, the circulation flow path two-way valve 42 operates to reduce its opening, and the bypass flow path two-way valve 44 operates to decrease its opening. By the operation of these two-way valves 42 and 44, a larger amount of the coolant sent from the pump 20 flows through the bypass flow path 40, and the flow rate of the coolant flowing through the fuel cell 14 decreases.

燃料電池14を流れる冷却液の流量が減少すると、微調用ヒータ26を流れる冷却液の流量も減少するので、制御部60は、冷却液の流量の減少制御に合わせ、微調用ヒータ26の加熱量を減少させる。一般的に、ヒータの加熱量を減少させるためには、ヒータの発熱体の温度を低下させるが、この低下には時間がかかるため、制御開始から所定の熱量になるまでの時間、すなわち遅れ時間が発生してしまう。本実施形態では、冷却液により発熱体を冷やし、これの温度を低下させている。冷却液の流量を低下させると、前記の遅れ時間のあいだに、単位流量当りの発熱体から受ける熱量が増加する。その結果、微調用ヒータ26から冷却液に過大な加熱量が加えられ、燃料電池14を流れる冷却液の温度が上昇(オーバーシュート)してしまう可能性がある。しかし、制御部60は、燃料電池14を流れる冷却液の温度が上昇しないように、微調用ヒータ26の加熱量を減少させるとともに、放熱部28の放熱量を増加させるよう制御する。すなわち、制御部60は、放熱部バイパス流路32に流れる冷却液の流量を増加させるように三方弁34の開度を調整する。   When the flow rate of the coolant flowing through the fuel cell 14 decreases, the flow rate of the coolant flowing through the fine adjustment heater 26 also decreases. Therefore, the controller 60 controls the amount of heating of the fine adjustment heater 26 in accordance with the decrease control of the flow rate of the coolant. Decrease. Generally, in order to reduce the heating amount of the heater, the temperature of the heating element of the heater is lowered. However, since this lowering takes time, the time from the start of control to the predetermined amount of heat, that is, the delay time Will occur. In the present embodiment, the heating element is cooled by the coolant, and the temperature thereof is lowered. When the flow rate of the coolant is decreased, the amount of heat received from the heating element per unit flow rate increases during the delay time. As a result, an excessive amount of heating is added to the coolant from the fine adjustment heater 26, and the temperature of the coolant flowing through the fuel cell 14 may rise (overshoot). However, the control unit 60 controls to decrease the heating amount of the fine adjustment heater 26 and increase the heat radiation amount of the heat radiation unit 28 so that the temperature of the coolant flowing through the fuel cell 14 does not increase. That is, the control unit 60 adjusts the opening degree of the three-way valve 34 so as to increase the flow rate of the coolant flowing through the heat radiating unit bypass flow path 32.

制御部60は、微調用ヒータ出口温度センサ50からの検出温度に基づいて三方弁34の開度を調整する。微調用ヒータ出口温度センサ50からの検出温度が設定温度より高い場合、放熱部バイパス流路32に冷却液を流すよう三方弁34の開度を調整する。そして、遅れ時間が経過し、検出温度が設定温度に近づくにつれて、放熱部バイパス流路32に流れる冷却液の流量を減少させるよう三方弁34の開度を調整する。   The controller 60 adjusts the opening of the three-way valve 34 based on the detected temperature from the fine adjustment heater outlet temperature sensor 50. When the detected temperature from the fine adjustment heater outlet temperature sensor 50 is higher than the set temperature, the opening degree of the three-way valve 34 is adjusted so that the coolant flows through the heat radiating unit bypass flow path 32. Then, as the delay time elapses and the detected temperature approaches the set temperature, the opening degree of the three-way valve 34 is adjusted so as to decrease the flow rate of the coolant flowing through the heat radiating unit bypass flow path 32.

本実施形態に係る燃料電池評価装置10によれば、冷却液循環系12の冷却液の流量が減少制御されるとき、微調用ヒータ26を流れた冷却液の熱を放熱させる制御を行うので、燃料電池14に送られる冷却液の温度上昇を防ぐことができ、より精度よく冷却液の温度を制御することができる。   According to the fuel cell evaluation device 10 according to the present embodiment, when the flow rate of the coolant in the coolant circulation system 12 is controlled to decrease, the heat of the coolant that has flowed through the fine adjustment heater 26 is controlled to be radiated. The temperature rise of the coolant sent to the fuel cell 14 can be prevented, and the temperature of the coolant can be controlled with higher accuracy.

