JP4277169B2 - Power semiconductor module - Google Patents

Power semiconductor module Download PDF

Info

Publication number
JP4277169B2
JP4277169B2 JP2003000414A JP2003000414A JP4277169B2 JP 4277169 B2 JP4277169 B2 JP 4277169B2 JP 2003000414 A JP2003000414 A JP 2003000414A JP 2003000414 A JP2003000414 A JP 2003000414A JP 4277169 B2 JP4277169 B2 JP 4277169B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
connected
element
power semiconductor
power supply
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000414A
Other languages
Japanese (ja)
Other versions
JP2004214452A (en )
Inventor
聡毅 滝沢
Original Assignee
富士電機デバイステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
この発明は、IGBT(絶縁ゲート型バイポーラトランジスタ)などの電力用半導体モジュールに関する。 This invention relates to a power semiconductor module, such as an IGBT (insulated gate bipolar transistor).
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
図10にインバータの主回路図を示す。 Figure 10 shows a main circuit diagram of the inverter.
1は商用の交流電源、2は交流から直流に変換するダイオード整流器モジュール、3は大容量のコンデンサ、4はモータなどの負荷、5は電力用半導体からなり直流を交流に変換するインバータモジュールである。 1 commercial AC power source, 2 is a diode rectifier module for converting from AC to DC, 3 large capacitance of the capacitor, the fourth load such as a motor, 5 is an inverter module to convert a direct current into an alternating current consists power semiconductor . インバータモジュール5の中で6がIGBT、7がこれと逆並列に接続されたダイオードであり、これらが6回路(6アーム)で構成されている。 6 in the inverter module 5 IGBT, 7 is a diode connected anti-parallel thereto, which consists of these six circuits (6 arms). インバータモジュール5は通常、上下アーム2素子分を1組とするかまたは6素子分を1組としており、インバータを構成する場合は2素子入りのモジュールを3並列接続するか、若しくは6素子入りのものをそのまま用いている。 The inverter module 5 typically a 2 element content upper and lower arms has a or 6 element content and set as one set, or when configuring an inverter to 3 connected in parallel of 2 elements containing module, or a six-element-containing it is used as an object.
【0003】 [0003]
図11に2素子入りのインバータモジュールの一般的な外観図を示す。 Figure 11 shows the general external view of an inverter module 2 device included. 8が直流の正側電源電位出力電極(P出力電極)、9が負側電源電位出力電極(N出力電極)、10が負荷側に接続される出力電極(U出力電極)、11,12,13,14が上アーム側および下アーム側IGBTのゲート端子およびエミッタ端子を示している。 8 is a DC positive-side power supply potential output electrode (P output electrode), 9 negative power supply potential output electrode (N output electrode), an output electrode 10 is connected to the load side (U output electrode), 11, 12, 13 and 14 show the gate terminal and the emitter terminal of upper arm and lower arm side IGBT.
【0004】 [0004]
図12に2素子入りモジュールの概略断面図を示す。 Figure 12 shows a schematic cross-sectional view of a two element containing module.
15が銅ベース基板、16が絶縁用のセラミック基板、17,18,19が配線および半導体チップ接続用の銅パターン、20,21が上下アームのIGBTチップ(実際にはFWDチップも搭載されているが省略している)、22,23が半導体チップと銅パターン接続用の電極、24,25,26が各銅パターンと各出力電極P,U,Nとを接続する銅電極バーである。 15 copper-based substrate, 16 is a ceramic substrate for insulation, copper patterns for 17, 18, 19 wiring and the semiconductor chip connection, 20, 21 are also mounted FWD chip IGBT chip (actually upper and lower arms There has been omitted), 22, 23 semiconductor chip and the copper pattern connecting the electrodes, 24, 25, 26 each copper patterns and the output electrodes P, a copper electrode bars connecting U, and N.
【0005】 [0005]
図13に図12のモジュールにおけるインダクタンス成分の等価回路を示す。 Figure 13 shows an equivalent circuit of the inductance component in the module of FIG 12.
27が上アーム側コレクタと正側電源電位出力電極間のインダクタンスL1、28が上アームのエミッタと接続点29(銅パターン18と銅電極バー25)間のインダクタンスL2、30が接続点29と下アーム側コレクタ間のインダクタンスL3、31が下アーム側エミッタと負側電源電位出力電極間のインダクタンスL4である。 27 the upper arm side collector and the positive supply potential output inductance L1,28 the upper arm emitter connection point 29 (copper pattern 18 and the copper electrode bars 25) of between electrodes inductance L2,30 connection point 29 between the lower inductance L3,31 between arm side collector is the inductance L4 between the lower arm side emitter and the negative power supply potential output electrode.
【0006】 [0006]
図10のインバータの回路では通常、IGBTは10kHz程度でスイッチングさせて運転するのが一般的である。 Normally the circuit of the inverter of FIG. 10, IGBT is common to the operation by switching in the order of 10 kHz. その際、IGBTがターンオフするときのIGBTチップのコレクタ・エミッタ間に印加されるサージ電圧V CE(peak)は、次式のように表わされる。 At this time, IGBT surge voltage V CE is applied between the IGBT chip collector-emitter when turned off (peak) is expressed by the following equation.
CE(peak) =Ed+(LI+L2+L3+L4)・di/dt… (1) V CE (peak) = Ed + (LI + L2 + L3 + L4) · di / dt ... (1)
Ed :コンデンサ3の電圧(直流電圧) Ed: the voltage of the capacitor 3 (direct current voltage)
di/dt:ターンオフ時のIGBTの電流変化率【0007】 di / dt: current rate of change of the IGBT turn-off [0007]
図14にIGBTターンオフ時のIGBTの電圧V CEとI C波形を示す。 Figure 14 shows the voltage V CE and I C waveforms of an IGBT when the IGBT is turned off.
直流電圧Edからのサージ電圧分ΔVはLI〜L4の値に起因し、上記(1)式からLI〜L4の値が大きいと、ターンオフ時にIGBTチップに印加されるピーク電圧値が高くなるため、IGBTチップおよび並列接続されているFWD(フリーホイールダイオード)チップには電圧耐量の高いものが必要となる。 Surge voltage of ΔV from the DC voltage Ed is due to the value of LI~L4, the value of LI~L4 from equation (1) is large, the peak voltage applied to the IGBT chip during turn-off is high, It is required having a high voltage withstand capability to the FWD (free wheel diode) chips connected to the IGBT chip and parallel. 電圧耐量の高いチップは通常、チップ面積が広くなるためモジュールの大型化およびコストアップにつながるという問題が生じる。 High voltage withstand chip is usually a problem that leads to size and cost of the module for chip area becomes larger arises. また、サージ電圧が高いと外部へもたらすノイズも大きくなるため、外部機器の誤動作の原因となる。 Further, since the surge voltage noise increases result in higher to the outside, resulting in a malfunction of an external device.
そこで、第1,第2の電源端子に接続される第1,第2の配線パターンを、互いに近接して配置することでインダクタンスを低減する技術が提案されている(例えば、特許文献1参照)。 Therefore, the first is connected to the first and second power supply terminals, the second wiring pattern, has been proposed a technique for reducing the inductance by placing close to each other (for example, see Patent Document 1) .
【0008】 [0008]
【特許文献1】 [Patent Document 1]
特許第2725952号明細書(第4−5頁、図1) Patent No. 2725952 (4-5 pages, Fig. 1)
【0009】 [0009]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかし、上記の提案技術は図13のL1,L4の部分にのみ着目したもので、L2,L3の部分がそのまま残るため、スイッチング時にこの部分でサージ電圧が発生してしまう。 However, the above proposed techniques in which attention is paid only to the portion of the L1, L4 of FIG. 13, since the L2, L3 portion remains intact, a surge voltage occurs in this part at the time of switching.
したがって、この発明の課題は、サージ電圧をより一層低減しモジュールの小型化および低価格化を図ることにある。 Accordingly, an object of the present invention is to reduce the size and cost of further reduced module surge voltage.
【0010】 [0010]
【課題を解決するための手段】 In order to solve the problems]
このような課題を解決するため、請求項1の発明では、電力用半導体素子とこの素子に逆並列に接続されたダイオードとを1アームとして複数個直列接続したもの、またはこれらをさらに複数個並列に接続して構成される電力用半導体モジュールにおいて、 To solve such problems, in the invention of claim 1, obtained by a plurality connected in series and connected in anti-parallel with the element and the power semiconductor element diode as one arm, or even parallel a plurality of these in the power semiconductor module configured to connect to,
上アーム素子のコレクタと同電位の銅パターンに接続される第1の電源電位出力電極と、上アーム素子とダイオードを並列接続するとともに、下アーム素子のコレクタと同電位の銅パターンに接続される負荷電極バーと、下アーム素子とダイオードを並列接続する第2の電源電位出力電極とを設け、前記負荷電極バーの上アーム素子およびダイオードと下アーム素子のコレクタと同電位の銅パターンとが接続される部分において、第1の電源電位出力電極と負荷電極バーと第2の電源電位出力電極とを互いに絶縁物を挟んでラミネート構造とすることを特徴とする。 A first power supply potential output electrode connected to the copper pattern of the same potential as the collector of the upper arm device, with the upper arm element and a diode connected in parallel, are connected to the copper pattern of the same potential as the collector of the lower arm device connecting a load electrode bar is provided and a second power supply potential output electrodes connected in parallel lower arm element and a diode, and a copper pattern of the collector at the same potential as the arm elements and the diode and the lower arm element on the load electrode bar in part to be, characterized by a first power supply potential output electrode and the load electrode bar and laminate structures across from each other insulator and a second power supply potential output electrode.
【0013】 [0013]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
図1はこの発明の実施の形態を示す構成図である。 Figure 1 is a block diagram showing an embodiment of the present invention. 同図(a)は上面図、同(b)は斜視図(鳥瞰図)である。 FIG (a) is a top view, and (b) is a perspective view (bird's eye view).
これは、P出力電極8と上アームIGBTのコレクタ電位に接続されたP電極バー32と、上アームIGBTのエミッタ電位,下アームIGBTのコレクタ電位およびU出力電極10に接続されたU電極バー33と、下アームIGBTのエミッタ電位およびN出力電極9に接続されたN電極バー34とを重ね合わせ、ラミネート構造のように板状に形成し密接(近接)して配置したものである。 This, P output electrode 8 and the upper arm P electrode bar 32 connected to the collector potential of the IGBT, the upper arm emitter potential of the IGBT, U electrode bars 33 connected to the collector potential and U output electrode 10 of the lower arm IGBT When, in which arranged superimposed and N electrode bar 34 connected to the emitter potential and the N output electrode 9 of the lower arm IGBT, formed into a plate shape as a laminate structure is in close (close). ただし、各電極バー間には電気的な絶縁が必要なため、図1(b)に点線で示すように、絶縁物を挟む構成とされる。 However, between the electrodes bar for electrical insulation is required, as indicated by the dotted line in FIG. 1 (b), is configured to sandwich the insulator. このように構成することにより、32,33,34の各電極バーの互いに重なり合う部分で、IGBTまたはFWDがスイッチングするときの電流が反対側に流れるため、そのときのインダクタンス値をほぼ0にすることができる。 With this configuration, by mutually overlapping portions of each electrode bar 32, 33, 34, to flow in the current opposite side when IGBT or FWD is switched, to almost zero inductance value at that time can.
【0014】 [0014]
図2に図1の等価回路図を示す。 Figure 2 shows an equivalent circuit diagram of FIG.
例えば、図1(a)で上アームのIGBTがオンしている場合、電流はP出力電極8からP電極バー32を介して、上アームIGBTのコレクタと同電位の銅パターンに流れ、IGBTのエミッタに接続されているU出力電極バー33を介しU出力電極10に流れる。 For example, if the IGBT of the upper arm is turned on at FIG. 1 (a), the current through the P electrode bar 32 from the P output electrode 8, flows in the copper pattern of the same potential as the collector of the upper arm IGBT, the IGBT flowing through the U output electrode 10 via the U output electrode bar 33 which is connected to the emitter. このとき、電流は電極32と33の重なり合う部分で、同じ大きさの電流が互いに反対方向に流れていることになる。 At this time, current is the overlapping part of the electrode 32 and 33, so that the same amount of current flows in opposite directions. 定常的には電流の変化率は非常に小さいためインダクタンス値を全く考慮する必要はないが、インダクタンス値の影響が出る電流変化率の大きいターンオフ時においては、同じ大きさの電流が互いに反対方向に流れることによって、各電極から発生する磁界を打ち消し合う作用が起こり、インダクタンス値はほぼゼロとなる。 Although not necessary to consider any inductance value for the steady change rate of the current is very small, at the time of high turn-off of the current change rate the effect of the inductance value is out, the same amount of current in opposite directions by flow occurs acts to cancel the magnetic field generated from each electrode, the inductance value is almost zero. これは下アームIGBTの場合も同様である。 This is also the case of the lower arm IGBT. つまり、図2のように、L1とL2(電極32と33)、L3とL4(電極33と34)のインダクタンスが互いに打ち消し合う構成である。 In other words, as shown in FIG. 2, L1 and L2 (electrodes 32 and 33), the inductance of L3 and L4 (the electrode 33 and 34) is configured to cancel each other.
【0015】 [0015]
図3にこの発明の参考例を示す。 Figure 3 shows a reference example of the present invention. 同図(a)は上面図、同(b)は斜視図(鳥瞰図)である。 FIG (a) is a top view, and (b) is a perspective view (bird's eye view).
これは、各電極をラミネート構造のように板状に形成するとともに、U出力電極10と上アームIGBTのエミッタ電位と、下アームIGBTのコレクタ電位とを接続する電極バー35を、図示のようにP電極バー36とN電極バー37とにそれぞれ個別に重ね合わせ、互いに密接して配置したものである。 This, together with formed into a plate shape as the electrodes laminated structure, the emitter potential of the upper arm IGBT and the U output electrode 10, the electrode bars 35 which connects the collector potential of the lower arm IGBT, as shown each superimposed separately on the P electrode bar 36 and the N-electrode bars 37, in which is arranged close to each other. これにより、電極バー35と36および電極バー35と37の重なり合う部分で、IGBTまたはFWDがスイッチングするときの電流が反対側に流れるため、そのときのインダクタンス値はほぼ0となる。 Thus, a portion where the electrode bar 35 36 and electrode bars 35 and the overlapping 37, since the current when the IGBT or FWD is switched to flow to the opposite side, the inductance value at that time is approximately zero.
図4に図3の等価回路図を示す。 Figure 4 shows an equivalent circuit diagram of FIG. L1とL2(電極35と36の重なる部分のインダクタンス)、L3とL4(電極35と37の重なる部分のインダクタンス)が互いに打ち消し合う構成となっている。 L1 and L2 (inductance of a portion overlapping electrode 35 and 36), (inductance of a portion overlapping electrode 35 and 37) L3 and L4 has a configuration in which cancel each other.
【0016】 [0016]
ところで、従来の半導体モジュールでは、P側出力電極とN側出力電極とが離れているため、図15に示すように、その出力電極部と外部配線との結線は、ラミネート配線のような板状の近接配線ができない(図15の点線部参照)。 Incidentally, in the conventional semiconductor module, since the distant and the P-side output electrode and the N-side output electrode, as shown in FIG. 15, the wiring of the output electrode portions and the external wiring plate such as laminated wire can not be the adjacent wire (see dotted lines in FIG. 15). その結果、この部分にインダクタンスが発生する。 As a result, the inductance is generated in this part. なお、図15において、3は大容量コンデンサ、38は正側電位の配線バー、39は負側電位の配線バー、40は6素子入り半導体モジュール、41は冷却用の放熱器である。 In FIG. 15, 3 is a large-capacity capacitor, 38 wiring bar positive potential, the wire bar of the negative side potential 39, 40 6 elements containing semiconductor module, 41 is a radiator for cooling.
図15の構成でモジュールの内部まで含めた等価回路を示すと、図16のようになる。 When an equivalent circuit including the inside of the module in the configuration of FIG. 15, is shown in Figure 16. 図16で、インダクタンスLa,LbおよびLc,Ldは板状の近接配線化でほぼゼロにできるが、出力電極部と外部配線との結線部のインダクタンス値Le,Lf(Le≒Lf=10nH程度)が残ってしまい、先の(1)式で説明したようにサージ電圧が発生することになる。 In Figure 16, the inductance La, Lb and Lc, although Ld can substantially zero at the adjacent wire of the plate, the inductance value Le of the connection portion of the output electrode portions and the external circuit, Lf (Le ≒ Lf = about 10 nH) It will remain, so that the surge voltage as described in the previous (1) is generated.
【0017】 [0017]
図5はこのような問題に対処する別の実施の形態を示す。 Figure 5 shows another embodiment that addresses this problem. 図5(a)はその斜視図、同(b)は断面図である。 5 (a) is a perspective view thereof, the (b) is a sectional view.
これは、図5(a)のように、モジュール40のP側出力電極42とN側出力電極43を、それぞれラミネート構造のように板状に形成するとともに、図示のように或る空間距離を離して平行に配置したものである。 This is because, as in FIG. 5 (a), the P-side output electrode 42 and the N-side output electrode 43 of the module 40, as well as a plate-like shape as each laminated structure, a certain spatial distance as shown those arranged in parallel apart.
そのモジュール40の内部は図5(b)のように、電極42(P側)と電極43(N側)を絶縁物44を挟んで板状に近接配線して構成している。 Inside the module 40 as shown in FIG. 5 (b), the electrode 42 (P-side) and the electrode 43 (N side) is constructed by the adjacent wire in a plate shape by sandwiching an insulator 44. また、ここでは電極43(N側)を下アーム側IGBTチップ46のエミッタ側に、電極42(P側)を上アーム側IGBTチップ47のコレクタと同電位の銅パターン48に接続した例を示す。 Also shows the electrode 43 a (N side) on the emitter side of the lower arm IGBT chip 46, an example of connecting electrodes 42 (P side) of the copper pattern 48 of the collector at the same potential as the upper-arm IGBT chip 47 here .
なお、図5では電極の出力部分をモジュールに対して水平に形成しているが、図6のように垂直に形成することも可能である。 Although not horizontally formed an output portion of FIG. 5, electrodes to the module, it is also possible to vertically formed as shown in FIG.
【0018】 [0018]
図7に図5の応用例を示す。 Figure 7 shows an application example of FIG. 図7(a)はその斜視図、同(b)は断面図である。 7 (a) is a perspective view thereof, the (b) is a sectional view.
図7(a),(b)からも明らかなように、モジュール40のP側出力電極42とN側出力電極43間に、2枚が互いに板状に近接配線された外部電極配線バー38,39を挿入し、そのP側どうしN側どうしを互いに接触させて電気的に短絡させた例である。 FIG. 7 (a), the As is apparent from (b), between the P-side output electrode 42 and the N-side output electrode 43 of the module 40, the external electrode interconnection bar 38 two is adjacent wire in a plate shape from each other, 39 inserts a an example in which electrically be short-circuited by contact with each other and the P-side to each other N-side each other.
こうすることで、モジュールのP側出力電極部と外部電極配線バーとの結合部のインダクタンス値はほぼゼロとなるため、そのサージ分は(Le+Lf)・di/dt≒0となる。 Thereby, the inductance value of the coupling portion between the P-side output electrode of the module and the external electrode wire bar is substantially zero, the surge component becomes (Le + Lf) · di / dt ≒ 0. よって、IGBTに印加される電圧を、従来方式に対して約100V程度に低減することができる。 Therefore, the voltage applied to the IGBT, can be reduced to about 100V with respect to the conventional method.
【0019】 [0019]
図8に図5の別の応用例を示す。 Figure 8 shows another application example of FIG.
図7では接触のみで電気的に短絡させているのに対し、ここでは電極42,38,39,43をねじ49により固定するようにした点が特徴である。 7 contacts only whereas that were electrically short-circuited, wherein a feature is a point where the electrodes 42,38,39,43 to be fixed by screws 49. ただし、P側電極とN側電極を電気的に絶縁するため、ねじ49は絶縁物とする。 However, in order to electrically insulate the P-side electrode and the N-side electrode, the screw 49 with the insulator.
図9に導体ねじを利用する例を断面図として示す。 An example of using a conductive screw 9 shows a cross-sectional view. つまり、ねじ49を絶縁物とする代わりに、導体ねじに絶縁物50でコーティングして電気的な絶縁を図るものである。 In other words, the screw 49 instead of the insulator, but to achieve electrical insulation is coated with an insulating material 50 to the conductor thread.
【0020】 [0020]
【発明の効果】 【Effect of the invention】
この発明によれば、IGBTやFWDがスイッチングする際に発生するサージ電圧をより低減できるため、電圧定格の低いIGBT,FWDを用いることが可能となり、小形で安価な電力用半導体モジュールを構成することができる。 According to the present invention, it is possible to further reduce the surge voltage IGBT and FWD is generated when the switching, low IGBT voltage rating, it is possible to use a FWD, configuring the semiconductor module inexpensive power small can. その結果、外部機器に影響を及ぼすノイズの発生量も低減できる。 As a result, it is also reduced generation amount of noise affecting the external device.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】 この発明の実施の形態を示す構成図【図2】 図1の等価回路図【図3】 この発明の参考例を示す構成図【図4】 図3の等価回路図【図5】 この発明の別の実施の形態を示す構成図【図6】 図5の変形例を示す構成図【図7】 図5の第1の応用例を示す構成図【図8】 図5の第2の応用例を示す構成図【図9】 図8の変形例を示す断面図【図10】 一般的なインバータ主回路図【図11】 一般的なインバータモジュ−ル外観図【図12】 インバータモジュ−ル断面概略図【図13】 モジュ−ル内部等価回路図【図14】 IGBTのターンオフ波形図【図15】 インバータモジュ−ルと外部電極との配線構造例図【図16】 図15の等価回路図【符号の説明】 Figure 1 is a configuration diagram an equivalent circuit diagram of FIG. 3. FIG Figure showing a reference example of this diagram FIG. 2 is an equivalent circuit diagram of FIG. 1 showing an embodiment of the invention FIG 3] This invention 5 ] another configuration diagram showing an embodiment of FIG. 6 is a block diagram showing a modified example of FIG. 5 FIG. 7 is a configuration diagram showing a first application example of FIG. 5 [8] Figure 5 of the present invention the diagram illustrating a second applied example FIG. 9 is a cross-sectional view showing a modification of FIG. 8 and FIG. 10 general inverter main circuit diagram 11 general inverter module - Le external view [12] inverter module - Le sectional schematic view [13] module - Le inner circuit 14 is a turn-off waveform of the IGBT Figure 15 inverter module - Le wiring structure illustration of the external electrodes in FIG. 16 15 an equivalent circuit diagram dESCRIPTION oF sYMBOLS
1…交流電源、2…ダイオード整流器モジュ−ル、3…大容量コンデンサ、4…モータ(負荷)、5…インバータモジュ−ル、6…IGBT(絶縁ゲート型バイポーラトランジスタ)、7…ダイオード、8,42…P出力電極、9,43…N出力電極、10…U出力電極、11,13…ゲート端子、12,14…エミッタ端子、15…銅ベース基板、16…セラミック基板、17,18,19,48…銅パターン、20,21,46,47…IGBTチップ、22,23…接続用電極、24,25,26…銅電極バー、27,28,29,30,31,…インダクタンス、32,33,34,35,36,37…電極バー、38,39…外部電極配線バー、40…電力半導体モジュ−ル、41…放熱器、44,45…絶縁物、49…ねじ、5 1 ... AC power source, 2 ... a diode rectifier module - le, 3 ... large-capacitance capacitor, 4 ... motor (load), 5 ... Inverter module - le, 6 ... IGBT (insulated gate bipolar transistor), 7 ... diodes, 8, 42 ... P output electrode, 9,43 ... N output electrode, 10 ... U output electrodes, 11, 13 ... gate terminal, 12 ... emitter terminal, 15 ... copper base substrate, 16 ... ceramic substrate, 17, 18, 19 , 48 ... copper patterns, 20,21,46,47 ... IGBT chip, 22, 23 ... connecting electrodes, 24, 25, 26 ... copper electrode bars, 27,28,29,30,31, ... inductance, 32, 33,34,35,36,37 ... electrode bars, 38, 39 ... external electrode wire bar, 40 ... power semiconductor module - le, 41 ... radiator, 44 ... insulator, 49 ... screw, 5 …絶縁物。 ... insulating material.

Claims (1)

  1. 電力用半導体素子とこの素子に逆並列に接続されたダイオードとを1アームとして複数個直列接続したもの、またはこれらをさらに複数個並列に接続して構成される電力用半導体モジュールにおいて、 Those in which a plurality of series-connected and connected in reverse parallel with the element and the power semiconductor element diodes as first arm, or in the power semiconductor module constructed by connecting them further to plural parallel,
    上アーム素子のコレクタと同電位の銅パターンに接続される第1の電源電位出力電極と、上アーム素子とダイオードを並列接続するとともに、下アーム素子のコレクタと同電位の銅パターンに接続される負荷電極バーと、下アーム素子とダイオードを並列接続する第2の電源電位出力電極とを設け、前記負荷電極バーの上アーム素子およびダイオードと下アーム素子のコレクタと同電位の銅パターンとが接続される部分において、第1の電源電位出力電極と負荷電極バーと第2の電源電位出力電極とを互いに絶縁物を挟んでラミネート構造とすることを特徴とする電力用半導体モジュール。 A first power supply potential output electrode connected to the copper pattern of the same potential as the collector of the upper arm device, with the upper arm element and a diode connected in parallel, are connected to the copper pattern of the same potential as the collector of the lower arm device connecting a load electrode bar is provided and a second power supply potential output electrodes connected in parallel lower arm element and a diode, and a copper pattern of the collector at the same potential as the arm elements and the diode and the lower arm element on the load electrode bar in part to be, a power semiconductor module, characterized by a first power supply potential output electrode and the load electrode bar and laminate structures across from each other insulator and a second power supply potential output electrode.
JP2003000414A 2003-01-06 2003-01-06 Power semiconductor module Expired - Fee Related JP4277169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000414A JP4277169B2 (en) 2003-01-06 2003-01-06 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000414A JP4277169B2 (en) 2003-01-06 2003-01-06 Power semiconductor module

Publications (2)

Publication Number Publication Date
JP2004214452A true JP2004214452A (en) 2004-07-29
JP4277169B2 true JP4277169B2 (en) 2009-06-10

Family

ID=32818731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000414A Expired - Fee Related JP4277169B2 (en) 2003-01-06 2003-01-06 Power semiconductor module

Country Status (1)

Country Link
JP (1) JP4277169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006814A1 (en) 2012-07-04 2014-01-09 パナソニック株式会社 Semiconductor device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660214B2 (en) * 2005-01-26 2011-03-30 日本インター株式会社 The power semiconductor device
JP4736850B2 (en) * 2006-02-28 2011-07-27 株式会社豊田自動織機 Method of joining the external connection terminal and the external electrodes of the semiconductor device and a semiconductor device
JP4736849B2 (en) * 2006-02-28 2011-07-27 株式会社豊田自動織機 Method of joining the external connection terminal and the external electrodes of the semiconductor device and a semiconductor device
US8129836B2 (en) 2006-06-09 2012-03-06 Honda Motor Co., Ltd. Semiconductor device
JP4977407B2 (en) * 2006-06-09 2012-07-18 本田技研工業株式会社 Semiconductor device
JP4829690B2 (en) * 2006-06-09 2011-12-07 本田技研工業株式会社 Semiconductor device
JP4434181B2 (en) * 2006-07-21 2010-03-17 株式会社日立製作所 Power converter
JP5045111B2 (en) * 2007-01-17 2012-10-10 トヨタ自動車株式会社 The semiconductor module and the manufacturing method thereof
JP5090063B2 (en) * 2007-05-28 2012-12-05 日本インター株式会社 Power semiconductor module
DE102007029657B4 (en) * 2007-06-27 2017-10-19 Fuji Electric Co., Ltd. Inverter module for Power
EP2099121B1 (en) * 2008-03-04 2017-10-18 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP4582161B2 (en) * 2008-03-04 2010-11-17 株式会社豊田自動織機 Power converter
JP4640424B2 (en) * 2008-03-04 2011-03-02 株式会社豊田自動織機 Power converter
JP4640423B2 (en) * 2008-03-04 2011-03-02 株式会社豊田自動織機 Power converter
EP2099119B1 (en) * 2008-03-04 2014-11-19 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP4640425B2 (en) * 2008-03-04 2011-03-02 株式会社豊田自動織機 Power converter
JP4561874B2 (en) * 2008-05-20 2010-10-13 株式会社豊田自動織機 Power converter
JP5355506B2 (en) * 2010-07-02 2013-11-27 本田技研工業株式会社 Semiconductor device
JP5685880B2 (en) * 2010-10-15 2015-03-18 トヨタ自動車株式会社 Bonding structure wirebond
JP5601376B2 (en) * 2010-12-01 2014-10-08 株式会社安川電機 Power converter
JP5534353B2 (en) * 2011-03-31 2014-06-25 アイシン・エィ・ダブリュ株式会社 The inverter device
JP5534352B2 (en) * 2011-03-31 2014-06-25 アイシン・エィ・ダブリュ株式会社 The inverter device
JP5999677B2 (en) * 2011-09-20 2016-09-28 ローム株式会社 Electronic circuit
JP5893369B2 (en) * 2011-12-05 2016-03-23 ローム株式会社 Semiconductor device
JP2013125848A (en) * 2011-12-14 2013-06-24 Rohm Co Ltd Power module semiconductor device and manufacturing method thereof
CN104040715B (en) 2012-02-09 2017-02-22 富士电机株式会社 Semiconductor device
DE112013001234T5 (en) 2012-03-01 2015-01-08 Mitsubishi Electric Corporation The power semiconductor module and power conversion device
JP5924164B2 (en) * 2012-07-06 2016-05-25 株式会社豊田自動織機 Semiconductor device
JP5858895B2 (en) * 2012-10-05 2016-02-10 カルソニックカンセイ株式会社 Semiconductor device
WO2014061211A1 (en) 2012-10-15 2014-04-24 富士電機株式会社 Semiconductor device
JP2015133368A (en) * 2014-01-10 2015-07-23 三菱電機株式会社 Power connection terminal and power semiconductor device
CN106415834A (en) 2014-11-28 2017-02-15 富士电机株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006814A1 (en) 2012-07-04 2014-01-09 パナソニック株式会社 Semiconductor device
US9379049B2 (en) 2012-07-04 2016-06-28 Panasonic Intellectual Property Management Co., Ltd. Semiconductor apparatus

Also Published As

Publication number Publication date Type
JP2004214452A (en) 2004-07-29 application

Similar Documents

Publication Publication Date Title
US6181590B1 (en) Power inverter
US6906404B2 (en) Power module with voltage overshoot limiting
US6373705B1 (en) Electronic semiconductor module
US6987670B2 (en) Dual power module power system architecture
US20020034088A1 (en) Leadframe-based module DC bus design to reduce module inductance
US5077595A (en) Semiconductor device
US4670833A (en) Semiconductor module for a high-speed switching arrangement
US6845017B2 (en) Substrate-level DC bus design to reduce module inductance
EP0379346A2 (en) Power conversion unit and module for its construction
US20100039843A1 (en) Semiconductor module for use in power supply
US20060274561A1 (en) Tri-level inverter
US5296735A (en) Power semiconductor module with multiple shielding layers
US6359331B1 (en) High power switching module
US5512782A (en) Semiconductor device for DC/AC converter
JPH11235053A (en) Power converter stack
JP2007235004A (en) Semiconductor device
US20120106220A1 (en) Switching module
JP2009225612A (en) Power module
JP2004311685A (en) Semiconductor device for power
US20120119256A1 (en) Power semiconductor module
US20040095730A1 (en) Heat dissipation system for semiconductor device
JPH0583947A (en) Inverter apparatus
JP2010016947A (en) Power module of power conversion apparatus
US5617293A (en) Bridge module
JP2011029262A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees