JPH11108760A - Thermal type infrared detecting delement and its manufacture - Google Patents
Thermal type infrared detecting delement and its manufactureInfo
- Publication number
- JPH11108760A JPH11108760A JP9274201A JP27420197A JPH11108760A JP H11108760 A JPH11108760 A JP H11108760A JP 9274201 A JP9274201 A JP 9274201A JP 27420197 A JP27420197 A JP 27420197A JP H11108760 A JPH11108760 A JP H11108760A
- Authority
- JP
- Japan
- Prior art keywords
- infrared detecting
- detecting element
- diaphragm
- hole
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000010408 film Substances 0.000 claims description 30
- 239000010409 thin film Substances 0.000 claims description 14
- 230000001681 protective effect Effects 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 description 22
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
- G01J5/024—Special manufacturing steps or sacrificial layers or layer structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0853—Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は冷却を必要としない
熱型赤外線検出素子およびその製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared detecting element which does not require cooling and a method for manufacturing the same.
【0002】[0002]
【従来の技術】赤外線検出器は半導体等のバンド構造を
利用した量子型と、熱による材料物性値(抵抗、誘電率
等)の変化を利用した熱型に大きく分けられる。前者は
高感度ではあるが動作原理上冷却を必要としている。そ
れに対し後者は、特に冷却を必要としていないため非冷
却型とも呼ばれ、製作コストや維持コストの面で量子型
に比べ有利な点が多く、近年注目されている。2. Description of the Related Art Infrared detectors can be broadly classified into a quantum type utilizing a band structure of a semiconductor or the like and a thermal type utilizing a change in material properties (resistance, dielectric constant, etc.) due to heat. The former is highly sensitive, but requires cooling due to its operating principle. On the other hand, the latter type is called an uncooled type because it does not particularly require cooling, and has many advantages over the quantum type in terms of manufacturing cost and maintenance cost, and has been attracting attention in recent years.
【0003】熱型赤外線検出素子には、ボロメータ型、
焦電型及び熱電対型があり、いずれも検出素子の感度を
高くするため一般には熱分離構造、いわゆるダイアフラ
ム構造を有している。このなかでも比較的特性に優れて
いるボロメータ型の赤外線検出素子を例にとって説明す
る。[0003] The thermal infrared detecting element includes a bolometer type,
There are a pyroelectric type and a thermocouple type, both of which generally have a heat separation structure, that is, a so-called diaphragm structure, in order to increase the sensitivity of the detection element. Among them, a bolometer type infrared detecting element having relatively excellent characteristics will be described as an example.
【0004】この素子のダイアフラム構造は図6に示す
ように、キャビティ10、熱電材料としてのボロメータ
薄膜7、支持膜6、保護膜8及び赤外吸収膜9よりなる
熱電変換部分1とそれらを支える梁3とからなってい
る。ダイアフラム構造は、基板上に犠牲層を堆積し、さ
らに支持膜6、ボロメータ薄膜7、保護膜8、赤外吸収
膜9を堆積し、各層を所望の形状にドライエッチング等
でパターニングし熱電変換部1の周りに犠牲層を露出さ
せ、最後に熱電変換部1の周りからエッチングにより犠
牲層を除去することにより形成される。犠牲層が除去さ
れたキャビティ10の部分は完全に空隙になっており、
熱電変換部1を梁3で吊っている構造となっている。ボ
ロメータ薄膜7の相対する2辺は電極4と接触してお
り、これらの電極は梁3を経由して信号処理回路に接続
され、赤外線を吸収することで生じたボロメータの抵抗
変化を電気信号として取り出している。As shown in FIG. 6, the diaphragm structure of this device has a cavity 10, a bolometer thin film 7 as a thermoelectric material, a support film 6, a protective film 8, and a thermoelectric conversion portion 1 and supports them. It consists of a beam 3. The diaphragm structure is such that a sacrificial layer is deposited on a substrate, a support film 6, a bolometer thin film 7, a protective film 8, and an infrared absorption film 9 are further deposited, and each layer is patterned into a desired shape by dry etching or the like. 1 is formed by exposing the sacrificial layer around the thermoelectric conversion part 1 and finally removing the sacrificial layer from the periphery of the thermoelectric conversion part 1 by etching. The portion of the cavity 10 from which the sacrificial layer has been removed is completely void,
It has a structure in which the thermoelectric converter 1 is suspended by beams 3. Opposite sides of the bolometer thin film 7 are in contact with the electrodes 4, and these electrodes are connected to a signal processing circuit via the beam 3, and a change in resistance of the bolometer caused by absorbing infrared rays is converted into an electric signal. I'm taking it out.
【0005】[0005]
【発明が解決しようとする課題】これまでの熱型赤外線
検出器は、10μm帯近傍の赤外画像化を目的として主
に開発されてきた経緯より、各素子を2次元に配列した
構造が主であった。従ってダイアフラム構造はキャビテ
ィ10の幅が1〜1.5μm、熱電変換部が30〜50
μm□程度であるのが適当であった。これらの赤外線検
出素子の特性は、各層の材料や厚さ、熱電変換部の大き
さ、梁の長さや太さ等による熱容量、熱コンダクタンス
と熱電材料の特性(ボロメータの場合は抵抗温度係数)
で決まり、広範な用途を考えると熱電変換部の大きさは
これまでの30〜50μm□程度のみならず300μm
□以上の大きさの素子も将来的には十分必要とされる。
しかしながら、現状の構造では熱電変換部1の周りから
犠牲層がエッチングできる領域すなわち熱電変換部の大
きさは、エッチャントが十分浸みわたる領域を考えると
50μm□程度が限界であり、それ以上大きな熱電変換部
をもつダイアフラム構造は構造的な問題より従来の方法
で製作することは困難であった。従ってその応用範囲は
極限られ、専ら熱電変換部の小さい用途にのみ適用され
ていた。SUMMARY OF THE INVENTION Thermal infrared detectors have been developed mainly for the purpose of infrared imaging in the vicinity of the 10 .mu.m band. Met. Therefore, in the diaphragm structure, the width of the cavity 10 is 1 to 1.5 μm, and the thermoelectric conversion unit is 30 to 50 μm.
It was appropriate to be about μm □. The characteristics of these infrared detectors include the material and thickness of each layer, the size of the thermoelectric conversion section, the heat capacity due to the length and thickness of the beam, and the properties of thermal conductance and thermoelectric material (resistance temperature coefficient for bolometer)
Considering a wide range of applications, the size of the thermoelectric conversion section is not only about 30 to 50 μm square but also 300 μm
A device having a size of □ or more will be sufficiently required in the future.
However, in the current structure, the region where the sacrificial layer can be etched from around the thermoelectric conversion unit 1, that is, the size of the thermoelectric conversion unit is determined by considering the region where the etchant is sufficiently immersed.
The limit is about 50 μm square, and it has been difficult to manufacture a diaphragm structure having a thermoelectric conversion part larger than that by a conventional method due to structural problems. Therefore, its application range is extremely limited, and it has been applied only to applications where the thermoelectric conversion section is small.
【0006】本発明の目的は、300μm□以上の大き
な熱電変換部をも製作が可能な構造をもつ熱型赤外線検
出素子と、その製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal infrared detecting element having a structure capable of manufacturing even a large thermoelectric converter of 300 μm square or more, and a method of manufacturing the same.
【0007】[0007]
【課題を解決するための手段】本発明の熱型赤外線検出
素子は、熱電材料と前記熱電材料を挟んだ支持膜及び保
護膜よりなるダイアフラム構造に、複数の貫通孔が形成
されていることを特徴とするものである。熱電材料とし
てはボロメータ薄膜が最も好適に用いられる。According to the thermal infrared detecting element of the present invention, a plurality of through holes are formed in a diaphragm structure comprising a thermoelectric material and a support film and a protective film sandwiching the thermoelectric material. It is a feature. A bolometer thin film is most preferably used as the thermoelectric material.
【0008】この貫通孔の形状はスリット状、正方形
状、円形等があるが、スリット状貫通孔2の長さ方向が
ボロメータ薄膜中を流れる電流と同じ方向であるように
することで、スリット形成による抵抗値の変化を抑える
ことができ、また正方形状や円形状にすることによって
ダイアフラム中に入る歪を均等に分散することができ
る。The shape of the through hole is slit, square, circular or the like. The slit is formed by setting the length direction of the slit through hole 2 to the same direction as the current flowing in the bolometer thin film. The change in the resistance value due to the deformation can be suppressed, and the distortion in the diaphragm can be evenly distributed by forming the shape into a square or a circle.
【0009】このような熱型赤外線検出素子は、犠牲層
の上に支持膜、熱電材料、保護膜を成膜した後に、梁を
形成するためのダイアフラム周囲のスリットパターンを
形成するのと同時にダイアフラム中の貫通孔形成のパタ
ーンを形成し、前記ダイアフラム周囲のスリットパター
ン、及びダイアフラム中の貫通孔形成のパターンを通し
前記犠牲層をエッチングにより除去することにより容易
に製造することが可能である。In such a thermal infrared detecting element, a support film, a thermoelectric material, and a protective film are formed on a sacrificial layer, and then a slit pattern around a diaphragm for forming a beam is formed at the same time as the diaphragm. It can be easily manufactured by forming a pattern for forming a through hole in the inside, and removing the sacrificial layer by etching through a slit pattern around the diaphragm and a pattern for forming a through hole in the diaphragm.
【0010】つまり、本発明では、ダイアフラム構造と
なる部分に貫通孔を設けることにより、犠牲層をエッチ
ングする際に、熱電変換部の周囲のスリットのみなら
ず、その上部からもエッチャントを浸み込ませることが
できる。従って比較的大きな熱電変換部でもその下層の
犠牲層をエッチングすることが可能となり、大きなダイ
アフラム構造を形成することができる。その結果、熱容
量等を含むデバイス設計の自由度が増し特性の向上やデ
バイス適用範囲の拡大を図ることも可能となる。さら
に、本発明の熱型赤外線検出素子の製造方法を用いれ
ば、梁を形成するためのダイアフラム周囲のスリットパ
ターンを形成するのと同時にダイアフラム中の貫通孔形
成のパターンを形成し、前記ダイアフラム周囲のスリッ
トパターン、及びダイアフラム中の貫通孔形成のパター
ンを通し前記犠牲層をエッチングにより除去するため
に、従来とほぼ同様なプロセスで素子を製作することが
できる。この際、貫通孔のピッチを50〜100μmと
することによって熱電変換部の下層の犠牲層を比較的短
時間で均一に除去することができるという効果が得られ
る。In other words, according to the present invention, by providing a through hole in a portion having a diaphragm structure, when etching the sacrificial layer, not only the slit around the thermoelectric conversion portion but also the etchant from the upper portion thereof is impregnated. I can do it. Therefore, even a relatively large thermoelectric conversion part can etch the sacrificial layer below it, and a large diaphragm structure can be formed. As a result, the degree of freedom in device design including heat capacity and the like is increased, and it is also possible to improve characteristics and expand the device application range. Furthermore, if the method for manufacturing a thermal infrared detecting element of the present invention is used, simultaneously with forming a slit pattern around a diaphragm for forming a beam, a pattern of forming a through hole in the diaphragm is formed, and a pattern around the diaphragm is formed. In order to remove the sacrificial layer by etching through a slit pattern and a pattern for forming a through hole in the diaphragm, an element can be manufactured by a process substantially similar to the conventional one. At this time, by setting the pitch of the through holes to 50 to 100 μm, an effect is obtained that the sacrificial layer below the thermoelectric converter can be uniformly removed in a relatively short time.
【0011】[0011]
【発明の実施の形態】本発明の熱型赤外線検出素子の構
造、製造方法、動作について図1、図2、図3を用い具
体的に説明する。ここでの実施例は、熱電材料としてボ
ロメータ薄膜を用いた場合について示す。図1は本発明
の熱型赤外線検出素子を上から見た図である。熱電変換
部1を4本の梁3で吊っている形状である。図3はA−
A’の断面図で、熱電変換部が空中にに浮き、熱的に分
離されている様子を示している。また本実施例では、熱
電変換部1の大きさを300μm□とし、貫通孔2の大
きさを幅4μm、長さ50μmとした。スリットの横方
向のピッチは50μmで図1に示すように配置した。梁
3は幅30μmで長さ50μmである。電極4は熱電変
換部を構成しているボロメータ材料の上辺と下辺で接し
電気的なコンタクトがとられ、熱のよる抵抗変化を外部
に取り出すことができる。電流は上下方向に流れ、スリ
ット状の貫通孔2はそれと同じ方向を向いている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure, manufacturing method and operation of a thermal infrared detecting element according to the present invention will be specifically described with reference to FIGS. This embodiment shows a case where a bolometer thin film is used as a thermoelectric material. FIG. 1 is a top view of a thermal infrared detecting element of the present invention. This is a shape in which the thermoelectric converter 1 is suspended by four beams 3. FIG.
A cross-sectional view of A ′ shows a state in which the thermoelectric conversion unit floats in the air and is thermally separated. In the present embodiment, the size of the thermoelectric converter 1 was 300 μm □, and the size of the through hole 2 was 4 μm in width and 50 μm in length. The horizontal pitch of the slits was 50 μm, and they were arranged as shown in FIG. The beam 3 has a width of 30 μm and a length of 50 μm. The electrode 4 is in contact at the upper side and the lower side of the bolometer material constituting the thermoelectric conversion section and is in electrical contact, so that a change in resistance due to heat can be taken out. The current flows vertically, and the slit-shaped through-hole 2 faces in the same direction.
【0012】次に図2、図3を用いて本実施例の製造方
法について述べる。図2は犠牲層5をエッチングする前
の素子断面図、図3は犠牲層5をエッチングした後の素
子断面図である。シリコン基板等の上に犠牲層5を1.
3μm形成する。次に支持膜6を3000Å、ボロメー
タ薄膜7を1000Å堆積し、ボロメータ薄膜7のみ3
00μm□にパターン加工する。更に電極4をボロメー
タ薄膜7と接するようにリフトオフ等でパターン形成
し、全面に保護膜8を堆積する。次に300μm□のボ
ロメータ薄膜7に目合わせして赤外吸収膜9を形成す
る。ここでは犠牲層5としてポリシリコン、支持膜6、
保護膜8としてシリコン窒化膜、ボロメータ薄膜7とし
て酸化バナジウム、赤外吸収膜9として窒化チタンを用
いた。次に熱電変換部1の外側を梁3の部分を残して犠
牲層5の上までドライエッチング(イオンミリング)に
より除去する。またそれと同時に貫通孔2も形成する
(図2)。最後に犠牲層エッチング用のエッチャントに
浸す。ここではエッチャントとしてヒドラジンを用い
た。エッチング液は熱電変換部1の脇のみならず上部か
らも貫通孔2を通して浸み込み、犠牲層5をエッチング
により完全に除去することができる。これにより素子は
完成する。ここではスリット状の貫通孔2の大きさを幅
4μm、長さ50μmとしたが、これは一例であり、特
性に大きな影響を与えずプロセスが比較的行ない易い大
きさであればよく、幅4〜15μm、長さ10〜50μ
mの範囲が適当である。Next, the manufacturing method of this embodiment will be described with reference to FIGS. FIG. 2 is a sectional view of the device before the sacrifice layer 5 is etched, and FIG. 3 is a sectional view of the device after the sacrifice layer 5 is etched. 1. A sacrificial layer 5 is formed on a silicon substrate or the like.
3 μm is formed. Next, the support film 6 is deposited at 3000 ° and the bolometer thin film 7 is deposited at 1000 °.
Pattern processing to 00 μm square. Further, the electrode 4 is patterned by lift-off or the like so as to be in contact with the bolometer thin film 7, and a protective film 8 is deposited on the entire surface. Next, an infrared absorption film 9 is formed in alignment with the 300 μm square bolometer thin film 7. Here, polysilicon as the sacrificial layer 5, a support film 6,
A silicon nitride film was used as the protective film 8, vanadium oxide was used as the bolometer thin film 7, and titanium nitride was used as the infrared absorbing film 9. Next, the outside of the thermoelectric converter 1 is removed by dry etching (ion milling) up to the sacrifice layer 5 except for the beam 3. At the same time, a through hole 2 is also formed (FIG. 2). Finally, it is immersed in an etchant for etching the sacrificial layer. Here, hydrazine was used as an etchant. The etchant penetrates not only from the side of the thermoelectric conversion unit 1 but also from the upper part through the through-hole 2, and the sacrifice layer 5 can be completely removed by etching. Thus, the device is completed. Here, the size of the slit-shaped through hole 2 is 4 μm in width and 50 μm in length. However, this is an example, and any size may be used as long as it does not significantly affect the characteristics and the process is relatively easy to perform. ~ 15μm, length 10 ~ 50μ
The range of m is appropriate.
【0013】次に動作について簡単に説明する。赤外線
がダイアフラム構造の上面より入射すると、赤外吸収膜
9、キャビティ10の効果により熱電変換部1の温度が
上昇する。この温度上昇は熱電変換部1を構成している
各層の材料や厚さ、熱電変換部1の大きさ等で決まる熱
容量で貯えられ、梁の長さや太さ等の形状やそれらを構
成している材料によって決まる熱コンダクタンスにより
放出される。これらのバランスにより得られた温度変化
を熱電変換部1で電気信号に変え、電極4より取り出す
ことができる。ボロメータの場合は上述した電気信号は
抵抗の変化として得られるが、本実施例のようにスリッ
ト状の貫通孔2の方向を電流の流れる方向と同じにして
いるためスリット形成による抵抗の著しい減少といった
影響もほとんどない。このように赤外線検出素子の応答
速度や感度等の主な特性はこれらの熱容量と熱コンダク
タンスでほぼ決まり、本発明を用いればこれらの自由度
は拡大し、本実施例のように従来に比べ熱容量の非常に
大きな300μm□の熱電変換部をもつ素子でも十分製
作可能で設計どおりの特性が得られる。またノイズ特
性、特に非冷却型赤外線素子の場合に問題となる1/f
ノイズに関しては、素子の大きさが大きい程ノイズは小
さい傾向にあるため、本発明のように大きな熱電変換部
をもつ赤外線検出素子では十分な低ノイズ化が図れる。Next, the operation will be briefly described. When infrared rays enter from the upper surface of the diaphragm structure, the temperature of the thermoelectric conversion section 1 rises due to the effects of the infrared absorbing film 9 and the cavity 10. This temperature rise is stored at a heat capacity determined by the material and thickness of each layer constituting the thermoelectric conversion unit 1, the size of the thermoelectric conversion unit 1, and the like, and the shape such as the length and thickness of the beam and the like are formed. Is released by the thermal conductance determined by the material used. The temperature change obtained by these balances can be converted into an electric signal by the thermoelectric converter 1 and extracted from the electrode 4. In the case of the bolometer, the above-mentioned electric signal is obtained as a change in resistance. However, since the direction of the slit-shaped through hole 2 is made the same as the direction of current flow as in this embodiment, the resistance is significantly reduced due to the slit formation. There is almost no effect. As described above, the main characteristics such as the response speed and the sensitivity of the infrared detecting element are almost determined by the heat capacity and the heat conductance, and the degree of freedom is expanded by using the present invention. An element having a very large thermoelectric conversion part of 300 μm square can be manufactured sufficiently and the characteristics as designed can be obtained. Also, 1 / f which is a problem in noise characteristics, particularly in the case of an uncooled infrared device
Regarding the noise, the larger the element size, the smaller the noise tends to be. Therefore, the infrared detection element having a large thermoelectric conversion unit as in the present invention can achieve a sufficiently low noise.
【0014】図4、図5はそれぞれ貫通孔2の形状が正
方形の場合と円形の場合を示したものである。ダイアフ
ラムの大きさは前述のものと同様300μm□で、正方
形の一辺は10μm、また円の直径は10μmとした。
また図4、図5とも貫通孔2のピッチは100μmであ
る。これらは前述したスリット状の貫通孔に比べエッチ
ャントがしみ込む領域は小さいが、貫通孔形成によるダ
イアフラム中の歪の影響は小さく強度的に優っている特
徴がある。FIGS. 4 and 5 show a case where the shape of the through hole 2 is square and a case where the shape is circular. The size of the diaphragm was 300 μm square as described above, one side of the square was 10 μm, and the diameter of the circle was 10 μm.
4 and 5, the pitch of the through holes 2 is 100 μm. These have a smaller area where the etchant penetrates than the slit-shaped through-holes described above, but have a feature that the influence of strain in the diaphragm due to the formation of the through-hole is small and the strength is superior.
【0015】本発明の実施例では、支持膜6や保護膜8
はシリコン窒化膜、ボロメータ薄膜7は酸化バナジウ
ム、また犠牲層5はポリシリコンを用いそのエッチャン
トとしてはヒドラジンを用いているが、特にこれに限定
されるわけではない。In the embodiment of the present invention, the support film 6 and the protective film 8
Is a silicon nitride film, the bolometer thin film 7 is vanadium oxide, the sacrificial layer 5 is polysilicon, and the etchant is hydrazine. However, the present invention is not limited to this.
【0016】また本実施例では、ボロメータ型の赤外線
検出素子について述べたが、大きなダイアフラム構造を
形成するという観点に立てば、焦電型や熱電対型にも適
用可能なことは言うまでもない。In this embodiment, the bolometer type infrared detecting element has been described. However, from the viewpoint of forming a large diaphragm structure, it is needless to say that the present invention can be applied to a pyroelectric type or a thermocouple type.
【0017】[0017]
【発明の効果】以上説明したように、本発明を用いれば
熱型赤外線検出素子の設計の自由度は拡大し、従来と同
様な方法で300μm□以上の大きなダイアフラム構造
の熱電変換部をもつ熱型赤外線検出素子の製作が十分可
能となり、熱型赤外線検出素子の応用を広範なものとす
ることができる。さらに基本的な特性は設計の自由度が
拡大したことにより高性能化を図ることもでき、大きな
ダイアフラムを用いたことによって十分な低ノイズ化も
期待できる。As described above, when the present invention is used, the degree of freedom in designing a thermal infrared detecting element is expanded, and a thermoelectric conversion unit having a large diaphragm structure of 300 μm square or more can be obtained in the same manner as in the prior art. This makes it possible to produce the infrared sensor of the thermal type sufficiently, so that the application of the thermal infrared detector can be broadened. In addition, the basic characteristics can be improved by increasing the degree of freedom of design, and a sufficiently low noise can be expected by using a large diaphragm.
【図1】本発明の熱型赤外線検出素子を上から見た図で
貫通孔の形状がスリット状の実施例である。FIG. 1 is a view of a thermal infrared detecting element of the present invention as viewed from above, showing an embodiment in which the shape of a through-hole is a slit shape.
【図2】犠牲層をエッチングする前の素子断面図であ
る。FIG. 2 is a sectional view of an element before a sacrificial layer is etched.
【図3】犠牲層をエッチングした後の素子断面図であ
る。FIG. 3 is a cross-sectional view of the device after a sacrifice layer is etched.
【図4】貫通孔の形状が正方形の場合の実施例である。FIG. 4 is an embodiment in the case where the shape of the through hole is a square.
【図5】貫通孔の形状が円形の場合の実施例である。FIG. 5 is an embodiment in the case where the shape of the through hole is circular.
【図6】従来例を示す図である。FIG. 6 is a diagram showing a conventional example.
1 熱電変換部 2 貫通孔 3 梁 4 電極 5 犠牲層 6 支持膜 7 ボロメータ薄膜 8 保護膜 9 赤外吸収膜 10 キャビティ DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion part 2 Through-hole 3 Beam 4 Electrode 5 Sacrificial layer 6 Support film 7 Bolometer thin film 8 Protective film 9 Infrared absorption film 10 Cavity
Claims (8)
られた熱電材料と、前記熱電材料上に設けられた保護膜
とからなるダイアフラム構造を有する熱型赤外線検出素
子において、前記ダイアフラム構造に複数の貫通孔が形
成されていることを特徴とする熱型赤外線検出素子。1. A thermal infrared detecting element having a diaphragm structure comprising at least a support film, a thermoelectric material provided on the support film, and a protection film provided on the thermoelectric material. A thermal infrared detecting element, wherein a plurality of through holes are formed.
を特徴とする請求項1記載の熱型赤外線検出素子。2. The thermal infrared detecting element according to claim 1, wherein said thermoelectric material is a bolometer thin film.
とする請求項2記載の熱型赤外線検出素子。3. The thermal type infrared detecting element according to claim 2, wherein said through-hole has a slit shape.
ボロメータ薄膜中を流れる電流と同じ方向であることを
特徴とする請求項3記載の熱型赤外線検出素子。4. The thermal infrared detecting element according to claim 3, wherein the length direction of the slit-shaped through hole is the same as the direction of the current flowing in the bolometer thin film.
ことを特徴とする請求項1または2記載の熱型赤外線検
出素子。5. The thermal infrared detecting element according to claim 1, wherein said through hole is square or circular.
あることを特徴とする請求項1〜5のいずれかに記載の
熱型赤外線検出素子。6. The thermal infrared detecting element according to claim 1, wherein the pitch of the through holes is 50 to 100 μm.
特徴とする請求項1〜6のいずれかに記載の熱型赤外線
検出素子。7. The thermal infrared detecting element according to claim 1, further comprising an infrared absorbing film on said protective film.
料、保護膜を順次成膜した後に、梁を形成するためのダ
イアフラム周囲のスリットパターンを形成し、これと同
時にダイアフラム中の貫通孔形成のパターンを形成する
第1の工程と、前記ダイアフラム周囲のスリットパター
ン、及び前記ダイアフラム中の貫通孔形成のパターンを
通して前記犠牲層をエッチングにより除去する第2の工
程を含むことを特徴とする熱型赤外線検出素子の製造方
法。8. After forming at least a support film, a thermoelectric material, and a protective film on the sacrificial layer sequentially, a slit pattern around the diaphragm for forming a beam is formed, and at the same time, a through hole in the diaphragm is formed. And a second step of etching and removing the sacrificial layer through a slit pattern around the diaphragm and a pattern for forming a through hole in the diaphragm. Manufacturing method of infrared detecting element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27420197A JP3175662B2 (en) | 1997-10-07 | 1997-10-07 | Manufacturing method of thermal infrared detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27420197A JP3175662B2 (en) | 1997-10-07 | 1997-10-07 | Manufacturing method of thermal infrared detecting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11108760A true JPH11108760A (en) | 1999-04-23 |
JP3175662B2 JP3175662B2 (en) | 2001-06-11 |
Family
ID=17538451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27420197A Expired - Fee Related JP3175662B2 (en) | 1997-10-07 | 1997-10-07 | Manufacturing method of thermal infrared detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3175662B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002162291A (en) * | 2000-11-22 | 2002-06-07 | Ihi Aerospace Co Ltd | Infrared ray detection element |
US6528789B1 (en) | 1999-11-30 | 2003-03-04 | Nec Corporation | Thermal infrared detector |
JP2007292561A (en) * | 2006-04-24 | 2007-11-08 | Matsushita Electric Works Ltd | Infrared sensor |
JP2011033393A (en) * | 2009-07-30 | 2011-02-17 | Ricoh Co Ltd | Semiconductor device having membrane part, and method for manufacturing the semiconductor device |
JP2012058212A (en) * | 2010-09-13 | 2012-03-22 | Toshiba Corp | Infrared detection element |
FR3094789A1 (en) * | 2019-04-04 | 2020-10-09 | Elichens | Method of manufacturing a pyroelectric detector |
WO2024023402A1 (en) * | 2022-07-28 | 2024-02-01 | Lynred | Blind infrared imaging microbolometer and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046424A (en) * | 1990-04-24 | 1992-01-10 | Nec Corp | Infrared sensor |
JPH06331452A (en) * | 1993-05-19 | 1994-12-02 | Siemens Ag | Preparation of pyro-detector |
JPH07198474A (en) * | 1993-12-27 | 1995-08-01 | Nippondenso Co Ltd | Infrared sensor |
JPH08166285A (en) * | 1994-12-16 | 1996-06-25 | Nissan Motor Co Ltd | Infrared detecting element and manufacture thereof |
JPH08264844A (en) * | 1995-03-24 | 1996-10-11 | Nippondenso Co Ltd | Floating membrane |
-
1997
- 1997-10-07 JP JP27420197A patent/JP3175662B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH046424A (en) * | 1990-04-24 | 1992-01-10 | Nec Corp | Infrared sensor |
JPH06331452A (en) * | 1993-05-19 | 1994-12-02 | Siemens Ag | Preparation of pyro-detector |
JPH07198474A (en) * | 1993-12-27 | 1995-08-01 | Nippondenso Co Ltd | Infrared sensor |
JPH08166285A (en) * | 1994-12-16 | 1996-06-25 | Nissan Motor Co Ltd | Infrared detecting element and manufacture thereof |
JPH08264844A (en) * | 1995-03-24 | 1996-10-11 | Nippondenso Co Ltd | Floating membrane |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528789B1 (en) | 1999-11-30 | 2003-03-04 | Nec Corporation | Thermal infrared detector |
JP2002162291A (en) * | 2000-11-22 | 2002-06-07 | Ihi Aerospace Co Ltd | Infrared ray detection element |
US6777680B2 (en) | 2000-11-22 | 2004-08-17 | Ihi Aerospace Co., Ltd. | Infrared detecting device |
JP2007292561A (en) * | 2006-04-24 | 2007-11-08 | Matsushita Electric Works Ltd | Infrared sensor |
JP2011033393A (en) * | 2009-07-30 | 2011-02-17 | Ricoh Co Ltd | Semiconductor device having membrane part, and method for manufacturing the semiconductor device |
JP2012058212A (en) * | 2010-09-13 | 2012-03-22 | Toshiba Corp | Infrared detection element |
FR3094789A1 (en) * | 2019-04-04 | 2020-10-09 | Elichens | Method of manufacturing a pyroelectric detector |
WO2024023402A1 (en) * | 2022-07-28 | 2024-02-01 | Lynred | Blind infrared imaging microbolometer and manufacturing method thereof |
FR3138517A1 (en) * | 2022-07-28 | 2024-02-02 | Lynred | BLIND INFRARED IMAGING MICRO-BOLOMETER AND METHOD FOR PRODUCING IT |
Also Published As
Publication number | Publication date |
---|---|
JP3175662B2 (en) | 2001-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6552344B1 (en) | Infrared detector and method of making the infrared detector | |
JP4897269B2 (en) | Radiation detector with thermal separation due to shrinkage and infrared detector using the radiation detector | |
JP3374498B2 (en) | Infrared sensor | |
JP3175662B2 (en) | Manufacturing method of thermal infrared detecting element | |
JPH02205729A (en) | Infrared-ray sensor | |
CN110823386A (en) | MEMS structure and processing method thereof, pyroelectric sensor and infrared detector | |
JPH11211558A (en) | Sensor and sensor array | |
EP0375205A2 (en) | Thermal imaging device | |
JPH06137943A (en) | Thermal infrared sensor | |
US7244935B2 (en) | Thermal electromagnetic radiation detector with alveolate structure | |
JP3775830B2 (en) | Infrared detector | |
JP2000111396A (en) | Infrared detecting element and its manufacture | |
CN113511626B (en) | Multi-parameter gas sensing microchip, preparation method thereof and gas sensor | |
JPH11258039A (en) | Infrared ray detecting element, and manufacture thereof | |
JPH11148868A (en) | Heat detecting element and its manufacture | |
JP2910699B2 (en) | Thermal infrared sensor | |
JPH07167708A (en) | Infrared sensor | |
WO2019179046A1 (en) | Infrared sensor structure | |
JPH046424A (en) | Infrared sensor | |
JP2582416Y2 (en) | Thermopile | |
JP3249174B2 (en) | Infrared sensor and method of manufacturing the same | |
JP3435997B2 (en) | Infrared detector | |
JP2000230860A (en) | Thermal infrared sensor, manufacture thereof and thermal infrared array element | |
JP2001208606A (en) | Infrared sensor | |
JP2011226895A (en) | Infrared detecting sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010306 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080406 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090406 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |