JPS61233968A - Manufacture of hydrogen occlusion electrode - Google Patents
Manufacture of hydrogen occlusion electrodeInfo
- Publication number
- JPS61233968A JPS61233968A JP60076257A JP7625785A JPS61233968A JP S61233968 A JPS61233968 A JP S61233968A JP 60076257 A JP60076257 A JP 60076257A JP 7625785 A JP7625785 A JP 7625785A JP S61233968 A JPS61233968 A JP S61233968A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- alloy
- hydrogen storage
- electrode
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
、 く技術分野〉
本発明はアルカリニ次電池の負極に用いられる水素吸蔵
合金電極に関し、特にその水素吸蔵合金を耐食性の高い
金属で被覆することにより特性の安定化を図った電極の
製造方法に関するものである。[Detailed Description of the Invention] , Technical Field The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of an alkaline secondary battery, and in particular to a hydrogen storage alloy electrode whose characteristics are stabilized by coating the hydrogen storage alloy with a highly corrosion resistant metal. The present invention relates to a method for manufacturing an electrode.
〈従来技術〉
金属酸化物を正極活物質とし、水素吸蔵合金を負極活物
質として用いるMeOx−Me’HY型の蒼電池が提唱
され、実用化が進められている。正極活物質としては、
従来のアルカリ蓄電池の正極として用いられているNi
00H,Ag2O等が適当と考えられ、又、負極活物質
にqLaNi5.Ti2Ni等の室温での水素平衡解離
圧がlPa73nらIMPaである水素吸蔵合金が検討
されている。<Prior Art> A MeOx-Me'HY type blue battery using a metal oxide as a positive electrode active material and a hydrogen storage alloy as a negative electrode active material has been proposed and is being put into practical use. As a positive electrode active material,
Ni is used as the positive electrode of conventional alkaline storage batteries.
00H, Ag2O, etc. are considered suitable, and qLaNi5. Hydrogen storage alloys such as Ti2Ni whose hydrogen equilibrium dissociation pressure at room temperature is lPa73n or IMPa have been studied.
水素吸蔵合金を活物質とする電極を作製するためには、
下記の諸工程を必要とする。In order to create an electrode using a hydrogen storage alloy as an active material,
The following steps are required.
+11 任意の組成を持つ水素吸蔵合金の製造(21
合金塊の機械的粉砕
(31水素活性化処理による水素吸蔵合金の微粉化(4
) 水素透過性を有し、耐アルカリ性に優れた金属に
よる水素吸蔵合金の被覆
(5)集電体への担持
これら一連の工程の中で(4)の操作工程をさらに詳細
に示すと下記の操作に分かれる。+11 Production of hydrogen storage alloy with arbitrary composition (21
Mechanical pulverization of alloy ingots (31) Micronization of hydrogen storage alloys by hydrogen activation treatment (4)
) Coating the hydrogen storage alloy with a metal having hydrogen permeability and excellent alkali resistance (5) Supporting on the current collector Among these series of steps, the operation step (4) is shown in more detail below. Divided into operations.
(i) 合金粉末粒子表面の感受性化(iil 合
金粉末粒子の活性化
fiil 無電解メッキ
操作filは水素吸蔵合金粉末を塩化スズ!Il+塩酸
酸性溶液中で反応させる。また、操作(illd合金粉
末を塩化パラジウム(Il+塩酸酸性溶液中で反応させ
る。(i) Sensitization of the surface of alloy powder particles (iil Activation of alloy powder particles) Electroless plating operation (fil) involves reacting hydrogen-absorbing alloy powder in an acidic solution of tin chloride!Il + hydrochloric acid. Palladium chloride (Il + reacted in an acidic solution of hydrochloric acid).
ところが、酸又はアルカリに対して耐食性の良くなり水
素吸蔵合金に上記操作(i)及び(11)を施すと。However, when the hydrogen storage alloy is subjected to the above operations (i) and (11), the corrosion resistance against acids or alkalis becomes better.
合金の一部が腐食し1合金本来の水素吸蔵、放出特性を
著しく損なう危惧がある。また、無電解メッキが完全に
行なわれないような事態も生じる。There is a risk that a part of the alloy will corrode and the hydrogen storage and release properties inherent to the alloy will be significantly impaired. Further, a situation may occur in which electroless plating is not completely performed.
さらには、非常に高価な塩化パラジウム1Illを使用
することから実用化に際してコストなどの面で問題があ
る。Furthermore, since palladium chloride, which is extremely expensive, is used, there are problems in terms of cost and the like when putting it into practical use.
〈発明の目的〉
本発明は、水素吸蔵合金を用いた電極の充、放電過程を
繰り返すことによる放電容量の減少を防ぎ、アルカリニ
次電池として長期間にわたり安定した特性を与える水素
吸蔵電極の製造技術を提供することを目的とする。<Purpose of the Invention> The present invention provides a manufacturing technology for a hydrogen storage electrode that prevents a decrease in discharge capacity due to repeated charging and discharging processes of an electrode using a hydrogen storage alloy, and provides stable characteristics over a long period of time as an alkaline secondary battery. The purpose is to provide
〈発明の概要〉
本発明は上記目的を達成するため、微粉化し粒径をそろ
えた水素吸蔵合金を耐圧性の反応容器に入れて高圧水素
ガスの導入、排気による活性化処理を施し、ある程度水
素を吸蔵させた状態で直ちに予め用意しておいた無電解
メッキ液に浸漬して攪拌することにより無電解メッキ処
理し、耐アルカリ性に優れた保護層を形成して合金粉末
を被覆した後、この合金粉末を用いて電極を作製するこ
とを特徴とする。尚、水素吸蔵合金として利用される物
質を例示すると、Ca、Mg、Ti、Zr。<Summary of the Invention> In order to achieve the above object, the present invention is made by placing a hydrogen storage alloy that has been pulverized and has a uniform particle size in a pressure-resistant reaction vessel, and performing an activation treatment by introducing high-pressure hydrogen gas and evacuation. The alloy powder is immediately immersed in a pre-prepared electroless plating solution and stirred to form a protective layer with excellent alkali resistance and coated with the alloy powder. A feature of this method is that the electrodes are made using alloy powder. Examples of substances used as hydrogen storage alloys include Ca, Mg, Ti, and Zr.
Hf、V、Nb、Ta、Yあるいはランタニド系元素等
の水素と結合し易い元素とAノ、Cr 、Fe 。Elements that easily bond with hydrogen, such as Hf, V, Nb, Ta, Y, or lanthanide elements, and A, Cr, and Fe.
Ni、Co、Cu、Mn、Si等の水素と結合し難い元
素とを合金化した材料が一般的である。Generally, materials are alloyed with elements that are difficult to bond with hydrogen, such as Ni, Co, Cu, Mn, and Si.
本発明によれば、活性化された水素吸蔵合金中に吸蔵さ
れている水素が還元剤として働き、無電解メッキ洛中の
耐食性金属イオンを容易に還元し合金表面中に折曲させ
ることができる。この反応は次式のようになると考えら
れる。According to the present invention, the hydrogen stored in the activated hydrogen storage alloy acts as a reducing agent, and the corrosion-resistant metal ions in the electroless plating can be easily reduced and bent into the alloy surface. This reaction is thought to be as shown in the following equation.
xCu”+Me t a 1 :Hy+xCu+Me
ta 1+yl(”ここで、Me t a lは水素吸
蔵合金を表わす。xCu”+Me t a 1 :Hy+xCu+Me
ta 1+yl ("Here, Me t a l represents a hydrogen storage alloy.
ところで、従来、水素活性化処理後、高温にて真空脱気
をしても、水素吸蔵合金から完全に水素が放出されるわ
けではなく、非常に安定な水素化物としてごくわずかの
量が残存している。(H/M′50.1未満と考えられ
る。)しかしながら、この状態で無電解メッキを施して
も、メッキは行なわれなかった。メッキ膜を形成するた
めには少くともH/M−0,1以上の水素含有量を有す
る水素化物を用いる必要のあることが実験の結果確かめ
られた。本発明は水素吸蔵合金をその平衡解離圧以上の
高圧水素雰囲気に保持して、水素吸蔵合金にVMで0.
1以上の水素量を吸蔵させ、しかる後無電解メッキ処理
を施すことによりメッキ膜の被覆を可能としている。By the way, conventionally, even if vacuum degassing is performed at high temperature after hydrogen activation treatment, hydrogen is not completely released from the hydrogen storage alloy, and a very small amount remains as a very stable hydride. ing. (It is thought that H/M' is less than 50.1.) However, even if electroless plating was performed in this state, no plating was performed. Experiments have confirmed that in order to form a plating film, it is necessary to use a hydride having a hydrogen content of at least H/M-0.1 or more. The present invention maintains a hydrogen storage alloy in a high-pressure hydrogen atmosphere higher than its equilibrium dissociation pressure, so that the hydrogen storage alloy has a VM of 0.
It is possible to cover with a plating film by absorbing at least one amount of hydrogen and then performing an electroless plating treatment.
尚、ここでH/Mri水素原子数と水素吸蔵合金・1モ
ルを構成する金属原子数との比を表わしている。Here, the ratio between the number of H/Mri hydrogen atoms and the number of metal atoms constituting one mole of the hydrogen storage alloy is expressed.
〈実施例〉
以下1本発明の一実施例として、水素吸蔵合金ニL、a
Ni、。、 /IJ。、3合金を用いた場合について詳
細に説明する。<Example> Below, as an example of the present invention, hydrogen storage alloys L, a
Ni,. , /IJ. , 3 alloys will be explained in detail.
市販のランタン(純度99.5%)、ニッケル(純度9
9.51)とアルミニウム(純度99.5チ)を化学量
論比で1 : 4.7 : 0.3となる様に秤量し、
均一に混合する。この混合粉末を圧粉し1粒剤にしたも
のをアルゴン雰囲気でアーク溶解して合金塊を得る。こ
の溶解操作を表、裏画面から3回行なって試料の均一性
を計る。この合金塊をステンレス製耐圧反応容器に入れ
、室温にて真空排気装置で減圧排気し、電気炉を用いて
200℃に加熱しながら高圧水素(純度99.9999
9%)を導入し1反応容器中を水素雰囲気にして合金表
面に付着した酸化被膜等を取り除いてから、再び減圧排
気して脱ガスを行なう。Commercially available lanthanum (purity 99.5%), nickel (purity 9
9.51) and aluminum (purity 99.5%) were weighed so that the stoichiometric ratio was 1:4.7:0.3,
Mix evenly. This mixed powder is pressed into a single granule, which is arc melted in an argon atmosphere to obtain an alloy ingot. This dissolution operation is performed three times from the front and back screens to measure the uniformity of the sample. This alloy ingot was placed in a stainless steel pressure-resistant reaction vessel, evacuated at room temperature using a vacuum evacuation device, and heated to 200°C using an electric furnace while high-pressure hydrogen (purity 99.9999)
9%) was introduced to create a hydrogen atmosphere in one reaction vessel to remove the oxide film etc. adhering to the alloy surface, and then the vacuum was evacuated again to perform degassing.
次に、その温度で3MPaの水素を導入し、室温まで放
冷することにより水素を吸蔵させる。水素吸蔵処理が完
了した後、再び高温にて真空脱気をする。この水素吸蔵
・放出操作を5〜6回繰り返すことにより、水素吸蔵合
金粉末が得られる。Next, 3 MPa of hydrogen is introduced at that temperature, and hydrogen is occluded by allowing it to cool to room temperature. After the hydrogen storage process is completed, vacuum degassing is performed again at high temperature. By repeating this hydrogen storage/release operation 5 to 6 times, a hydrogen storage alloy powder is obtained.
これをさらに機械的に粉砕して1粒径75μm以下の合
金粉末とする。耐食性物質により被覆された電極として
用いる場合には粒径は75μ講以下にすることが望まし
い。This is further mechanically pulverized to obtain an alloy powder with a particle size of 75 μm or less. When used as an electrode coated with a corrosion-resistant material, the particle size is desirably 75 μm or less.
上述の如くして得られた合金粉末を再び反応容器に入れ
、水素吸蔵・放出操作を2.3回繰り返すことにより水
素活性化処理を施す。高圧の水素雰囲気に保持した後、
200℃で大気へ開放し。The alloy powder obtained as described above is put into the reaction vessel again and subjected to hydrogen activation treatment by repeating the hydrogen storage and release operation 2.3 times. After being kept in a high pressure hydrogen atmosphere,
Open to the atmosphere at 200℃.
ある程度水素を吸蔵させた状態で直ちに予め用意してお
いた無電解メッキ浴中に浸漬し1合金粉末に無電解銅メ
ッキを施す。この場合1合金への銅のメッキ厚はおよそ
0.5μ鯛程度とする。銅メッキ層は水素透過性を有し
、73フク耐アルカリ性に優れた特性を有するもので、
電極として使用した場合に水素吸蔵合金粉末に対して保
護層となる。尚この2うな保護層としては、銅(Cu)
以外に。Immediately after occluding a certain amount of hydrogen, the powder is immersed in an electroless plating bath prepared in advance, and electroless copper plating is applied to the alloy powder No. 1. In this case, the thickness of copper plating on one alloy is approximately 0.5 μm. The copper plating layer has hydrogen permeability and has excellent alkali resistance.
When used as an electrode, it forms a protective layer for the hydrogen storage alloy powder. These two protective layers are made of copper (Cu).
other than.
ニッケル(Ni)、銀(Ag)等を用いてもよい。Nickel (Ni), silver (Ag), etc. may also be used.
銅メッキを施したLaNi47A!03合金をパンチン
グニッケル板に充填し、2.5t/m”で圧縮成型して
水素吸蔵電極を作製する。LaNi47A with copper plating! A punched nickel plate is filled with 03 alloy and compression molded at 2.5 t/m'' to produce a hydrogen storage electrode.
以上のようにして作製された水素吸蔵電極を電解槽内で
二極法を用い、0.2C電流にて充放電を繰り返した。The hydrogen storage electrode produced as described above was repeatedly charged and discharged at a current of 0.2 C using a two-electrode method in an electrolytic cell.
このときの放電容量の変化を図面に曲aAで示す。サイ
クル数50回でも放電容量は全く減少していないことが
認められる。The change in discharge capacity at this time is shown in the drawing by curve aA. It is recognized that the discharge capacity did not decrease at all even after 50 cycles.
尚、比較のため、水素吸蔵・放出操作の繰り返しによる
微粉化の後、水素を放出させた状態で。For comparison, hydrogen was released after pulverization by repeated hydrogen storage and release operations.
酸性溶液中での感受性化処理及び活性化処理の後に無電
解メッキ浴への浸漬を行なう方法により銅メッキを施し
た合金粉末をパンチングニッケル板に充填し、2.5t
/(至)2で圧縮成型して水素吸蔵電極を作製した。こ
の水素吸蔵電極に上記実施例と同様の充放電操作を繰り
返したときの放電容量の変化を図面に曲線Bで示す。ま
た、同様に上記製造工程中、(4)の工程、すなわち無
電解メッキを施す以前の合金粉末をパンチングニッケル
板に充填し、 2.517am ”で圧縮成型して水素
吸蔵電極を作製した。この水素吸蔵電極にもまた上記実
施例と同様の充放電操作を繰り返し、そのときの放電容
量の変化を図面に曲線Cで示す。A punched nickel plate was filled with alloy powder coated with copper by a method of sensitization treatment in an acidic solution and activation treatment followed by immersion in an electroless plating bath.
/(to) 2 to produce a hydrogen storage electrode. Curve B in the drawing shows the change in discharge capacity when this hydrogen storage electrode was repeatedly subjected to charging and discharging operations similar to those in the above example. In addition, in the same manner, a punched nickel plate was filled with the alloy powder before the step (4) of the above manufacturing process, that is, before electroless plating was applied, and compression molded at 2.517 am'' to produce a hydrogen storage electrode. The same charging and discharging operation as in the above embodiment was repeated for the hydrogen storage electrode, and the change in discharge capacity at that time is shown by curve C in the drawing.
曲線Bは曲線Aに比較して放電容量が%以下であり、こ
れは無電解銅メッキの前処理として酸性溶液を用いたこ
とから、水素吸蔵合金の一部分が腐食したためと考えら
れる。また1曲線C#:t30回程度の充電、放電操作
で容量が次第に低下している。一方、上記実施例により
得られた水素吸蔵電極の曲線1:I放電容量が高くまた
繰り返しに対して放電容量の減少がなく安定した特性を
呈する。The discharge capacity of curve B was % or less compared to curve A, and this is thought to be because a portion of the hydrogen storage alloy corroded due to the use of an acidic solution as a pretreatment for electroless copper plating. Further, curve 1 C#: tThe capacity gradually decreases after about 30 charging and discharging operations. On the other hand, the hydrogen storage electrode obtained in the above example has a high curve 1:I discharge capacity and exhibits stable characteristics with no decrease in discharge capacity with repeated cycles.
〈発明の効果〉
本発明の製造方法により得られる無電解メッキの水素吸
蔵電極は酸やアルカリに比較的耐食性があるT 1−N
i素を用いた場合はもちろんのこと特に酸などに対して
腐食性力5あるLaNi47Aノ。3を用いた場合でも
従来法の無電解銅メッキを施した水素吸蔵電極に比べ電
極特性は同等以上もしくり、I/iるかに優れた特性を
示しており、長期間に・わたって充放電操作を繰り返し
ても放電容量の減少ag+められなく、安定した放電特
性が得られる。<Effects of the Invention> The electroless plated hydrogen storage electrode obtained by the manufacturing method of the present invention has T1-N which is relatively corrosion resistant to acids and alkalis.
LaNi47A, which has a corrosive power of 5, especially when used with acids, etc. Even when 3 is used, the electrode characteristics are the same or better than the conventional hydrogen storage electrode with electroless copper plating, and it shows much better I/I characteristics, and can be charged for a long time. Even if the discharge operation is repeated, the discharge capacity does not decrease, and stable discharge characteristics can be obtained.
酸やアルカリに対して腐食性がある水素吸蔵合金に対し
ても適用できることから、全ての水素吸蔵合金への使用
が可能な上、高価な塩化パラジウムって本発明により作
製された水素吸蔵電極はアルカリ蓄電池の負極等として
有効であり、長期間にわたり安定した電池特性を維持す
ることができる。Since it can be applied to hydrogen storage alloys that are corrosive to acids and alkalis, it can be used for all hydrogen storage alloys, and the hydrogen storage electrode produced by the present invention can be used for all hydrogen storage alloys. It is effective as a negative electrode for alkaline storage batteries, and can maintain stable battery characteristics over a long period of time.
図面は各種条件で作製した水素吸蔵電極における放電特
性を水素吸蔵合金IP当りの放電容量の充放電サイクル
依存性として示した特性図である。The drawing is a characteristic diagram showing the discharge characteristics of hydrogen storage electrodes produced under various conditions as the charge/discharge cycle dependence of the discharge capacity per hydrogen storage alloy IP.
Claims (1)
気下に保持し、水素吸蔵合金1モルを構成する金属原子
数に対して吸蔵される水素原子数が0.1以上となるよ
うに水素原子を吸蔵させた後、前記水素吸蔵合金にメッ
キ保護層を被覆して電極とすることを特徴とする水素吸
蔵電極の製造方法。1.Hydrogen storage alloy is held in a high-pressure hydrogen atmosphere above its equilibrium dissociation pressure, and the hydrogen storage alloy is heated such that the number of hydrogen atoms absorbed is 0.1 or more per mole of metal atoms constituting 1 mole of hydrogen storage alloy. 1. A method for manufacturing a hydrogen storage electrode, which comprises, after occluding atoms, coating the hydrogen storage alloy with a plating protective layer to form an electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60076257A JPS61233968A (en) | 1985-04-09 | 1985-04-09 | Manufacture of hydrogen occlusion electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60076257A JPS61233968A (en) | 1985-04-09 | 1985-04-09 | Manufacture of hydrogen occlusion electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61233968A true JPS61233968A (en) | 1986-10-18 |
JPH0410175B2 JPH0410175B2 (en) | 1992-02-24 |
Family
ID=13600153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60076257A Granted JPS61233968A (en) | 1985-04-09 | 1985-04-09 | Manufacture of hydrogen occlusion electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61233968A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03247735A (en) * | 1990-02-23 | 1991-11-05 | Nippon Yakin Kogyo Co Ltd | Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen |
JPH0644966A (en) * | 1992-07-21 | 1994-02-18 | Agency Of Ind Science & Technol | Manufacture of hydrogen storage electrode |
US5910379A (en) * | 1997-11-06 | 1999-06-08 | Shin-Etsu Chemical Co., Ltd. | Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery |
US6063524A (en) * | 1997-11-06 | 2000-05-16 | Shin-Etsu Chemical Co., Ltd. | Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery |
-
1985
- 1985-04-09 JP JP60076257A patent/JPS61233968A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03247735A (en) * | 1990-02-23 | 1991-11-05 | Nippon Yakin Kogyo Co Ltd | Rare earth metal-nickel series hydrogen storage alloy and material for occluding hydrogen |
JPH0644966A (en) * | 1992-07-21 | 1994-02-18 | Agency Of Ind Science & Technol | Manufacture of hydrogen storage electrode |
US5910379A (en) * | 1997-11-06 | 1999-06-08 | Shin-Etsu Chemical Co., Ltd. | Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery |
US6063524A (en) * | 1997-11-06 | 2000-05-16 | Shin-Etsu Chemical Co., Ltd. | Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0410175B2 (en) | 1992-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3337189B2 (en) | Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity | |
JPH03191040A (en) | Hydrogen storage alloy electrode | |
US5690799A (en) | Hydrogen-occluding alloy and hydrogen-occluding alloy electrode | |
JPS61233968A (en) | Manufacture of hydrogen occlusion electrode | |
Choi et al. | An electroless copper plating method for Ti, Zr-based hydrogen storage alloys | |
JPH05343058A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JP3755841B2 (en) | Magnesium-based hydrogen storage material and method for producing the same | |
JP3011437B2 (en) | Hydrogen storage alloy electrode | |
JPH08333603A (en) | Hydrogen storage alloy particle and its production | |
JPH0435874B2 (en) | ||
JPH11154511A (en) | Surface treatment hydrogen storage alloy, surface treatment method, hydride electrode using surface treatment hydrogen storage alloy | |
JP3552177B2 (en) | Method for producing hydrogen storage alloy negative electrode particles | |
JP2544540B2 (en) | Hydrogen storage alloy, hydrogen storage metal material, hydrogen storage electrode, and nickel-hydrogen battery | |
JP3214569B2 (en) | Method for producing hydride secondary battery | |
JP3261410B2 (en) | Method for producing hydrogen storage electrode | |
JP2002141061A (en) | Hydrogen storage alloy electrode and its manufacturing method | |
JP3176387B2 (en) | Method for producing hydride secondary battery | |
JP2003229134A (en) | Fuel cell | |
JPH11130401A (en) | High activation treatment of hydrogen storage alloy | |
JPH0799690B2 (en) | Method for manufacturing hydrogen storage electrode | |
JPH0950804A (en) | Hydrogen storage alloy-based electrode | |
JPS6077357A (en) | Electrode which can absorb hydrogen | |
JP2999277B2 (en) | Hydride secondary battery and method for producing the same | |
JPH0834100B2 (en) | Hydrogen storage alloy electrode | |
JPH04318106A (en) | Production of hydrogen storage alloy powder |