JPH1111915A - Recovery of argon and device therefor - Google Patents

Recovery of argon and device therefor

Info

Publication number
JPH1111915A
JPH1111915A JP9168754A JP16875497A JPH1111915A JP H1111915 A JPH1111915 A JP H1111915A JP 9168754 A JP9168754 A JP 9168754A JP 16875497 A JP16875497 A JP 16875497A JP H1111915 A JPH1111915 A JP H1111915A
Authority
JP
Japan
Prior art keywords
argon
gas
path
exhaust gas
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9168754A
Other languages
Japanese (ja)
Other versions
JP4024347B2 (en
Inventor
Taiji Kishida
泰治 岸田
Takashi Tatsumi
高司 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP16875497A priority Critical patent/JP4024347B2/en
Publication of JPH1111915A publication Critical patent/JPH1111915A/en
Application granted granted Critical
Publication of JP4024347B2 publication Critical patent/JP4024347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PROBLEM TO BE SOLVED: To refine exhaust gas from a single crystal production furnace, to efficiently recover argon having a high purity and to allow to follow to even reduction of a generating exhaust gas volume. SOLUTION: The exhaust gas is compressed and also solids such as powder and dust and an oil component are removed, more excessive quantity of hydrogen than a stoichiometric quantity required to a reaction of oxygen in the exhaust gas is added to convert oxygen with a catalystic reaction into water. Water and carbon dioxide are absorbed and removed and impurities having lower boiling points than argon are separated by a fractional separation to recover argon having a high purity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルゴンの回収方
法及び装置に関し、詳しくは、半導体の基盤素材として
使用されるシリコン単結晶のような単結晶を製造する単
結晶製造炉から排出されるアルゴンを主成分とする排ガ
スから高純度アルゴンを回収するアルゴンの回収方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for recovering argon, and more particularly, to argon discharged from a single crystal manufacturing furnace for manufacturing a single crystal such as a silicon single crystal used as a base material of a semiconductor. The present invention relates to a method and an apparatus for recovering argon, which recovers high-purity argon from exhaust gas containing as a main component.

【0002】[0002]

【従来の技術】アルゴンガスは、不活性な性質を有して
いることから、溶接用のシールドガスや金属の熱処理の
ための雰囲気ガスなどとして、各種産業分野で広く利用
されている。そして、近年は、半導体の基板素材として
使用されるシリコン単結晶のような単結晶を製造する単
結晶製造炉では、高品質の単結晶を得るために高純度
(99.999容量%)のアルゴンガスを炉内雰囲気ガ
スとして使用している。したがって、このような単結晶
製造炉からは、アルゴンを主成分とする排ガスが排出さ
れるが、この排ガスの組成は、99〜99.9容量%が
アルゴンであり、炉の雰囲気ガスとして使用された結
果、酸化ケイ素,二酸化ケイ素、炭素等の粉塵が混入し
て同伴されるだけでなく、油分,水分,一酸化炭素,二
酸化炭素,酸素,水素,窒素等の様々な成分が不純物と
して微量ではあるが混入した状態になっている。
2. Description of the Related Art Since argon gas has an inert property, it is widely used in various industrial fields as a shielding gas for welding or an atmosphere gas for heat treatment of metals. In recent years, in a single crystal manufacturing furnace for manufacturing a single crystal such as a silicon single crystal used as a semiconductor substrate material, high-purity (99.999% by volume) argon has been used to obtain a high-quality single crystal. Gas is used as furnace atmosphere gas. Therefore, an exhaust gas containing argon as a main component is discharged from such a single crystal production furnace, and the composition of the exhaust gas is such that 99 to 99.9% by volume of argon is used as an atmosphere gas of the furnace. As a result, not only are dusts such as silicon oxide, silicon dioxide and carbon mixed in and entrained, but also various components such as oil, moisture, carbon monoxide, carbon dioxide, oxygen, hydrogen and nitrogen are trace amounts of impurities. Yes, but in a mixed state.

【0003】このような成分の排ガスからアルゴンを回
収して再利用する方法は、従来から種々提案されてお
り、例えば、特開昭63−189774号公報,特開平
1−230975号公報,特開平2−272288号公
報,特開平2−282682号公報,特開平3−398
86号公報,特公平4−12393号公報,特公平5−
29834号公報,特開平5−256570号公報,特
開平9−72656号公報等に開示されている。
Various methods for recovering and reusing argon from exhaust gas of such components have been proposed in the past, for example, Japanese Patent Application Laid-Open Nos. 63-189774, 1-230975 and 1-230975. JP-A-2-272288, JP-A-2-282682, JP-A-3-398
No. 86, Japanese Patent Publication No. 4-123393, Japanese Patent Publication 5-
No. 29834, JP-A-5-256570, JP-A-9-72656 and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方法では、上述のような多種類にわたる不純物を効率よ
く除去することが困難であり、いまだ十分であるとはい
えなかった。また、廃ガス量の変動に対しての配慮もほ
とんどなかった。したがって、効率よく経済的にアルゴ
ンを回収することができる方法の出現が望まれていた。
However, in the conventional method, it is difficult to efficiently remove various types of impurities as described above, and it has not been sufficient yet. Also, little consideration was given to fluctuations in the amount of waste gas. Therefore, the appearance of a method capable of efficiently and economically recovering argon has been desired.

【0005】そこで本発明は、アルゴンを主成分とし、
粉塵,油分,水分,一酸化炭素,二酸化炭素,酸素,水
素,窒素,炭化水素等の様々な不純物成分を含む単結晶
製造炉からの排ガスを精製して高純度のアルゴンを効率
よく回収することができ、発生排ガス量の減少にも追随
することができるアルゴンの回収方法及び装置を提供す
ることを目的としている。
[0005] Accordingly, the present invention provides a method comprising:
Purification of exhaust gas from a single crystal manufacturing furnace containing various impurity components such as dust, oil, water, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen, and hydrocarbons to efficiently recover high-purity argon. It is an object of the present invention to provide a method and apparatus for recovering argon, which can follow the reduction of the amount of generated exhaust gas.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明のアルゴンの回収方法は、アルゴンを主成分
とし、不純物として粉塵,油分,水分,一酸化炭素,二
酸化炭素,酸素,水素,窒素等を含む単結晶製造炉から
の排ガス中のアルゴンを回収する方法であって、前記排
ガスを圧縮するとともに前記粉塵等の固形分及び油分を
除去する工程と、該排ガス中の酸素の反応に必要な化学
量論量より過剰量の水素を添加して酸素を触媒反応で水
に転換する工程と、水分及び二酸化炭素を吸着除去する
工程と、精留分離によってアルゴンより低沸点の不純物
を分離してアルゴンを回収する工程とを有することを特
徴としている。
In order to achieve the above object, a method for recovering argon according to the present invention comprises argon as a main component and impurities such as dust, oil, water, carbon monoxide, carbon dioxide, oxygen, hydrogen, A method for recovering argon in exhaust gas from a single crystal production furnace containing nitrogen and the like, wherein the step of compressing the exhaust gas and removing solids and oil such as dust and the reaction of oxygen in the exhaust gas The process of adding oxygen in excess of the required stoichiometric amount to convert oxygen to water by a catalytic reaction, the process of adsorbing and removing water and carbon dioxide, and the separation of impurities with a boiling point lower than that of argon by rectification And recovering argon.

