JPH11130940A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH11130940A
JPH11130940A JP29895097A JP29895097A JPH11130940A JP H11130940 A JPH11130940 A JP H11130940A JP 29895097 A JP29895097 A JP 29895097A JP 29895097 A JP29895097 A JP 29895097A JP H11130940 A JPH11130940 A JP H11130940A
Authority
JP
Japan
Prior art keywords
formula
epoxy resin
resin composition
package
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29895097A
Other languages
Japanese (ja)
Inventor
Akihiro Hirata
明広 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP29895097A priority Critical patent/JPH11130940A/en
Publication of JPH11130940A publication Critical patent/JPH11130940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor sealing composition showing reduced warpage in a ball grid array type package and being excellent reliability of humidity resistance after soldering by mixing as the essential components a triphenylmethane phenolic resin with an epoxy resin derived by glycidyl- etherifying it and specified amounts of an inorganic filler and a cure accelerator. SOLUTION: There are used a phenolic resin represented by formula I (wherein R1 is a halogen or a 1-10C alkyl; and m is 0-2) and an epoxy resin represented by formula II (wherein R2 is a halogen or a 1-10C alkyl; and n is 0-2). The compounding amount of the inorganic filler is 80-90 wt.% based on the total composition. The epoxy resin of formula II is one prepared by glycidyl-etherifying the phenolic resin of formula I. The inorganic filler used is desirably a broken fused silica powder, a spherical silica powder or a mixture thereof. The cure accelerator used may be anything that can accelerate the curing reaction of epoxy groups with phenolic hydroxyl groups.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置、特に
ボールグリッドアレイ型パッケージにおける反りが小さ
く、信頼性、成形作業性等に優れる半導体封止用エポキ
シ樹脂組成物及びこれを用いた半導体装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to an epoxy resin composition for semiconductor encapsulation which has a small warpage in a ball grid array type package and which is excellent in reliability and molding workability, and a semiconductor device using the same. Things.

【0002】[0002]

【従来の技術】従来、トランジスタ、IC、LSI等の
半導体素子は、セラミック或いはプラスチック等により
封止され半導体装置化されているものが主流である。上
記セラミックパッケージは、構成材料そのものが耐熱性
を有し、又、透湿性が小さく中空であるため、耐熱性、
耐湿性に優れた半導体装置である。しかし、構成材料が
プラスチックス等より高価であることと、パッケージの
生産性が劣るという欠点を有している。従って、パッケ
ージの中でもコスト、生産性に優れたプラスチックを用
いた樹脂封止が、一部の特別な信頼性を必要とする高級
品を除いて主流となっている。このような樹脂封止型の
プラスチックパッケージには、従来からエポキシ樹脂組
成物(以下、樹脂組成物という)が使用されているが、
開発当初からの改良、改善等の信頼性向上により、半導
体業界で良好な評価を受けている。しかしながら、半導
体分野での技術革新はとどまるところを知らず、集積度
の向上とともに設計ルールの微細化や素子サイズの大形
化が進み、反面、実装密度向上のため、パッケージサイ
ズの小形化と薄型化が進んでいることから、封止材料に
対して益々信頼性の向上が要求されている。又、パッケ
ージの実装方法も、従来の挿入実装より、更に高い実装
密度が得られる表面実装へ移行していることから、これ
に伴い実装時の半田付け時の熱衝撃による半田クラック
及び、それに伴う耐湿性等の信頼性の低下が問題になっ
ている。
2. Description of the Related Art Conventionally, semiconductor devices such as transistors, ICs, and LSIs are mainly used as semiconductor devices sealed with ceramics or plastics. In the above ceramic package, the constituent material itself has heat resistance, and since the moisture permeability is small and hollow, heat resistance,
The semiconductor device has excellent moisture resistance. However, there are disadvantages that the constituent material is more expensive than plastics and the like, and that the productivity of the package is poor. Therefore, among the packages, resin encapsulation using a plastic having excellent cost and productivity has become mainstream except for some high-end products requiring special reliability. An epoxy resin composition (hereinafter, referred to as a resin composition) has been used for such a resin-encapsulated plastic package.
It has been well received by the semiconductor industry for its improved reliability, including improvements from the beginning of development. However, technological innovation in the semiconductor field is unavoidable, and the integration level is increasing and the design rules are becoming finer and the device size is becoming larger.On the other hand, the package size is becoming smaller and thinner in order to increase the mounting density. , The sealing material is increasingly required to have higher reliability. In addition, since the package mounting method has also shifted to surface mounting, which can obtain a higher mounting density than conventional insertion mounting, solder cracks due to thermal shock during soldering during mounting and accompanying Deterioration of reliability such as moisture resistance has become a problem.

【0003】一方、パッケージの実装密度を更に向上さ
せる方法として、現在主流であるQFP型に代わるパッ
ケージの開発が急がれてきた。前述したように、半導体
の集積度が増すことによりQFP型は更なる多ピン化が
進み、ピン間が益々狭くなり、ピン径が小さくなること
から、回路基板への実装の歩留まりや反りの低減に対す
る要求が益々厳しくなっている。一般的には300ピン
程度が限界であるといわれている。これらの問題を解決
するために、QFP型に代わる新しい型のパッケージと
して、ボールグリッドアレイ(以下、BGAという)型
のパッケージが開発された。BGA型のパッケージと
は、マレイミド・トリアジン樹脂等の基板に半導体素子
を搭載し、基板の素子が搭載されている面のみを有機封
止樹脂で封止するものである。パッケージ外との導通
は、予め基板中に配線を施し、基板表面に配線されたB
GAを通して行われる。従って、ボール間の間隔は、同
じピン数のQFP型のピン間に比べて充分な間隔が得ら
れるため、回路基板への実装時の歩留まりを大幅に向上
させることができる。又、従来、BGA型のパッケージ
には、加工性の容易さから液状樹脂組成物が使用されて
きたが、最近では生産性に優れるトランスファモールド
用の樹脂組成物への移行が進みつつある。
On the other hand, as a method of further improving the packaging density of a package, development of a package that replaces the currently mainstream QFP type has been rushed. As described above, as the integration of semiconductors increases, the number of pins in the QFP type further increases, the distance between pins becomes smaller, and the pin diameter becomes smaller, so that the yield and warpage of mounting on a circuit board are reduced. Demands are increasingly stringent. It is generally said that the limit is about 300 pins. In order to solve these problems, a ball grid array (BGA) type package has been developed as a new type package replacing the QFP type. The BGA type package is one in which a semiconductor element is mounted on a substrate such as a maleimide / triazine resin, and only the surface of the substrate on which the element is mounted is sealed with an organic sealing resin. The continuity with the outside of the package is achieved by arranging wiring in the substrate in advance, and
Performed through GA. Therefore, a sufficient distance between the balls can be obtained as compared with the QFP type pins having the same number of pins, so that the yield at the time of mounting on the circuit board can be greatly improved. Conventionally, a liquid resin composition has been used for a BGA type package because of its easy workability, but recently, a transition to a resin composition for transfer molding which is excellent in productivity has been progressing.

【0004】但し、このBGA型のパッケージにはいく
つかの問題がある。まず、実質的には基板の片面のみを
樹脂組成物で封止するため、樹脂組成物の硬化物と基板
との熱膨張率の差異により、成形、冷却後にパッケージ
の反りが生じ、実装時に支障をきたす。又、樹脂組成物
の硬化物と基板との密着性も重要な要因であり、密着性
が低下すると、半導体装置の使用時に剥離界面からの水
分の浸入により信頼性の低下を招く。更に、多ボールの
BGA型のパッケージは、構造の点からパッケージ内の
金ワイヤーを長く張る必要があり、封止時にワイヤーが
流れ易くなっているため、ワイヤー同士の接触による導
通不良が問題になる。従って、このような問題を解決す
る封止用エポキシ樹脂組成物の開発が望まれている。
However, this BGA type package has several problems. First, since substantially only one side of the substrate is sealed with the resin composition, the difference in thermal expansion coefficient between the cured product of the resin composition and the substrate causes warpage of the package after molding and cooling, which hinders mounting. Cause. Further, the adhesion between the cured product of the resin composition and the substrate is also an important factor, and when the adhesion is reduced, the reliability is reduced due to intrusion of moisture from the peeling interface during use of the semiconductor device. Further, in the case of a multi-ball BGA type package, it is necessary to extend the gold wire in the package from the viewpoint of the structure, and the wire easily flows at the time of sealing. . Therefore, development of a sealing epoxy resin composition that solves such a problem is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、この様な問
題に対して、BGA型のパッケージにおける反りが極め
て小さく、又、封止時のワイヤー流れが少なく、更に半
導体装置の半田処理後の耐湿信頼性を著しく向上させた
半導体封止用エポキシ樹脂組成物を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention solves such a problem by minimizing the warpage of a BGA type package, reducing the flow of wires at the time of sealing, and further improving the reliability of a semiconductor device after soldering. It is an object of the present invention to provide an epoxy resin composition for encapsulating a semiconductor having significantly improved moisture resistance reliability.

【0006】[0006]

【課題を解決するための手段】本発明は、(A)式
(1)で示されるフェノール樹脂、(B)式(2)で示
されるエポキシ樹脂、(C)全樹脂組成物中の配合量が
80〜90重量%である無機充填材、及び(D)硬化促
進剤を必須成分とすることを特徴とする半導体封止用エ
ポキシ樹脂組成物である。
According to the present invention, there are provided (A) a phenolic resin represented by the formula (1), (B) an epoxy resin represented by the formula (2), and (C) a blending amount in the total resin composition. Is an epoxy resin composition for semiconductor encapsulation, wherein the epoxy resin composition contains 80 to 90% by weight of an inorganic filler and (D) a curing accelerator as essential components.

【化3】 (式中のR1は、ハロゲン、炭素数1〜10のアルキル
基の中から選択される同一もしくは異なる原子又は基。
mは0、もしくは1又は2。)
Embedded image (R 1 in the formula is the same or different atom or group selected from halogen and an alkyl group having 1 to 10 carbon atoms.
m is 0, 1 or 2. )

【0007】[0007]

【化4】 (式中のR2は、ハロゲン、炭素数1〜10のアルキル
基の中から選択される同一もしくは異なる原子又は基。
nは0、もしくは1又は2。)
Embedded image (R 2 in the formula is the same or different atoms or groups selected from halogen and alkyl groups having 1 to 10 carbon atoms.
n is 0, 1 or 2. )

【0008】[0008]

【発明の実施の形態】本発明に用いられる式(1)の分
子構造で示されるフェノール樹脂は、トリフェニルメタ
ン型フェノール樹脂で、側鎖部にもフェノール性水酸基
を有することから、エポキシ樹脂の硬化剤として用いた
場合、従来のフェノールノボラック樹脂に比べ、硬化物
に高架橋密度、高ガラス転移温度、非常に小さい硬化収
縮率特性を与える。更に、側鎖にベンゼン環が導入され
ていることから、適度な可撓性と低吸水率化も図ること
ができる。又、従来の多官能フェノール樹脂に比べ、分
子量が小さいため溶融粘度が低く、トランスファー成形
時のワイヤー流れの減少や、基板との密着性の向上に有
効である。又、樹脂の溶融粘度が低いため、樹脂組成物
中に無機充填材を多く配合することができ、BGA型の
基板と同様な低熱膨張化(線膨張係数:1.1〜1.3
×10-5/℃程度)が図られてBGA型のパッケージの
成形後の反りを極めて小さくすることができ、且つ吸水
率を更に低くすることもできる。本発明のフェノール樹
脂を配合した樹脂組成物をBGA型のパッケージに適用
した場合、パッケージの反り量が著しく低減され、更に
基板との密着性、耐半田クラック性が優れている。更
に、式(1)で示されるフェノール樹脂の特性を損なわ
ない範囲で、他のフェノール樹脂を併用することができ
る。併用できる樹脂としては、例えば、フェノールノボ
ラック樹脂、クレゾールノボラック樹脂、ジシクロペン
タジエン変性フェノール樹脂、キシリレン変性フェノー
ル樹脂、テルペン変性フェノール樹脂等が挙げられ、こ
れらは単独でも混合して用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The phenolic resin represented by the molecular structure of the formula (1) used in the present invention is a triphenylmethane-type phenolic resin, which also has a phenolic hydroxyl group in the side chain, so When used as a curing agent, it gives the cured product a high crosslink density, a high glass transition temperature, and a very small cure shrinkage characteristic as compared with conventional phenol novolak resins. Further, since a benzene ring is introduced into the side chain, appropriate flexibility and low water absorption can be achieved. Further, compared with the conventional polyfunctional phenolic resin, the molecular weight is small and the melt viscosity is low, which is effective in reducing the wire flow during transfer molding and improving the adhesion to the substrate. Further, since the melt viscosity of the resin is low, a large amount of the inorganic filler can be blended in the resin composition, and low thermal expansion (linear expansion coefficient: 1.1 to 1.3) similar to a BGA type substrate.
(× 10 −5 / ° C.), so that the warpage of the BGA type package after molding can be extremely reduced, and the water absorption can be further reduced. When the resin composition containing the phenolic resin of the present invention is applied to a BGA type package, the amount of warpage of the package is significantly reduced, and the adhesion to the substrate and the solder crack resistance are excellent. Further, another phenol resin can be used in combination as long as the properties of the phenol resin represented by the formula (1) are not impaired. Examples of the resin that can be used in combination include a phenol novolak resin, a cresol novolak resin, a dicyclopentadiene-modified phenol resin, a xylylene-modified phenol resin, and a terpene-modified phenol resin. These may be used alone or in combination.

【0009】本発明に用いられる式(2)の分子構造で
示されるエポキシ樹脂は、式(1)のフェノール樹脂を
グリシジルエーテル化したものである。式(1)のフェ
ノール樹脂と同様にBGA型のパッケージに適用した場
合、従来のオルソクレゾールノボラック型エポキシ樹脂
に比べ、パッケージの反り量が著しく低減され、更に基
板との密着性、耐半田クラック性が優れている。本発明
は、BGA型のパッケージに最適な硬化物物性を有し、
互いに同じ樹脂骨格構造を有するフェノール樹脂とエポ
キシ樹脂とを組み合わせることにより、均一な硬化物が
得られ、且つ相乗効果としてBGA型のパッケージの反
り量が極めて小さく、半田処理後の耐湿信頼性が得ら
れ、しかも、封止時のワイヤー流れが非常に少ない樹脂
組成物を得ることができる。更に、式(2)で示される
エポキシ樹脂の特性を損なわない範囲で、他のエポキシ
樹脂を併用することができる。併用できる樹脂として
は、例えば、ビスフェノールA型エポキシ樹脂、フェノ
ールノボラック型エポキシ樹脂、クレゾールノボラック
型エポキシ樹脂等が挙げられ、これらは単独でも混合し
て用いてもよい。
The epoxy resin represented by the formula (2) used in the present invention is obtained by glycidyl etherification of the phenol resin of the formula (1). When applied to a BGA type package similarly to the phenolic resin of the formula (1), the amount of warpage of the package is significantly reduced as compared with the conventional orthocresol novolak type epoxy resin, and further, the adhesion to the substrate and the solder crack resistance Is better. The present invention has an optimal cured physical property for a BGA type package,
By combining a phenolic resin and an epoxy resin having the same resin skeleton structure, a uniform cured product can be obtained, and as a synergistic effect, the amount of warpage of the BGA type package is extremely small, and moisture resistance reliability after soldering is obtained. In addition, it is possible to obtain a resin composition having a very small wire flow during sealing. Further, another epoxy resin can be used in combination as long as the properties of the epoxy resin represented by the formula (2) are not impaired. Examples of resins that can be used in combination include bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, and the like, and these may be used alone or in combination.

【0010】本発明で用いる無機充填材としては、一般
的に、溶融シリカ破砕シリカ粉末、或いは、溶射等によ
り球形化した球状シリカ粉末、結晶シリカ粉末、窒化珪
素粉末、窒化アルミ粉末、アルミナ粉末、炭酸カルシウ
ム粉末、凝集シリカ粉末、多孔質シリカ粉末等が挙げら
れ、特に溶融破砕シリカ粉末、球状シリカ粉末、或いは
溶融破砕シリカ粉末と球状シリカ粉末との適当な混合物
を用いるのが好ましい。又、無機充填材の配合量として
は、BGA型のパッケージにおける反りを低減し、耐湿
信頼性を向上させるためには、全樹脂組成物中に80〜
90重量%が好ましい。80重量%未満だと、得られる
硬化物の線膨張率が高くなり、BGA型のパッケージに
用いられる基板の線膨張率との差異を生じ、パッケージ
の反りが大きくなってしまうので好ましくない。又、無
機充填材の配合量が90重量%を越えると、樹脂組成物
の封止時の高粘度化によりパッケージ内の金線ワイヤー
流れ等の不都合が生じるので好ましくない。
As the inorganic filler used in the present invention, generally, crushed silica powder, spherical silica powder formed into a spherical shape by spraying or the like, crystalline silica powder, silicon nitride powder, aluminum nitride powder, alumina powder, Examples thereof include calcium carbonate powder, aggregated silica powder, and porous silica powder. Particularly, it is preferable to use fused silica powder, spherical silica powder, or an appropriate mixture of fused silica powder and spherical silica powder. The amount of the inorganic filler is preferably 80 to 80% in all the resin compositions in order to reduce the warpage in the BGA type package and improve the moisture resistance reliability.
90% by weight is preferred. If it is less than 80% by weight, the obtained cured product has a high linear expansion coefficient, which is different from the linear expansion coefficient of the substrate used for the BGA type package, and the package warpage is undesirably increased. On the other hand, if the amount of the inorganic filler exceeds 90% by weight, the viscosity of the resin composition at the time of encapsulation increases, which causes disadvantages such as the flow of gold wire in the package, which is not preferable.

【0011】本発明で用いる硬化促進剤としては、エポ
キシ基とフェノール性水酸基との硬化反応を促進させる
ものであればよく、一般に封止材料で用いられているも
のを広く用いることができる。例えば、1,8−ジアザ
ビシクロ(5,4,0)ウンデセン−7、トリフェニル
ホスフィン、ジメチルベンジルアミン、2−メチルイミ
ダゾール等が挙げられ、これらは単独でも混合して用い
てもよい。
As the curing accelerator used in the present invention, any one can be used as long as it promotes the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used in sealing materials can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, dimethylbenzylamine, 2-methylimidazole and the like can be mentioned, and these may be used alone or in combination.

【0012】本発明の樹脂組成物は、(A)〜(D)成
分の他、必要に応じてシランカップリング剤、カーボン
ブラック、ベンガラ等の着色剤、各種ワックス等の離型
剤、及びシリコーンオイル、シリコーンゴム、ポリエチ
レンゴム等の低応力化添加剤等を適宜配合しても差し支
えない。又、本発明の樹脂組成物は、(A)〜(D)成
分、及びその他の添加剤等をスーパーミキサー等の混合
機を用いて充分に均一に混合した後、熱ロール、又はニ
ーダー等の溶融混練機で混練し、冷却後粉砕して得られ
る。本発明の樹脂組成物を用いて、半導体等の電子部品
を封止し、半導体装置を製造するには、トランスファー
モールド、コンプレッションモールド、インジェクショ
ンモールド等の成形方法で硬化成形すればよい。
The resin composition of the present invention comprises, in addition to the components (A) to (D), if necessary, a silane coupling agent, a coloring agent such as carbon black and red iron, a releasing agent such as various waxes, and a silicone. Oil, silicone rubber, polyethylene rubber and other low stress additives may be appropriately compounded. Further, the resin composition of the present invention is prepared by sufficiently mixing the components (A) to (D) and other additives using a mixer such as a super mixer, and then mixing the mixture with a hot roll or a kneader. It is obtained by kneading with a melt kneader, cooling and grinding. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor using the resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.

【0013】[0013]

【実施例】以下に本発明の実施例及び比較例を示し、具
体的に説明する。配合単位は重量部とする。 実施例1 下記組成物 式(3)で示されるフェノール樹脂(融点150℃、水
酸基当量141g/eq)7.43重量部
EXAMPLES Examples and comparative examples of the present invention will be shown below to specifically explain the present invention. The mixing unit is parts by weight. Example 1 The following composition 7.43 parts by weight of a phenol resin represented by the formula (3) (melting point: 150 ° C., hydroxyl equivalent: 141 g / eq)

【化5】 Embedded image

【0014】 式(4)で示されるエポキシ樹脂(融点120℃、エポキシ当量197g/e q) 10.57重量部10.57 parts by weight of an epoxy resin represented by the formula (4) (melting point: 120 ° C., epoxy equivalent: 197 g / eq)

【化6】 溶融球状シリカ粉末A(平均粒子径20μm、比表面積2.5m2/g) 74.00重量部 溶融球状シリカ粉末B(平均粒子径0.5μm、比表面積5.7m2/g) 7.00重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.20重量部 カーボンブラック 0.30重量部 カルナバワックス 0.50重量部 を常温でスーパーミキサーを用いて混合し、70〜10
0℃で2軸ロールで混練し、冷却後粉砕して樹脂組成物
を得た。得られた樹脂組成物を以下の方法で評価した。
結果を表1に示す。
Embedded image 74.00 parts by weight of fused spherical silica powder A (average particle diameter 20 μm, specific surface area 2.5 m 2 / g) 7.00 parts by weight of fused spherical silica powder B (average particle diameter 0.5 μm, specific surface area 5.7 m 2 / g) 7.00 Parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.20 parts by weight Carbon black 0.30 parts by weight Carnauba wax 0.50 parts by weight at room temperature using a super mixer Mix, 70-10
The mixture was kneaded with a biaxial roll at 0 ° C., cooled and pulverized to obtain a resin composition. The obtained resin composition was evaluated by the following method.
Table 1 shows the results.

【0015】評価方法 スパイラルフロー:EMMI−I−66に準じた試験用
金型を用い、金型温度175℃、注入圧力70kgf/
cm2、硬化時間120秒でスパイラルフローを測定し
た。単位cm。 BGA型パッケージの作製:低圧トランスファー成形機
を用いて175℃、圧力70kg/cm2、硬化時間1
20秒で、パッケージ反り量、ワイヤー流れ量、耐半田
クラック性、及び半田耐湿性の試験用の357ボールB
GA型のパッケージ(基板はマレイミド・トリアジン樹
脂とガラスクロス、寸法は22.5×22.5×厚さ
0.85mm、以下、BGA型357Bパッケージとい
う)を成形した。 充填性:前記のBGA型357Bパッケージを成形した
際、未充填部分の有無を肉眼で観察した。 パッケージ反り量:前記のBGA型357Bパッケージ
を175℃、4時間でポストモールドキュアした。その
後、表面粗さ計を用いて反り量を測定した。測定箇所は
樹脂組成物で封止された表面で、パッケージの対角線上
を端から端までプローブを走らせた。測定は方向を変え
て2か所測定し、その平均値を求めた。単位μm。 ワイヤー流れ量の測定:前記のBGA型357Bパッケ
ージを軟X線透過装置で測定した。ワイヤー流れ量とし
ては、ワイヤーの長さに対する流れた長さの百分率を計
算して求めた。各パッケージにおける最大のワイヤー流
れ量を、そのパッケージにおけるワイヤー流れ量とし、
各材料で10個のパッケージを観察して、平均値を求め
た。単位%。 耐半田クラック性:前記のBGA型357Bパッケージ
を175℃、4時間でポストモールドキュアした。次
に、85℃、相対湿度60%の恒温恒湿槽中で168時
間吸湿処理を行い、更に、240℃のIRリフロー炉で
熱処理した。得られたパッケージについて、超音波探傷
装置を用いて不良の有無を観察した。パッケージ内部の
界面の剥離、及びクラックを不良とし、総数24個のパ
ッケージに対する不良のパッケージの個数を求め、不良
数/総数で表した。 半田耐湿性試験:前記のBGA型357Bパッケージを
175℃、4時間でポストモールドキュアした。次に、
85℃、相対湿度60%の恒温恒湿槽中で168時間吸
湿処理を行い、更に、240℃のIRリフロー炉で熱処
理した。その後、プレッシャークッカー試験(120
℃、相対湿度100%)を行い、回路のオープン不良を
測定した。総数24個のパッケージに対する不良のパッ
ケージの個数から不良率を求め、不良率50%となった
時間を平均寿命とした。単位は時間。
Evaluation method Spiral flow: using a test mold in accordance with EMMI-I-66, mold temperature 175 ° C., injection pressure 70 kgf /
Spiral flow was measured at cm 2 and a curing time of 120 seconds. Unit cm. Production of BGA type package: Using a low pressure transfer molding machine, 175 ° C., pressure 70 kg / cm 2 , curing time 1
20 seconds, 357 balls B for testing package warpage, wire flow, solder crack resistance, and solder moisture resistance
A GA-type package (substrate is a maleimide / triazine resin and glass cloth, dimensions 22.5 × 22.5 × 0.85 mm in thickness, hereinafter referred to as a BGA-type 357B package) was formed. Fillability: When the BGA type 357B package was molded, the presence or absence of an unfilled portion was visually observed. Package warpage: The BGA type 357B package was post-mold cured at 175 ° C. for 4 hours. Thereafter, the amount of warpage was measured using a surface roughness meter. The measurement location was the surface sealed with the resin composition, and the probe was run on the diagonal line of the package from end to end. The measurement was performed at two locations in different directions, and the average value was obtained. Unit μm. Measurement of wire flow rate: The BGA type 357B package was measured with a soft X-ray transmission apparatus. The wire flow rate was determined by calculating the percentage of the length of the wire with respect to the length of the wire. The maximum wire flow in each package is taken as the wire flow in that package,
Ten packages were observed for each material and averaged. unit%. Solder crack resistance: The BGA type 357B package was post-mold cured at 175 ° C. for 4 hours. Next, a moisture absorption treatment was performed for 168 hours in a thermo-hygrostat at 85 ° C. and a relative humidity of 60%, and a heat treatment was further performed in an IR reflow furnace at 240 ° C. The obtained package was inspected for defects using an ultrasonic flaw detector. The peeling and cracking of the interface inside the package were regarded as defective, and the number of defective packages with respect to a total of 24 packages was determined and expressed as the number of defectives / total. Solder moisture resistance test: The BGA type 357B package was post-mold cured at 175 ° C. for 4 hours. next,
The sample was subjected to a moisture absorption process in a thermo-hygrostat at 85 ° C. and a relative humidity of 60% for 168 hours, and further heat-treated in a 240 ° C. IR reflow furnace. Thereafter, a pressure cooker test (120
℃, relative humidity 100%), and the open failure of the circuit was measured. The defect rate was determined from the number of defective packages for a total of 24 packages, and the time when the defect rate became 50% was defined as the average life. The unit is time.

【0016】実施例2、3 表1の処方に従って配合し、実施例1と同様にして樹脂
組成物を得、実施例1と同様にして評価した。結果を表
1に示す。 比較例1〜4 表1の処方に従って配合し、実施例1と同様にして樹脂
組成物を得、実施例1と同様にして評価した。なお、比
較例3のフェノールノボラック樹脂の軟化点は81℃、
水酸基当量は104g/eq、比較例4のオルソクレゾ
ールノボラック型エポキシ樹脂の軟化点は55℃、エポ
キシ当量は195g/eqである。結果を表2に示す。
Examples 2 and 3 Compounded according to the formulation shown in Table 1, a resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. Comparative Examples 1 to 4 Resins were blended in accordance with the formulation shown in Table 1 to obtain a resin composition in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The softening point of the phenol novolak resin of Comparative Example 3 was 81 ° C.
The hydroxyl equivalent is 104 g / eq, the softening point of the ortho-cresol novolak type epoxy resin of Comparative Example 4 is 55 ° C., and the epoxy equivalent is 195 g / eq. Table 2 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明に従うと、ワイヤー流れが少ない
半導体封止用エポキシ樹脂組成物が得られ、特にボール
グリッドアレイ型のパッケージに適用した場合、パッケ
ージの反りが減少し、且つ半田処理後の耐湿信頼性に優
れる。
According to the present invention, an epoxy resin composition for semiconductor encapsulation with a small wire flow can be obtained. In particular, when the epoxy resin composition is applied to a ball grid array type package, the warpage of the package is reduced, and after the soldering, Excellent moisture resistance reliability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/29 H01L 23/30 R 23/31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)式(1)で示されるフェノール樹
脂、(B)式(2)で示されるエポキシ樹脂、(C)全
樹脂組成物中の配合量が80〜90重量%である無機充
填材、及び(D)硬化促進剤を必須成分とすることを特
徴とする半導体封止用エポキシ樹脂組成物。 【化1】 (式中のR1は、ハロゲン、炭素数1〜10のアルキル
基の中から選択される同一もしくは異なる原子又は基。
mは0、もしくは1又は2。) 【化2】 (式中のR2は、ハロゲン、炭素数1〜10のアルキル
基の中から選択される同一もしくは異なる原子又は基。
nは0、もしくは1又は2。)
(A) a phenolic resin represented by the formula (1), (B) an epoxy resin represented by the formula (2), and (C) a compounding amount in the total resin composition is 80 to 90% by weight. An epoxy resin composition for semiconductor encapsulation, comprising an inorganic filler and (D) a curing accelerator as essential components. Embedded image (R 1 in the formula is the same or different atom or group selected from halogen and an alkyl group having 1 to 10 carbon atoms.
m is 0, 1 or 2. ) (R 2 in the formula is the same or different atoms or groups selected from halogen and alkyl groups having 1 to 10 carbon atoms.
n is 0, 1 or 2. )
【請求項2】 請求項1記載の半導体封止用エポキシ樹
脂組成物を用いて封止してなることを特徴とする半導体
装置。
2. A semiconductor device which is encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
JP29895097A 1997-10-30 1997-10-30 Epoxy resin composition and semiconductor device Pending JPH11130940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29895097A JPH11130940A (en) 1997-10-30 1997-10-30 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29895097A JPH11130940A (en) 1997-10-30 1997-10-30 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JPH11130940A true JPH11130940A (en) 1999-05-18

Family

ID=17866288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29895097A Pending JPH11130940A (en) 1997-10-30 1997-10-30 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JPH11130940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336362A (en) * 2004-05-27 2005-12-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN110184010A (en) * 2019-05-30 2019-08-30 江苏华海诚科新材料股份有限公司 Composition epoxy resin and preparation method thereof suitable for planar salient point type encapsulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336362A (en) * 2004-05-27 2005-12-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN110184010A (en) * 2019-05-30 2019-08-30 江苏华海诚科新材料股份有限公司 Composition epoxy resin and preparation method thereof suitable for planar salient point type encapsulation
CN110184010B (en) * 2019-05-30 2021-12-14 江苏华海诚科新材料股份有限公司 Epoxy resin composition suitable for plane bump type encapsulation and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JPH0597969A (en) Thermosetting resin composition and semiconductor device
JPH11130940A (en) Epoxy resin composition and semiconductor device
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP4770024B2 (en) Epoxy resin composition and semiconductor device
JPH07118366A (en) Epoxy resin composition
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP3080276B2 (en) Resin composition for semiconductor encapsulation
JPH10287726A (en) Epoxy resin composition
JP4560871B2 (en) Epoxy resin composition and semiconductor device
JPH10287727A (en) Epoxy resin composition
JPH1192629A (en) Epoxy resin composition and semiconductor device
JPH11106612A (en) Epoxy resin composition and semiconductor device
JP2000169549A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH10182831A (en) Epoxy resin composition
JP3230772B2 (en) Resin composition for semiconductor encapsulation
JP3230771B2 (en) Resin composition for semiconductor encapsulation
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP2000281748A (en) Epoxy resin composition and semiconductor device
JP2000226497A (en) Epoxy resin composition and semiconductor device
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
JP2985706B2 (en) Epoxy resin composition for sealing and semiconductor device using the same