JPH11131141A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JPH11131141A
JPH11131141A JP9300507A JP30050797A JPH11131141A JP H11131141 A JPH11131141 A JP H11131141A JP 9300507 A JP9300507 A JP 9300507A JP 30050797 A JP30050797 A JP 30050797A JP H11131141 A JPH11131141 A JP H11131141A
Authority
JP
Japan
Prior art keywords
final
annealing
cold rolling
steel sheet
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9300507A
Other languages
Japanese (ja)
Inventor
Kenichi Sadahiro
健一 定広
Atsuto Honda
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9300507A priority Critical patent/JPH11131141A/en
Publication of JPH11131141A publication Critical patent/JPH11131141A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain good magnetic properties in a steel sheet by allowing it to contain specified amounts of one or more kinds of S and Se and B, regulating the draft in final cold rolling to specified value or above to finish its sheet thickness into the final one and executing short time final finish annealing under specified conditions. SOLUTION: A base steel slab has a compsn. contg., by weight, 0.02 to 0.08% C, 2.0 to 4.0% Si and 0.03 to 0.2% Mn, furthermore, contg. one or more kinds among 0.01 to 0.20% Sb, 0.02 to 0.20% Sn and 0.02 to 0.05% Mo, and the balance substantial Fe, and, moreover, one or two kinds of S and Se by 0.005 to 0.020% and 0.5 to 20 ppm B are incorporated therein. This slab is subjected to hot rolling and is subjected to cold rolling for one time or two times including process annealing to finish its sheet thickness into the final one. The draft in the final cold rolling is regulated to >=80%. Next, after decarburizing annealing, it is subjected to final finish annealing to form into a grain oriented silicon steel sheet. The final finish annealing is executed in the temp. range of 900 to 1200 deg.C for 3 sec to 10 min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一方向性けい素
鋼板の製造方法に関し、特に短時間の最終仕上げ焼鈍に
よって、鋼板の圧延方向に平行に磁化容易軸<001>
を有し、かつ板面に平行に{110}面を有する、磁気
特性に優れた一方向性けい素鋼板を得ようとするもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet, and more particularly, to an easy axis <001> parallel to the rolling direction of the steel sheet by a final finishing annealing in a short time.
It is an object of the present invention to obtain a unidirectional silicon steel sheet having excellent magnetic properties and having a {110} plane parallel to the plate surface.

【0002】[0002]

【従来の技術】従来、一方向性電磁鋼板の製造に際して
は、(110)<001>方位を持つ結晶粒を優先的に
2次再結晶させる必要上、最終仕上げ焼鈍には極めて長
い時間を必要とし、そのため通常は箱焼鈍法が用いられ
てきた。しかしながら、この箱焼鈍は膨大な熱エネルギ
ーを必要とすることから、その製造コストの低減を目的
として、これまでにも幾つかの短時間連続焼鈍法が提案
されている。
2. Description of the Related Art Conventionally, in producing a grain-oriented electrical steel sheet, it is necessary to preferentially recrystallize crystal grains having the (110) <001> orientation, and an extremely long time is required for final finish annealing. Therefore, the box annealing method has been usually used. However, since this box annealing requires enormous heat energy, several short-time continuous annealing methods have been proposed so far in order to reduce the production cost.

【0003】例えば、特公昭48−3929号公報や特開昭49
-95816号公報では、最終焼鈍時の昇温過程を急速加熱と
することにより、短時間焼鈍で2次再結晶を可能にする
方法を提案している。これに加え、特開昭49-98721号公
報では、鉄損劣化の原因となる微細析出物を粗大化して
無害化するために、最終焼鈍時の冷却を徐冷とする方法
を提案している。また、特開昭55−2751号公報や同55-1
4863号公報には、脱炭焼鈍条件を工夫する方法が、さら
に特開昭55-58332号公報には、脱炭焼鈍を省略し、冷延
組織のまま急速加熱により連続最終焼鈍する方法が、そ
れぞれ提案されている。
[0003] For example, Japanese Patent Publication No. 48-3929 and
Japanese Patent Application Laid-Open No. -95816 proposes a method in which a secondary recrystallization can be performed in a short time by using a rapid heating process in the final annealing. In addition, JP-A-49-98721 proposes a method in which cooling during final annealing is gradually cooled in order to make fine precipitates causing iron loss deterioration coarse and detoxified. . Also, Japanese Patent Application Laid-Open Nos.
No. 4863, a method of devising decarburization annealing conditions, and further, in JP-A-55-58332, a method of omitting decarburization annealing and performing a continuous final annealing by rapid heating with a cold-rolled structure, Each has been proposed.

【0004】しかしながらこれらの方法では、いずれも
長時間箱焼鈍法で得られていたような(110)<00
1>方位への充分な集積が望めないため、満足いく程の
鉄損特性は得られなかった。
[0004] However, in these methods, (110) <00 as in any case obtained by the long-time box annealing method.
1> Sufficient iron loss characteristics could not be obtained because sufficient accumulation in the orientation could not be expected.

【0005】その他、特開平5-70833号公報には、最終
連続焼鈍前に軽圧延を行う方法が提案されているが、こ
の方法によれば、圧延方向と直角方向の磁気特性は改善
されるものの、圧延方向の磁気特性は通常の方向性けい
素鋼板に比べると大きく劣るところに問題を残してい
た。
In addition, Japanese Patent Application Laid-Open No. 5-70833 proposes a method in which light rolling is performed before final continuous annealing. According to this method, magnetic properties in a direction perpendicular to the rolling direction are improved. However, there remains a problem in that the magnetic properties in the rolling direction are greatly inferior to ordinary grain-oriented silicon steel sheets.

【0006】[0006]

【発明が解決しようとする課題】上述したとおり、従来
の短時間連続焼鈍法ではいずれも、満足いくほど優れた
磁気特性を得ることができなかった。この発明は、上記
問題を有利に解決するもので、最終仕上げ焼鈍を短時間
連続焼鈍法で行った場合においても、良好な磁気特性を
安定して得ることができる一方向性けい素鋼板の有利に
製造方法を提案することを目的とする。
As described above, none of the conventional short-time continuous annealing methods can provide satisfactory magnetic properties. The present invention advantageously solves the above-mentioned problems. Even when the final finish annealing is performed by a short-time continuous annealing method, an advantageous effect of a unidirectional silicon steel sheet capable of stably obtaining good magnetic properties can be obtained. The purpose is to propose a manufacturing method.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上記
の問題を解決すべく鋭意研究を重ねた結果、素材成分、
最終冷延圧下率および焼鈍条件を適切な範囲に規制すれ
ば、所期した目的が有利に達成されることの知見を得
た。この発明は、上記の知見に立脚するものである。
Means for Solving the Problems Now, the inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that material components,
It has been found that the intended purpose can be advantageously achieved if the final cold rolling reduction and annealing conditions are controlled in appropriate ranges. The present invention is based on the above findings.

【0008】すなわち、この発明は、C:0.02〜0.08wt
%、Si:2.0 〜4.0 wt%、Mn:0.03〜0.2 wt%を含み、
かつSb:0.01〜0.20wt%、Sn:0.02〜0.20wt%およびM
o:0.02〜0.05wt%のうちから選んだ少なくとも一種を
含有し、残部は実質的にFeの組成になる含けい素鋼スラ
ブを、熱間圧延し、ついで必要に応じて熱延板焼鈍を施
した後、1回または中間焼鈍を挟む2回の冷間圧延を施
して最終板厚に仕上げ、ついで脱炭焼鈍後、最終仕上げ
焼鈍を施す一連の工程によって一方向性けい素鋼板を製
造するに当たり、(1) 上記含けい素鋼スラブ中に、Sお
よびSeのうちから選んだ1種または2種を0.005〜0.020
wt%と、ボロンを 0.5〜20 ppm含有させること、(2)
最終冷間圧延の圧下率を80%以上として最終板厚に仕上
げること、(3) 900 ℃以上1200℃以下の温度域で3秒以
上10分以内の短時間最終仕上げ焼鈍を施すことを特徴と
する一方向性けい素鋼板の製造方法である。
That is, the present invention provides a method for producing C: 0.02 to 0.08 wt.
%, Si: 2.0-4.0 wt%, Mn: 0.03-0.2 wt%,
And Sb: 0.01 to 0.20 wt%, Sn: 0.02 to 0.20 wt% and M
o: At least one selected from 0.02 to 0.05 wt% is contained, and the rest is a silicon steel slab having a substantially Fe composition, which is hot-rolled, and if necessary, hot-rolled sheet annealing is performed. After that, the steel sheet is subjected to cold rolling once or twice with intermediate annealing to finish to a final sheet thickness, then, after decarburizing annealing, a series of steps of final annealing to produce a unidirectional silicon steel sheet. (1) In the silicon-containing steel slab, one or two kinds selected from S and Se are 0.005 to 0.020.
wt% and 0.5 to 20 ppm of boron, (2)
The final cold-rolling reduction rate is 80% or more and the final thickness is finished. (3) The final finish annealing is performed in a temperature range of 900 ° C or more and 1200 ° C or less for 3 seconds or more and 10 minutes or less. This is a method for producing a unidirectional silicon steel sheet.

【0009】この発明では、含けい素鋼スラブ中にさら
に、AlおよびTiのうちから選んだ少なくとも1種を5〜
50 ppm含有させることが好ましい。また、この発明にお
いては、最終冷間圧延を 100℃以上の温間圧延とするこ
とが有利である。
According to the present invention, at least one selected from Al and Ti is further added to the silicon-containing steel slab.
It is preferable to contain 50 ppm. In the present invention, it is advantageous that the final cold rolling is a warm rolling at 100 ° C. or higher.

【0010】[0010]

【発明の実施の形態】この発明は、これまで取り立てて
検討されたことがなかった、B, Al, Ti量および冷延条
件の、短時間仕上げ焼鈍時の2次再結晶に及ぼす影響に
ついて詳細な検討を行った結果、開発されたものであ
る。以下、この発明の基礎となった実験およびその結果
について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention details the effects of the amounts of B, Al, Ti and cold rolling conditions on secondary recrystallization during short-time finish annealing, which have not been studied before. It was developed as a result of careful examination. Hereinafter, an experiment and a result thereof which are the basis of the present invention will be described.

【0011】表1に示す成分組成になる2種類のけい素
鋼スラブを、1420℃で15分加熱後、熱間圧延を行って板
厚:2.5 mmの圧延コイルとした。この熱延コイルを、10
00℃で1分間焼鈍した後、表2に示す圧下配分の冷間圧
延により、板厚:0.34mmに仕上げた。このとき中間焼鈍
条件はすべて 950℃, 1分間とした。ついで 840℃, 2
分間の脱炭焼鈍後、1050℃で3分の短時間連続仕上げ焼
鈍を行った。得られた製品板の磁束密度B8 について測
定した結果を、表2に併記する。また、この時の2次再
結晶分率について調査した結果を表3に示す。
Two types of silicon steel slabs having the component compositions shown in Table 1 were heated at 1420 ° C. for 15 minutes, and then hot-rolled to form rolled coils having a thickness of 2.5 mm. This hot rolled coil is
After annealing at 00 ° C. for 1 minute, the sheet was finished to a sheet thickness of 0.34 mm by cold rolling in a rolling distribution shown in Table 2. At this time, the intermediate annealing conditions were all 950 ° C. for 1 minute. Then 840 ℃, 2
After decarburizing annealing for 10 minutes, short-time continuous finishing annealing was performed at 1050 ° C. for 3 minutes. The results of measurement for the magnetic flux density B 8 of the obtained product plate are shown in Table 2. Table 3 shows the result of investigation on the secondary recrystallization fraction at this time.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】表3から明らかなように、ボロンを含有す
る鋼Aでは、2次再結晶分率が強圧下側で 100%に近く
なり、しかも高い磁束密度を得ることができた。これに
対し、ボロンを含有しない鋼Bでは、2次再結晶完了率
が軽圧下側で高い傾向にあるものの、鋼Aほど高い磁束
密度は得られていない。
As is clear from Table 3, in the case of boron-containing steel A, the secondary recrystallization fraction was close to 100% under high pressure, and a high magnetic flux density could be obtained. On the other hand, in steel B containing no boron, the secondary recrystallization completion rate tends to be higher under light pressure, but a higher magnetic flux density than steel A is not obtained.

【0016】また、図1には、ボロン量と最終冷延圧下
率が磁束密度に及ぼす影響について調査した結果を整理
して示す。同図から明らかなように、ボロン量が 0.5 p
pm以上、20 ppm以下で、かつ圧下率が80%以上の範囲に
おいて、特に優れた磁束密度が得られている。
FIG. 1 shows the results of an investigation into the effects of the amount of boron and the final cold rolling reduction on the magnetic flux density. As is clear from the figure, the boron content is 0.5 p.
Particularly excellent magnetic flux density is obtained in the range of pm to 20 ppm and the rolling reduction of 80% or more.

【0017】上述したように、少量のボロンを加え、か
つ最終冷間条件を調整することによって短時間での2次
再結晶が可能となった理由は、まだ明確に解明されたわ
けではないが、次のとおりと考えられる。すなわち、方
向性けい素鋼板の2次再結晶を短時間で完了させるため
には、適度に一次再結晶の粒成長抑制力いわゆるインヒ
ビター強度を弱め、2次再結晶の潜伏期間を短縮するこ
とが重要である。また、高い磁束密度を得るためには、
AlNを主インヒビターとした成分系で行われているよう
に、最終冷延を80%以上の強圧下とするのが一般的であ
る。
As described above, the reason why the secondary recrystallization can be performed in a short time by adding a small amount of boron and adjusting the final cold condition has not been clearly elucidated yet. It is considered as follows. That is, in order to complete the secondary recrystallization of the grain-oriented silicon steel sheet in a short time, it is necessary to moderately reduce the so-called inhibitor strength of the primary recrystallization and reduce the incubation period of the secondary recrystallization. is important. In order to obtain a high magnetic flux density,
Generally, the final cold rolling is performed under a high pressure of 80% or more, as is performed in a component system in which AlN is the main inhibitor.

【0018】しかしながら、このようなAlNを主インヒ
ビターとする素材を、1050℃,5分間の短時間仕上げ焼
鈍に供しても、2次再結晶を完了させることができない
場合がしばしばあった。また、AlNのない、MnSまたは
MnSeをインヒビターとする成分素材では、2次再結晶は
起こり易くなるが、最終冷延の圧下率に上限があり、し
かも短時間焼鈍で得られる仕上げ焼鈍板の磁束密度も総
じて低いという問題があった。この点、この発明のよう
に、MnSまたはMnSeによる一次粒成長抑制力を弱めつ
つ、ボロンさらにはAl, Tiを微量加えてやれば、高磁束
密度を得やすい80%以上の強圧下と短時間での仕上げ焼
鈍とが同時に可能となることによるものと考えられる。
[0018] However, even when such a material containing AlN as a main inhibitor is subjected to short-time finish annealing at 1050 ° C for 5 minutes, secondary recrystallization cannot often be completed. Also, MnS without AlN or
Secondary recrystallization is likely to occur in a component material using MnSe as an inhibitor, but there is an upper limit on the rolling reduction of final cold rolling, and the magnetic flux density of the finish-annealed sheet obtained by short-time annealing is generally low. Was. In this regard, as in the present invention, while weakening the primary grain growth suppressing power of MnS or MnSe and adding a small amount of boron and also Al and Ti, it is possible to obtain a high magnetic flux density easily under a high pressure of 80% or more. It is considered that finish annealing at the same time becomes possible at the same time.

【0019】以下、この発明において、素材スラブの成
分組成を前記の範囲に限定した理由について説明する。 C:0.02〜0.08wt% Cは、熱間圧延時にα−γ変態を利用して結晶組織の改
善を行うのに有用な元素であるが、0.02wt%未満では良
好な一次再結晶組織が得られず、一方0.08wt%を超える
と脱炭不良となり磁気特性が劣化するので、含有量は0.
02〜0.08wt%の範囲に限定した。
Hereinafter, the reason why the composition of the raw material slab is limited to the above range in the present invention will be described. C: 0.02 to 0.08 wt% C is an element useful for improving the crystal structure by utilizing the α-γ transformation during hot rolling, but if less than 0.02 wt%, a good primary recrystallized structure can be obtained. On the other hand, if the content exceeds 0.08 wt%, the decarburization is poor and the magnetic properties are deteriorated, so the content is 0.
It was limited to the range of 02 to 0.08 wt%.

【0020】Si:2.0 〜4.0 wt% Siは、製品の電気抵抗を高め渦電流損を低減させるのに
有用な成分であるが、2.0 wt%未満では最終仕上げ焼鈍
中にα−γ変態によって結晶方位が損なわれ、一方 4.0
wt%を超えると冷延性に問題が生じるので、含有量は
2.0〜4.0 wt%の範囲に限定した。
Si: 2.0 to 4.0 wt% Si is a component useful for increasing the electric resistance of the product and reducing the eddy current loss. However, if it is less than 2.0 wt%, the crystal is formed by α-γ transformation during the final finish annealing. Orientation lost, while 4.0
If the content exceeds wt%, there will be a problem with cold rolling.
It was limited to the range of 2.0 to 4.0 wt%.

【0021】Mn:0.03〜0.2 wt%、Sおよび/またはS
e:0.005 〜0.020 wt% MnとS,Seとは、それぞれ結合してインヒビターとして
有用なMnS,MnSeを形成する。しかしながら、Mn量が0.
03wt%未満であったり、S,Se量が 0.005wt%未満の場
合には、インヒビター機能が不十分となり、一方Mn量が
0.20wt%を超えたり、S,Se量が 0.020wt%を超える
と、スラブ加熱のために必要とする温度が高くなりすぎ
たり、短時間焼鈍での純化不良による磁性劣化が顕著と
なり、実用的ではなくなるので、Mnは0.03〜0.20wt%、
またSおよび/またはSe:0.005 〜0.020 wt%とした。
Mn: 0.03 to 0.2 wt%, S and / or S
e: 0.005 to 0.020 wt% Mn and S and Se combine to form MnS and MnSe useful as inhibitors. However, the amount of Mn is 0.
If the content is less than 03 wt% or the content of S and Se is less than 0.005 wt%, the inhibitor function becomes insufficient, while the content of Mn decreases.
If the content exceeds 0.20 wt% or the S and Se contents exceed 0.020 wt%, the temperature required for slab heating becomes too high, and magnetic deterioration due to poor purification due to short-time annealing becomes remarkable, making it practical. Mn is 0.03 ~ 0.20wt%,
S and / or Se: 0.005 to 0.020 wt%.

【0022】Sb:0.01〜0.20wt%、Sn:0.02〜0.20wt
%、Mo:0.02〜0.05wt% Sbは、磁束密度の向上に有用な元素であるが、含有量が
0.01wt%未満ではその添加効果に乏しく、一方0.20wt%
を超えると脱炭性が悪くなるので、0.01〜0.20wt%の範
囲に限定した。同様に、Snは、磁束密度の向上に有効に
寄与するが、含有量が0.02wt%未満ではその添加効果に
乏しく、一方0.20wt%を超えるとやはり脱炭性が悪くな
るので、0.02〜0.20wt%の範囲に限定した。Moは、表面
性状および磁気特性の改善に有用な元素であるが。含有
量が0.02wt%に満たないとその添加効果に乏しく、一方
0.05wt%を超えると脱炭性の劣化を招くので、0.02〜0.
05wt%の範囲に限定した。
Sb: 0.01 to 0.20 wt%, Sn: 0.02 to 0.20 wt%
%, Mo: 0.02-0.05wt% Sb is an element useful for improving the magnetic flux density.
If it is less than 0.01 wt%, its effect is poor, while 0.20 wt%
If the ratio exceeds the limit, the decarburization property deteriorates, so the content was limited to the range of 0.01 to 0.20 wt%. Similarly, Sn effectively contributes to the improvement of the magnetic flux density, but when the content is less than 0.02 wt%, the effect of its addition is poor. On the other hand, when the content exceeds 0.20 wt%, the decarburizing property also deteriorates. Limited to the wt% range. Mo is an element useful for improving surface properties and magnetic properties. If the content is less than 0.02 wt%, the effect of the addition is poor.
If the content exceeds 0.05 wt%, the decarburization property is deteriorated.
Limited to the range of 05 wt%.

【0023】ボロン:0.5 〜20 ppm このボロンの添加がこの発明の成分的特徴であり、ボロ
ンを微量添加することによって、最終冷間圧延における
圧下率を強圧下としても良好な2次再結晶を生じさせる
ことができる。しかしながら、ボロン量が 0.5 ppmに満
たないと80%以上の強圧下での2次再結晶完了率が低く
なり、一方 20ppmを超える多量添加は圧延加工性に支障
を来すので、ボロン量は 0.5〜20 ppm(好ましくは2〜
10 ppm)の範囲に限定した。
Boron: 0.5 to 20 ppm The addition of boron is a characteristic feature of the present invention. By adding a small amount of boron, a good secondary recrystallization can be performed even when the rolling reduction in the final cold rolling is increased. Can be caused. However, if the boron content is less than 0.5 ppm, the completion rate of the secondary recrystallization under a high pressure of 80% or more will be low. On the other hand, the addition of a large amount exceeding 20 ppm will impair the rolling workability. ~ 20 ppm (preferably 2 ~
10 ppm).

【0024】以上、必須成分について説明したが、この
発明ではさらにAlおよび/またはTiを含有させることも
できる。ここに、Al,Tiは、Bと同様、最終冷間圧延に
おける圧下率を強圧下としても良好な2次再結晶を生じ
させるために添加するものであるが、含有量が5ppm 未
満ではその添加効果に乏しく、一方 50ppmを超える場合
には、2次再結晶の潜伏期間が長くなりすぎ、短時間仕
上げ焼鈍での2次再結晶完了率が低くなるので、添加す
る場合には5〜50 ppmとする必要がある。
Although the essential components have been described above, the present invention may further contain Al and / or Ti. Here, Al and Ti are added to produce good secondary recrystallization even when the rolling reduction in the final cold rolling is strongly reduced as in the case of B. However, if the content is less than 5 ppm, the addition of Al and Ti is made. The effect is poor, while if it exceeds 50 ppm, the incubation period of secondary recrystallization becomes too long and the completion rate of secondary recrystallization in short-time finish annealing becomes low. It is necessary to

【0025】この発明の方向性けい素鋼板の製造方法に
おいては、通常用いられている製鋼法によって上述した
成分を含有する溶鋼に調製し、かかる溶鋼を連続鋳造法
あるいは造塊−分塊法によってスラブとする。このスラ
ブを加熱後、熱間圧延によって熱延板としたのち、必要
に応じて熱延板焼鈍を行う。ここに、スラブ加熱温度は
1100〜1450℃、また熱延板焼鈍温度は900 〜1150℃程度
が好適である。
In the method for producing a grain-oriented silicon steel sheet according to the present invention, a molten steel containing the above-described components is prepared by a commonly used steelmaking method, and the molten steel is prepared by a continuous casting method or an ingot-bulking method. Slab. After the slab is heated, the slab is hot-rolled to obtain a hot-rolled sheet, and if necessary, hot-rolled sheet annealing is performed. Here, the slab heating temperature is
The temperature of 1100 to 1450 ° C. and the annealing temperature of the hot-rolled sheet are preferably about 900 to 1150 ° C.

【0026】ついで、1回または中間焼鈍を挟む2回以
上の冷間圧延により最終板厚の冷延板とする。この冷間
圧延中、特に最終冷延については、前掲図1にも示した
とおり、製品の高磁束密度化を達成するためには80%以
上の強圧下とする必要がある。なお、かような最終冷延
を 100℃以上の温度で実施することは有利である。とい
うのは、かかる温間圧延により、2次再結晶が安定化
し、ひいては製品の磁束密度も向上するからである。
Next, a cold rolled sheet having a final thickness is formed by cold rolling once or twice or more with intermediate annealing. During this cold rolling, particularly in the final cold rolling, as shown in FIG. 1, it is necessary to reduce the pressure by 80% or more in order to achieve a high magnetic flux density of the product. It is advantageous to carry out such final cold rolling at a temperature of 100 ° C. or higher. This is because such warm rolling stabilizes the secondary recrystallization and thus improves the magnetic flux density of the product.

【0027】ついで、脱炭焼鈍を行った後、 900℃以上
1200℃以下の温度域で3秒以上10分以内の短時間最終仕
上げ焼鈍を施す。ここに、最終仕上げ焼鈍条件を上記の
範囲に限定したのは、焼鈍条件が 900℃未満または3秒
未満では十分な2次再結晶が望めず、一方1200℃超また
は10分超の焼鈍では工業的に成立しにくいからである。
なお、最終仕上げ焼鈍後は、必要に応じて張力コーティ
ングを塗布焼き付け、製品とする。
Then, after decarburizing annealing, 900 ° C. or more
Short-time final annealing for 3 seconds to 10 minutes in a temperature range of 1200 ° C. or less. The reason why the final finish annealing conditions are limited to the above range is that sufficient secondary recrystallization cannot be expected if the annealing conditions are less than 900 ° C or less than 3 seconds, whereas if the annealing temperature exceeds 1200 ° C or more than 10 minutes, industrial This is because it is difficult to be established.
After the final annealing, a tension coating is applied and baked as required to obtain a product.

【0028】[0028]

【実施例】表4に示す成分組成になる含けい素鋼スラブ
を、1400℃で20分加熱後、熱間圧延により板厚:2.3 mm
の熱延板とした。この熱延板に、1000℃, 1分間の熱延
板焼鈍を施した後、種々の最終冷延圧下率および圧延温
度で最終板厚:0.34mmに仕上げた。この時、鋼E〜Hに
ついては、1回目の冷延後の中間焼鈍を 950℃, 1分の
条件で実施した。一方、鋼C,Dについては、中間焼鈍
を施すことなく1回で冷延した。ついで、 840℃, 2分
間の脱炭焼鈍後、1080℃, 3分間の短時間最終仕上げ焼
鈍を施した。かくして得られた製品の2次再結晶完了率
および磁気特性について調べた結果を、表5に示す。
EXAMPLE A silicon-containing steel slab having the composition shown in Table 4 was heated at 1400 ° C. for 20 minutes and then hot-rolled to a thickness of 2.3 mm.
Hot rolled sheet. The hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 1 minute, and then finished to a final sheet thickness: 0.34 mm at various final cold rolling reductions and rolling temperatures. At this time, for the steels E to H, intermediate annealing after the first cold rolling was performed at 950 ° C. for 1 minute. On the other hand, the steels C and D were cold rolled once without performing intermediate annealing. Then, after decarburizing annealing at 840 ° C. for 2 minutes, final finishing annealing was performed at 1080 ° C. for 3 minutes for a short time. Table 5 shows the results of examining the secondary recrystallization completion rate and magnetic properties of the product thus obtained.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】表5から明らかなように、この発明に従い
得られた一方向性けい素鋼板はいずれも、高い2次再結
晶完了率の下で、優れた磁束密度および鉄損値が得られ
ている。
As is clear from Table 5, all of the grain-oriented silicon steel sheets obtained according to the present invention have excellent magnetic flux densities and iron loss values under a high secondary recrystallization completion rate. I have.

【0032】[0032]

【発明の効果】かくして、この発明によれば、短時間の
最終仕上げ焼鈍によって、磁気特性に優れた一方向性け
い素鋼板を安定して得ることができ、製造時間の短縮化
のみならず、製造コストの低減化の面で偉効を奏する。
As described above, according to the present invention, it is possible to stably obtain a unidirectional silicon steel sheet having excellent magnetic properties by final finishing annealing in a short time, and not only to shorten the manufacturing time, It is very effective in reducing manufacturing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ボロン量と最終冷延圧下率が磁束密度に及ぼす
影響を示したグラフである。
FIG. 1 is a graph showing the effect of the amount of boron and the final cold rolling reduction on magnetic flux density.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.02〜0.08wt%、 Si:2.0 〜4.0 wt%、 Mn:0.03〜0.2 wt% を含み、かつ Sb:0.01〜0.20wt%、 Sn:0.02〜0.20wt%および Mo:0.02〜0.05wt% のうちから選んだ少なくとも一種を含有し、残部は実質
的にFeの組成になる含けい素鋼スラブを、熱間圧延し、
ついで必要に応じて熱延板焼鈍を施した後、1回または
中間焼鈍を挟む2回の冷間圧延を施して最終板厚に仕上
げ、ついで脱炭焼鈍後、最終仕上げ焼鈍を施す一連の工
程によって一方向性けい素鋼板を製造するに当たり、
(1) 上記含けい素鋼スラブ中に、SおよびSeのうちから
選んだ1種または2種を0.005〜0.020 wt%と、ボロン
を 0.5〜20 ppm含有させること、(2) 最終冷間圧延の圧
下率を80%以上として最終板厚に仕上げること、(3) 90
0 ℃以上1200℃以下の温度域で3秒以上10分以内の短時
間最終仕上げ焼鈍を施すことを特徴とする一方向性けい
素鋼板の製造方法。
C: 0.02 to 0.08 wt%, Si: 2.0 to 4.0 wt%, Mn: 0.03 to 0.2 wt%, Sb: 0.01 to 0.20 wt%, Sn: 0.02 to 0.20 wt% and Mo: A steel slab containing at least one selected from 0.02 to 0.05 wt%, and the remainder substantially having a Fe composition, is hot-rolled,
Next, a series of steps of performing a hot-rolled sheet annealing as necessary, performing cold rolling once or twice with an intermediate annealing therebetween to finish to a final sheet thickness, and then performing decarburizing annealing and final finishing annealing. In producing unidirectional silicon steel sheet by
(1) The silicon-containing steel slab contains 0.005 to 0.020 wt% of one or two selected from S and Se and 0.5 to 20 ppm of boron. (2) Final cold rolling (3) 90
A method for producing a unidirectional silicon steel sheet, wherein a final finish annealing is performed in a temperature range of 0 ° C. or more and 1200 ° C. or less for 3 seconds to 10 minutes for a short time.
【請求項2】 請求項1において、含けい素鋼スラブ中
にさらに、AlおよびTiのうちから選んだ少なくとも1種
を5〜50 ppm含有させることを特徴とする一方向性けい
素鋼板の製造方法。
2. The production of a grain-oriented silicon steel sheet according to claim 1, wherein the silicon-containing steel slab further contains 5 to 50 ppm of at least one selected from Al and Ti. Method.
【請求項3】 請求項1または2において、最終冷間圧
延を 100℃以上の温間圧延とすることを特徴とする一方
向性けい素鋼板の製造方法。
3. The method for producing a unidirectional silicon steel sheet according to claim 1, wherein the final cold rolling is performed by warm rolling at 100 ° C. or more.
JP9300507A 1997-10-31 1997-10-31 Production of grain oriented silicon steel sheet Withdrawn JPH11131141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9300507A JPH11131141A (en) 1997-10-31 1997-10-31 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9300507A JPH11131141A (en) 1997-10-31 1997-10-31 Production of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH11131141A true JPH11131141A (en) 1999-05-18

Family

ID=17885656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9300507A Withdrawn JPH11131141A (en) 1997-10-31 1997-10-31 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH11131141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138984A (en) * 2020-03-03 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138984A (en) * 2020-03-03 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP7507157B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
US7887645B1 (en) High permeability grain oriented electrical steel
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2019116680A (en) Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof
JP7465975B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP4873770B2 (en) Unidirectional electrical steel sheet
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JPH11131141A (en) Production of grain oriented silicon steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH11172382A (en) Silicon steel sheet excellent in magnetic property, and its production
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPH11124627A (en) Production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104