上記実施形態では、放熱部バイパス流路32の少なくとも一部に断熱部材が設けられていない構造にして、放熱部バイパス流路32の放熱量が、被バイパス区間30aの放熱量より大きくなる場合について説明したが、この構成に限定されるものではない。放熱部バイパス流路32の外周の表面積を広くして、冷却液の熱を放熱しやすい構造、例えば放熱部バイパス流路32の外周に金属製からなるフィンを設けた構造にして、放熱部バイパス流路32の放熱量が大きくなるようにしてもよい。   In the said embodiment, it is set as the structure where the heat insulation member is not provided in at least one part of the thermal radiation part bypass flow path 32, and about the case where the thermal radiation amount of the thermal radiation part bypass flow path 32 becomes larger than the thermal radiation amount of the to-be-passed area 30a. Although described, the present invention is not limited to this configuration. The surface area of the outer periphery of the heat radiating unit bypass flow path 32 is widened so that the heat of the coolant can be easily radiated, for example, a structure in which metal fins are provided on the outer periphery of the heat radiating unit bypass flow path 32 You may make it the thermal radiation amount of the flow path 32 become large.

上記実施形態では、循環流路二方弁42とバイパス流路二方弁44との開度をそれぞれ調整し、燃料電池14を流れる冷却液の流量を調整する場合について説明したが、この構成に限定されるものではない。分岐点16a又は合流点16bに三方弁を配置し、この三方弁の開度を調整し、燃料電池14を流れる冷却液の流量を調整してもよい。また、弁の開度を調整せずに、ポンプ20の回転速度を調整し、燃料電池14を流れる冷却液の流量を調整してもよい。   In the above embodiment, the case where the opening degrees of the circulation flow path two-way valve 42 and the bypass flow path two-way valve 44 are adjusted to adjust the flow rate of the coolant flowing through the fuel cell 14 has been described. It is not limited. A three-way valve may be arranged at the branch point 16a or the junction point 16b, the opening degree of the three-way valve may be adjusted, and the flow rate of the coolant flowing through the fuel cell 14 may be adjusted. Further, the flow rate of the coolant flowing through the fuel cell 14 may be adjusted by adjusting the rotational speed of the pump 20 without adjusting the opening of the valve.

上記実施形態では、放熱部バイパス流路32を流れる冷却液の流量を調整するのに三方弁34を用いる場合について説明したが、この構成に限定されるものではない。被バイパス区間30a及び放熱部バイパス流路32にそれぞれ二方弁を配置して、これらの二方弁の開度を調整し、放熱部バイパス流路32を流れる冷却液の流量を調整してもよい。   In the above embodiment, the case where the three-way valve 34 is used to adjust the flow rate of the coolant flowing through the heat dissipating unit bypass flow path 32 has been described, but the present invention is not limited to this configuration. Even if a two-way valve is arranged in each of the bypassed section 30a and the heat radiating part bypass flow path 32, the opening degree of these two-way valves is adjusted, and the flow rate of the coolant flowing through the heat radiating part bypass flow path 32 is adjusted. Good.

本実施形態に係る燃料電池評価装置の冷却液循環系の概略構成を示す図である。It is a figure which shows schematic structure of the cooling fluid circulation system of the fuel cell evaluation apparatus which concerns on this embodiment.

符号の説明Explanation of symbols

10 燃料電池評価装置、12 冷却液循環系、14 燃料電池、16 循環流路、18 熱交換器、20 ポンプ、22 タンク、24 粗調用ヒータ、26 微調用ヒータ、28 放熱部、30 放熱部メイン流路、32 放熱部バイパス流路、34 三方弁、40 バイパス流路、42 循環流路二方弁、44 バイパス流路二方弁、46 流量センサ、48 燃料電池出口温度センサ、50 微調用ヒータ出口温度センサ、60 制御部。   DESCRIPTION OF SYMBOLS 10 Fuel cell evaluation apparatus, 12 Coolant circulation system, 14 Fuel cell, 16 Circulation flow path, 18 Heat exchanger, 20 Pump, 22 Tank, 24 Rough adjustment heater, 26 Fine adjustment heater, 28 Radiation part, 30 Radiation part main Flow path, 32 Heat radiation part bypass flow path, 34 Three-way valve, 40 Bypass flow path, 42 Circulation flow path two-way valve, 44 Bypass flow path two-way valve, 46 Flow rate sensor, 48 Fuel cell outlet temperature sensor, 50 Fine adjustment heater Outlet temperature sensor, 60 controller.

Claims (2)

燃料電池の温度を冷却液循環系により管理し、燃料電池の性能を評価する燃料電池評価装置であって、
前記冷却液循環系は、
燃料電池を流れる冷却液の流量を調整する流量調整手段と、
冷却液を調整可能に加熱する加熱手段と、
前記加熱手段と燃料電池の間に設けられ、冷却液の熱を調整可能に放熱する放熱手段と、
を有し、
前記流量調整手段により冷却液の流量が減少制御されるとき、前記加熱手段による加熱量を減少させるとともに、前記放熱手段の放熱量を増加させる制御部を有する、
ことを特徴とする燃料電池評価装置。
A fuel cell evaluation device for managing the temperature of a fuel cell with a coolant circulation system and evaluating the performance of the fuel cell,
The coolant circulation system is
Flow rate adjusting means for adjusting the flow rate of the coolant flowing through the fuel cell;
Heating means for heating the coolant in an adjustable manner;
A heat dissipating means provided between the heating means and the fuel cell for dissipating heat of the coolant in an adjustable manner;
Have
When the flow rate of the coolant is controlled to be decreased by the flow rate adjusting unit, the controller has a controller that decreases the amount of heat generated by the heating unit and increases the amount of heat released by the heat radiating unit.
A fuel cell evaluation apparatus.
請求項1記載の燃料電池評価装置であって、
前記放熱手段は、
前記加熱手段から燃料電池へ冷却液が流れる第一流路と、
前記第一流路の少なくとも一部を迂回して冷却液が流れる第二流路と、
前記第二流路を流れる冷却液の流量を調整する調整弁と、
を有し、
前記第二流路の放熱量が、当該第二流路に対応する前記第一流路の放熱量より大きい、
ことを特徴とする燃料電池評価装置。
The fuel cell evaluation apparatus according to claim 1,
The heat dissipation means is
A first flow path through which a coolant flows from the heating means to the fuel cell;
A second flow path in which the coolant flows bypassing at least a part of the first flow path;
An adjustment valve for adjusting the flow rate of the coolant flowing through the second flow path;
Have
The heat dissipation amount of the second flow path is greater than the heat dissipation amount of the first flow path corresponding to the second flow path.
A fuel cell evaluation apparatus.
JP2006335624A 2006-12-13 2006-12-13 Fuel cell evaluation device Pending JP2008147121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335624A JP2008147121A (en) 2006-12-13 2006-12-13 Fuel cell evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335624A JP2008147121A (en) 2006-12-13 2006-12-13 Fuel cell evaluation device

Publications (1)

Publication Number Publication Date
JP2008147121A true JP2008147121A (en) 2008-06-26

Family

ID=39607041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335624A Pending JP2008147121A (en) 2006-12-13 2006-12-13 Fuel cell evaluation device

Country Status (1)

Country Link
JP (1) JP2008147121A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145281A (en) * 2008-12-19 2010-07-01 Toyota Technical Development Corp Method and device for adjusting fluid temperature in drive system performance test of internal combustion engine
JP2013004205A (en) * 2011-06-13 2013-01-07 Nittetsu Elex Co Ltd Control method and control device for cooling water flowing in fuel cell
WO2017047235A1 (en) * 2015-09-17 2017-03-23 ブラザー工業株式会社 Fuel cell, control method, and computer program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145281A (en) * 2008-12-19 2010-07-01 Toyota Technical Development Corp Method and device for adjusting fluid temperature in drive system performance test of internal combustion engine
JP2013004205A (en) * 2011-06-13 2013-01-07 Nittetsu Elex Co Ltd Control method and control device for cooling water flowing in fuel cell
WO2017047235A1 (en) * 2015-09-17 2017-03-23 ブラザー工業株式会社 Fuel cell, control method, and computer program
JP2017059453A (en) * 2015-09-17 2017-03-23 ブラザー工業株式会社 Fuel battery, control method and computer program

Similar Documents

Publication Publication Date Title
JP4871219B2 (en) System level adjustment to increase stack inlet RH
JP4984534B2 (en) Fuel cell system
US8361665B2 (en) Fuel cell system
US7588845B2 (en) Advanced control for an electrical heatable wax thermostat in the thermal coolant loop of fuel cell systems
KR101882375B1 (en) Cooling system for fuel cell using thermosiphon
US20080124596A1 (en) Feedback-based control of a PEM fuel cell for high temperature protection
US8216733B2 (en) Fuel cell system
KR20120000634A (en) Method for controlling fuel cell system
JP2008041505A (en) Fuel cell system and moisture content estimating device and method of fuel cell
JP2005259526A (en) Conditioning method for fuel cell
JP2008147121A (en) Fuel cell evaluation device
JP2004152666A (en) Fuel cell system
JP2008517423A (en) Temperature control device and temperature control method for fuel cell system mounted on automobile
CN113725460A (en) High-power fuel cell engine temperature management system and control method thereof
KR100514997B1 (en) Fuel cell system
US20140106253A1 (en) Fuel cell with improved thermal management
JP2006339103A (en) Fuel cell system
JP5434054B2 (en) Fuel cell system
JP2008226712A (en) Fuel cell system and its control method
CN212323044U (en) Temperature management system for high-power fuel cell engine
KR101848614B1 (en) Thermal Management System for vehicles
KR101394732B1 (en) Controlled thermal management system in fuel cell application
JP3991047B2 (en) Humidifier for fuel cell
JP4332185B2 (en) Humidifier for fuel cell
JP2004349247A (en) Cooling device of fuel cell