【0007】さらに、本発明のアルゴンの回収方法は、
前記精留分離を、精留筒と凝縮器とを備えた深冷分離装
置で行うにあたり、前記精留筒内に分離生成したアルゴ
ンのガスを一定圧力に制御して抜き出し、精留筒内に分
離した前記低沸点不純物が濃縮したガスを一定純度に制
御して抜き出すか、あるいは、該低沸点不純物濃縮ガス
の精留筒からの出口部の温度を一定温度に制御して抜き
出し、前記凝縮器に注入する寒冷用液を精留筒筒底の液
面を一定に制御して注入するとともに、該凝縮器で気化
した寒冷用ガスを該凝縮器の液面を一定に制御して抜き
出すことを特徴とし、また、前記精留分離により回収し
たアルゴンガスの少なくとも一部、あるいは、精留分離
により分離した低沸点不純物濃縮ガスの少なくとも一部
を、前記圧縮前の排ガスに戻して合流させることを特徴
としている。
Further, the method for recovering argon according to the present invention comprises:
In performing the rectification and separation in a cryogenic separation device provided with a rectification column and a condenser, the argon gas separated and generated in the rectification column is extracted by controlling the gas at a constant pressure, and is introduced into the rectification column. The gas in which the separated low-boiling-point impurities are concentrated is controlled and extracted to a constant purity, or the temperature of the outlet of the low-boiling-point impurities concentrated gas from the rectification column is controlled and extracted to a constant temperature, and the condenser is extracted. The cooling liquid to be injected into the rectifying cylinder is controlled so that the liquid level at the bottom of the rectifying cylinder is constant, and the cooling gas vaporized by the condenser is discharged while controlling the liquid level of the condenser. Characterized in that at least a part of the argon gas recovered by the rectification separation, or at least a part of the low-boiling-point impurity-enriched gas separated by the rectification separation, is returned to the exhaust gas before compression to be combined. Features.

【0008】本発明のアルゴンの回収装置は、アルゴン
を主成分とし、不純物として粉塵,油分,水分,一酸化
炭素,二酸化炭素,酸素,水素,窒素等を含む単結晶製
造炉からの排ガス中のアルゴンを回収する装置であっ
て、前記粉塵等の固形分を除去する集塵手段と、排ガス
を所用の圧力に圧縮する圧縮手段と、油分を除去する油
除去手段と、水素を添加して酸素を触媒反応で水に転換
する触媒反応手段と、水分と二酸化炭素とを吸着除去す
る吸着手段と、残存する不純物を含む排ガスを液化精留
してアルゴンより低沸点の不純物とアルゴンとに分離す
る深冷分離手段と、該深冷分離手段で分離したアルゴン
を回収して前記単結晶製造炉に供給する回収アルゴン供
給経路とを備えるとともに、前記精留筒は、筒中段に排
ガス導入経路が接続され、上部に外部寒冷液を導入して
還流液を生成する凝縮器を有し、該凝縮器から前記低沸
点不純物のガスを導出する低沸点不純物濃縮ガス導出経
路と、筒下部からアルゴンガスを導出するアルゴン導出
経路とを備えていることを特徴としている。
The apparatus for recovering argon according to the present invention is characterized in that an exhaust gas from a single crystal manufacturing furnace containing argon as a main component and containing dust, oil, moisture, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen and the like as impurities. A device for collecting argon, a dust collecting means for removing solids such as the dust, a compressing means for compressing exhaust gas to a required pressure, an oil removing means for removing oil, and an oxygen removing means for adding hydrogen. Reaction means for converting water into water by a catalytic reaction, adsorption means for adsorbing and removing moisture and carbon dioxide, and liquefaction rectification of exhaust gas containing residual impurities to separate impurities having lower boiling point than argon into argon A cryogenic separation means, and a recovery argon supply path for recovering the argon separated by the cryogenic separation means and supplying the recovered argon to the single crystal production furnace, and the rectification cylinder has an exhaust gas introduction path connected to a middle stage of the cylinder. A condenser for introducing an external chilled liquid at the upper part to generate a reflux liquid, a low-boiling-point impurity-enriched gas deriving path for deriving the low-boiling-point impurity gas from the condenser, and an argon gas from the lower part of the cylinder. And an argon derivation path for derivation.

【0009】さらに、本発明のアルゴンの回収装置は、
前記アルゴンガス導出経路に設けた圧力検出手段からの
信号で該経路に設けたアルゴン導出弁の開度を制御する
アルゴン圧力制御手段と、前記低沸点不純物濃縮ガス導
出経路に設けたガス中の特定の成分を検出する分析手段
からの信号で該経路に設けた低沸点不純物導出弁の開度
を制御する低沸点不純物濃縮ガス純度制御手段あるいは
前記低沸点不純物濃縮ガス導出経路に設けた温度検出手
段からの信号で該経路に設けた低沸点不純物導出弁の開
度を制御する低沸点不純物濃縮ガス温度制御手段と、前
記精留筒の底部に設けた液面計測手段からの信号で前記
凝縮器に外部寒冷液を導入する経路に設けた外部寒冷液
導入弁の開度を制御する精留筒液面制御手段と、前記凝
縮器に設けた寒冷液面計測手段からの信号で該凝縮器で
気化した寒冷用ガスを導出する経路に設けた気化ガス導
出弁の開度を制御する凝縮器液面制御手段とを備えてい
ることを特徴とし、また、前記回収アルゴン供給経路
と、前記圧縮手段より上流側の排ガス経路との間に、回
収アルゴン供給経路から排ガス経路にアルゴンを戻すア
ルゴン戻し経路を設けたこと、前記低沸点不純物濃縮ガ
ス導出経路と、前記圧縮手段より上流側の排ガス経路と
の間に、低沸点不純物濃縮ガス導出経路から排ガス経路
に低沸点不純物濃縮ガスを戻す低沸点不純物戻し経路を
設けたことを特徴としている。
Further, the argon recovery apparatus of the present invention
Argon pressure control means for controlling the degree of opening of an argon discharge valve provided in the path based on a signal from a pressure detection means provided in the argon gas discharge path, and identification of a gas provided in the low boiling point impurity-enriched gas discharge path. Low-boiling-point impurity-enriched-gas purity control means for controlling the degree of opening of a low-boiling-point impurity deriving valve provided in the path based on a signal from the analyzing means for detecting the component of A low-boiling-point impurity-concentrated gas temperature control means for controlling the degree of opening of a low-boiling-point impurity outlet valve provided in the path by a signal from A rectifying cylinder liquid level control means for controlling the opening of an external chilled liquid introduction valve provided in a path for introducing an external chilled liquid, and a signal from the chilled liquid level measuring means provided for the condenser, and Vaporized cold gas Condenser level control means for controlling the degree of opening of the vaporized gas discharge valve provided in the path for deriving the exhaust gas, the recovered argon supply path, and the exhaust gas upstream of the compression means. An argon return path for returning argon from the recovered argon supply path to the exhaust gas path between the recovery argon supply path and the low-boiling-point impurity-enriched gas lead-out path and an exhaust gas path upstream of the compression means. A low-boiling-point impurity return path for returning a low-boiling-point impurity-enriched gas from a boiling-point impurity-enriched gas lead-out path to an exhaust gas path is provided.

【0010】[0010]

【発明の実施の形態】図1は本発明の一形態例を示す系
統図である。このアルゴンの回収装置は、単結晶製造炉
1、例えばシリコン単結晶製造炉から排出されるアルゴ
ン含有排ガスを処理してアルゴンを高純度で回収するも
のであって、排ガス中の粉塵等の固形分を除去する集塵
手段である集塵器2と、排ガスを所用の圧力に圧縮する
圧縮手段である圧縮機3と、油分を除去する油除去手段
である油除去筒4及び油フィルター5と、排ガスに水素
を添加して酸素を触媒反応で水に転換する触媒反応手段
である水素導入経路6及び触媒筒7と、水分と二酸化炭
素とを吸着除去する吸着手段であるゼオライト等の吸着
剤を充填した吸着筒8と、アルゴンより低沸点の不純物
を液化精留によって分離除去する深冷分離手段である精
留筒9とを備えている。
FIG. 1 is a system diagram showing one embodiment of the present invention. This argon recovery apparatus is for processing argon-containing exhaust gas discharged from a single crystal manufacturing furnace 1, for example, a silicon single crystal manufacturing furnace, to recover argon with high purity, and includes solid components such as dust in the exhaust gas. A dust collector 2 as dust collecting means for removing oil, a compressor 3 as compression means for compressing exhaust gas to a required pressure, an oil removing cylinder 4 and an oil filter 5 as oil removing means for removing oil. A hydrogen introduction path 6 and a catalyst tube 7 which are catalytic reaction means for adding hydrogen to the exhaust gas to convert oxygen to water by a catalytic reaction, and an adsorbent such as zeolite which is an adsorption means for adsorbing and removing water and carbon dioxide. The apparatus is provided with a packed adsorption column 8 and a rectification column 9 as cryogenic separation means for separating and removing impurities having a boiling point lower than that of argon by liquefaction rectification.

【0011】単結晶製造炉1からの排ガス、例えば、固
形粉塵150mg/Nm3 ,水素200体積ppm,酸
素100体積ppm,一酸化炭素2000体積ppm,
二酸化炭素100体積ppm,窒素400体積ppm,
油分10体積ppm及び飽和量の水分からなる不純物を
含む排ガス300Nm3 /hは、単結晶製造炉1の運転
圧力により必要に応じて設けられるブロワー11で20
mmAq程度に昇圧した後、導管12を経てガスホルダ
ー13に貯えられる。ガスホルダー13内の排ガスは、
導管14により集塵器2に導入され、排ガス中に含まれ
る酸化ケイ素,二酸化ケイ素,炭素等の固形粉塵が除去
されて導管15に導出する。
Exhaust gas from the single crystal production furnace 1, for example, 150 mg / Nm 3 of solid dust, 200 ppm by volume of hydrogen, 100 ppm by volume of oxygen, 2000 ppm by volume of carbon monoxide,
100 ppm by volume of carbon dioxide, 400 ppm by volume of nitrogen,
Exhaust gas 300 Nm 3 / h containing impurities consisting of an oil content of 10 ppm by volume and a saturated amount of water is supplied to a blower 11 provided as required depending on the operating pressure of the single crystal production furnace 1.
After the pressure is increased to about mmAq, it is stored in the gas holder 13 via the conduit 12. The exhaust gas in the gas holder 13 is
The dust is introduced into the dust collector 2 by the conduit 14, and solid dust such as silicon oxide, silicon dioxide, and carbon contained in the exhaust gas is removed, and the dust is led to the conduit 15.

【0012】次に、排ガスは、圧縮機3により、製品
(高純度アルゴン)の圧力や以後の工程での処理に必要
な圧力に圧縮される。例えば、5kg/cm2 Gの製品
を得るためには、排ガスを6.5kg/cm2 Gに圧縮
する。
Next, the exhaust gas is compressed by the compressor 3 to a pressure of a product (high-purity argon) or a pressure necessary for processing in the subsequent steps. For example, to obtain a product of 5 kg / cm 2 G, the exhaust gas is compressed to 6.5 kg / cm 2 G.

【0013】圧縮された排ガスは、アフタークーラー1
6,導管17を通って油除去筒4に導入され、筒内に充
填されている活性炭等により油分が除去され、さらに、
油フィルター5に導入されてここでも油分が除去され
る。なお、油除去筒4及び油フィルター5は、排ガス中
の油分の状況に応じていずれか一方のみを設けるように
してもよい。
The compressed exhaust gas is supplied to the aftercooler 1
6, the oil is introduced into the oil removal cylinder 4 through the conduit 17, and oil is removed by activated carbon or the like filled in the cylinder.
The oil is introduced into the oil filter 5 to remove the oil. In addition, only one of the oil removing cylinder 4 and the oil filter 5 may be provided according to the situation of the oil component in the exhaust gas.

【0014】粉塵及び油分を除去された排ガスは、導管
18から予熱用熱交換器19,加熱器20を経て所定温
度、例えば100〜350℃に加熱されて導管21に導
出し、水素導入経路6の導管22から添加される水素と
混合して触媒筒7に導入される。この触媒筒7には、パ
ラジウムや白金等の触媒が充填されており、触媒筒7に
導入された排ガス中の酸素と水素との反応が促進され、
酸素分を水に転換することによって排ガス中から酸素分
を除去する。
The exhaust gas from which dust and oil have been removed is heated from a conduit 18 through a heat exchanger 19 for preheating and a heater 20 to a predetermined temperature, for example, 100 to 350 ° C., and is led out to a conduit 21 to be introduced into a hydrogen introduction path 6. Mixed with the hydrogen added from the conduit 22 of the above, and introduced into the catalyst tube 7. The catalyst tube 7 is filled with a catalyst such as palladium or platinum, and the reaction between oxygen and hydrogen in the exhaust gas introduced into the catalyst tube 7 is promoted,
The oxygen content is removed from the exhaust gas by converting the oxygen content into water.

【0015】前記水素導入経路6から導入添加する水素
量は、導管18を流れる排ガス中の酸素を水に転換する
ために必要な化学量論量より過剰な量となるように、排
ガス中に含まれている酸素分と水素分とを考慮して決め
られる。例えば、導管18に酸素濃度計(QOI)23
と流量計(FI)24とを設けて触媒筒7に向かう排ガ
ス中の酸素量を測定するとともに、触媒筒7を導出した
導管25に水素濃度計(QHI)26を設けて残留して
いる水素量を測定し、測定した酸素量及び水素量に応じ
て水素導入経路6に設けた水素流量調節計(FIC)2
7により弁27aの開度を調節することにより、適量の
水素を添加することができ、排ガス中の酸素分を効果的
に除去することができる。
The amount of hydrogen introduced and added from the hydrogen introduction path 6 is included in the exhaust gas so as to be an excess of the stoichiometric amount required for converting oxygen in the exhaust gas flowing through the conduit 18 into water. It is determined in consideration of the oxygen content and the hydrogen content. For example, an oximeter (QOI) 23
And a flow meter (FI) 24 for measuring the amount of oxygen in the exhaust gas heading toward the catalyst cylinder 7, and a hydrogen concentration meter (QHI) 26 for providing a hydrogen concentration meter (QHI) 26 to the conduit 25 from which the catalyst cylinder 7 is led out. The hydrogen flow controller (FIC) 2 provided in the hydrogen introduction path 6 according to the measured oxygen amount and hydrogen amount
By adjusting the opening degree of the valve 27a with 7, an appropriate amount of hydrogen can be added, and the oxygen content in the exhaust gas can be effectively removed.

【0016】触媒筒7で酸素を水に転換することによっ
て酸素分を除去した排ガスは、予熱用熱交換器19で熱
回収されて導管25に導出し、冷却装置28で約10℃
に冷却された後、吸着筒8に導入される。なお、冷却装
置28は、排ガスを冷却することにより吸着筒8での吸
着効率を向上させて吸着筒8の小型化を図るためにに設
けられるものであるが、状況によっては省略することも
できる。
The exhaust gas from which oxygen has been removed by converting oxygen into water in the catalyst tube 7 is recovered in a preheat heat exchanger 19 and led out to a conduit 25, which is then cooled by a cooling device 28 to about 10 ° C.
After being cooled down, it is introduced into the adsorption column 8. The cooling device 28 is provided to improve the efficiency of adsorption in the adsorption column 8 by cooling the exhaust gas and to reduce the size of the adsorption column 8, but may be omitted depending on the situation. .

【0017】複数設けられた吸着筒8は、内部に充填し
た吸着剤によって水分や二酸化炭素を吸着除去する吸着
工程と、吸着剤に吸着した水分や二酸化炭素を脱着する
再生工程とを順次切り換えて行うもので、吸着筒8の前
後に設けられた切換弁を所定の順序で開閉することによ
り、前記吸着工程と再生工程とに切り換えられる。
The plurality of adsorption cylinders 8 sequentially switch between an adsorption step of adsorbing and removing moisture and carbon dioxide by an adsorbent filled therein and a regeneration step of desorbing moisture and carbon dioxide adsorbed by the adsorbent. The switching between the adsorption step and the regeneration step is performed by opening and closing a switching valve provided before and after the adsorption cylinder 8 in a predetermined order.

【0018】吸着筒8の内部には、水分や二酸化炭素を
吸着除去する吸着剤としてゼオライト等が充填されてお
り、排ガスを吸着筒8に通すことにより、排ガス中の水
分や二酸化炭素が吸着除去される。
The inside of the adsorption column 8 is filled with zeolite or the like as an adsorbent for adsorbing and removing moisture and carbon dioxide. By passing the exhaust gas through the adsorption column 8, the moisture and carbon dioxide in the exhaust gas are adsorbed and removed. Is done.

【0019】なお、吸着筒の再生工程は、導管29から
導入した再生ガス、例えば窒素ガスを再生加熱器30で
加熱して吸着筒8に導入し、吸着剤から水分や二酸化炭
素を脱着する操作と、その後、再生加熱器30を停止し
て吸着剤を冷却する操作とにより行われる。なお、再生
ガスとしては、吸着工程を終えた排ガスの一部を、図1
に破線で示す導管29aに分岐して用いることもでき
る。
In the adsorption cylinder regeneration step, a regeneration gas, for example, nitrogen gas introduced from a conduit 29 is heated by a regeneration heater 30 and introduced into the adsorption cylinder 8 to desorb moisture and carbon dioxide from the adsorbent. Then, the operation of stopping the regenerative heater 30 and cooling the adsorbent is performed. In addition, as the regeneration gas, a part of the exhaust gas after the adsorption process was used, as shown in FIG.
Can be used by branching to a conduit 29a indicated by a broken line.

【0020】上述のように、集塵器2,油除去筒4及び
油フィルター5,触媒筒7,吸着筒8を経て導管31に
導出した排ガスは、アルゴンを主成分とし、アルゴンよ
り低沸点の成分である一酸化炭素2000体積ppm,
窒素400体積ppm及び触媒筒7で反応しなかった過
剰の水素300体積ppmを含んでおり、これらの低沸
点成分をアルゴンから分離除去するため、精留筒9を備
えたコールドボックス32内に導入される。
As described above, the exhaust gas led to the conduit 31 through the dust collector 2, the oil removing cylinder 4, the oil filter 5, the catalyst cylinder 7, and the adsorption cylinder 8 has argon as a main component and has a boiling point lower than that of argon. 2000 vol ppm of carbon monoxide as a component,
It contains 400 ppm by volume of nitrogen and 300 ppm by volume of excess hydrogen that has not reacted in the catalyst tube 7, and is introduced into a cold box 32 equipped with a rectification tube 9 in order to separate and remove these low-boiling components from argon. Is done.

【0021】コールドボックス32内には、前記精留筒
9の他、液化精留を行うために必要な主熱交換器33や
過冷器34,凝縮器35,リボイラー36等が設けられ
るとともに、アルゴンを効率よく高純度で得るための各
種制御機器が設けられている。
In the cold box 32, in addition to the rectification cylinder 9, a main heat exchanger 33, a subcooler 34, a condenser 35, a reboiler 36 and the like necessary for performing liquefaction rectification are provided. Various control devices for efficiently obtaining argon with high purity are provided.

【0022】前記導管31からコールドボックス32内
に流入した排ガスは、主熱交換器33で後述の高純度ア
ルゴン等の戻りガスと熱交換を行って所定温度に冷却さ
れ、導管37を経て精留筒9の中段に導入される。精留
筒9内に導入されたガスは、筒底部のリボイラー36か
ら上昇するガスと、筒頂部の凝縮器35から流下する液
との気液接触によって精留され、筒底部の高純度アルゴ
ンと筒頂部の低沸点成分含有ガスとに分離する。
The exhaust gas flowing from the conduit 31 into the cold box 32 is cooled to a predetermined temperature by exchanging heat with a return gas such as high-purity argon or the like in a main heat exchanger 33, and is rectified through a conduit 37. The tube 9 is introduced into the middle stage. The gas introduced into the rectification cylinder 9 is rectified by gas-liquid contact between the gas rising from the reboiler 36 at the bottom of the cylinder and the liquid flowing down from the condenser 35 at the top of the cylinder, and is purified by high-purity argon at the bottom of the cylinder. It is separated from the gas containing low-boiling components at the top of the cylinder.

【0023】リボイラー36の加熱源及び凝縮器35の
冷却源には、循環圧縮機38によって圧縮されて循環す
る窒素が用いられる。循環圧縮機38で15.5kg/
cm2 Gに圧縮された窒素ガス1200Nm3 /hは、
導管39からコールドボックス32内に導入され、主熱
交換器33で戻りガスと熱交換を行って所定温度に冷却
された後、リボイラー36に導入される。リボイラー3
6に導入された窒素ガスは、筒底液と熱交換を行い、筒
底液を蒸発させて上昇ガスを発生させるとともに、自身
は凝縮して液化窒素となる。
As the heating source for the reboiler 36 and the cooling source for the condenser 35, nitrogen circulated by being circulated by the circulating compressor 38 is used. 15.5 kg /
The nitrogen gas 1200 Nm 3 / h compressed to cm 2 G is
After being introduced into the cold box 32 from the conduit 39 and being exchanged with the return gas in the main heat exchanger 33 to be cooled to a predetermined temperature, it is introduced into the reboiler 36. Reboiler 3
The nitrogen gas introduced into 6 performs heat exchange with the cylinder bottom liquid, evaporates the cylinder bottom liquid to generate a rising gas, and itself condenses to liquefied nitrogen.

【0024】リボイラー36で生成した液化窒素は、導
管40に導出して過冷器34で更に冷却された後、弁4
1で8kg/cm2 Gに減圧して凝縮器35に導入され
る。また、凝縮器35には、寒冷を補うための液化窒素
10Nm3 /hが導管42から導入される。凝縮器35
に導入された液化窒素は、筒頂部のガスを凝縮させて流
下液を生成させるとともに、自身は蒸発して再び窒素ガ
スとなる。この窒素ガスは、凝縮器35から導管43に
導出され、過冷器34,導管44を経て主熱交換器33
で昇温して導管45によりコールドボックス32から導
出し、導管46を通って前記循環圧縮機38に吸入され
て循環する。なお、余剰となる窒素ガスは弁47から放
出され、起動時に不足する窒素ガスは弁48から供給さ
れる。
The liquefied nitrogen generated by the reboiler 36 is led out to a conduit 40 and further cooled by a supercooler 34,
The pressure is reduced to 8 kg / cm 2 G by 1 and introduced into the condenser 35. Further, liquefied nitrogen 10 Nm 3 / h for supplementing the cold is introduced into the condenser 35 from the conduit 42. Condenser 35
The liquefied nitrogen introduced into the tube condenses the gas at the top of the cylinder to generate a falling liquid, and itself evaporates to become nitrogen gas again. This nitrogen gas is led from the condenser 35 to the conduit 43 and passes through the subcooler 34 and the conduit 44 to the main heat exchanger 33.
, And is drawn out of the cold box 32 by a conduit 45, and is sucked into the circulating compressor 38 through a conduit 46 and circulated. The surplus nitrogen gas is discharged from the valve 47, and the insufficient nitrogen gas at the time of starting is supplied from the valve 48.

【0025】精留筒9の下部からは、前記精留によって
分離した高純度のアルゴンガス295Nm3 /hが導管
49に抜き出され、主熱交換器33で昇温して導管50
から導管51,弁52を経て回収され、高純度アルゴン
ガス(PAr)として供給される。また、凝縮器35か
らは、低沸点不純物成分が濃縮したガス5Nm3 /hが
導管53に抜き出され、主熱交換器33,導管54,導
管55及び弁56を通って放出される。放出される低沸
点不純物濃縮ガスの組成は、例えば、アルゴン83.8
%,窒素2.4%,水素1.8%,一酸化炭素12.0
%である。
From the lower part of the rectification column 9, 295 Nm 3 / h of high-purity argon gas separated by the rectification is extracted to a conduit 49, and the temperature is increased in the main heat exchanger 33 to a conduit 50.
, And collected through a conduit 51 and a valve 52, and supplied as high-purity argon gas (PAr). From the condenser 35, a gas 5 Nm 3 / h in which the low-boiling-point impurity component is concentrated is extracted to the conduit 53, and is discharged through the main heat exchanger 33, the conduit 54, the conduit 55, and the valve 56. The composition of the low-boiling-point impurity concentrated gas released is, for example, 83.8% argon.
%, Nitrogen 2.4%, hydrogen 1.8%, carbon monoxide 12.0
%.

【0026】本発明は、基本的に上述のようにしてアル
ゴンを精製回収するものであるが、単結晶製造炉1で
は、炉の運転状況により、雰囲気ガスとして使用するア
ルゴンガスの使用量が変動することがある。この場合、
単結晶製造炉1から排出される排ガスの流量や不純物濃
度が変化する。このような場合においても、安定した状
態でアルゴンの回収運転を継続する必要がある。
The present invention basically purifies and recovers argon as described above. However, in the single crystal production furnace 1, the amount of argon gas used as an atmospheric gas varies depending on the operation state of the furnace. May be. in this case,
The flow rate and the impurity concentration of the exhaust gas discharged from the single crystal manufacturing furnace 1 change. Even in such a case, it is necessary to continue the argon recovery operation in a stable state.

【0027】このため、前述のように、排ガス中の酸素
を除去する触媒筒7では、排ガス中の酸素量を酸素濃度
計23と流量計24とで測定することによって水素導入
経路6の流量調節機構27を制御し、さらに、触媒筒7
から導出したガス中の水素濃度を水素濃度計26で測定
して流量調節機構27の補正を行うようにしている。し
たがって、排ガス中の酸素量が変動しても水素量を確実
に増減させることができるとともに、排ガス中に元から
含まれている水素量の変動にも追従することができるの
で、酸素を確実に除去しながら、添加する水素量を必要
最小限とすることができる。
For this reason, as described above, in the catalyst tube 7 for removing oxygen in the exhaust gas, the amount of oxygen in the exhaust gas is measured by the oxygen concentration meter 23 and the flow meter 24 to adjust the flow rate of the hydrogen introduction path 6. The mechanism 27 is controlled, and the catalyst cylinder 7
The hydrogen concentration in the gas derived from the above is measured by the hydrogen concentration meter 26 to correct the flow rate adjusting mechanism 27. Therefore, even if the amount of oxygen in the exhaust gas fluctuates, the amount of hydrogen can be reliably increased and decreased, and the fluctuation of the amount of hydrogen originally contained in the exhaust gas can be followed. While removing, the amount of added hydrogen can be minimized.

【0028】一方、深冷分離手段においては、導管50
から導出する高純度アルゴンガスの圧力を一定に制御す
るための圧力調節計(PIC)57及び弁57aと、導
管54から導出する低沸点不純物濃縮ガス中の特定成分
の純度を一定に制御するための純度調節計(QIC)5
8及び弁58aと、精留筒9の筒底液の液面を一定に制
御するために導管42から導入する液化窒素量を調節す
る液面調節計(LIC)59及び弁59aと、凝縮器3
5から導管43に導出する窒素ガス量を一定に制御する
ための液面調節計(LIC)60及び弁60aと、過冷
器34で冷却された液化窒素を減圧する前記弁41を制
御するための圧力調節計(PIC)61とが設けられて
いる。なお、純度調節計58で純度を測定する特定成分
は、通常、低沸点不純物濃縮ガス中の大半を占めるアル
ゴンが対象となる。
On the other hand, in the cryogenic separation means, the conduit 50
Pressure controller (PIC) 57 and a valve 57a for controlling the pressure of the high-purity argon gas derived from the gas at a constant level, and for controlling the purity of specific components in the low-boiling-point impurity-enriched gas derived from the conduit 54 at a constant level. Purity Controller (QIC) 5
8 and a valve 58a, a liquid level controller (LIC) 59 and a valve 59a for adjusting the amount of liquefied nitrogen introduced from the conduit 42 in order to constantly control the liquid level of the bottom liquid of the rectification column 9, and a condenser 3
5 for controlling the liquid level controller (LIC) 60 and the valve 60a for controlling the amount of nitrogen gas led out to the conduit 43 from 5 and the valve 41 for reducing the pressure of the liquefied nitrogen cooled by the subcooler 34. Pressure controller (PIC) 61 is provided. The specific component whose purity is to be measured by the purity controller 58 is usually argon, which accounts for most of the low-boiling-point impurity-enriched gas.

【0029】このような各種調節計を設けて精留筒9を
一定条件で運転することにより、排ガス量が減少した場
合でも、高純度アルゴンを所定純度で回収することがで
きる。例えば、排ガス量が減少して精留筒9内に導入さ
れるガス量が減少すると、精留筒9内の圧力が低下する
ことになるが、ここで圧力調節計57が作動して弁57
aを絞ることにより、精留筒9から導出するガス(高純
度アルゴン)量が減少して精留筒9内が一定圧力に保た
れる。同時に、低沸点不純物濃縮ガスの抜出し量が一定
のままだと、該ガス中のアルゴン純度が上がるため、こ
れを純度調節計58が検出してアルゴン純度が一定にな
るように弁58aが絞られる。これにより、精留筒9が
自動的に減量運転状態となる。さらに、この減量運転に
伴って筒底部や凝縮器35の液面が変動すると、両液面
調節計59,60が作動して一定の液面になるように自
動調節する。
By providing such various controllers and operating the rectification cylinder 9 under a constant condition, high-purity argon can be recovered at a predetermined purity even when the amount of exhaust gas is reduced. For example, if the amount of gas introduced into the rectification cylinder 9 decreases due to a decrease in the amount of exhaust gas, the pressure in the rectification cylinder 9 will decrease. Here, the pressure controller 57 operates to operate the valve 57.
By reducing a, the amount of gas (high-purity argon) derived from the rectification cylinder 9 decreases, and the inside of the rectification cylinder 9 is maintained at a constant pressure. At the same time, if the amount of the low-boiling-point impurity-concentrated gas withdrawn remains constant, the purity of argon in the gas increases. The purity controller 58 detects this, and the valve 58a is throttled so that the argon purity is constant. . As a result, the rectification cylinder 9 automatically enters the reduced operation state. Further, when the liquid level of the bottom of the cylinder or the condenser 35 fluctuates due to the reduction operation, the liquid level controllers 59 and 60 operate to automatically adjust the liquid level to a constant level.

【0030】なお、前記導管54の純度調節計58に代
えて、精留筒9(凝縮器35)から導管53に導出する
低沸点不純物成分含有ガスの温度を調節する温度調節計
を設け、温度が一定になるように前記弁58aを制御し
てもよい。同様に、前記弁41は、圧力調節計61に代
えて流量調節計で制御することができる。
In place of the purity controller 58 of the conduit 54, a temperature controller for controlling the temperature of the low-boiling-point impurity component-containing gas derived from the rectification column 9 (condenser 35) to the conduit 53 is provided. The valve 58a may be controlled so as to be constant. Similarly, the valve 41 can be controlled by a flow controller instead of the pressure controller 61.

【0031】上述の制御によってある程度までの減量は
可能であるが、30%以下の減量の場合、制御弁のサイ
ジングにもよるが、制御性が悪くなることがあり、ま
た、排ガスを圧縮する圧縮機3の容量や形式によって
は、減量によりほとんど動力の下がらないものがあるた
め、このような場合には、以下に示す手段によって対処
する。
Although it is possible to reduce the amount to some extent by the above-described control, if the amount is reduced to 30% or less, the controllability may be deteriorated depending on the sizing of the control valve. Depending on the capacity and type of the machine 3, there is a case where the power hardly decreases due to the weight reduction, and such a case is dealt with by the following means.

【0032】すなわち、単結晶製造炉1からの排ガス量
が減少したときに、前記高純度アルゴンガスが流れる導
管51からアルゴンガスの一部を循環導管62に分岐し
て圧縮機3の吸入側の導管15に戻したり、低沸点不純
物濃縮ガスが流れる導管54から該ガスの一部を循環導
管63に分岐して圧縮機3の吸入側の導管15に戻した
りする。このとき、圧縮機3の吸入側に戻して循環させ
るガスは、排ガスの減量幅に応じて高純度アルゴンガス
及び低沸点不純物濃縮ガスのいずれか一方あるいは双方
を任意に選定することができるが、減量幅が比較的小さ
い場合は、高純度アルゴンガスを優先することが好まし
い。なお、各循環導管62,63を介して循環させるガ
ス量は、前記弁52,56と、循環導管62,63にそ
れぞれ設けた弁64,65との開度を調節することによ
り行うことができ、排ガス量に対応させて自動的に行う
ことができる。
That is, when the amount of exhaust gas from the single crystal production furnace 1 is reduced, a part of the argon gas is branched from the conduit 51 through which the high-purity argon gas flows to the circulation conduit 62 and is diverted to the suction side of the compressor 3. The gas is returned to the conduit 15, or a part of the gas from the conduit 54 through which the low-boiling-point impurity-enriched gas flows is branched into the circulation conduit 63 and returned to the conduit 15 on the suction side of the compressor 3. At this time, the gas circulated back to the suction side of the compressor 3 can be arbitrarily selected from one or both of a high-purity argon gas and a low-boiling-point impurity-enriched gas in accordance with the reduction width of the exhaust gas. When the loss width is relatively small, it is preferable to give priority to high-purity argon gas. The amount of gas circulated through each of the circulation conduits 62 and 63 can be controlled by adjusting the opening of the valves 52 and 56 and the valves 64 and 65 provided in the circulation conduits 62 and 63, respectively. Can be performed automatically in accordance with the amount of exhaust gas.

【0033】さらに、単結晶製造炉1から排ガスが排出
されなくなった場合でも、高純度アルゴンガス及び低沸
点不純物濃縮ガスの全量を戻して循環させることによ
り、精留塔9を全還流の状態で維持できるので、次に排
ガスが増加したとき、回収するアルゴンの純度を劣化さ
せることなく、自動的に回収することができる。
Further, even when the exhaust gas is no longer discharged from the single crystal production furnace 1, the rectification column 9 is fully refluxed by returning and circulating all of the high-purity argon gas and the low-boiling-point impurity-enriched gas. Since it can be maintained, the next time the exhaust gas increases, it can be automatically recovered without deteriorating the purity of the recovered argon.

【0034】このように精留筒9から導出したガスを圧
縮機3を循環させることにより、油除去筒4,油フィル
ター5,触媒筒7,吸着筒8における負荷を増大させる
ことなく、精留筒9に導入するガス量をある程度の量以
上に確保することができるので、制御性が悪化すること
がなくなり、排ガス量が大幅に減少した場合でも、安定
した運転状態を自動的に継続させることができる。
By circulating the gas derived from the rectification cylinder 9 through the compressor 3 in this manner, the rectification can be performed without increasing the load on the oil removal cylinder 4, the oil filter 5, the catalyst cylinder 7, and the adsorption cylinder 8. Since the amount of gas introduced into the cylinder 9 can be secured to a certain amount or more, the controllability does not deteriorate, and even when the amount of exhaust gas is greatly reduced, a stable operation state is automatically continued. Can be.

【0035】[0035]

【発明の効果】以上説明したように、本発明のアルゴン
の回収方法及び装置によれば、単結晶製造炉から排出さ
れるガスからアルゴンを効率よく回収することができ
る。特に、低沸点不純物を分離する精留筒を一定条件で
運転することにより、排ガス量が減少した場合でも所定
純度のアルゴンが得られるとともに、放出されるアルゴ
ン量の増加も抑えることができる。さらに、精留後のガ
スを圧縮機吸入側に戻して循環させることにより、排ガ
ス量が大幅に減少したときにも、安定した運転を継続す
ることができる。
As described above, according to the method and apparatus for recovering argon of the present invention, argon can be efficiently recovered from gas discharged from a single crystal manufacturing furnace. In particular, by operating the rectification column for separating low-boiling impurities under constant conditions, even when the amount of exhaust gas is reduced, argon of a predetermined purity can be obtained, and an increase in the amount of released argon can be suppressed. Further, by circulating the rectified gas back to the compressor suction side, stable operation can be continued even when the amount of exhaust gas is significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一形態例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…単結晶製造炉、2…集塵器、3…圧縮機、4…油除
去筒、5…油フィルター、6…水素導入経路、7…触媒
筒、8…吸着筒、9…精留筒、11…ブロワー、13…
ガスホルダー、16…アフタークーラー、19…予熱用
熱交換器、20…加熱器、23…酸素濃度計、24…流
量計、26…水素濃度計、27…水素流量調節計、28
…冷却装置、32…コールドボックス、33…主熱交換
器、34…過冷器、35…凝縮器、36…リボイラー、
38…循環圧縮機、57…圧力調節計、58…純度調節
計、59…液面調節計、60…液面調節計、61…圧力
調節計、62,63…循環導管
DESCRIPTION OF SYMBOLS 1 ... Single crystal manufacturing furnace, 2 ... Dust collector, 3 ... Compressor, 4 ... Oil removal cylinder, 5 ... Oil filter, 6 ... Hydrogen introduction path, 7 ... Catalyst cylinder, 8 ... Adsorption cylinder, 9 ... Rectification cylinder , 11 ... blower, 13 ...
Gas holder, 16 aftercooler, 19 heat exchanger for preheating, 20 heater, 23 oxygen concentration meter, 24 flow meter, 26 hydrogen concentration meter, 27 hydrogen flow controller, 28
... cooling device, 32 ... cold box, 33 ... main heat exchanger, 34 ... subcooler, 35 ... condenser, 36 ... reboiler,
38: circulation compressor, 57: pressure controller, 58: purity controller, 59: liquid level controller, 60: liquid level controller, 61: pressure controller, 62, 63: circulation conduit

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 アルゴンを主成分とし、不純物として粉
塵,油分,水分,一酸化炭素,二酸化炭素,酸素,水
素,窒素等を含む単結晶製造炉からの排ガス中のアルゴ
ンを回収する方法であって、前記排ガスを圧縮するとと
もに前記粉塵等の固形分及び油分を除去する工程と、該
排ガス中の酸素の反応に必要な化学量論量より過剰量の
水素を添加して酸素を触媒反応で水に転換する工程と、
水分及び二酸化炭素を吸着除去する工程と、精留分離に
よってアルゴンより低沸点の不純物を分離してアルゴン
を回収する工程とを有することを特徴とするアルゴンの
回収方法。
1. A method for recovering argon in an exhaust gas from a single crystal production furnace containing argon as a main component and containing dust, oil, moisture, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen and the like as impurities. A step of compressing the exhaust gas and removing solids and oils such as dust, and adding a hydrogen in excess of a stoichiometric amount necessary for a reaction of oxygen in the exhaust gas to convert oxygen into a catalytic reaction. Converting to water,
A method for recovering argon, comprising: a step of adsorbing and removing water and carbon dioxide; and a step of recovering argon by separating impurities having a lower boiling point than argon by rectification separation.
【請求項2】 前記精留分離を、精留筒と凝縮器とを備
えた深冷分離装置で行うにあたり、前記精留筒内に分離
生成したアルゴンのガスを一定圧力に制御して抜き出
し、精留筒内に分離した前記低沸点不純物が濃縮したガ
スを一定純度に制御して抜き出すか、あるいは、該低沸
点不純物濃縮ガスの精留筒からの出口部の温度を一定温
度に制御して抜き出し、前記凝縮器に注入する寒冷用液
を精留筒筒底の液面を一定に制御して注入するととも
に、該凝縮器で気化した寒冷用ガスを該凝縮器の液面を
一定に制御して抜き出すことを特徴とする請求項1記載
のアルゴンの回収方法。
2. When performing the rectification separation by a cryogenic separation device provided with a rectification column and a condenser, the argon gas separated and generated in the rectification column is controlled and extracted at a constant pressure, The low-boiling-point impurities separated in the rectifying column may be extracted by controlling the concentration of the gas having a low boiling point concentration to a constant purity, or the temperature of the outlet of the low-boiling-point impurity concentrated gas from the rectifying column may be controlled to a constant temperature. Withdrawing and injecting the cooling liquid to be injected into the condenser while controlling the liquid level at the bottom of the rectifying cylinder at a constant level, and controlling the liquid level of the condenser at a constant level with the cooling gas vaporized by the condenser. 2. The method for recovering argon according to claim 1, wherein the argon is extracted.
【請求項3】 前記精留分離により回収したアルゴンガ
スの少なくとも一部を、前記圧縮前の排ガスに戻して合
流させることを特徴とする請求項1記載のアルゴンの回
収方法。
3. The method for recovering argon according to claim 1, wherein at least a part of the argon gas recovered by the rectification separation is returned to the exhaust gas before compression and merged.
【請求項4】 前記精留分離により分離した低沸点不純
物濃縮ガスの少なくとも一部を、前記圧縮前の排ガスに
戻して合流させることを特徴とする請求項1記載のアル
ゴンの回収方法。
4. The method for recovering argon according to claim 1, wherein at least a part of the low-boiling-point impurity-enriched gas separated by the rectification separation is returned to the uncompressed exhaust gas and joined.
【請求項5】 アルゴンを主成分とし、不純物として粉
塵,油分,水分,一酸化炭素,二酸化炭素,酸素,水
素,窒素等を含む単結晶製造炉からの排ガス中のアルゴ
ンを回収する装置であって、前記粉塵等の固形分を除去
する集塵手段と、排ガスを所用の圧力に圧縮する圧縮手
段と、油分を除去する油除去手段と、水素を添加して酸
素を触媒反応で水に転換する触媒反応手段と、水分と二
酸化炭素とを吸着除去する吸着手段と、残存する不純物
を含む排ガスを液化精留してアルゴンより低沸点の不純
物とアルゴンとに分離する深冷分離手段と、該深冷分離
手段で分離したアルゴンを回収して前記単結晶製造炉に
供給する回収アルゴン供給経路とを備えるとともに、前
記精留筒は、筒中段に排ガス導入経路が接続され、上部
に外部寒冷液を導入して還流液を生成する凝縮器を有
し、該凝縮器から前記低沸点不純物のガスを導出する低
沸点不純物濃縮ガス導出経路と、筒下部からアルゴンガ
スを導出するアルゴン導出経路とを備えていることを特
徴とするアルゴンの回収装置。
5. An apparatus for recovering argon in an exhaust gas from a single crystal production furnace containing argon as a main component and containing dust, oil, moisture, carbon monoxide, carbon dioxide, oxygen, hydrogen, nitrogen, etc. as impurities. Dust collecting means for removing solids such as dust, compression means for compressing exhaust gas to a required pressure, oil removing means for removing oil, and adding hydrogen to convert oxygen to water by a catalytic reaction. A catalytic reaction means, an adsorption means for adsorbing and removing moisture and carbon dioxide, a cryogenic separation means for liquefying and liquefying an exhaust gas containing residual impurities to separate impurities and argon having a boiling point lower than argon, and A recovery argon supply path for recovering the argon separated by the cryogenic separation means and supplying the recovered argon to the single crystal production furnace, wherein the rectification cylinder has an exhaust gas introduction path connected to the middle stage of the cylinder, and an external cooling liquid Introduce A low-boiling-point impurity-enriched gas deriving path for deriving the low-boiling-point impurity gas from the condenser, and an argon deriving path for deriving argon gas from the lower part of the cylinder. An argon recovery device, characterized in that:
【請求項6】 前記アルゴンガス導出経路に設けた圧力
検出手段からの信号で該経路に設けたアルゴン導出弁の
開度を制御するアルゴン圧力制御手段と、前記低沸点不
純物濃縮ガス導出経路に設けたガス中の特定の成分を検
出する分析手段からの信号で該経路に設けた低沸点不純
物導出弁の開度を制御する低沸点不純物濃縮ガス純度制
御手段と、前記精留筒の底部に設けた液面計測手段から
の信号で前記凝縮器に外部寒冷液を導入する経路に設け
た外部寒冷液導入弁の開度を制御する精留筒液面制御手
段と、前記凝縮器に設けた寒冷液面計測手段からの信号
で該凝縮器で気化した寒冷用ガスを導出する経路に設け
た気化ガス導出弁の開度を制御する凝縮器液面制御手段
とを備えていることを特徴とする請求項5記載のアルゴ
ンの回収装置。
6. An argon pressure control means for controlling an opening degree of an argon discharge valve provided on the argon gas discharge path based on a signal from a pressure detection means provided on the path, and an argon pressure control means provided on the low boiling point impurity concentrated gas discharge path. Low-boiling-point impurity-enriched gas purity control means for controlling the degree of opening of a low-boiling-point impurity outlet valve provided in the path with a signal from an analyzing means for detecting a specific component in the gas, and provided at the bottom of the rectification column. A rectifying cylinder liquid level control means for controlling an opening of an external chilled liquid introduction valve provided in a path for introducing an external chilled liquid into the condenser by a signal from the liquid level measuring means, and a chiller provided in the condenser. And a condenser liquid level control means for controlling an opening of a vaporized gas derivation valve provided in a path for deriving the cooling gas vaporized in the condenser by a signal from the liquid level measurement means. The argon recovery device according to claim 5.
【請求項7】 前記低沸点不純物濃縮ガス純度制御手段
に代えて、前記低沸点不純物濃縮ガス導出経路に設けた
温度検出手段からの信号で該経路に設けた低沸点不純物
導出弁の開度を制御する低沸点不純物濃縮ガス温度制御
手段を設けたことを特徴とする請求項6記載のアルゴン
の回収装置。
7. An opening degree of a low boiling point impurity derivation valve provided in a low boiling point impurity concentrated gas deriving path provided by a signal from a temperature detecting means provided in the low boiling point impurity concentrated gas deriving path instead of the low boiling point impurity concentrated gas purity controlling means. 7. The argon recovery apparatus according to claim 6, further comprising a low-boiling-point impurity-concentrated gas temperature control means for controlling.
【請求項8】 前記回収アルゴン供給経路と、前記圧縮
手段より上流側の排ガス経路との間に、回収アルゴン供
給経路から排ガス経路にアルゴンを戻すアルゴン戻し経
路を設けたことを特徴とする請求項5記載のアルゴンの
回収装置。
8. An argon return path for returning argon from the recovered argon supply path to the exhaust gas path is provided between the recovered argon supply path and an exhaust gas path upstream of the compression means. 6. The argon recovery device according to 5.
【請求項9】 前記低沸点不純物濃縮ガス導出経路と、
前記圧縮手段より上流側の排ガス経路との間に、低沸点
不純物濃縮ガス導出経路から排ガス経路に低沸点不純物
濃縮ガスを戻す低沸点不純物戻し経路を設けたことを特
徴とする請求項5記載のアルゴンの回収装置。
9. The low-boiling-point impurity-enriched gas deriving path,
6. A low-boiling-point impurity return path for returning a low-boiling-point impurity-enriched gas from a low-boiling-point impurity-enriched gas lead-out path to an exhaust gas path between the exhaust-gas path and the exhaust gas path on the upstream side of the compression means. Argon recovery device.
JP16875497A 1997-06-25 1997-06-25 Argon recovery method and apparatus Expired - Lifetime JP4024347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16875497A JP4024347B2 (en) 1997-06-25 1997-06-25 Argon recovery method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16875497A JP4024347B2 (en) 1997-06-25 1997-06-25 Argon recovery method and apparatus

Publications (2)

Publication Number Publication Date
JPH1111915A true JPH1111915A (en) 1999-01-19
JP4024347B2 JP4024347B2 (en) 2007-12-19

Family

ID=15873821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16875497A Expired - Lifetime JP4024347B2 (en) 1997-06-25 1997-06-25 Argon recovery method and apparatus

Country Status (1)

Country Link
JP (1) JP4024347B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011050247A1 (en) * 2011-05-10 2012-11-15 Reicat Gmbh Separating argon from gaseous mixture, comprises collecting gaseous mixture, roughly removing the gaseous mixture, compressing, cooling, finely removing the gaseous mixture, catalytically oxidizing carbon monoxide in gas mixture
CN108721934A (en) * 2018-08-16 2018-11-02 青海黄河上游水电开发有限责任公司新能源分公司 The overall process autocontrol method and system of rectifying column
CN113244766A (en) * 2020-02-10 2021-08-13 新特能源股份有限公司 Single crystal furnace tail gas purification and recovery system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991330B2 (en) 2014-01-29 2016-09-14 信越半導体株式会社 Argon gas recovery and purification method and argon gas recovery and purification apparatus from silicon single crystal manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011050247A1 (en) * 2011-05-10 2012-11-15 Reicat Gmbh Separating argon from gaseous mixture, comprises collecting gaseous mixture, roughly removing the gaseous mixture, compressing, cooling, finely removing the gaseous mixture, catalytically oxidizing carbon monoxide in gas mixture
DE102011050247B4 (en) * 2011-05-10 2019-02-21 Reicat Gmbh Process and apparatus for separating argon from a gas mixture
CN108721934A (en) * 2018-08-16 2018-11-02 青海黄河上游水电开发有限责任公司新能源分公司 The overall process autocontrol method and system of rectifying column
CN108721934B (en) * 2018-08-16 2024-04-12 青海黄河上游水电开发有限责任公司新能源分公司 Full-process automatic control method and system for rectifying tower
CN113244766A (en) * 2020-02-10 2021-08-13 新特能源股份有限公司 Single crystal furnace tail gas purification and recovery system and method

Also Published As

Publication number Publication date
JP4024347B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JPH04222381A (en) Manufacture of high-purity argon
CN103373716A (en) Method and device for purifying and recycling emitted argon in preparation process of monocrystalline silicon
JP3020842B2 (en) Argon purification method and apparatus
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH04295587A (en) Production system of rough neon
JP2585955B2 (en) Air separation equipment
JP3306517B2 (en) Air liquefaction separation apparatus and method
JP4024347B2 (en) Argon recovery method and apparatus
JPH11228116A (en) Recovering and purifying method of argon and device therefor
JP2782356B2 (en) Argon recovery method
JPH07133982A (en) Method and apparatus for preparing high purity argon
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP3424100B2 (en) Method for purifying krypton and xenon
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JP3256811B2 (en) Method for purifying krypton and xenon
JP2939814B2 (en) Methane separation device and method
JP3466437B2 (en) Air separation equipment
JP2001033155A (en) Air separator
JPH07127971A (en) Argon separator
JP2761917B2 (en) Argon recovery method
JPH0579754A (en) Manufacturing method of high purity nitrogen
JP3254523B2 (en) Method and apparatus for purifying nitrogen
JP2574270B2 (en) Carbon monoxide separation and purification equipment
JP3532466B2 (en) Air separation device
JP3467178B2 (en) Air separation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term