JPH11130401A - High activation treatment of hydrogen storage alloy - Google Patents

High activation treatment of hydrogen storage alloy

Info

Publication number
JPH11130401A
JPH11130401A JP9296904A JP29690497A JPH11130401A JP H11130401 A JPH11130401 A JP H11130401A JP 9296904 A JP9296904 A JP 9296904A JP 29690497 A JP29690497 A JP 29690497A JP H11130401 A JPH11130401 A JP H11130401A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
hydrogen
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9296904A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ito
一彦 伊東
Shinya Morishita
真也 森下
Shinichi Towata
真一 砥綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9296904A priority Critical patent/JPH11130401A/en
Publication of JPH11130401A publication Critical patent/JPH11130401A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To activate a Zr-Ni Laves phase hydrogen storage alloy so as to enhance the alloy capacity of a hydrogen storage alloy electrode. SOLUTION: A hydrogen storage alloy is hydrogenated by heating in a hot atmosphere of hydrogen and rapidly cooling immediately after the heating and then degassing is carried out by evacuation to highly activate the hydrogen storage alloy. It is preferable that the activated hydrogen storage alloy is heated in a KOH soln. after dipping in a soln. of HF and NH4 F.HF to which an Ni salt is optionally added. Activation frequency in initial activation is considerably reduced and the alloy capacity of a hydrogen storage alloy electrode can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵合金の水素
の吸蔵、放出の反応を促進させるための活性化処理の方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating hydrogen storage alloy to promote the reaction of storing and releasing hydrogen.

【0002】[0002]

【従来の技術】水素吸蔵合金は水素を大量に吸蔵する合
金であり、その吸蔵密度は液体水素以上(1000倍以
上の体積の水素吸蔵が可能)となる。現在では水素貯蔵
用、電池用、ヒートポンプ用等の多くの分野での利用が
検討される材料となっている。また、実際の水素吸蔵合
金の利用に際しては、水素吸蔵合金が水素の吸蔵、放出
を行えるように、水素吸蔵合金を活性化しておく必要が
ある。
2. Description of the Related Art A hydrogen storage alloy is an alloy that stores a large amount of hydrogen, and its storage density is higher than that of liquid hydrogen (it is possible to store hydrogen in a volume of 1000 times or more). At present, it is a material to be considered for use in many fields such as hydrogen storage, batteries, and heat pumps. In actual use of the hydrogen storage alloy, it is necessary to activate the hydrogen storage alloy so that the hydrogen storage alloy can store and release hydrogen.

【0003】従来より、水素吸蔵合金粉末は、不活性ガ
ス雰囲気または真空雰囲気中で溶解し、金型に鋳込んで
鋳造材とした後、900〜1100℃の温度で長時間の
均質化処理を行い、その後、アルゴンガス等の不活性ガ
ス雰囲気中で機械的な破砕または/および水素の吸蔵放
出を所定の粒径が得られるまで繰り返す方法で製造され
ている。
Conventionally, a hydrogen storage alloy powder has been melted in an inert gas atmosphere or a vacuum atmosphere, cast into a mold to form a cast material, and then subjected to a homogenization treatment at 900 to 1100 ° C. for a long time. After that, it is manufactured by a method of repeating mechanical crushing and / or occluding and releasing hydrogen in an inert gas atmosphere such as argon gas until a predetermined particle size is obtained.

【0004】最近では、不活性ガスを用いたガスアトマ
イズ法を採用して、原料を溶解して溶湯をガスアトマイ
ズすることにより、粉末を容易に製造することが試みら
れている。ところが、水素吸蔵合金は、活性な金属元素
を多く含んでいるため、表面が酸化されやすく、形成さ
れた酸化層により水素吸蔵合金の水素化反応が阻害され
てしまう。特に、ガスアトマイズ法により製造された粉
末は、酸化層が厚く形成されるため、水素吸蔵材として
用いる時の初期の水素吸蔵が困難となっていた。
[0004] Recently, it has been attempted to easily produce powder by employing a gas atomization method using an inert gas and dissolving a raw material to gas atomize a molten metal. However, since the hydrogen storage alloy contains a large amount of active metal elements, its surface is easily oxidized, and the hydrogenation reaction of the hydrogen storage alloy is hindered by the formed oxide layer. In particular, the powder produced by the gas atomization method has a thick oxide layer, which makes it difficult to initially store hydrogen when used as a hydrogen storage material.

【0005】従って、これら水素吸蔵合金に水素を吸蔵
させるためには、高温で真空脱気し、高圧水素を導入し
て活性化させる処理を多数回繰り返す初期活性化処理が
必要となり、水素活性化処理は煩雑で高コストとなる問
題があった。そこで、これらの問題を解決するために、
フッ化金属化合物の過飽和水溶液や酸、アルカリ溶液中
に浸漬処理する方法等が提案されている。
Therefore, in order to cause these hydrogen storage alloys to store hydrogen, it is necessary to perform an initial activation process in which vacuum degassing is performed at a high temperature and high pressure hydrogen is introduced and activated many times. There is a problem that processing is complicated and costly. So, in order to solve these problems,
A method of immersing in a supersaturated aqueous solution of a metal fluoride compound, an acid, or an alkali solution has been proposed.

【0006】例えば、特開平5−213601号公報に
は、K3AlF6などのフッ化金属化合物の過飽和水溶液
を薬液として水素吸蔵合金を処理すると表面または表層
部を高活性化することが開示されている。これにより、
水素吸蔵合金を容易に活性化することができ、従来のよ
うな高温高真空脱気や高温高圧での多数回の活性化処理
を大幅に緩和することができるとしている。また、活性
化された合金を大気中で安定化でき、取り扱いやすい処
理法を提供できるとしている。
For example, Japanese Patent Application Laid-Open No. Hei 5-213601 discloses that when a hydrogen storage alloy is treated with a supersaturated aqueous solution of a metal fluoride compound such as K 3 AlF 6 as a chemical solution, the surface or the surface layer is highly activated. ing. This allows
It is stated that the hydrogen storage alloy can be easily activated, and the conventional high-temperature, high-vacuum degassing and high-temperature, high-pressure activation processes can be greatly eased. It also states that the activated alloy can be stabilized in the atmosphere and can provide a treatment method that is easy to handle.

【0007】特開平5−225975号公報には、水素
吸蔵合金を塩酸処理することで、表面に形成した酸化皮
膜が除去された水素吸蔵合金電極が得られることが開示
してある。この水素吸蔵合金電極を負極とした電池の初
期活性化に際し、初回放電量が増加し、初期活性化に要
する充放電サイクルが減少するとしている。また、特開
平5−135765号公報には、Zr−Ni系で一般式
がABα(α=1.5〜2.5)で表され、合金層が実
質的に金属間化合物のLaves相に属し、その結晶構
造が六方晶のC14型または(および)立方晶のC15
型である水素吸蔵合金粉末を結着剤とともに電極とした
後、100〜120℃のアルカリ溶液に浸漬する方法が
開示されている。これにより、水素吸蔵合金電極の初期
活性を向上させ、利用率、寿命も向上させることができ
るとしている。
JP-A-5-225975 discloses that a hydrogen storage alloy electrode from which an oxide film formed on the surface has been removed can be obtained by treating the hydrogen storage alloy with hydrochloric acid. At the time of initial activation of a battery using this hydrogen storage alloy electrode as a negative electrode, the initial discharge amount increases, and the charge / discharge cycle required for the initial activation decreases. In Japanese Patent Application Laid-Open No. 5-135765, a Zr-Ni-based general formula is represented by ABα (α = 1.5 to 2.5), and the alloy layer substantially belongs to the Laves phase of the intermetallic compound. The crystal structure of which is hexagonal C14 type or (and / or) cubic C15
A method is disclosed in which a hydrogen storage alloy powder, which is a mold, is used as an electrode together with a binder, and then immersed in an alkaline solution at 100 to 120 ° C. According to the document, the initial activity of the hydrogen storage alloy electrode can be improved, and the utilization factor and life can be improved.

【0008】しかし、これら公報の技術をZr−Ni系
のAB2型水素吸蔵合金に適用しても、Zr−Ni系水
素吸蔵合金表面に形成された酸化ジルコニウムはフッ化
水素酸を除く酸水溶液、アルカリ、塩、全有機溶媒に不
溶であるため、特開平5−213601号公報のフッ化
金属化合物での処理、特開平5−225975号公報で
の塩酸処理では、水素吸蔵合金表面の酸化物層は除去で
きない。また、酸化物層である酸化ジルコニウム皮膜は
水素透過能に乏しいため、初期の活性化が完了するまで
には、水素の吸蔵、放出を多数回繰り返す必要があると
いう問題を有している。
However, the acid aqueous solution excluding the these publications techniques be applied to the Zr-Ni-based AB 2 type hydrogen storage alloy, zirconium oxide formed on the Zr-Ni-based hydrogen storage alloy surface hydrofluoric acid , Alkalis, salts and insoluble in all organic solvents, the treatment with a metal fluoride compound described in JP-A-5-213601 and the treatment with hydrochloric acid described in JP-A-5-225975 disclose oxides on the surface of the hydrogen storage alloy. The layer cannot be removed. In addition, since the zirconium oxide film, which is an oxide layer, has poor hydrogen permeability, there is a problem that it is necessary to repeatedly store and release hydrogen many times before the initial activation is completed.

【0009】また、特開平5−135765号公報で
は、100〜120℃もの高い処理温度で、しかも0.
5〜5時間もの長い処理時間が必要とされ、処理に時間
とコストがかかるという問題を有していた。このため、
特開平8−291391号公報にはZr−Ni系Lav
es相水素吸蔵合金において、特殊な化学処理により水
素吸蔵合金の表面に形成される酸化物などの表面活性阻
害物質を除去するとともに、該水素吸蔵合金表面を所定
の適切な表面状態(構造)とすることで高活性な合金表
面が得られ、初期活性化が向上することが開示されてい
る。
In Japanese Patent Application Laid-Open No. 5-135765, a processing temperature as high as 100 to 120 ° C.
A long processing time of 5 to 5 hours is required, and there is a problem that the processing takes time and costs. For this reason,
JP-A-8-291391 discloses a Zr-Ni Lav.
In the es-phase hydrogen storage alloy, a surface treatment inhibitor such as an oxide formed on the surface of the hydrogen storage alloy by a special chemical treatment is removed, and the surface of the hydrogen storage alloy has a predetermined appropriate surface state (structure). It is disclosed that by doing so, a highly active alloy surface is obtained and the initial activation is improved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記特
開平8−291391号公報の活性化処理を施した水素
吸蔵合金を水素吸蔵合金電池の負極として用いたとき
の、単位合金量あたりの放電容量を示す合金容量は低か
った。このため、Zr−Ni系Laves相水素吸蔵合
金において、水素吸蔵合金電極の合金容量を向上させる
ための活性化処理の方法を提供することを課題とする。
However, the discharge capacity per unit alloy amount when the activated hydrogen storage alloy described in JP-A-8-291391 is used as a negative electrode of a hydrogen storage alloy battery is disclosed. The indicated alloy capacity was low. Therefore, it is an object of the present invention to provide a method of activating the Zr—Ni Laves phase hydrogen storage alloy to improve the alloy capacity of the hydrogen storage alloy electrode.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、電極表面および内部での水素の拡散を容易にする
と、水素の吸蔵、放出が容易となり、電極での充放電特
性が向上することを見出した。すなわち、本発明では水
素吸蔵合金を高温水素雰囲気中で加熱し、加熱終了後た
だちに急速冷却する水素処理の後に、減圧することで脱
ガス処理を行う高活性化処理とした。
In order to solve the above-mentioned problems, if hydrogen is easily diffused on the surface and inside of the electrode, the absorption and release of hydrogen are facilitated, and the charge and discharge characteristics of the electrode are improved. Was found. That is, in the present invention, the hydrogen storage alloy is heated in a high-temperature hydrogen atmosphere, followed by a hydrogen treatment for rapidly cooling immediately after the completion of the heating, and then a high-activation treatment for degassing by reducing the pressure.

【0012】また、前記活性化処理の後に、HFおよび
NH4F・HF溶液またはNi塩を加えたHFおよびN
4F・HF溶液で前記水素吸蔵合金を浸漬する処理、
または/さらにKOH溶液中で加熱処理する高活性化処
理とした。
After the activation treatment, HF and NH 4 F · HF solution or HF and N
A process of immersing the hydrogen storage alloy in an H 4 F · HF solution;
And / or a high activation treatment in which a heating treatment is further performed in a KOH solution.

【0013】[0013]

【発明の実施の形態】本発明に用いられる水素吸蔵合金
として、Zr−Niをベースとした一般式がABα(α
=1.5〜2.5)で表される金属間化合物のLave
s相である水素吸蔵合金が好適である。この合金は、結
晶構造が六方晶のC14型または、立方晶のC15型の
水素吸蔵合金である。この合金は従来の電極等に用いら
れている希土類系AB5型水素吸蔵合金に比べて電気容
量が格段に大きい特徴を有するが、表面状態の問題から
活性化が容易ではないと考えられており、本発明の適用
の効果が極めて大きい。ABα(α=1.5〜2.5)
型水素吸蔵合金としては(Zr−Ti)(V−Ni−M
n−Fe)2.1、Zr(V−Ni−Mn−Cr)2 .1
(Zr−Ti)(V−Ni−Mn−Cr)2.1などが好
適である。
BEST MODE FOR CARRYING OUT THE INVENTION As a hydrogen storage alloy used in the present invention, a general formula based on Zr-Ni is represented by ABα (α
= 1.5-2.5)
An s-phase hydrogen storage alloy is preferred. This alloy is a C14 type hexagonal hydrogen storage alloy or a cubic C15 type hydrogen storage alloy. This alloy has a feature that the electric capacity is much larger than that of the rare earth AB 5 type hydrogen storage alloy used for conventional electrodes and the like, but it is considered that activation is not easy due to the surface condition. The effect of the application of the present invention is extremely large. ABα (α = 1.5-2.5)
Type hydrogen storage alloy is (Zr-Ti) (V-Ni-M
n-Fe) 2.1, Zr ( V-Ni-Mn-Cr) 2 .1,
(Zr-Ti) (V-Ni-Mn-Cr) 2.1 and the like are preferable.

【0014】本発明の高活性化処理は、前記水素吸蔵合
金を高温水素雰囲気中で加熱した後に、ただちに急速冷
却することで高活性化させる水素処理が行われた後、減
圧することで脱ガスが行われる。前記水素処理の高温水
素雰囲気は、0.05〜2MPaの水素ガス雰囲気で2
50〜1000℃の加熱温度で30分以上加熱した後、
100℃以下に急速冷却することが好ましい。なお、急
速冷却の速度は10〜50℃/secとするのが好まし
い。
In the high activation treatment of the present invention, the hydrogen storage alloy is heated in a high-temperature hydrogen atmosphere, and then rapidly cooled to perform a hydrogen treatment for high activation. Is performed. The high-temperature hydrogen atmosphere for the hydrogen treatment is a hydrogen gas atmosphere of 0.05 to 2 MPa.
After heating at a heating temperature of 50 to 1000 ° C. for 30 minutes or more,
It is preferable to rapidly cool to 100 ° C. or less. The rapid cooling rate is preferably set to 10 to 50 ° C./sec.

【0015】前記水素処理の高温水素雰囲気での水素ガ
ス圧力は0.05〜2MPaであり、好ましくは0.1
〜1MPaの範囲が好適である。これは、特殊な高圧容
器を必要とすることなく水素ガス雰囲気が維持できる加
熱炉を用いることで容易に処理できるからである。水素
吸蔵合金粉末を反応容器に入れて水素ガスを充填し、該
反応容器を昇温した結果、250℃以上で水素ガスと水
素吸蔵合金粉末との反応が生じることがわかった。この
結果から、水素処理の加熱温度を250〜1000℃の
範囲とすることができる。加熱温度が250℃より低く
なると水素吸蔵合金中から水素が放出されやすくなるた
め水素処理が不十分となり、また加熱温度が1000℃
より高くなると水素吸蔵合金に相分離が生じやすくなる
ため、不均質化しやすくなり、水素吸蔵量が低い合金相
が形成されることになる。さらに、加熱時間が30分未
満では活性化が不十分であるため、水素を吸蔵させるた
めに30分以上が好ましい。なお、最適な加熱時間につ
いては合金組成により異なる。
The hydrogen gas pressure in the high-temperature hydrogen atmosphere for the hydrogen treatment is 0.05 to 2 MPa, preferably 0.1 to 2 MPa.
The range of 11 MPa is preferable. This is because the treatment can be easily performed by using a heating furnace capable of maintaining a hydrogen gas atmosphere without requiring a special high-pressure vessel. The hydrogen storage alloy powder was placed in a reaction vessel, filled with hydrogen gas, and the reaction vessel was heated. As a result, it was found that the reaction between the hydrogen gas and the hydrogen storage alloy powder occurred at 250 ° C. or higher. From this result, the heating temperature of the hydrogen treatment can be set in the range of 250 to 1000 ° C. When the heating temperature is lower than 250 ° C., hydrogen is easily released from the hydrogen storage alloy, so that the hydrogen treatment becomes insufficient.
If the height is higher, phase separation easily occurs in the hydrogen storage alloy, so that the alloy becomes easy to be heterogeneous, and an alloy phase having a low hydrogen storage amount is formed. Further, if the heating time is less than 30 minutes, the activation is insufficient. Therefore, the heating time is preferably 30 minutes or more to absorb hydrogen. The optimum heating time differs depending on the alloy composition.

【0016】そして、前記加熱終了後ただちに100℃
以下にまで急速冷却される。前記急速冷却された水素吸
蔵合金粉末を真空に減圧しながら、該反応容器を加熱し
た結果、加熱温度が300℃を超えると該水素吸蔵合金
から放出された水素が該水素吸蔵合金に吸収されること
がわかった。また、反応温度が60℃未満では該水素吸
蔵合金からの水素の放出の速度が低下することもわかっ
た。このため、前記脱ガスは、60〜300℃で真空に
減圧して行われる。さらに好ましい温度範囲は60〜2
50℃である。
[0016] Immediately after the completion of the heating, 100 ° C
Rapid cooling to below. As a result of heating the reaction vessel while depressurizing the rapidly cooled hydrogen storage alloy powder to a vacuum, when the heating temperature exceeds 300 ° C., hydrogen released from the hydrogen storage alloy is absorbed by the hydrogen storage alloy. I understand. It was also found that when the reaction temperature was lower than 60 ° C., the rate of release of hydrogen from the hydrogen storage alloy was reduced. For this reason, the degassing is performed by reducing the pressure to a vacuum at 60 to 300 ° C. A more preferred temperature range is 60-2.
50 ° C.

【0017】前記活性化処理に続いて水素吸蔵合金の表
面活性を阻害する酸化物層の除去処理、または/および
触媒作用物質(Ni、Pd等)を被覆することで表面活
性を付与する表面処理を行うこともできる。前記酸化物
層除去処理はHFおよびNH4F・HF溶液またはNi
塩を加えたHFおよびNH4F・HF溶液で水素吸蔵合
金を浸漬する処理、または/さらにKOH溶液中で加熱
処理することによりなされる。
[0017] Subsequent to the activation treatment, a treatment for removing an oxide layer that inhibits the surface activity of the hydrogen storage alloy, and / or a surface treatment for imparting surface activity by coating a catalytic substance (Ni, Pd, etc.). Can also be performed. The oxide layer removal treatment is performed by using HF and NH 4 F.HF solution or Ni
The treatment is performed by immersing the hydrogen storage alloy in an HF and NH 4 F · HF solution to which a salt has been added, or by further performing a heat treatment in a KOH solution.

【0018】前記酸化物層除去処理の処理液には、Zr
−Ni系水素吸蔵合金表面に形成された酸化ジルコニウ
ムはフッ化水素酸を除く酸水溶液、アルカリ、塩、全有
機溶媒に不溶であるため、HFおよびNH4F・HF溶
液が用いられる。また、HFおよびNH4F・HF溶液
を用いた場合には、合金元素中のNiは他の元素に比べ
て溶液中への溶出が非常に少ないため、水素化反応での
触媒となるNiが表層部に濃縮され、Niリッチ層を短
時間で形成することができるので好ましい。
The treatment liquid for the oxide layer removal treatment includes Zr
Zirconium oxide formed on -Ni-based hydrogen storage alloy surface acid solution except hydrofluoric acid, alkali, salt, since it is insoluble in all organic solvents, HF and NH 4 F · HF solution is used. In addition, when HF and NH 4 F.HF solutions are used, Ni in the alloying element is much less eluted into the solution than other elements, so that Ni serving as a catalyst in the hydrogenation reaction is reduced. It is preferable because it is concentrated in the surface layer and a Ni-rich layer can be formed in a short time.

【0019】前記HFおよびNH4F・HF溶液の濃
度、処理時間、処理にあたっての他の好適な構成につい
ては水素吸蔵合金に接触させることにより得られる表面
活性部の表面状態(構造)にあわせて、適宜決定され
る。なお、溶液の濃度は0.5wt%以上の濃度が好ま
しく、さらに1〜5wt%がより好ましいが、処理する
合金組成、処理する粉末量や粒径、処理時間により適宜
変更することができる。処理時間は、溶液の濃度、処理
する合金粉末量により変化するが5〜30分が好まし
い。処理時間は室温〜120℃の温度範囲が好ましく、
さらに好ましくは25〜35℃の範囲である。処理溶液
と合金粉末の比は1wt%の濃度の溶液20mlに対し
て合金粉末を5〜10g程度が好ましい。
Concentrations of the HF and NH 4 F.HF solutions, treatment time, and other suitable constitutions for the treatment are adjusted according to the surface state (structure) of the surface active portion obtained by contact with the hydrogen storage alloy. Is appropriately determined. The concentration of the solution is preferably 0.5 wt% or more, more preferably 1 to 5 wt%, but can be appropriately changed depending on the composition of the alloy to be processed, the amount and particle size of the powder to be processed, and the processing time. The treatment time varies depending on the concentration of the solution and the amount of the alloy powder to be treated, but is preferably 5 to 30 minutes. The processing time is preferably in the temperature range of room temperature to 120 ° C,
More preferably, it is in the range of 25 to 35 ° C. The ratio of the processing solution to the alloy powder is preferably about 5 to 10 g of the alloy powder per 20 ml of a 1 wt% solution.

【0020】また、前記HFおよびNH4F・HF溶液
に、Ni塩を添加しておくと、該溶液中ではNi塩はN
iイオンとなって存在する。溶解した合金成分イオンよ
りイオン傾向の小さいイオンであるNiイオンが存在す
るため、合金成分が溶解すると同時に該Niイオンが水
素吸蔵合金表面に析出することで、Niリッチ層を形成
する。
If a Ni salt is added to the HF and NH 4 F.HF solution, the Ni salt is N
It exists as i-ion. Since Ni ions, which are ions having a smaller ion tendency than the dissolved alloy component ions, are present, the Ni components are dissolved and, at the same time, the Ni ions precipitate on the surface of the hydrogen storage alloy, thereby forming a Ni-rich layer.

【0021】前記Ni塩は、NiCl2として導入でき
る。添加量はNiイオン換算で0.1〜0.5mol/
lが好ましい。添加量が0.1mol/lより低いと合
金表面へのNiイオンを析出させる効果がほとんどなく
なり、0.5mol/lを超える添加量では水素吸蔵合
金の活性化効果にあまり寄与しない上に、水素吸蔵合金
の重量を増加させてしまい、合金の特性が相対的に低下
するようになる。
The Ni salt can be introduced as NiCl 2 . The addition amount is 0.1 to 0.5 mol / in terms of Ni ion.
l is preferred. If the addition amount is less than 0.1 mol / l, the effect of precipitating Ni ions on the alloy surface is almost negligible. If the addition amount exceeds 0.5 mol / l, it does not contribute much to the activation effect of the hydrogen storage alloy, The weight of the occlusion alloy is increased, and the properties of the alloy are relatively deteriorated.

【0022】前記KOH溶液での加熱処理は、濃度が3
0〜32wt%、処理温度が80〜120℃、処理時間
が1〜30時間が好適である。
The heat treatment with the KOH solution has a concentration of 3
It is preferable that the processing temperature is 80 to 120 ° C. and the processing time is 1 to 30 hours.

【0023】[0023]

【実施例】【Example】

(実施例1)水素吸蔵合金としてはZr−Ni系をベー
スにしたLaves相水素吸蔵合金(Zr−Ti)(V
−Ni−Mn−Cr)2.1を用い、該合金を真空溶解、
またはプラズマボタン溶解法によって作製し、その後粉
砕を行って水素吸蔵合金粉末を作製した。
(Example 1) As a hydrogen storage alloy, a Laves phase hydrogen storage alloy (Zr-Ti) (V
-Ni-Mn-Cr) 2.1 , the alloy was vacuum melted,
Alternatively, it was produced by a plasma button melting method, and then pulverized to produce a hydrogen storage alloy powder.

【0024】上記水素吸蔵合金粉末を表1の加熱、脱ガ
ス条件で活性化処理した試料1〜3を作製した。また、
加熱、脱ガスの行われない比較例1も作製した。水素吸
蔵合金粉末の初期活性化処理は、水素吸蔵合金粉末(粒
径:75μm以下)を反応容器に充填し、100℃で加
熱しながら30分間真空脱気後、1.5MPaの水素を
導入して該雰囲気に30〜60分暴露する操作を1サイ
クルとし、この操作を繰り返し、水素吸蔵量が一定にな
るまで繰り返すことで行われた。なお、前記の繰り返し
の操作において、水素が吸蔵され始めたことが確認され
た場合には、次サイクル以降は真空脱気後反応容器温度
を0℃に下げてから水素導入が行われた。
Samples 1 to 3 were prepared by activating the above hydrogen storage alloy powder under heating and degassing conditions shown in Table 1. Also,
Comparative Example 1 in which heating and degassing were not performed was also manufactured. In the initial activation treatment of the hydrogen storage alloy powder, a hydrogen storage alloy powder (particle size: 75 μm or less) is charged into a reaction vessel, and while being heated at 100 ° C. under vacuum for 30 minutes, 1.5 MPa of hydrogen is introduced. The operation of exposing to the atmosphere for 30 to 60 minutes was defined as one cycle, and this operation was repeated until the hydrogen storage amount became constant. In addition, in the above-mentioned repetition operation, when it was confirmed that hydrogen had begun to be absorbed, after the next cycle, the temperature of the reaction vessel was lowered to 0 ° C. after vacuum deaeration, and then hydrogen was introduced.

【0025】作製した試料1〜3および比較例1に気相
−固相反応系における初期活性化を施した時の最大水素
吸蔵量の90%に達するまでの初期活性化の回数を測定
し、表1にあわせて示した。なお、試料1〜3および比
較例1は合金表面の酸化物層除去処理を施されてはいな
い試料である。
The number of times of initial activation until reaching 90% of the maximum hydrogen storage amount when initial activation in the gas-solid reaction system was performed on the prepared Samples 1 to 3 and Comparative Example 1 was measured. The results are shown in Table 1. Samples 1 to 3 and Comparative Example 1 are samples that have not been subjected to an oxide layer removal treatment on the alloy surface.

【0026】[0026]

【表1】 [Table 1]

【0027】表1より、本発明の活性化処理を施した試
料1〜3は処理をしていない比較例1に比べて、最大水
素吸蔵量の90%に達するまでの初期活性化の操作が少
なくなり、加熱条件が800℃、1hの試料2は比較例
1の半分となっている。 (実施例2)実施例1と同様に溶解・粉砕して作製した
水素吸蔵合金粉末を表2の加熱、脱ガス条件で活性化処
理し、その後酸化物層除去処理を施した試料4〜6を作
製した。酸化物層除去処理は、2.7%NiCl2を加
えた1%NH4F・HF溶液20mlに合金粉末5gを
入れ、室温で5分間処理した後に、水洗して真空乾燥す
る処理である。また、加熱、脱ガスの行われない水素吸
蔵合金の比較例2も作製した。
From Table 1, it can be seen that Samples 1 to 3 which had been subjected to the activation treatment of the present invention were subjected to an initial activation operation until reaching 90% of the maximum hydrogen storage amount as compared with Comparative Example 1 which had not been subjected to the treatment. Sample 2 under the heating condition of 800 ° C. for 1 hour is half of Comparative Example 1. (Example 2) Samples 4 to 6 in which a hydrogen storage alloy powder produced by melting and pulverizing in the same manner as in Example 1 was activated under heating and degassing conditions shown in Table 2 and then subjected to an oxide layer removal treatment. Was prepared. The oxide layer removal treatment is a treatment in which 5 g of the alloy powder is placed in 20 ml of a 1% NH 4 F · HF solution containing 2.7% NiCl 2 , treated at room temperature for 5 minutes, washed with water, and vacuum-dried. Further, Comparative Example 2 of a hydrogen storage alloy in which heating and degassing were not performed was also manufactured.

【0028】作製した試料4〜6および比較例2の試料
を用いて、後で説明する水素吸蔵合金電池を構成した。
そして、後で説明する活性化を施した後に電池の放電容
量を測定し、負極の水素吸蔵合金量で除した単位合金量
あたりの放電容量である合金容量を測定し、表2にあわ
せて示した。また、放電条件を0.044Cおよび0.
2Cで放電したときの合金容量も併せて示した。
Using the prepared samples 4 to 6 and the sample of Comparative Example 2, a hydrogen storage alloy battery described later was constructed.
After the activation described later, the discharge capacity of the battery was measured, and the alloy capacity, which is the discharge capacity per unit alloy amount divided by the amount of the hydrogen storage alloy of the negative electrode, was measured. Was. The discharge conditions were 0.044C and 0.
The alloy capacity when discharged at 2C is also shown.

【0029】水素吸蔵合金電池は、30×40mmの発
泡ニッケル集電体に酸化物除去処理を施した試料粉末と
2wt%メチルセルロース溶液を77:23の割合で混
練してペーストを充填し乾燥させた負極と、発泡Ni集
電体に水酸化ニッケルを充填した正極と、セパレータ
と、5N KOH+1N LiOHよりなる電解液とか
らなり、二枚の正極でセパレータを介して負極を挟み、
アクリル板で両側から締め付けた開放型電池である。
The hydrogen storage alloy battery was prepared by kneading a sample powder obtained by subjecting a 30 × 40 mm foamed nickel current collector to an oxide removing treatment and a 2 wt% methyl cellulose solution in a ratio of 77:23, filling a paste, and drying the paste. A negative electrode, a positive electrode filled with nickel hydroxide in a foamed Ni current collector, a separator, and an electrolytic solution composed of 5N KOH + 1N LiOH, sandwiching the negative electrode with the separator between the two positive electrodes,
This is an open battery that is fastened from both sides with an acrylic plate.

【0030】水素吸蔵合金電池の活性化の方法は、0.
044Cで120%充電(電流17mAh/gで27.
3h充電)した後に30分休止し、その後0.044C
で0.8Vまで放電する操作を1サイクルとして、この
操作を3回繰り返す方法が用いられた。合金容量の測定
は、電極が活性化された水素吸蔵合金電池を0.2Cで
120%充電(電流78mAh/gで6h充電)した後
に30分休止し、その後0.2Cで0.8Vまで放電す
るサイクル条件で行われ、測定された放電容量を負極の
水素吸蔵合金量で除し、合金容量を求めた。
The method for activating the hydrogen storage alloy battery is as follows.
1204 charge at 044 C (27 mAh at 17 mAh / g current).
After charging for 3 hours), pause for 30 minutes, then 0.044C
And the operation of discharging to 0.8 V was defined as one cycle, and this operation was repeated three times. The alloy capacity was measured by charging the hydrogen storage alloy battery with activated electrodes at 120% at 0.2C (charging for 6h at a current of 78mAh / g), resting for 30 minutes, and then discharging at 0.2C to 0.8V. The discharge capacity was measured under the following cycle conditions, and the measured discharge capacity was divided by the amount of the hydrogen storage alloy of the negative electrode to determine the alloy capacity.

【0031】なお、上記活性化における電極評価の単位
(C)は、1時間で合金電池をフルに充電したときが
1.0Cとなる単位であり、0.2Cは合金電池を5時
間かけて充電した時の単位である。
The unit (C) of the electrode evaluation in the above activation is a unit that becomes 1.0 C when the alloy battery is fully charged in one hour, and the unit of 0.2 C is that the alloy battery is charged for 5 hours. Unit when charged.

【0032】[0032]

【表2】 [Table 2]

【0033】表2の本発明の活性化処理を施した試料4
〜6において、加熱温度が800℃の試料5が比較例2
を上回っているが、試料4および試料6は比較例2より
合金容量が低くなっている。このため、本発明の活性化
条件において、加熱時間が1hの場合は加熱温度には、
800℃が好ましい。 (実施例3)実施例1と同様に溶解・粉砕して作製した
水素吸蔵合金粉末を表3に示される加熱、脱ガス条件で
活性化処理した試料7〜9および比較例3を作製し、上
記酸化物層除去処理を施し、実施例2と同様な水素吸蔵
合金電池を用いて合金容量を測定した。
Sample 4 of Table 2 having undergone the activation treatment of the present invention
In Comparative Examples 2 to 6, Sample 5 having a heating temperature of 800 ° C. was Comparative Example 2.
However, Sample 4 and Sample 6 have lower alloy capacities than Comparative Example 2. Therefore, under the activation conditions of the present invention, when the heating time is 1 hour, the heating temperature is
800 ° C. is preferred. (Example 3) Samples 7 to 9 and Comparative Example 3 were prepared by activating the hydrogen-absorbing alloy powder produced by melting and pulverizing in the same manner as in Example 1 under heating and degassing conditions shown in Table 3. The oxide layer removal treatment was performed, and the alloy capacity was measured using the same hydrogen storage alloy battery as in Example 2.

【0034】[0034]

【表3】 試料5、7〜9と比較例2の試料の合金容量を調べるこ
とで本発明活性化処理の水素中加熱時間が合金容量に及
ぼす影響を調べた。水素中加熱時間の変化にともなう合
金容量の変化を図1に示す。なお、用いられた試料5、
7〜9は、表2および3からわかるように、活性化処理
条件のうち加熱時間が異なるだけでその他の加熱温度
(800℃)および脱ガス条件(250℃、30mi
n)は同一の条件で活性化処理された試料である。ま
た、比較例2の試料は、活性化処理が施されていない試
料である。
[Table 3] By examining the alloy capacities of the samples 5, 7 to 9 and the sample of Comparative Example 2, the influence of the heating time in hydrogen of the activation treatment of the present invention on the alloy capacities was examined. FIG. 1 shows a change in the alloy capacity with a change in the heating time in hydrogen. The sample 5, used,
7 to 9 are, as can be seen from Tables 2 and 3, other heating temperatures (800 ° C.) and degassing conditions (250 ° C., 30 mi) except for the activation time among the activation treatment conditions.
n) is a sample activated under the same conditions. The sample of Comparative Example 2 is a sample that has not been activated.

【0035】図1の線図に示されるように、本発明の活
性化処理における加熱温度が800℃の場合では、放電
条件によらず本発明活性化処理試料は加熱時間がおよそ
2時間で合金容量が最大となっている。また、0.2C
の放電条件では加熱時間30分の試料7は比較例2より
合金容量が低くなっている。また、試料8および比較例
3の充放電回数と合金容量の関係を求めることで本発明
の活性化処理における脱ガス方法が合金容量に及ぼす影
響を調べ、合金容量の測定結果を図2に示した。なお、
用いられた試料8および比較例3は、表3より活性化処
理条件のうち脱ガス温度が異なるだけでその他の加熱条
件(800℃、2h)および脱ガス時間(30min)
は同一の条件で活性化処理された試料である。
As shown in the diagram of FIG. 1, when the heating temperature in the activation treatment of the present invention is 800 ° C., the activation treatment sample of the present invention has a heating time of about 2 hours regardless of the discharge conditions. The capacity is at its maximum. In addition, 0.2C
Under the discharge conditions described above, Sample 7 has a lower alloy capacity than Comparative Example 2 for a heating time of 30 minutes. In addition, the influence of the degassing method in the activation treatment of the present invention on the alloy capacity was examined by determining the relationship between the number of times of charge and discharge and the alloy capacity of Sample 8 and Comparative Example 3. The measurement results of the alloy capacity are shown in FIG. Was. In addition,
Table 8 shows that Sample 8 and Comparative Example 3 used were different from the activation treatment conditions only in the degassing temperature except for other heating conditions (800 ° C., 2 h) and degassing time (30 min).
Is a sample activated under the same conditions.

【0036】図2より、加熱条件は同じで、脱ガス条件
を変更した試料における放電条件が0.2Cでの合金容
量を比較すると、脱ガス温度が800℃と加熱温度と同
じ温度の比較例3の合金容量は、250℃で脱ガスされ
た試料8と比べると充放電回数によらずおよそ100m
Ah/gも低くなっている。また、試料2、試料5、比
較例1および比較例2の合金容量を比較することで活性
化に及ぼす酸化物層除去の表面処理の効果を求めた。こ
のときの合金容量の測定結果を図3に示した。なお、測
定された合金容量は0.044Cでの充放電を繰り返し
たときの合金容量であった。
From FIG. 2, comparing the alloy capacities under the same heating conditions and with the discharge conditions of 0.2 C in the samples in which the degassing conditions have been changed, a comparative example in which the degassing temperature is 800 ° C. and the same temperature as the heating temperature is shown. The alloy capacity of No. 3 is about 100 m irrespective of the number of times of charging and discharging as compared with Sample 8 degassed at 250 ° C.
Ah / g is also low. Further, the effect of the surface treatment for removing the oxide layer on the activation was determined by comparing the alloy capacities of Sample 2, Sample 5, Comparative Example 1 and Comparative Example 2. FIG. 3 shows the measurement results of the alloy capacity at this time. In addition, the measured alloy capacity was an alloy capacity when charge and discharge at 0.044C were repeated.

【0037】図3より、表面処理を施した試料5は1回
の充放電で合金利用率が90%を超えるほど活性化され
ているが、表面処理が施されていない試料2は充放電を
9回繰り返しても合金利用率が80%程度にしか到達し
ない。また、加熱・脱ガス処理を施さず表面処理を施し
ただけの比較例2の合金利用率は充放電を9回繰り返し
たところようやく55%に達する程度であった。さら
に、加熱・脱ガス処理が施されず、表面処理も施されて
いない比較例1の合金利用率は充放電を9回繰り返して
もようやく20%に達する程度であった。
As shown in FIG. 3, the sample 5 having been subjected to the surface treatment was activated as the alloy utilization exceeded 90% in one charge / discharge, whereas the sample 2 without the surface treatment was subjected to the charge / discharge. Even if it is repeated nine times, the alloy utilization reaches only about 80%. Further, the alloy utilization ratio of Comparative Example 2 in which only the surface treatment was performed without performing the heating / degassing treatment reached only 55% when charge and discharge were repeated nine times. Further, the alloy utilization rate of Comparative Example 1, which was not subjected to the heating / degassing treatment and was not subjected to the surface treatment, reached about 20% only after repeating charging and discharging 9 times.

【0038】[0038]

【発明の効果】本発明の水素吸蔵合金の高活性化処理方
法を用いると、初期活性化における活性化回数を大幅に
削減できるとともに、合金容量も向上させることができ
る。また、高活性化処理を施した水素吸蔵合金に表面処
理を施すとさらに合金容量が向上するだけでなく、充放
電特性が大きく改善される。
According to the method for highly activating the hydrogen storage alloy of the present invention, the number of times of activation in the initial activation can be greatly reduced and the alloy capacity can be improved. Further, when the surface treatment is performed on the hydrogen storage alloy that has been subjected to the high activation treatment, not only the alloy capacity is further improved, but also the charge / discharge characteristics are greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明高活性化処理における加熱時間と合金
容量との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between heating time and alloy capacity in a high activation treatment of the present invention.

【図2】 本発明高活性化処理における脱ガス温度と合
金容量との関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the degassing temperature and the alloy capacity in the high activation treatment of the present invention.

【図3】 水素吸蔵合金の合金容量におよぼす表面処理
の影響を示す線図である。
FIG. 3 is a diagram showing the effect of surface treatment on the alloy capacity of a hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を高温水素雰囲気中で加熱
し、加熱終了後ただちに急速冷却する水素処理の後に、
減圧することで脱ガス処理を行う水素吸蔵合金の高活性
化処理方法。
Claims: 1. A hydrogen storage alloy is heated in a high-temperature hydrogen atmosphere, and after a heating treatment, is rapidly cooled immediately after the hydrogen treatment.
A method for highly activating hydrogen storage alloys in which degassing is performed by reducing the pressure.
JP9296904A 1997-10-29 1997-10-29 High activation treatment of hydrogen storage alloy Pending JPH11130401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9296904A JPH11130401A (en) 1997-10-29 1997-10-29 High activation treatment of hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9296904A JPH11130401A (en) 1997-10-29 1997-10-29 High activation treatment of hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH11130401A true JPH11130401A (en) 1999-05-18

Family

ID=17839671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9296904A Pending JPH11130401A (en) 1997-10-29 1997-10-29 High activation treatment of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH11130401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534637A (en) * 2000-05-19 2003-11-18 オヴォニック バッテリー カンパニー インコーポレイテッド Hydrogen storage powder and its preparation process
JP2004074020A (en) * 2002-08-19 2004-03-11 National Institute Of Advanced Industrial & Technology Hydrogen dissociation and separation membrane
JP2007157596A (en) * 2005-12-07 2007-06-21 Seimi Chem Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534637A (en) * 2000-05-19 2003-11-18 オヴォニック バッテリー カンパニー インコーポレイテッド Hydrogen storage powder and its preparation process
JP2004074020A (en) * 2002-08-19 2004-03-11 National Institute Of Advanced Industrial & Technology Hydrogen dissociation and separation membrane
JP2007157596A (en) * 2005-12-07 2007-06-21 Seimi Chem Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0773878A (en) Manufacture of metal hydride electrode
JP3337189B2 (en) Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity
Yu et al. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity
JPH11130401A (en) High activation treatment of hydrogen storage alloy
JP3755841B2 (en) Magnesium-based hydrogen storage material and method for producing the same
JPH01267966A (en) Manufacture of sealed nickel-hydrogen battery
JP3432870B2 (en) Method for producing metal hydride electrode
JPH06283197A (en) Sealed nickel-hydrogen battery and activation thereof
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH09180715A (en) Surface treatment method of hydrogen storage alloy by steam and alloy obtained thereby
JP3606097B2 (en) Activation treatment method of hydrogen storage alloy for battery
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JP3368772B2 (en) Method for producing hydrogen storage alloy powder
JPS61233968A (en) Manufacture of hydrogen occlusion electrode
JPS6215760A (en) Manufacture of hydrogen-occlusion electrode
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH04318106A (en) Production of hydrogen storage alloy powder
JP3322449B2 (en) Method for producing metal hydride electrode
JPH06267586A (en) Manufacture of hydride secondary battery
JPH08185856A (en) Surface reforming method for rare earth-nickel series hydrogen storage alloy for battery
JPH0688150A (en) Production of hydrogen occluding alloy
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode