JPH11100277A - Silicon nitride sintered compact and coated silicon nitride sintered compact - Google Patents

Silicon nitride sintered compact and coated silicon nitride sintered compact

Info

Publication number
JPH11100277A
JPH11100277A JP9282878A JP28287897A JPH11100277A JP H11100277 A JPH11100277 A JP H11100277A JP 9282878 A JP9282878 A JP 9282878A JP 28287897 A JP28287897 A JP 28287897A JP H11100277 A JPH11100277 A JP H11100277A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
based sintered
body according
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9282878A
Other languages
Japanese (ja)
Inventor
Yuji Sato
裕二 佐藤
Shinya Yamada
慎也 山田
Hiroaki Kurita
広明 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP9282878A priority Critical patent/JPH11100277A/en
Publication of JPH11100277A publication Critical patent/JPH11100277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain excellent thermal conductivity by forming from a matrix consisting essentially of silicon nitride and the a grain boundary phase containing a crystalline conjugated oxide containing a rare earth element and a group IVa element as the remainder. SOLUTION: This sintered compact is composed of 90-99.5% matrix consisting essentially of silicon nitride and the grain boundary phase containing the crystalline conjugated oxide, which contains the rare earth element expressed by a formula, R2 M2-x O7-2x and the group IVa element in periodic table, and a vitreous material containing Mg element at need. A coated silicon nitride sintered compact is obtained by forming a coating film of one or more kinds selected from a group IVa, Va and VIa metal, Al, Si and the carbide, nitride, oxide and having 0.5-20 μm film thickness on the whole surface or a part of the surface of the sintered compact. As the crystalline conjugated oxide, Y2 Hf2-x O7-2x , Y2 Zr2-x O7-2x , Sc2 Hf2-x O7-2x , (yDy)2 Hf2-x O7-2x and the like are mentioned. In the formula, M represents a group IVa element in periodic table, R represents a rare earth element such as Y, Sc and (x) satisfies -1<x<1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化珪素を主成分
とするマトリックスと粒界相とからなる窒化珪素基焼結
体、およびこの焼結体の表面上に被膜を被覆してなる被
覆窒化珪素基焼結体に関し、具体的には、旋削工具,フ
ライス工具,ドリル,エンドミルに代表される切削工
具、スリッタ−,プッシュ,ガイド,ノズル,ボ−ルに
代表される耐摩耗工具、エンジン,ロ−タに代表される
各種の機械部品,治具などの構造材料として最適な窒化
珪素基焼結体およびこの焼結体の表面上に被膜を被覆し
てなる被覆窒化珪素基焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based sintered body comprising a matrix containing silicon nitride as a main component and a grain boundary phase, and a coated nitride formed by coating a film on the surface of the sintered body. More specifically, silicon-based sintered bodies include cutting tools such as turning tools, milling tools, drills and end mills, wear-resistant tools such as slitters, pushes, guides, nozzles, and balls, engines, The present invention relates to a silicon nitride-based sintered body that is most suitable as a structural material for various machine parts and jigs represented by a rotor and a coated silicon nitride-based sintered body obtained by coating a film on the surface of the sintered body. .

【0002】[0002]

【従来の技術】一般に、窒化珪素またはサイアロンを主
成分とするセラミックス焼結体は、曲げ強度,破壊靭性
および耐熱衝撃性に優れることから切削工具,耐摩耗工
具または各種の機械部品として実用化が進められてい
る。この種の焼結体のうち、サイアロン基焼結体は、窒
化珪素基焼結体よりも熱伝導率が小さいことから耐熱衝
撃性に劣る傾向にある。このサイアロン基焼結体におけ
る耐熱衝撃性などの高温特性に注目した代表的なものと
して、特開平6−298567号公報および特開平8−
337477号公報がある。一方、窒化珪素基焼結体
は、窒化珪素自体が鉄基材料との親和性に優れているこ
とから鉄基材料の被削材を切削する切削工具として用い
ると、サイアロン基焼結体に比較して短寿命となる場合
がある。この窒化珪素基焼結体の改良が多数行なわれて
おり、その中でも粒界相の組成成分を検討した代表的な
ものとして、特公昭52−3650号公報,特開昭62
−153169号公報,特開平9−20563号公報お
よび特開平9−142935号公報がある。
2. Description of the Related Art In general, a ceramic sintered body containing silicon nitride or sialon as a main component is excellent in bending strength, fracture toughness and thermal shock resistance, so that it can be put to practical use as a cutting tool, a wear-resistant tool or various mechanical parts. Is underway. Among this type of sintered body, a sialon-based sintered body has a lower thermal conductivity than a silicon nitride-based sintered body, and thus tends to have poor thermal shock resistance. Representative examples of the sialon-based sintered body, which focus on high-temperature characteristics such as thermal shock resistance, are disclosed in JP-A-6-298567 and JP-A-8-98857.
There is 337777 gazette. On the other hand, a silicon nitride-based sintered body is compared with a sialon-based sintered body when used as a cutting tool for cutting a work material of an iron-based material because silicon nitride itself has an excellent affinity for an iron-based material. May have a short life. Numerous improvements have been made to this silicon nitride-based sintered body. Among them, as a representative example of the composition of the grain boundary phase, Japanese Patent Publication No. 52-3650 and Japanese Unexamined Patent Publication No. Sho 62
JP-A-153169, JP-A-9-20563 and JP-A-9-142935.

【0003】[0003]

【発明が解決しようとする課題】先行技術としての特開
平6−298567号公報には、β−サイアロンを主成
分とするマトリックスと、Hfおよび/またはZrの元
素を含む複合酸化物を主成分とする粒界相とからなるサ
イアロン基焼結体について開示されている。また、本発
明者らの発明である特開平8−337477号公報に
は、サイアロンを主成分とするマトリクスと、希土類元
素の1種以上と周期律表の4a族元素の1種以上と周期
律表の2a,6a,7a,8a族の1種の元素とを含有
する複合酸化物を主成分とする粒界相とからなるサイア
ロン基焼結体について開示されている。この両公報に開
示の焼結体は、サイアロンを主成分をしているために熱
伝導率が小さい傾向にあり、特に重負荷および高温領域
における切削工具として使用される場合には満足するま
でに至っていないという問題がある。
As a prior art, Japanese Patent Application Laid-Open No. 6-298567 discloses a matrix containing β-sialon as a main component and a composite oxide containing Hf and / or Zr as a main component. A sialon-based sintered body composed of a grain boundary phase and Japanese Patent Application Laid-Open No. 8-337777, which is an invention of the present inventors, discloses a matrix containing sialon as a main component, one or more rare earth elements and one or more group 4a elements in the periodic table. It discloses a sialon-based sintered body composed of a composite oxide containing one kind of element from groups 2a, 6a, 7a and 8a of the table and a grain boundary phase as a main component. The sintered bodies disclosed in these two publications tend to have a low thermal conductivity due to having sialon as a main component, especially when they are used as cutting tools in heavy load and high temperature regions. There is a problem that has not been reached.

【0004】その他の先行技術のうち、特公昭52−3
650号公報には、窒化珪素60〜90モル%と、残部
が酸化マグネシウム,酸化亜鉛および酸化ニッケルの1
種以上と、酸化アルミニウム,酸化クロム,酸化イット
リウムおよび酸化チタンの1種以上とからなり、これら
の酸化物がスピネル酸化物を構成して窒化珪素に固溶し
てなる過共晶アルミニウム−珪素合金切削用工具材につ
いて開示されている。この同公報に開示の焼結体は、ス
ピネル酸化物の窒化珪素への固溶により窒化珪素の格子
振動が乱れて、フォノンが散乱して熱伝導率を小さくさ
せる傾向となり、その結果耐熱衝撃性を高めることが困
難であるという問題がある。
[0004] Among other prior art, Japanese Patent Publication No. 52-3
No. 650 discloses that silicon nitride has a content of 60 to 90 mol% and the balance is magnesium oxide, zinc oxide and nickel oxide.
And a hypereutectic aluminum-silicon alloy comprising at least one of aluminum oxide, chromium oxide, yttrium oxide and titanium oxide, wherein these oxides constitute a spinel oxide and form a solid solution in silicon nitride. A cutting tool material is disclosed. In the sintered body disclosed in this publication, the lattice vibration of silicon nitride is disturbed by the solid solution of spinel oxide in silicon nitride, and phonons are scattered to lower the thermal conductivity. There is a problem that it is difficult to increase the.

【0005】また、特開昭62−153169号公報に
は、希土類元素の酸化物と、Hf,TaまたはNbの酸
化物,炭化物,ケイ化物の群から選ばれた少なくとも1
種と、窒化アルミニウムと、残部が窒化珪素よりなるセ
ラミックス混合物を焼成してなる窒化珪素基焼結体が開
示されている。さらに、特開平9−20563号公報に
は、Mg,Al,カ−ボンおよび酸素と、Ti,Hf,
Wの1種以上からなる粒界相と、残部が窒化珪素とから
なる窒化珪素基焼結体について開示されている。そし
て、特開平9−142935号公報には、希土類元素,
Al,Mg,Si,酸素および窒素を含む非晶質の粒界
相と、残部がβ−窒化珪素とからなる窒化珪素基焼結体
について開示されている。これらの3件の公報のうち、
前2件の公報に開示の焼結体は、熱伝導率を大きくする
ことが可能となったとしても焼結体の強度および靭性が
満足するまでに至らず、重負荷および高温領域における
切削工具として使用されるとチッピングまたは欠損によ
り切削寿命が短いという問題がある。残り1件の公報に
開示の焼結体は、非晶質の粒界相からなるために高温領
域における耐摩耗性,耐衝撃性の劣化が顕著であるとい
う問題がある。
Japanese Patent Application Laid-Open No. Sho 62-153169 discloses an oxide of a rare earth element and at least one oxide selected from the group consisting of oxides, carbides and silicides of Hf, Ta or Nb.
There is disclosed a silicon nitride-based sintered body obtained by firing a ceramic mixture composed of a seed, aluminum nitride, and the remainder silicon nitride. Further, JP-A-9-20563 discloses that Mg, Al, carbon and oxygen, Ti, Hf,
A silicon nitride-based sintered body composed of a grain boundary phase composed of at least one type of W and a balance of silicon nitride is disclosed. Japanese Patent Application Laid-Open No. 9-142935 discloses a rare earth element,
It discloses a silicon nitride-based sintered body composed of an amorphous grain boundary phase containing Al, Mg, Si, oxygen and nitrogen, and β-silicon nitride as a balance. Of these three publications,
The sintered body disclosed in the above two publications does not satisfy the strength and toughness of the sintered body even if the thermal conductivity can be increased, and the cutting tool in a heavy load and a high temperature region. When used as, there is a problem that the cutting life is short due to chipping or chipping. The sintered body disclosed in the remaining one publication has a problem that the abrasion resistance and the impact resistance in a high-temperature region are significantly deteriorated because of the amorphous grain boundary phase.

【0006】本発明は、上述のような問題点を解決した
もので、具体的には、熱伝導性に優れており、耐熱衝撃
性,高温における強度,靭性,耐欠損性および耐摩耗性
に優れるようにし、特に高温領域の切削,黒皮付被削材
の高速切削および湿式切削における切削工具として使用
した場合における耐熱衝撃性を顕著に高めて長寿命化を
達成した窒化珪素基焼結体の提供を目的とするものであ
る。
The present invention has solved the above-mentioned problems. Specifically, the present invention is excellent in thermal conductivity and has improved thermal shock resistance, strength at high temperatures, toughness, fracture resistance and wear resistance. Silicon nitride-based sintered body that has been improved to achieve high durability, especially when used as a cutting tool in high-temperature cutting, high-speed cutting of black-skinned workpieces and wet cutting, and has a long life. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者らは、窒化珪素
とこの窒化珪素の結合および焼結助剤を兼ねる粒界相と
の関係から長寿命の切削工具材料を開発する目的で、長
期間に亘り検討していたところ、黒皮付被削材を切削す
る場合に発生する切削工具の境界損傷を抑制するために
は、第1に境界部に発生する熱応力を緩和させること、
熱応力を緩和させるためには切削工具の熱伝導率を大き
くすることが好ましいこと、第2に室温から高温までに
おける切削工具の硬さ,強度および靭性が高いことが重
要であるという第1の知見を得た。この第1の知見を完
成させるには、高温の安定性と熱伝導性が大きいこと、
これらを満足させるためには結晶性に優れる物質、熱伝
導性に優れる物質、および窒化珪素との親和性に高い物
質が好ましく、これらを満たす物質が希土類元素と周期
律表の4a族元素とを含む複合酸化物であるという第2
の知見を得た。これらの第1と第2の知見により本発明
を完成するに至ったものである。
SUMMARY OF THE INVENTION The present inventors have developed a long-lasting cutting tool material in view of the relationship between silicon nitride and the grain boundary phase which also serves as a sintering aid and bonding of the silicon nitride. During the study over the period, in order to suppress the boundary damage of the cutting tool that occurs when cutting a black-skinned work material, first, it is necessary to reduce the thermal stress generated at the boundary portion,
In order to reduce the thermal stress, it is preferable to increase the thermal conductivity of the cutting tool. Second, it is important that the cutting tool has high hardness, strength and toughness from room temperature to high temperature. Obtained knowledge. To complete this first finding, high stability at high temperatures and high thermal conductivity,
In order to satisfy these, a substance having excellent crystallinity, a substance having excellent thermal conductivity, and a substance having a high affinity for silicon nitride are preferable, and a substance satisfying these is a rare earth element and a 4a group element of the periodic table. Second, it is a complex oxide containing
Was obtained. The present invention has been completed based on these first and second findings.

【0008】すなわち、本発明の窒化珪素基焼結体は、
窒化珪素を主成分とするマトリックスを90〜99.5
重量%と、残部が希土類元素と周期律表の4a族元素と
を含む結晶質複合酸化物を含有する粒界相とからなるこ
とを特徴とするものである。
That is, the silicon nitride-based sintered body of the present invention
A matrix containing silicon nitride as a main component is 90 to 99.5.
% By weight, and the balance consists of a grain boundary phase containing a crystalline composite oxide containing a rare earth element and a Group 4a element of the periodic table.

【0009】[0009]

【発明の実施の態様】本発明の焼結体におけるマトリッ
クスは、実質的に窒化珪素でなる場合、または90wt
%以上の窒化珪素に他の酸化物,窒化物,炭化物が混在
もしくは固溶した組成成分からなる場合、具体的には9
0wt%以上の窒化ケイ素にケイ素アルミニウム酸窒化
物(具体的には、例えばSi12Al18398),炭化
ケイ素,サイアロンの中の1種以上が混在,固溶した状
態でなるものである。このマトリックスは、実質的には
窒化珪素でなる場合が好ましく、用途に応じてα型およ
び/またはβ型の窒化珪素を使い分けることもよいが、
特に強度および靭性を重要視する用途には実質的にβ型
窒化珪素でなる場合が好ましいことである。
BEST MODE FOR CARRYING OUT THE INVENTION The matrix in the sintered body of the present invention is substantially composed of silicon nitride or 90 wt.
% Or more of a composition component in which other oxides, nitrides, and carbides are mixed or dissolved in silicon nitride.
One or more of silicon aluminum oxynitride (specifically, for example, Si 12 Al 18 O 39 N 8 ), silicon carbide, and sialon are mixed and dissolved in 0 wt% or more of silicon nitride. is there. This matrix is preferably substantially composed of silicon nitride. Depending on the application, α-type and / or β-type silicon nitride may be used properly.
In particular, in applications where importance is placed on strength and toughness, it is preferable to use substantially β-type silicon nitride.

【0010】本発明の焼結体における粒界相は、結晶質
複合酸化物のみからなる場合、または結晶質複合酸化物
を主成分とし、その他非晶質物質としてのガラス状物質
を含有している場合を代表例として挙げることができ
る。この粒界相に含有する結晶質複合酸化物は、Rab
c(但し、Rは、Sc,Yを含めた希土類元素の中の
少なくとも1種を表わし、Mは、周期律表の4a族元素
の中の少なくとも1種を表わし、Oは、酸素を表わし、
a>0,b>0,c>0の正数を表わす)で表わされる
結晶質、および/またはRabM′dc(但し、M′
は、RおよびM以外の元素、d>0の正数、その他は前
述と同一)で表わせる結晶質の複合酸化物からなるもの
である。
[0010] The grain boundary phase in the sintered body of the present invention is composed of only a crystalline composite oxide or contains a crystalline composite oxide as a main component and other glassy substances as an amorphous substance. Can be cited as a typical example. The crystalline composite oxide contained in this grain boundary phase is Ra M b
O c (where R represents at least one kind of rare earth element including Sc and Y, M represents at least one kind of element of Group 4a of the periodic table, and O represents oxygen. ,
a> 0, b> 0, c> 0) and / or R a M b M ′ d O c (where M ′
Is an element other than R and M, a positive number of d> 0, and the others are the same as those described above).

【0011】この結晶質複合酸化物は、R22-x7-2x
で表わされる複合酸化物(但し、R,M,Oは、前述と
同一、Xは、−1<X<1を満足する。)でなる場合に
は、安定な結晶質となり、かつ焼結体の熱伝導率を大き
くし、耐熱衝撃性を向上させることから好ましいことで
ある。特に、R=Y,Dy,Yb,Smの1種以上から
なる場合、M=Zrおよび/またはHfからなる場合に
は上述の効果を高める傾向にあることから好ましいこと
である。この結晶質複合酸化物は、具体的には、例えば
2Hf2-x7-2x,Y2Zr2-x7-2x,Sc2Hf2-x
7-2x,(YDy)2Hf2-x7-2x,(YDy)2Zr2-x
7-2x,(YDy)2(ZrHf)2-x7-2x,Sc
2(HfMgz)2-x7-2x,Y2(HfMgz)2-x
7-2x,Dy2(HfMgz)2-x7-2x,Dy2(HfM
gz)2-x7-2x,(YDy)2(HfMgz)2-x
7-2x,Y2(HfCrz)2-x7-2x,の1種以上からな
る場合を挙げることができる。
The crystalline composite oxide is represented by R 2 M 2-x O 7-2x
(Where R, M, and O are the same as above, and X satisfies -1 <X <1), a stable oxide is obtained, and a sintered body is formed. This is preferred because it increases the thermal conductivity and improves thermal shock resistance. In particular, it is preferable to use one or more of R = Y, Dy, Yb, and Sm, and to use M = Zr and / or Hf because the above-described effects tend to be enhanced. The crystalline complex oxides, specifically, for example, Y 2 Hf 2-x O 7-2x , Y 2 Zr 2-x O 7-2x, S c2 Hf 2-x O
7-2x , (YDy) 2 Hf 2-x O 7-2x , (YDy) 2 Zr 2-x
O 7-2x , (YDy) 2 (ZrHf) 2-x O 7-2x , Sc
2 (HfMgz) 2-x O 7-2x , Y 2 (HfMgz) 2-x O
7-2x , Dy 2 (HfMgz) 2-x O 7-2x , Dy 2 (HfM
gz) 2-x O 7-2x , (YDy) 2 (HfMgz) 2-x O
7-2x and Y 2 (HfCrz) 2-x O 7-2x .

【0012】この結晶質複合酸化物を主成分として含有
する粒界相は、易焼結性から非晶質のガラス状物質を混
在させることが好ましいことである。この粒界相にMg
元素を含有させると、Mg含有のガラス状物質が形成さ
れやすくなって、易焼結性の促進効果が生ずることから
好ましいことである。このガラス状物質は、Mg元素と
Si元素と酸素元素と窒素元素とを含有している場合に
は、易焼結性の促進効果の他に、焼結体の強度および靭
性の向上効果もあることから好ましいことである。
The grain boundary phase containing the crystalline composite oxide as a main component is preferably mixed with an amorphous glassy substance from the viewpoint of sinterability. Mg in this grain boundary phase
The inclusion of the element is preferable because a Mg-containing glassy substance is easily formed, and the effect of promoting the sinterability is produced. When this glassy substance contains the Mg element, the Si element, the oxygen element, and the nitrogen element, in addition to the effect of promoting the sinterability, it also has the effect of improving the strength and toughness of the sintered body. This is preferable.

【0013】焼結体中における粒界相とマトリックスと
の含有量は、相対関係にあり、マトリックスの量が90
重量%未満になると、相対的に粒界相の量が10重量%
を越えて多くなり、その結果耐摩耗性の低下が顕著にな
り、逆にマトリックスの量が99重量%を越えて多くな
ると、相対的に粒界相の量が1重量%未満となり、その
結果焼結性の低下および強度,靭性の低下が顕著とな
る。
The contents of the grain boundary phase and the matrix in the sintered body are in a relative relationship.
When the amount is less than 10% by weight, the amount of the grain boundary phase is relatively 10% by weight.
When the amount of the matrix is more than 99% by weight, the amount of the grain boundary phase is relatively less than 1% by weight. The sinterability, strength, and toughness are significantly reduced.

【0014】この窒化珪素基焼結体の全面または一部表
面に周期律表の4a,5a,6a族の金属,Al,Si
およびこれらの相互合金,または周期律表の4a,5
a,6a族の金属,Al,Siの炭化物,窒化物,酸化
物およびこれらの相互固溶体,もしくはダイヤモンド,
ダイヤモンド状カ−ボン,立方晶窒化硼素,硬質窒化硼
素の中から選ばれた少なくとも1種の単層あるいは2種
以上の複層でなる0.5〜20μm膜厚の被膜を形成し
て被覆窒化珪素基焼結体とすると、さらに耐摩耗性が向
上することから好ましいことである。また、被覆窒化珪
素基焼結体の被膜厚さは、用途,焼結体の形状,被膜材
質および単層,複層,被膜の粒径,被膜の結晶などに関
する被膜の構成により適用範囲が異なるが、特に切削工
具のように苛酷な用途には1〜8μm膜厚さでなること
が好ましい。
A metal, Al, Si of the 4a, 5a, 6a group of the periodic table is provided on the entire surface or a part of the surface of the silicon nitride based sintered body.
And their mutual alloys, or 4a, 5 of the periodic table
a, group 6a metals, carbides, nitrides, oxides of Al and Si and their mutual solid solutions, or diamond;
Forming a coating having a thickness of 0.5 to 20 μm comprising at least one single layer selected from diamond-like carbon, cubic boron nitride, and hard boron nitride, or at least two types of multiple layers; It is preferable to use a silicon-based sintered body because the wear resistance is further improved. The applicable range of the coating thickness of the coated silicon nitride-based sintered body varies depending on the application, the shape of the sintered body, the coating material, and the composition of the coating in terms of single layer, multiple layers, particle size of the coating, crystal of the coating, and the like. However, the thickness is preferably 1 to 8 μm for severe applications such as cutting tools.

【0015】本発明の焼結体は、従来から行われている
粉末冶金法により作製することができる。具体的には、
例えば各種の出発物質を秤量し、有機溶媒と粉砕媒体と
共に混合容器に挿入し、湿式混合,乾燥,粉末成形,予
備加熱,焼結の各工程を経て作製することができる。こ
のときの焼結工程は、窒素ガス,不活性ガスの雰囲気中
で1500〜2000℃にて焼結すること、焼結時の圧
力は、減圧または加圧(ホットプレス)にすること、さ
らには焼結後に、熱間静水圧加圧処理(HIP処理)を
施すことも強度,靭性を高める傾向を示すことから好ま
しいことである。
The sintered body of the present invention can be manufactured by a conventional powder metallurgy method. In particular,
For example, various starting materials can be weighed, inserted into a mixing vessel together with an organic solvent and a pulverizing medium, and can be manufactured through wet mixing, drying, powder molding, preheating, and sintering steps. The sintering step at this time is sintering at 1500 to 2000 ° C. in an atmosphere of nitrogen gas and inert gas, and the pressure during sintering is reduced or increased (hot pressing). It is also preferable to perform hot isostatic pressing (HIP) after sintering because it tends to increase strength and toughness.

【0016】また、こうして得た焼結体の表面に被膜を
形成するには、従来から行われている化学蒸着法(CV
D法),物理蒸着法(PVD法)またはプラズマCVD
法により行うことができる。
In order to form a film on the surface of the thus obtained sintered body, a conventional chemical vapor deposition method (CV
D method), physical vapor deposition method (PVD method) or plasma CVD
It can be performed by the method.

【0017】[0017]

【作用】本発明の窒化珪素基焼結体は、マトリックスが
主として耐熱衝撃性および耐摩耗性を向上させる作用を
し、マトリックスの粒界に均一に分散されてなる粒界相
が主として強度,靭性を向上させる作用をし、粒界相中
の結晶質複合酸化物が熱伝導率を大きくする作用をし、
さらに機械的強度,耐熱衝撃性と高温における耐摩耗性
との両者をバランスよく優れるように作用をし、粒界相
中にガラス状物質を含有させる場合には、焼結工程時に
焼結促進をする作用をし、これらのマトリックスと粒界
相とのシナジ−効果により、さらに高温における耐摩耗
性,耐熱衝撃性,耐欠損性および耐熱性を高める作用を
しているものである。
In the silicon nitride-based sintered body of the present invention, the matrix mainly functions to improve the thermal shock resistance and wear resistance, and the grain boundary phase which is uniformly dispersed at the grain boundaries of the matrix mainly has strength and toughness. And the crystalline composite oxide in the grain boundary phase acts to increase the thermal conductivity,
In addition, it acts to balance both mechanical strength, thermal shock resistance and abrasion resistance at high temperatures, and promotes sintering during the sintering process when a glassy substance is contained in the grain boundary phase. The synergistic effect between the matrix and the grain boundary phase further enhances wear resistance, thermal shock resistance, chipping resistance and heat resistance at high temperatures.

【0018】[0018]

【実施試験1】平均粒径が0.7μmのSi34,0.
2μmのMgO,0.5μmのY23,Dy23,0.
4μmのHfO2,0.2μmのAl23,および一次
粒子径が300ÅのZrO2でなる各種市販の粉末を用
いて表1に示す割合に配合し、ヘキサン溶媒とSi34
基焼結体の粉砕媒体と共にボ−ルミルによる湿式混合を
行った。こうして得た混合粉末に成形助剤としてのパラ
フインワックスを外掛けで6wt%添加した後、金型を
用いて2ton/cm2の圧力で粉末成形体とした。こ
の粉末成形体を予備加熱して脱ワックスした後、5kg
/cm2の加圧窒素ガス雰囲気中,温度1900℃,2
時間保持の条件で焼結し、さらに1000気圧の窒素ガ
ス雰囲気中,温度1700℃,1時間保持の条件でHI
P処理を行い、本発明品1〜5および比較品1〜8を得
た。
[Experimental test 1] Si 3 N 4 having an average particle size of 0.7 μm, 0.1 μm.
2 μm MgO, 0.5 μm Y 2 O 3 , Dy 2 O 3 , 0.
Using various commercially available powders of 4 μm HfO 2 , 0.2 μm Al 2 O 3 , and ZrO 2 having a primary particle diameter of 300 °, the hexane solvent and Si 3 N 4 were mixed in the proportions shown in Table 1.
Wet mixing by a ball mill was performed together with the pulverization medium of the base sintered body. After adding 6 wt% of paraffin wax as a molding aid to the mixed powder thus obtained, a powder compact was formed at a pressure of 2 ton / cm 2 using a mold. After preheating this powder compact and dewaxing it, 5 kg
/ Cm 2 in a pressurized nitrogen gas atmosphere, temperature 1900 ° C, 2
Sintering is performed under the conditions of holding for 1 hour, and HI is further performed for 1 hour at a temperature of 1700 ° C. in a nitrogen gas atmosphere at 1000 atm.
P treatment was performed to obtain inventive products 1 to 5 and comparative products 1 to 8.

【0019】こうして得た本発明品1〜5および比較品
1〜8の各焼結体のマトリックス,粒界相からなる組成
成分を結晶X線回折,特性X線回折および蛍光X線回折
により調査して、その結果を表2に示した。また、本発
明品1〜5および比較品1〜8の各焼結体について室温
における硬さ,曲げ強度,破壊靭性値(ビッカ−ス圧子
によるクラックから求めるK1c法),熱伝導率を測定
し、さらに1200℃における高温硬さおよび高温曲げ
強度を測定して、その結果を表3に示した。
The compositions of the matrix and the grain boundary phase of the sintered bodies of the inventive products 1 to 5 and comparative products 1 to 8 thus obtained were investigated by crystal X-ray diffraction, characteristic X-ray diffraction and fluorescent X-ray diffraction. The results are shown in Table 2. The hardness, flexural strength, fracture toughness (K1c method obtained from cracks with a Vickers indenter), and thermal conductivity of each of the sintered products of the present invention products 1 to 5 and comparative products 1 to 8 were measured at room temperature. Further, the high-temperature hardness and high-temperature bending strength at 1200 ° C. were measured, and the results are shown in Table 3.

【0020】次に、本発明品1〜5および比較品1〜8
の各焼結体を用いて、以下の(A)条件による乾式フラ
イス切削試験と(B)条件による湿式断続旋削試験を行
なって、その結果を表4に示した。(A)の乾式フライ
ス切削試験条件は、被削材:FC250(180mm×
60mmの黒皮面),切削速度:600m/min,切
込み:3.0mm,送り:0.1mm/刃,工具形状S
NGN120412,評価:180mm×60mm面積
部分を30回切削後の境界摩耗量(VN)を測定、
(B)の湿式断続旋削試験条件は、被削材:FC350
(外径180mm×内径90mm端面,4本溝付き),
切削速度:500〜250m/min(回転数一定),
切込み:2.0mm,送り:0.3mm/rev,工具
形状:SNGN120412,評価:チッピングまたは
欠損に至るまでの端面切削回数(パス回数)を測定し
た。
Next, products 1 to 5 of the present invention and comparative products 1 to 8
Using each of the sintered compacts, a dry milling test under the following condition (A) and a wet intermittent turning test under the condition (B) were performed, and the results are shown in Table 4. (A) The dry milling cutting test conditions are as follows: Work material: FC250 (180 mm ×
60mm black scale), cutting speed: 600m / min, depth of cut: 3.0mm, feed: 0.1mm / tooth, tool shape S
NGN120412, Evaluation: Measured the boundary wear amount (V N ) after cutting the 180 mm × 60 mm area portion 30 times,
(B) The wet intermittent turning test condition is as follows: Work material: FC350
(180mm outer diameter x 90mm inner diameter end face, with 4 grooves),
Cutting speed: 500-250m / min (constant rotation speed),
Depth of cut: 2.0 mm, feed: 0.3 mm / rev, tool shape: SNGN120412, evaluation: The number of end face cutting (passing) until chipping or chipping was measured.

【0021】以上の結果から、本発明品1に対する比較
品5、本発明品2に対する比較品6、本発明品3に対す
る比較品7、および本発明品4に対する比較品8とをそ
れぞれ対比すると、本発明品は、サイアロン基焼結体よ
りは室温および高温における硬さ,曲げ強度が高く、室
温における破壊靭性値が高く、熱伝導率が顕著に高いと
いう傾向を示し、その結果切削試験における耐衝撃性お
よび耐熱衝撃性に対して顕著に優れていることが明確で
ある。
From the above results, the comparison product 5 for the product 1 of the present invention, the comparison product 6 for the product 2 of the invention, the comparison product 7 for the product 3 of the invention, and the comparison product 8 for the product 4 of the invention are compared with each other. The product of the present invention has higher hardness and flexural strength at room temperature and high temperature, higher fracture toughness at room temperature, and significantly higher thermal conductivity than sialon-based sintered bodies. It is clear that they are significantly superior in impact resistance and thermal shock resistance.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【実施試験2】実施試験1で得た本発明品1〜3および
比較品3,4の焼結体を用いて、それぞれの焼結体の表
面に、従来から行われているCVD法により被膜を形成
して本発明の被覆窒化珪素基焼結体である本発明品6〜
8と比較の被覆焼結体である比較品10,11を得た。
このときの被膜は、焼結体の表面に隣接して形成された
層を第1層とし、順次第2層および第3層と被覆したも
のである。
Test 2 Using the sintered bodies of the products 1 to 3 of the present invention and the comparative products 3 and 4 obtained in the test 1, the surfaces of the respective sintered bodies were coated by a conventional CVD method. To form the coated silicon nitride-based sintered body of the present invention.
Comparative products 10 and 11, which were coated sintered bodies in comparison with No. 8, were obtained.
The coating at this time is a layer formed adjacent to the surface of the sintered body as a first layer, and sequentially coated with a second layer and a third layer.

【0027】こうして得た本発明品6〜8と比較品1
0,11の被膜の厚さおよび組成をX線回折,SEMに
より確認して、その結果を表5に示した。また、本発明
品6〜8と比較品10,11を用いて、実施試験1にお
ける(B)湿式による連続旋削試験および以下の(C)
条件による湿式による連続旋削試験により切削試験を行
い、その結果を表6に示した。(C)の湿式連続旋削試
験条件は、被削材:FC350,切削速度:800m/
min,切込み:1.5mm,送り:0.7mm/刃,
切削時間:2min,工具形状:SNGN12041
2,評価:逃げ面平均摩耗量VBmmにより行った。
Inventive products 6 to 8 thus obtained and Comparative product 1
The thickness and composition of the coatings 0 and 11 were confirmed by X-ray diffraction and SEM, and the results are shown in Table 5. Further, using the products 6 to 8 of the present invention and the comparative products 10 and 11, (B) a continuous turning test by a wet method in the execution test 1 and the following (C)
A cutting test was performed by a wet-type continuous turning test according to the conditions, and the results are shown in Table 6. (C) The wet continuous turning test conditions are as follows: work material: FC350, cutting speed: 800 m /
min, depth of cut: 1.5 mm, feed: 0.7 mm / blade,
Cutting time: 2 min, Tool shape: SNGN12041
2. Evaluation: The flank average wear amount VBmm was used.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【発明の効果】本発明の窒化珪素基焼結体は、従来の窒
化珪素基焼結体,本発明から外れた窒化珪素基焼結体お
よび従来のサイアロン基焼結体に比べて、硬さ,強度お
よび破壊靭性が高く、特に高温における硬さ,強度が高
く、しかも熱伝導率が顕著に大きいことから耐摩耗性,
靭性,耐欠損性が優れるとともに、特に耐熱衝撃性を顕
著に高めるという効果があり、高負荷および高温領域に
おける切削工具として用いた場合に顕著に長寿命となる
という優れた効果がある。
The silicon nitride-based sintered body of the present invention has a higher hardness than conventional silicon nitride-based sintered bodies, silicon nitride-based sintered bodies deviating from the present invention, and conventional sialon-based sintered bodies. , Strength and fracture toughness, particularly high hardness and strength at high temperature and remarkably high thermal conductivity.
In addition to excellent toughness and fracture resistance, it has an effect of remarkably increasing the thermal shock resistance, and has an excellent effect of significantly prolonging the life when used as a cutting tool in a high load and high temperature region.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素を主成分とするマトリックスを
90〜99.5重量%と、残部が希土類元素と周期律表
の4a族元素とを含む結晶質複合酸化物を含有する粒界
相とからなることを特徴とする窒化珪素基焼結体。
1. A grain boundary phase containing a crystalline composite oxide containing 90 to 99.5% by weight of a matrix containing silicon nitride as a main component and a balance of a rare earth element and a Group 4a element of the periodic table. A silicon nitride-based sintered body, comprising:
【請求項2】 上記マトリックスは、主成分がβ−窒化
珪素であることを特徴とする請求項1記載の窒化珪素基
焼結体。
2. The silicon nitride-based sintered body according to claim 1, wherein a main component of said matrix is β-silicon nitride.
【請求項3】 上記結晶質複合酸化物は、R22-x
7-2x(但し、RはSc,Yを含めた希土類元素の中の1
種以上を表わし、MはHfおよび/またはZrの元素を
表わし、Oは酸素元素を表わし、−1<X<1の関係を
有する)で表わせる複合酸化物であることを特徴とする
請求項1または2記載の窒化珪素基焼結体。
3. The crystalline composite oxide is R 2 M 2-xO
7-2x (where R is one of the rare earth elements including Sc and Y)
A compound oxide represented by the following formula: M represents an element of Hf and / or Zr, O represents an oxygen element, and has a relation of -1 <X <1. 3. The silicon nitride-based sintered body according to 1 or 2.
【請求項4】 上記結晶質複合酸化物は、イットリウム
および/またはディスプロシウムの元素が含有されてい
ることを特徴とする請求項1または2記載の窒化珪素基
焼結体。
4. The silicon nitride-based sintered body according to claim 1, wherein the crystalline composite oxide contains an element of yttrium and / or dysprosium.
【請求項5】 上記粒界相は、上記結晶質複合酸化物の
他にガラス状物質が含有されていることを特徴とする請
求項1,2,3または4記載の窒化珪素基焼結体。
5. The silicon nitride-based sintered body according to claim 1, wherein said grain boundary phase contains a glassy substance in addition to said crystalline composite oxide. .
【請求項6】 上記粒界相は、マグネシウム元素を含有
していることを特徴とする請求項1,2,3,4または
5記載の窒化珪素基焼結体。
6. The silicon nitride based sintered body according to claim 1, wherein said grain boundary phase contains a magnesium element.
【請求項7】 上記マグネシウム元素は、ガラス状物質
中に含有していることを特徴とする請求項6記載の窒化
珪素基焼結体。
7. The silicon nitride based sintered body according to claim 6, wherein said magnesium element is contained in a glassy substance.
【請求項8】 上記ガラス状物質は、マグネシウム元素
と珪素元素と酸素元素と窒素元素を含む非晶質物質でな
ることを特徴とする請求項5または6記載の窒化珪素基
焼結体。
8. The silicon nitride-based sintered body according to claim 5, wherein the glassy substance is an amorphous substance containing a magnesium element, a silicon element, an oxygen element, and a nitrogen element.
【請求項9】 請求項1,2,3,4,5,6,7また
は8に記載の窒化珪素基焼結体の全面または一部の表面
上に周期律表の4a,5a,6a族の金属,Al,Si
およびこれらの相互合金、または周期律表の4a,5
a,6a族の元素,Al,Siの炭化物,窒化物,酸化
物およびこれらの相互固溶体、もしくはダイヤモンド,
ダイヤモンド状カーボン,立方晶窒化硼素,硬質窒化硼
素の中から選ばれた1種の単層または2種以上の積層で
なる0.5〜20μmの合計膜厚さの被膜が被覆されて
いることを特徴とする被覆窒化珪素基焼結体。
9. The group 4a, 5a, 6a of the periodic table on the entire surface or a part of the surface of the silicon nitride-based sintered body according to claim 1, 2, 3, 4, 5, 6, 7, or 8. Metals, Al, Si
And their mutual alloys, or 4a, 5 of the periodic table
a, 6a group elements, carbides, nitrides, oxides of Al and Si and their mutual solid solutions, or diamond,
A coating having a total thickness of 0.5 to 20 μm, which is composed of a single layer selected from diamond-like carbon, cubic boron nitride, and hard boron nitride, or a laminate of two or more layers. Characterized coated silicon nitride based sintered body.
JP9282878A 1997-09-29 1997-09-29 Silicon nitride sintered compact and coated silicon nitride sintered compact Pending JPH11100277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9282878A JPH11100277A (en) 1997-09-29 1997-09-29 Silicon nitride sintered compact and coated silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9282878A JPH11100277A (en) 1997-09-29 1997-09-29 Silicon nitride sintered compact and coated silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH11100277A true JPH11100277A (en) 1999-04-13

Family

ID=17658263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9282878A Pending JPH11100277A (en) 1997-09-29 1997-09-29 Silicon nitride sintered compact and coated silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH11100277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500626A (en) * 2012-09-27 2016-01-14 アロメット コーポレイション Method of forming a metal or ceramic article having a novel composition of functionally graded material and article containing the same
CN115959913A (en) * 2022-12-20 2023-04-14 辽宁省轻工科学研究院有限公司 Preparation method of silicon nitride mobile phone back plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500626A (en) * 2012-09-27 2016-01-14 アロメット コーポレイション Method of forming a metal or ceramic article having a novel composition of functionally graded material and article containing the same
CN115959913A (en) * 2022-12-20 2023-04-14 辽宁省轻工科学研究院有限公司 Preparation method of silicon nitride mobile phone back plate

Similar Documents

Publication Publication Date Title
JPS6348836B2 (en)
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPS61101482A (en) Silicon nitride cutting tool
JP4191663B2 (en) Composite high hardness material for tools
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPH11100277A (en) Silicon nitride sintered compact and coated silicon nitride sintered compact
JP3476504B2 (en) Silicon nitride based sintered body and its coated sintered body
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JP3009310B2 (en) Sialon-based sintered body and its coated sintered body
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP3107168B2 (en) Coated silicon nitride sintered body for tools
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JPH02275763A (en) Silicon nitride-base sintered material
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JP2604155B2 (en) Ceramic tool with coating layer
JP2005212048A (en) Ceramics and cutting tool using the same
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3615634B2 (en) High toughness silicon nitride sintered body and manufacturing method thereof
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPH0797257A (en) Composite sintered body
JP2901102B2 (en) Silicon nitride sintered body for tools and coated silicon nitride sintered body for tools
JP3544632B2 (en) Coated cemented carbide
JP2001253767A (en) Alumina-based composite sintered compact, wear-resistant member and method for manufacturing the same sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080407