JPH11103577A - Inverter - Google Patents

Inverter

Info

Publication number
JPH11103577A
JPH11103577A JP9262975A JP26297597A JPH11103577A JP H11103577 A JPH11103577 A JP H11103577A JP 9262975 A JP9262975 A JP 9262975A JP 26297597 A JP26297597 A JP 26297597A JP H11103577 A JPH11103577 A JP H11103577A
Authority
JP
Japan
Prior art keywords
capacitors
circuit
main
igbt
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9262975A
Other languages
Japanese (ja)
Inventor
Junichi Takayama
順一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9262975A priority Critical patent/JPH11103577A/en
Publication of JPH11103577A publication Critical patent/JPH11103577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To relatively simply reduce a wiring inductance between a main capacitor and an inverting element, by adopting as the main capacitor a plurality of capacitors having capacitances and withstand voltages divided at respective inverting elements of a main circuit, and dispersively disposing the respective capacitors near at hand at the respective elements and directly connecting them. SOLUTION: Capacitors CM1 , CM2 having relatively small capacitances and low withstand voltages are connected in parallel near at hand at respective IGBTs. That is, a main capacitor is dispersed to a plurality of capacitors CM1 , CM2 having the capacitances and withstand voltages divided at the respective IGBTs. The capacitors CM1 , CM2 are connected between collectors and emitters of the IGBG. According to this structure, since the capacitors CM1 , CM2 are dispersed at the respective IGBT elements, its size can be reduced by decreasing the capacitance and by half the withstand voltage. Thus, the capacitors CM1 , CM2 are disposed near at hand at the IGBT to shorten a length of wirings therebetween, and hence parasitic inductance therebetween can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、逆変換素子の並列
接続等で主回路を構成する大容量化したインバータに係
り、特にサージ電圧破壊から逆変換素子を保護するため
の主コンデンサと逆変換素子との接続方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-capacity inverter which forms a main circuit by connecting inverting elements in parallel or the like, and more particularly to a main capacitor for protecting the inverting element from surge voltage breakdown and an inversion. The present invention relates to a connection method with an element.

【0002】[0002]

【従来の技術】インバータの主回路のコンデンサ部品と
して、直流回路に設けられる主コンデンサがある。大容
量インバータでは、主コンデンサをコンデンサバンクと
して1ケ所にまとめ、ブスバーによってIGBT等の逆
変換素子に直流電力を供給する。
2. Description of the Related Art As a capacitor component of a main circuit of an inverter, there is a main capacitor provided in a DC circuit. In a large-capacity inverter, a main capacitor is combined into a capacitor bank at one location, and DC power is supplied to an inverse conversion element such as an IGBT by a bus bar.

【0003】なお、インバータの主回路では、IGBT
等の逆変換素子の高速スイッチングによりコレクタ・エ
ミッタ間に発生するサージ電圧を抑制するため、コンデ
ンサと抵抗とダイオードを組み合わせたスナバ回路が設
けられる。このスナバ回路には図3に示すような種々の
構成があるが、コンデンサをダイオードと直列接続して
逆変換素子に並列接続する構造にされる。なお、大容量
インバータでは、スナバ抵抗の発熱量が小さいという利
点から、同図の(c)に示す回路構成がよく用いられ
る。
The main circuit of the inverter is an IGBT
In order to suppress the surge voltage generated between the collector and the emitter due to the high-speed switching of the inverse conversion element, a snubber circuit combining a capacitor, a resistor and a diode is provided. There are various configurations of this snubber circuit as shown in FIG. 3, but a structure is employed in which a capacitor is connected in series with a diode and connected in parallel with an inversion element. In a large-capacity inverter, the circuit configuration shown in FIG. 1C is often used because of the advantage that the amount of heat generated by the snubber resistor is small.

【0004】[0004]

【発明が解決しようとする課題】インバータの主回路
は、例えば図4に1相分で示す構成にされる。この構成
は図3の(c)に相当し、逆変換素子にIGBTが使用
されている。
The main circuit of the inverter is configured, for example, for one phase in FIG. This configuration corresponds to (c) of FIG. 3, and an IGBT is used for the inverse conversion element.

【0005】この構成において、IGBTやコンデンサ
を接続する配線は、IGBT等の逆変換素子に印加され
るサージ電圧対策に直接に関係する。特に、IGBTの
ようなMOSゲートデバイスは、高速スイッチングのた
め、ターンオンやターンオフのスイッチング時にコレク
タ電流ICの電流変化率di/dtが非常に高くなる。
一方、主回路の配線には寄生インダクタンスLM、LS
必ず存在する。
In this configuration, wiring for connecting an IGBT or a capacitor is directly related to a measure against a surge voltage applied to an inversion element such as an IGBT. In particular, a MOS gate device such as an IGBT has a very high switching speed, so that the current change rate di / dt of the collector current I C becomes extremely high at the time of turn-on or turn-off switching.
On the other hand, the wiring of the main circuit parasitic inductance L M, L S is always present.

【0006】この寄生インダクタンスの存在により、I
GBTのスイッチング時にはそのコレクタ・エミッタ間
に次式に示すサージ電圧ΔVCE1、ΔVCE2が図5に示す
ようなターンオフタイミングで発生する。同図中、IC
はコレクタ電流、VCEはコレクタ・エミッタ間の電圧、
OFFはターンオフ時に遮断する電流、VCCは主コンデ
ンサの電圧である。
Due to the existence of this parasitic inductance, I
During switching of the GBT, surge voltages ΔV CE1 and ΔV CE2 expressed by the following equations are generated between the collector and the emitter at the turn-off timing as shown in FIG. In the figure, I C
Is the collector current, V CE is the collector-emitter voltage,
I OFF is the current to be cut off at turn-off, and V CC is the voltage of the main capacitor.

【0007】[0007]

【数1】ΔVCE1=LS×di/dt ΔVCE2=√(LM/CS)×IOFF 上式により、IGBTに印加されるサージ電圧は、主回
路の配線に存在する寄生インダクタンスLM、LSと電流
変化率di/dtに比例する。したがって、IGBTを
サージ電圧破壊から保護するためには、次の対策が採ら
れる。
ΔV CE1 = L S × di / dt ΔV CE2 = √ (L M / C S ) × I OFF According to the above equation, the surge voltage applied to the IGBT depends on the parasitic inductance L existing in the wiring of the main circuit. M , L S and the current change rate di / dt. Therefore, the following measures are taken to protect the IGBT from surge voltage breakdown.

【0008】(A)配線インダクタンスを低減する。(A) The wiring inductance is reduced.

【0009】(B)電流変化率を下げる。(B) The current change rate is reduced.

【0010】このうち、(B)の方法は、ゲート抵抗を
大きくすることにより簡単に実現できるが、スイッチン
グ損失の増加を招き、IGBTが本来もっている高速ス
イッチング性能を低下させることになり、得策でない。
特に、高周波用途では、デッドタイムの確保等により限
界がある。
Of these methods, the method (B) can be easily realized by increasing the gate resistance, but causes an increase in switching loss and lowers the inherent high-speed switching performance of the IGBT. .
In particular, in high frequency applications, there is a limit due to securing dead time and the like.

【0011】一方、(A)の方法は、スナバ回路が比較
的小型化できるため、配線インダクタンスLS自体を比
較的簡単に小さくできる。しかし、コンデンサバンクと
IGBTとをブスバーで接続する場合はコンデンサ等が
比較的大きく、これに伴って配線長が大きくなってその
インダクタンスLMの低減が難しい。この寄生インダク
タンスの増大を抑えるため、次のような対策が採られ
る。
On the other hand, in the method (A), since the snubber circuit can be relatively reduced in size, the wiring inductance L S itself can be reduced relatively easily. However, capacitors, etc. when connecting a capacitor bank and an IGBT busbars is relatively large, the reduction of the inductance L M is difficult in the wiring length increases accordingly. In order to suppress the increase in the parasitic inductance, the following measures are taken.

【0012】(C)コンデンサバンクとIGBTの配置
位置をできるだけ近づける。
(C) The arrangement positions of the capacitor bank and the IGBT are brought as close as possible.

【0013】(D)ツイストペア線や平行導体等を使用
し、往復線路を近づける。
(D) Use a twisted pair wire, a parallel conductor, or the like to bring the reciprocating line closer.

【0014】しかし、(C)の方法では、構造上の制約
がある。また、(D)の方法では、導体間の絶縁性能を
確保するのが難しいし、その構造を得るための製造上の
難しさがある。
However, the method (C) has structural limitations. Further, in the method (D), it is difficult to ensure insulation performance between conductors, and there is a difficulty in manufacturing to obtain the structure.

【0015】本発明の目的は、主コンデンサと逆変換素
子間の配線インダクタンスを比較的簡単に低減できる構
造にしたインバータを提供することにある。
An object of the present invention is to provide an inverter having a structure that can relatively easily reduce the wiring inductance between a main capacitor and a reverse conversion element.

【0016】[0016]

【課題を解決するための手段】本発明は、主コンデンサ
を逆変換素子直近にそれぞれ分散配置して逆変換素子と
それぞれ個別に接続を得ることで寄生インダクタンスに
よるサージ電圧を抑制するようにしたもので、以下の構
造を特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a surge capacitor due to a parasitic inductance is suppressed by dispersing a main capacitor in the vicinity of an inverting element and obtaining a connection individually with the inverting element. , Characterized by the following structure.

【0017】逆変換素子の並列接続等で主回路を構成
し、各逆変換素子には並列にスナバ回路を設けたインバ
ータにおいて、直流電源になる主コンデンサを主回路の
逆変換素子毎に分割した容量及び耐電圧を持つ複数のコ
ンデンサとし、これら各コンデンサを前記逆変換素子毎
にその直近に分散配置して該逆変換素子に直接に接続し
た構造を特徴とする。
A main circuit is formed by connecting inverting elements in parallel, etc. In an inverter in which a snubber circuit is provided in parallel with each inverting element, a main capacitor serving as a DC power supply is divided for each inverting element in the main circuit. A plurality of capacitors having a capacitance and a withstand voltage are provided, and these capacitors are dispersed and arranged in the immediate vicinity of each of the inversion elements, and are directly connected to the inversion elements.

【0018】また、逆変換素子の並列接続等で主回路を
構成し、各逆変換素子には並列にスナバ回路を設けたイ
ンバータにおいて、直流電源になる主コンデンサを主回
路の逆変換素子毎に分割した容量及び耐電圧を持つ複数
のコンデンサとし、これら各コンデンサは前記各スナバ
回路のプリント基板又はモジュールに一体で内蔵する構
造とし、各スナバ回路と逆変換素子との接続導体を通し
て該逆変換素子との接続を得る構造を特徴とする。
A main circuit is formed by connecting inverting elements in parallel, etc. In each inverter, a snubber circuit is provided in parallel, and a main capacitor serving as a DC power supply is connected to each inverting element of the main circuit. A plurality of capacitors having a divided capacity and a withstand voltage, each of which has a structure that is integrated into a printed circuit board or a module of each of the snubber circuits, and which is connected through a connection conductor between each of the snubber circuits and the inverse conversion element. It is characterized by a structure for obtaining a connection with

【0019】[0019]

【発明の実施の形態】図1は、本発明の実施形態を示す
主回路の1相分構成である。同図が図4と異なる部分
は、コンデンサバンクに構成される主コンデンサCM
代えて、比較的小容量かつ小耐圧のコンデンサCM1
CM2をIGBT毎にそれぞれ直近で並列接続した点に
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a one-phase configuration of a main circuit showing an embodiment of the present invention. Portions figure differs from FIG. 4, in place of the configured main capacitor C M in the capacitor bank, the capacitor CM 1 of a relatively small capacity and small breakdown voltage,
The point is that CM 2 is connected in parallel in the latest for each IGBT.

【0020】すなわち、従来構造では、コンデンサバン
クとして集中していたコンデンサをIGBT毎に分割し
た容量及び耐電圧を持つ複数のコンデンサに分散し、各
コンデンサをIGBTのコレクタ・エミッタ間にそれぞ
れ直接に接続した構造とする。
That is, in the conventional structure, a capacitor concentrated as a capacitor bank is distributed to a plurality of capacitors having a capacity and a withstand voltage divided for each IGBT, and each capacitor is directly connected between the collector and the emitter of the IGBT. Structure.

【0021】この構造により、コンデンサCM1,CM2
は、IGBT素子毎に分散されるためその小容量化と耐
圧の半減により小型化され、これに伴ってIGBTの直
近に配置するもその間の配線長を短くでき、その間の寄
生インダクタンスを低減することができる。すなわち、
従来の主コンデンサとIGBT間の比較的大きな値にな
る寄生インダクタンスLMの介在を無くし、前記式のサ
ージ電圧VCE2を抑制できる。
With this structure, the capacitors CM 1 and CM 2
Since the IGBTs are dispersed for each IGBT element, the size is reduced by reducing the capacitance and halving the withstand voltage. Accordingly, the wiring length between the IGBTs can be shortened even though the IGBTs are arranged immediately adjacent to the IGBTs, thereby reducing the parasitic inductance therebetween. Can be. That is,
Without intervention parasitic inductance L M of relatively a large value between conventional main condenser and IGBT, it can suppress a surge voltage V CE2 of the formula.

【0022】また、配線として、ツイストペア線を用い
る場合にも、コンデンサCM1,CM2の耐圧が電圧VCC
の半分になることから絶縁耐力の確保も容易になる。
Also, when a twisted pair wire is used as the wiring, the withstand voltage of the capacitors CM 1 and CM 2 is not higher than the voltage V CC.
, It is easy to secure the dielectric strength.

【0023】図2は、本発明の他の実施形態を示す回路
構成図である。同図が図1と異なる部分は、コンデンサ
CM1,CM2をスナバ回路に一体に組み込んだ点にあ
る。
FIG. 2 is a circuit diagram showing another embodiment of the present invention. This figure differs from FIG. 1 in that capacitors CM 1 and CM 2 are integrated into a snubber circuit.

【0024】スナバ回路は、コンデンサCSとダイオー
ドDSがプリント板又はモジュールとして構成されてI
GBT毎に接続される。このスナバ回路にコンデンサC
1,CM2をそれぞれ一体で内蔵する構造とし、各スナ
バ回路と逆変換素子との接続導体を通してIGBTにそ
れぞれ接続する。
In the snubber circuit, a capacitor C S and a diode D S are formed as a printed board or a module.
Connected for each GBT. This snubber circuit has a capacitor C
M 1 and CM 2 are integrally incorporated, and are connected to the IGBT through connection conductors between each snubber circuit and the inverse conversion element.

【0025】この構造によれば、図1の構造の作用効果
に加えて、コンデンサCM1,CM2とIGBTとの接続
のための配線及びその作業が不要になるし、装置の小型
化を図ることができる。
According to this structure, in addition to the functions and effects of the structure of FIG. 1, wiring for connecting the capacitors CM 1 and CM 2 to the IGBT and the work thereof are not required, and the size of the device is reduced. be able to.

【0026】以上までの実施形態において、スナバ回路
は、図3中の他の回路構成に変えた場合にも同等の作用
効果を得ることができる。
In the above embodiments, the snubber circuit can obtain the same operation and effect even when the circuit configuration is changed to another circuit configuration in FIG.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば、主コン
デンサを逆変換素子直近にそれぞれ分散配置して逆変換
素子とそれぞれ個別に接続を得るようにしたため、逆変
換素子のサージ電圧を抑制するための寄生インダクタン
スの低減構造が比較的簡単に実現できる効果がある。ま
た、装置自体の信頼性の向上及び小型化を図ることがで
きる。
As described above, according to the present invention, the main capacitors are dispersed and arranged in the immediate vicinity of the reverse conversion element so as to be individually connected to the reverse conversion element, thereby suppressing the surge voltage of the reverse conversion element. Therefore, there is an effect that the structure for reducing the parasitic inductance can be realized relatively easily. Further, the reliability of the device itself can be improved and the device can be reduced in size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す主回路構成図(1相
分)。
FIG. 1 is a main circuit configuration diagram (for one phase) showing an embodiment of the present invention.

【図2】本発明の他の実施形態を示す主回路構成図(1
相分)。
FIG. 2 is a main circuit configuration diagram (1) showing another embodiment of the present invention.
Phase).

【図3】逆変換素子のスナバ回路例。FIG. 3 is an example of a snubber circuit of an inverse conversion element.

【図4】従来の主回路配線と寄生インダクタンス。FIG. 4 shows conventional main circuit wiring and parasitic inductance.

【図5】ターンオフ時のスイッチング波形。FIG. 5 is a switching waveform at the time of turn-off.

【符号の説明】[Explanation of symbols]

IGBT…逆変換素子 CM1、CM2…分割したコンデンサ LM、LS…寄生インダクタンス CS…スナバ回路のコンデンサ DS…スナバ回路のダイオード RS…スナバ回路の抵抗IGBT ... inverse conversion device CM 1, CM 2 ... split capacitor L M, L S ... resistance of the diode R S ... snubber circuit of a capacitor D S ... snubber circuit of the parasitic inductance C S ... snubber circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 逆変換素子の並列接続等で主回路を構成
し、各逆変換素子には並列にスナバ回路を設けたインバ
ータにおいて、 直流電源になる主コンデンサを主回路の逆変換素子毎に
分割した容量及び耐電圧を持つ複数のコンデンサとし、
これら各コンデンサを前記逆変換素子毎にその直近に分
散配置して該逆変換素子に直接に接続した構造を特徴と
するインバータ。
A main circuit is formed by connecting inverting elements in parallel or the like, and in each inverter, a snubber circuit is provided in parallel. Inverters each include a main capacitor serving as a DC power supply for each inverting element of the main circuit. Multiple capacitors with divided capacity and withstand voltage,
An inverter having a structure in which each of these capacitors is dispersed and disposed in the immediate vicinity of each of the inverse conversion elements and is directly connected to the inverse conversion element.
【請求項2】 逆変換素子の並列接続等で主回路を構成
し、各逆変換素子には並列にスナバ回路を設けたインバ
ータにおいて、 直流電源になる主コンデンサを主回路の逆変換素子毎に
分割した容量及び耐電圧を持つ複数のコンデンサとし、
これら各コンデンサは前記各スナバ回路のプリント基板
又はモジュールに一体で内蔵する構造とし、各スナバ回
路と逆変換素子との接続導体を通して該逆変換素子との
接続を得る構造を特徴とするインバータ。
2. An inverter having a snubber circuit connected in parallel to each of the inverters, wherein a main capacitor serving as a DC power source is provided for each of the inverters in the main circuit. Multiple capacitors with divided capacity and withstand voltage,
An inverter having a structure in which each of these capacitors is integrally incorporated in a printed circuit board or a module of each of the snubber circuits, and which is connected to the inversion element through a connection conductor between each snubber circuit and the inversion element.
JP9262975A 1997-09-29 1997-09-29 Inverter Pending JPH11103577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262975A JPH11103577A (en) 1997-09-29 1997-09-29 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262975A JPH11103577A (en) 1997-09-29 1997-09-29 Inverter

Publications (1)

Publication Number Publication Date
JPH11103577A true JPH11103577A (en) 1999-04-13

Family

ID=17383159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262975A Pending JPH11103577A (en) 1997-09-29 1997-09-29 Inverter

Country Status (1)

Country Link
JP (1) JPH11103577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014218A (en) * 2002-06-05 2004-01-15 Hitachi Ltd Induction heating device
JP2005341635A (en) * 2004-05-24 2005-12-08 Nippon Inter Electronics Corp Snubber circuit
CN103069706A (en) * 2010-08-10 2013-04-24 纳博特斯克有限公司 Indirect matrix converter
JP2013146131A (en) * 2012-01-13 2013-07-25 Kokusan Denki Co Ltd Dc power supply unit
JP2016146695A (en) * 2015-02-06 2016-08-12 株式会社安川電機 Driving device and transport machine
US10148190B2 (en) 2015-04-20 2018-12-04 Mitsubishi Electric Corporation Power conversion device
WO2019012923A1 (en) * 2017-07-10 2019-01-17 株式会社村田製作所 High-frequency power supply device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014218A (en) * 2002-06-05 2004-01-15 Hitachi Ltd Induction heating device
JP2005341635A (en) * 2004-05-24 2005-12-08 Nippon Inter Electronics Corp Snubber circuit
CN103069706A (en) * 2010-08-10 2013-04-24 纳博特斯克有限公司 Indirect matrix converter
US9190924B2 (en) 2010-08-10 2015-11-17 Nabtesco Corporation Indirect matrix converter
JP2013146131A (en) * 2012-01-13 2013-07-25 Kokusan Denki Co Ltd Dc power supply unit
JP2016146695A (en) * 2015-02-06 2016-08-12 株式会社安川電機 Driving device and transport machine
US10148190B2 (en) 2015-04-20 2018-12-04 Mitsubishi Electric Corporation Power conversion device
WO2019012923A1 (en) * 2017-07-10 2019-01-17 株式会社村田製作所 High-frequency power supply device
JPWO2019012923A1 (en) * 2017-07-10 2019-11-14 株式会社村田製作所 High frequency power supply
US11011937B2 (en) 2017-07-10 2021-05-18 Murata Manufacturing Co., Ltd. High frequency power supply device

Similar Documents

Publication Publication Date Title
JP4277169B2 (en) Power semiconductor module
KR101353784B1 (en) Converter circuit for switching a large number of switching voltage levels
EP2760121B1 (en) Electronic circuit
JP2001245466A (en) Electric power converter
JP3652934B2 (en) Power converter
Crisafulli A new package with kelvin source connection for increasing power density in power electronics design
JP2005216876A (en) Power semiconductor module
JPH11103577A (en) Inverter
US11539361B2 (en) Semiconductor device signal transmission circuit for drive-control, method of controlling semiconductor device signal transmission circuit for drive-control, semiconductor device, power conversion device, and electric system for railway vehicle
TW200409445A (en) Snubber module and power converter
US10032732B1 (en) Semiconductor module arrangement
JPH10304680A (en) Power converter
CN110168899B (en) Power conversion device
JP2021044996A (en) Power conversion device and rail vehicle electrical system
Ding et al. Analysis on characteristic of 3.3‐kV full SiC device and railway traction converter design
JP2004134460A (en) Semiconductor device
JP2004056984A (en) Power converting device
JP2002171768A (en) Power converter
CN116800106A (en) Laminated busbar of double-tube parallel NPC three-level inverter and inverter
JP4581717B2 (en) Power semiconductor module
JP4664104B2 (en) Power converter
KR100485102B1 (en) Inverter stack having multi-layer bus plate
JPH07231669A (en) High-frequency inverter device
JPH08140363A (en) Power converter
JPH088394A (en) Main circuit configuration of high speed switching device