JPH0920562A - Production of high-strength sintered compact - Google Patents

Production of high-strength sintered compact

Info

Publication number
JPH0920562A
JPH0920562A JP7191142A JP19114295A JPH0920562A JP H0920562 A JPH0920562 A JP H0920562A JP 7191142 A JP7191142 A JP 7191142A JP 19114295 A JP19114295 A JP 19114295A JP H0920562 A JPH0920562 A JP H0920562A
Authority
JP
Japan
Prior art keywords
raw material
sintered body
producing
ceramics sintered
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7191142A
Other languages
Japanese (ja)
Inventor
Yuji Sato
裕二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP7191142A priority Critical patent/JPH0920562A/en
Publication of JPH0920562A publication Critical patent/JPH0920562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high-strength sintered compact by adding a fixed amount of a metal hydride to a mixture of a high-melting metal compound and an oxide consisting essentially of aluminum oxide, capable of providing a dense sintered compact excellent in strength and wear resistance. SOLUTION: In producing a ceramic sintered compact from a mixed substance comprising at least one first raw material of a carbide, a nitride, an oxycarbide and an oxynitride of the 4a, 5a and 6a group elements of the periodic table and their mutual solid solutions and a second raw material of an oxide consisting essentially of aluminum oxide or a mixed substance composed of >=80wt.% of the total of the first and second raw materials through a molding process and a sintering process or a hot static pressure treatment after the sintering process, the mixed substance is replaced with a third raw material which comprises >=2wt.% based on the mixed substance of a metal hydride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】周期律表の4a,5a,6a族元
素の化合物と酸化アルミニウムとを主成分とする高強度
セラミックス焼結体の製造方法に関し、特に球状黒鉛鋳
鉄,特殊鋳鉄,合金鋳鉄などに代表される高硬度鋳鉄を
切削するのに最適なセラミックス焼結体工具を作製する
ための高強度セラミックス焼結体の製造方法に関するも
のである。
[Industrial field of application] A method for producing a high-strength ceramics sintered body containing a compound of 4a, 5a, 6a group elements of the periodic table and aluminum oxide as main components, particularly spheroidal graphite cast iron, special cast iron, alloy cast iron The present invention relates to a method for producing a high-strength ceramics sintered body for producing a ceramics sintered body tool most suitable for cutting high hardness cast iron.

【0002】[0002]

【従来の技術】Ti化合物と酸化アルミニウムとを主成
分として含有するセラミックス焼結体の内、Ti化合物
よりも酸化アルミニウムが多く含有してなるセラミック
ス焼結体は、従来から相当検討されており、多くの提案
がだされており、その一部が切削工具として実用されて
いる。これに対して、酸化アルミニウムよりもTi化合
物が多く含有してなるセラミックス焼結体は、さらに難
焼結性であることから緻密な焼結体を得るのが困難であ
り、それほど多くは検討されてなく、その中の代表的な
ものとして特開昭61−26564号公報がある。
2. Description of the Related Art Among the ceramics sintered bodies containing a Ti compound and aluminum oxide as main components, a ceramics sintered body containing a larger amount of aluminum oxide than the Ti compound has been studied so far. Many proposals have been made, and some of them are practically used as cutting tools. On the other hand, a ceramic sintered body containing a larger amount of Ti compound than aluminum oxide is more difficult to sinter, so it is difficult to obtain a dense sintered body. Japanese Patent Laid-Open No. 61-26564 is a typical example among them.

【0003】[0003]

【発明が解決しようとする課題】Ti化合物と酸化アル
ミニウムとを含有するセラミックス焼結体の先行技術で
ある特開昭61−26564号公報には、Al23を5
〜40重量%と、金属酸化物の焼結助剤を0.05〜4
重量%と、TiCの4〜30重量%をTiで置換したT
iC成分を56〜94.95重量%とからなる配合物
を、TiがX線回折により金属相として検出できなくな
るまで、非酸化性雰囲気下で焼結することを特徴とする
耐熱,耐摩耗性セラミック材料の製造方法について開示
されてる。同公報に記載されているセラミックス材料の
製造方法は、配合物にTi金属を含有させることにより
焼結性を高めようとした方法であるが,微細粉末のTi
金属を得るのが困難であることから、Ti金族の分散性
が悪く、かつ焼結性をそれほど向上させることができな
く、緻密な焼結体を得ることおよび焼結体の強度を高め
ることが困難であるという問題がある。
In JP 61-26564 discloses a prior art ceramic sintered body containing the Ti compound [0004] and aluminum oxide, the Al 2 O 3 5
-40% by weight and 0.05 to 4 metal oxide sintering aids
Wt% and T in which 4 to 30 wt% of TiC is replaced by Ti
Heat resistance and wear resistance, characterized in that a composition comprising 56 to 94.95% by weight of iC component is sintered in a non-oxidizing atmosphere until Ti cannot be detected as a metal phase by X-ray diffraction. A method of making a ceramic material is disclosed. The method for producing a ceramic material described in the publication is a method for increasing the sinterability by adding Ti metal to the composition.
Since it is difficult to obtain a metal, the dispersibility of the Ti metal group is poor, and the sinterability cannot be improved so much that a dense sintered body is obtained and the strength of the sintered body is increased. There is a problem that is difficult.

【0004】本発明は、上述のような問題点を解決した
ものであって、具体的には、高融点金属の化合物と、酸
化アルミニウムを主成分とする酸化物との混合物中に金
属の水素化物を所定量混在させることにより、緻密で強
度,耐摩耗性に優れる焼結体を得ることができるという
高強度セラミックス焼結体の製造方法の提供を目的とし
ている。
The present invention has solved the above-mentioned problems. Specifically, the hydrogen of metal is contained in a mixture of a compound of a refractory metal and an oxide containing aluminum oxide as a main component. An object of the present invention is to provide a method for producing a high-strength ceramics sintered body, in which a dense sintered body excellent in strength and wear resistance can be obtained by mixing a predetermined amount of the compound.

【0005】[0005]

【課題を解決するための手段】本発明者は、Tiの化合
物と酸化アルミニウムを主成分とする酸化物との原料物
質を従来からの粉末冶金法である混合,成形,焼結の各
工程を経て、緻密なセラミックス焼結体を得ることにつ
いて検討していたところ、Ti化合物の一部をチタンの
水素化物で置換すると均一に分散し、焼結性が顕著に向
上し、緻密で高強度のセラミックス焼結体が得られると
いう知見を得て、本発明を完成するに至ったものであ
る。
Means for Solving the Problems The present inventor has carried out the conventional powder metallurgical methods of mixing raw materials of a compound of Ti and an oxide containing aluminum oxide as a main component in each step of mixing, molding and sintering. After that, when studying to obtain a dense ceramics sintered body, when a part of the Ti compound was replaced with hydride of titanium, it was uniformly dispersed, the sinterability was remarkably improved, and the dense and high strength was obtained. The present invention has been completed based on the finding that a ceramics sintered body can be obtained.

【0006】すなわち、本発明の高強度セラミックス焼
結体の製造方法は、周期律表の4a,5a,6a族元素
の炭化物,窒化物,炭酸化物,窒酸化物,およびこれら
の相互固溶体の中の少なくとも1種の第1原料物質と、
酸化アルミニウムを主成分とする酸化物の第2原料物質
とからなる混合物質、または該第1原料物質と該第2原
料物質との合計が80重量%以上含有する混合物質を成
形工程および焼結工程、もしくは焼結工程後の熱間静水
圧処理を経てセラミックス焼結体を作製する方法であっ
て、該混合物質は、該混合物質に対して2重量%以上が
金属の水素化物でなる第3原料物質により置換されてい
ることを特徴とする方法である。
That is, the method for producing a high-strength ceramics sintered body of the present invention is carried out among carbides, nitrides, carbonates, oxynitrides of the 4a, 5a, and 6a elements of the periodic table, and mutual solid solutions thereof. At least one first source material of
Forming step and sintering of a mixed material composed of a second raw material of an oxide containing aluminum oxide as a main component, or a mixed material in which the total amount of the first raw material and the second raw material is 80% by weight or more. A method for producing a ceramics sintered body through a hot isostatic treatment after a step or a sintering step, wherein the mixed substance comprises 2 wt% or more of a metal hydride with respect to the mixed substance. It is a method characterized in that it is replaced by three raw materials.

【0007】本発明の製造方法における第1原料物質
は、具体的には、例えばTiC,ZrC,HfC,V
C,NbC,TaC,Cr32,Mo2C,WC,Si
C,TiN,ZrN,HfN,VN,NbN,TaN,
CrN,,Ti(CN),Zr(CN),Hf(C
N),V(CN),Nb(CN),Ta(CN),Cr
(CN),Ti(CO),Ti(NO),Ti(CN
O),(TiZr)C,(TiTa)C,(TiTa)
N,(TiZr)N,(TiZr)(CN),(TiT
a)(CN),(TiZr)(CO),(TiZr)
(NO),(TiZr)(CNO),(TiW)C,
(TiTaW)Cを挙げることができる。これらの第1
原料物質は、TiC,TiN,Ti(CN),Ti(C
O),Ti(NO),Ti(CNO),(TiZr)
C,(TiTa)C,(TiTa)N,(TiZr)
N,(TiZr)(CN),(TiTa)(CN),
(TiZr)(CO),(TiZr)(NO),(Ti
Zr)(CNO),(TiW)C,(TiTaW)Cの
中の少なくとも1種のTi化合物でなることが特に好ま
しいことである。この第1原料物質は、組成的には化学
量論組成または非化学量論組成でなる場合でもよく、ま
た形状的には粉末および/またはウイスカ−でなる場合
でもよい。この第1原料物質は、混合物質に対して50
重量%以上含有しているときには焼結性を高める効果が
顕著になることおよび焼結体の緻密性を向上させる効果
が高く現われることから、特に好ましいことである。
The first raw material in the production method of the present invention is, for example, TiC, ZrC, HfC, V
C, NbC, TaC, Cr 3 C 2 , Mo 2 C, WC, Si
C, TiN, ZrN, HfN, VN, NbN, TaN,
CrN, Ti (CN), Zr (CN), Hf (C
N), V (CN), Nb (CN), Ta (CN), Cr
(CN), Ti (CO), Ti (NO), Ti (CN
O), (TiZr) C, (TiTa) C, (TiTa)
N, (TiZr) N, (TiZr) (CN), (TiT
a) (CN), (TiZr) (CO), (TiZr)
(NO), (TiZr) (CNO), (TiW) C,
(TiTaW) C can be mentioned. These first
Raw materials include TiC, TiN, Ti (CN), Ti (C
O), Ti (NO), Ti (CNO), (TiZr)
C, (TiTa) C, (TiTa) N, (TiZr)
N, (TiZr) (CN), (TiTa) (CN),
(TiZr) (CO), (TiZr) (NO), (Ti
It is particularly preferable that it is composed of at least one Ti compound selected from Zr) (CNO), (TiW) C, and (TiTaW) C. The first raw material may be stoichiometric or non-stoichiometric in composition, and may be powder and / or whiskers in shape. This first source material is 50
When it is contained by weight% or more, the effect of enhancing the sinterability becomes remarkable, and the effect of improving the compactness of the sintered body is highly exhibited, which is particularly preferable.

【0008】この第1原料物質の他に、焼結体中に占め
る割合の多い物質となる第2原料物質は、具体的には、
例えばAl23のみでなる場合、または第2原料物質に
対してAl23を50重量%以上と、残りがZrO2
HfO2,MgO,CaO,SiO2,Y23,Sc
23,La23,CeO,Ce23,Dy23,(Zr
Hf)O2,およびMgO,CaO,希土類元素の酸化
物を固溶した安定化ジルコニア,部分安定化ジルコニア
の中の少なくとも1種とからなる酸化物である。
In addition to the first raw material, the second raw material, which is a material occupying a large proportion in the sintered body, is specifically
For example, in the case of only Al 2 O 3 , or when Al 2 O 3 is 50 wt% or more with respect to the second raw material, the balance is ZrO 2 ,
HfO 2 , MgO, CaO, SiO 2 , Y 2 O 3 , Sc
2 O 3 , La 2 O 3 , CeO, Ce 2 O 3 , Dy 2 O 3 , (Zr
Hf) O 2 and at least one of stabilized zirconia and partially stabilized zirconia in which MgO, CaO, and an oxide of a rare earth element are solid-solved.

【0009】以上に説明してきた第1原料物質と第2原
料物質とを主成分とする混合物質は、実質的には第1原
料物質と第2原料物質とのみを混合して得られた物質で
なる場合、または第1原料物質と第2原料物質との合計
が80重量%以上と、残部が例えばSiC,Si34
の粉末および/またはウイスカ−の中の少なくとも1種
とを混合して得られた物質からなるものである。
The mixed substance containing the first and second raw materials as the main components as described above is a substance obtained by substantially mixing only the first and second raw materials. Or the total amount of the first source material and the second source material is 80% by weight or more and the balance is SiC, Si 3 N 4 ,
Powder and / or at least one of whiskers.

【0010】この混合物質に対して2重量%以上を金属
の水素化物でなる第3原料物質により置換しておくこと
が重要なことであり、この金属の水素化物は、具体的に
は、例えばTiH2,ZrH2,VH2,HfH2,MgH
2,CaH2,LaH2,を挙げることができる。この
内、取扱上における安定性からTiH2,ZrH2,VH
2,(TiZr)H2からなる水素化物が好ましく、特に
TiH2でなることが好ましい。この金属の水素化物
は、焼結時に水素を放出し、第1原料物質と第2原料物
質との焼結の媒介的作用をして、焼結の促進作用となる
のであるが、混合物質に対して2重量%未満になるとそ
の作用効果が不十分であることから、緻密な焼結体を得
ることが困難となる。
It is important to replace 2% by weight or more of this mixed material with a third raw material consisting of a metal hydride. Specifically, the metal hydride is, for example, TiH 2 , ZrH 2 , VH 2 , HfH 2 , MgH
2 , CaH 2 and LaH 2 can be mentioned. Of these, TiH 2 , ZrH 2 , VH
A hydride composed of 2 , (TiZr) H 2 is preferable, and TiH 2 is particularly preferable. This metal hydride releases hydrogen during sintering and acts as an intermediary for the sintering of the first raw material and the second raw material to accelerate the sintering. On the other hand, if the amount is less than 2% by weight, the function and effect are insufficient, so that it becomes difficult to obtain a dense sintered body.

【0011】また、混合物質に対して金属の水素化物で
なる第3原料物質と4a族の金属、具体的にはTi,Z
r,Hfの中の少なくとも1種、特に好ましくはTiで
なる第4原料物質との両方でもって置換しておくと、焼
結時に第3原料物質から放出された水素原子により第4
原料物質の表面を活性化させることになることから、さ
らに焼結を促進させる効果が高まり好ましいことであ
る。このときの第3原料物質は、混合物質に対して2重
量%以上存在させておく必要がある。また、第4原料物
質の含有量は、第3原料物質よりも少なくすることが好
ましいことである。
Further, the third raw material consisting of a metal hydride with respect to the mixed material and a metal of Group 4a, specifically Ti, Z
Substitution with at least one of r and Hf, particularly preferably with a fourth raw material made of Ti, causes the hydrogen to be released from the third raw material during sintering to cause
Since the surface of the raw material is activated, the effect of further promoting the sintering is further enhanced, which is preferable. At this time, the third raw material must be present in an amount of 2% by weight or more based on the mixed material. Further, it is preferable that the content of the fourth raw material is smaller than that of the third raw material.

【0012】本発明の製造方法は、この混合物質と第3
原料物質とからなる出発物質、または混合物質と第3原
料物質と第4原料物質とからなる出発物質を従来の粉末
冶金法で行われている混合,成形,焼結の各工程を経て
作製することができる。特に、焼結工程は、非酸化性雰
囲気中、具体的には真空雰囲気中または不活性ガス雰囲
気中で焼結することが好ましく、また1度焼結した後、
さらに熱間静水圧法(HIP法)により処理することも
より緻密にすることができることから好ましいことであ
る。
The manufacturing method of the present invention is based on this mixed substance and the third method.
A starting material composed of a raw material or a starting material composed of a mixed material, a third raw material and a fourth raw material is produced through respective steps of mixing, molding and sintering which are carried out by a conventional powder metallurgy method. be able to. In particular, in the sintering step, it is preferable to sinter in a non-oxidizing atmosphere, specifically in a vacuum atmosphere or an inert gas atmosphere, and after sintering once,
Further, it is also preferable to carry out the treatment by the hot isostatic method (HIP method) since it can make the composition more dense.

【0013】[0013]

【作用】本発明の高強度セラミックス焼結体の製造方法
は、金属の水素化物でなる第3原料物質が焼結時に水素
原子を放出し、この水素原子が第1原料物質と第2原料
物質との表面を活性化させる作用をし、水素原子を放出
して残った第3原料物質の金属原子が表面を活性化され
た第1原料物質と第2原料物質との反応促進作用をし、
両原子のシナジ−効果により焼結促進作用をし、かつ酸
化アルミニウムの化学的安定性を高める作用をしている
ものである。
In the method for producing a high-strength ceramics sintered body of the present invention, the third raw material made of a metal hydride releases hydrogen atoms during sintering, and the hydrogen atoms cause the first raw material and the second raw material to be released. And the metal atoms of the third raw material remaining after releasing the hydrogen atoms promote the reaction between the first and second raw materials whose surfaces are activated,
The synergistic effect of both atoms has a function of promoting sintering and a function of enhancing the chemical stability of aluminum oxide.

【0014】[0014]

【実施例1】平均粒径0.7μmのTiC,Ti(C
N),平均粒径0.1μmのTiH2,Al23,Mg
Oの各粉末,3モル%のY23を固溶し、一次粒子径が
300ÅのZrO2粉末(表中、「Y−ZrO2」と記
す)および−325メッシュのTi粉末を用いて、表1
に示すような配合組成に秤量し、アセトン溶媒,超硬合
金製ボ−ルと共にボ−ルミルの混合容器に挿入し、48
時間混合粉砕および乾燥して混合粉末を得た。次いで、
これらの混合粉末に成形助剤としてのパラフィンワック
スを添加した後、1ton/cm2の圧力により粉末成
形体とした。これらの粉末成形体を真空雰囲気中で、4
00℃,1時間保持の条件にてパラフィンワックスの脱
脂を行った後、減圧のN2ガス雰囲気中で、1850
℃,2時間保持の条件にて焼結し、さらに1000気圧
のArガス雰囲気中で、1700℃,1時間保持の条件
にてHIP処理を行って、本発明品1〜4および比較品
1〜3の各焼結体を得た。こうして得た各焼結体の相対
密度および曲げ強度(JIS規格B4104に記載)を
求めて、その結果を表1に併記した。
Example 1 TiC and Ti (C having an average particle size of 0.7 μm
N), TiH 2 , Al 2 O 3 and Mg having an average particle size of 0.1 μm
Each powder of O, 3 mol% of Y 2 O 3 was solid-dissolved, and ZrO 2 powder having a primary particle diameter of 300Å (in the table, referred to as “Y-ZrO 2 ”) and Ti powder of −325 mesh were used. , Table 1
The mixture composition is weighed and inserted into a mixing vessel of a ball mill together with an acetone solvent and a ball made of cemented carbide, and the mixture is put in a container.
The powder was mixed and pulverized for an hour and dried to obtain a mixed powder. Then
After adding paraffin wax as a molding aid to these mixed powders, a powder molded body was obtained by applying a pressure of 1 ton / cm 2 . These powder compacts were placed in a vacuum atmosphere for 4
After degreasing the paraffin wax under the condition of holding at 00 ° C. for 1 hour, 1850 in a N 2 gas atmosphere under reduced pressure.
Sintering under the conditions of holding at 2 ° C. for 2 hours, and HIP treatment under the conditions of holding at 1700 ° C. for 1 hour in an Ar gas atmosphere of 1000 atm, and invented products 1 to 4 and comparative products 1 to 1 3 sintered bodies were obtained. The relative density and bending strength (described in JIS standard B4104) of each of the thus obtained sintered bodies were determined, and the results are also shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【実施例2】実施例1で使用した各粉末を用いて、表2
に示す組成に配合し、焼結条件をArガス雰囲気中、1
700℃,1時間保持,200kg/cm2の圧力によ
るホットプレスとし、焼結後のHIP処理を施さなかっ
た以外は、ほぼ実施例1と同条件でもって本発明品5〜
9および比較品4〜9の各焼結体を得た。これらの焼結
体の相対密度を測定し、その結果を表2に併記した。ま
た、これらの焼結体の硬さおよび曲げ強度を測定し、そ
の結果を表3に示した。
Example 2 Using each powder used in Example 1, Table 2
Blended to the composition shown in 1 and the sintering conditions were 1 in an Ar gas atmosphere.
The present invention products 5 to 5 were prepared under substantially the same conditions as in Example 1 except that the hot pressing was performed at 700 ° C. for 1 hour, the pressure was 200 kg / cm 2 , and the HIP treatment after sintering was not performed.
9 and comparative products 4 to 9 were obtained. The relative density of these sintered bodies was measured, and the results are also shown in Table 2. The hardness and bending strength of these sintered bodies were measured, and the results are shown in Table 3.

【0017】次に、本発明品5〜9および比較品4〜9
の各焼結体を用いて、チップ形状:SNGN12040
8,被削材:FCD450,切削速度:300m/mi
n,切込み:1.0mm,送り:0.2mm/rev,
切削時間:10minの条件で乾式による連続旋削試験
(表中、「(A)切削条件」と記す)を行い、そのとき
の各焼結体の平均逃げ面摩耗幅を求めて表3に併記し
た。さらに、チップ形状:SNMN120408,被削
材:FCD600(45×200mm面),切削速度:
150m/min,切込み:1.0mm,初期送り:
0.15mm/rev(1Passでチップ欠損または
チッピングに至らない場合は、0.03mm/revの
送りを増加する)の条件で乾式によるフライス切削試験
(表中、「(B)切削条件」と記す)を行い、そのとき
の各焼結体のチップ欠損またはチッピングが生じたとき
の最大送りを表3に併記した。
Next, products 5 to 9 of the present invention and comparative products 4 to 9
Using each sintered body of, the chip shape: SNGN12040
8, Work material: FCD450, Cutting speed: 300m / mi
n, depth of cut: 1.0 mm, feed: 0.2 mm / rev,
Drying continuous turning test (in the table, referred to as "(A) Cutting condition") was performed under the condition of cutting time: 10 min, and the average flank wear width of each sintered body at that time was obtained and also shown in Table 3. . Further, chip shape: SNMN120408, work material: FCD600 (45 × 200 mm surface), cutting speed:
150m / min, depth of cut: 1.0mm, initial feed:
Dry milling cutting test under conditions of 0.15 mm / rev (increase the feed of 0.03 mm / rev if chipping or chipping does not occur at 1 Pass) (indicated as "(B) Cutting conditions" in the table) ) Was performed, and the maximum feed when chip loss or chipping of each sintered body occurred at that time is also shown in Table 3.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明の高強度セラミックス焼結体の製
造方法は、出発原料としてTi金属を含有してなる従来
のセラミックス焼結体の製造方法および本発明の方法か
ら外れた製造方法に比べて、焼結性に優れており、得ら
れる焼結体の相対密度,硬さおよび曲げ強度が高いとい
う傾向を示し、かつ切削試験における耐摩耗性および耐
欠損性,耐チッピング性において顕著に優れるという効
果を発揮するものである。
The method for producing a high-strength ceramic sintered body of the present invention is different from the conventional method for producing a ceramic sintered body containing Ti metal as a starting material and the production method deviating from the method of the present invention. Excellent in sinterability, and the relative density, hardness and bending strength of the obtained sintered body tend to be high, and it is remarkably excellent in wear resistance, chipping resistance and chipping resistance in cutting test. That is the effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/64 302B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C04B 35/64 302B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 周期律表の4a,5a,6a族元素の炭
化物,窒化物,炭酸化物,窒酸化物,およびこれらの相
互固溶体の中の少なくとも1種の第1原料物質と、酸化
アルミニウムを主成分とする酸化物の第2原料物質とか
らなる混合物質、または該第1原料物質と該第2原料物
質との合計が80重量%以上含有する混合物質を成形工
程および焼結工程、もしくは焼結工程後の熱間静水圧処
理を経てセラミックス焼結体を作製する方法において、
該混合物質は、該混合物質に対して2重量%以上が金属
の水素化物でなる第3原料物質により置換されているこ
とを特徴とする高強度セラミックス焼結体の製造方法。
1. At least one first raw material selected from the group consisting of carbides, nitrides, carbonates, and oxynitrides of elements of groups 4a, 5a, and 6a of the Periodic Table, and aluminum oxide. A forming step and a sintering step of a mixed substance composed of a second raw material of an oxide as a main component, or a mixed substance in which the total amount of the first raw material and the second raw material is 80% by weight or more, or In the method for producing a ceramics sintered body through hot isostatic pressing after the sintering step,
The method for producing a high-strength ceramics sintered body, wherein the mixed material is replaced by a third raw material containing 2% by weight or more of the mixed material, which is a metal hydride.
【請求項2】 周期律表の4a,5a,6a族元素の炭
化物,窒化物,炭酸化物,窒酸化物,およびこれらの相
互固溶体の中の少なくとも1種の第1原料物質と、酸化
アルミニウムを主成分とする酸化物の第2原料物質とか
らなる混合物質、または該第1原料物質と該第2原料物
質との合計が80重量%以上含有する混合物質を成形工
程および焼結工程、もしくは焼結工程後の熱間静水圧処
理を経てセラミックス焼結体を作製する方法において、
該混合物質は、該混合物質の一部が金属の水素化物でな
る第3原料物質と周期律表の4a族の金属でなる第4原
料物質とにより置換されており、かつ該混合物質に対し
て2重量%以上が該第3原料物質により置換されている
ことを特徴とする高強度セラミックス焼結体の製造方
法。
2. At least one first raw material selected from the group consisting of carbides, nitrides, carbonates, oxynitrides of the 4a, 5a, and 6a elements of the periodic table and their mutual solid solutions, and aluminum oxide. A forming step and a sintering step of a mixed substance composed of a second raw material of an oxide as a main component, or a mixed substance in which the total amount of the first raw material and the second raw material is 80% by weight or more, or In the method for producing a ceramics sintered body through hot isostatic pressing after the sintering step,
The mixed material is partially substituted by a third raw material made of a metal hydride and a fourth raw material made of a metal of Group 4a of the periodic table, and 2% by weight or more is replaced by the third raw material.
【請求項3】 上記混合物質は、上記第1原料物質が5
0重量%以上含有していることを特徴とする請求項1ま
たは2記載の高強度セラミックス焼結体の製造方法。
3. The mixed material comprises 5 parts of the first raw material.
The method for producing a high-strength ceramics sintered body according to claim 1 or 2, wherein the content is 0% by weight or more.
【請求項4】 上記第1原料物質は、Tiの炭化物,窒
化物,炭窒化物,炭酸化物,窒酸化物,炭窒酸化物およ
びTiを含む固溶体の炭化物,窒化物,炭窒化物,炭酸
化物,窒酸化物,炭窒酸化物の中の少なくとも1種のT
i化合物からなることを特徴とする請求項1,2または
3記載の高強度セラミックス焼結体の製造方法。
4. The first raw material is a carbide, nitride, carbonitride, carbon oxide, oxynitride, oxycarbonitride, or solid solution carbide containing Ti, nitride, carbonitride, or carbonic acid of Ti. At least one T in the oxides, oxynitrides, and oxycarbonitrides
The method for producing a high-strength ceramics sintered body according to claim 1, wherein the high-strength ceramics sintered body is composed of an i compound.
【請求項5】 上記第2原料物質は、酸化アルミニウ
ム,または該第2原料物質に対して酸化アルミニウムを
50重量%以上と残りがZr,Hf,Mg,Ca,S
i,希土類元素の酸化物およびこれらの相互固溶体の中
の少なくとも1種からなることを特徴とする請求項1,
2,3または4記載の高強度セラミックス焼結体の製造
方法。
5. The second raw material is aluminum oxide, or 50% by weight or more of aluminum oxide with respect to the second raw material and the balance is Zr, Hf, Mg, Ca, S.
i, at least one selected from the group consisting of oxides of rare earth elements and their mutual solid solutions.
The method for producing a high-strength ceramics sintered body according to 2, 3, or 4.
【請求項6】 上記第3原料物質は、Tiの水素化物で
なることを特徴とする請求項1,2,3,4または5記
載の高強度セラミックス焼結体の製造方法。
6. The method for producing a high-strength ceramics sintered body according to claim 1, 2, 3, 4, or 5, wherein the third raw material is a hydride of Ti.
JP7191142A 1995-07-04 1995-07-04 Production of high-strength sintered compact Pending JPH0920562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7191142A JPH0920562A (en) 1995-07-04 1995-07-04 Production of high-strength sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7191142A JPH0920562A (en) 1995-07-04 1995-07-04 Production of high-strength sintered compact

Publications (1)

Publication Number Publication Date
JPH0920562A true JPH0920562A (en) 1997-01-21

Family

ID=16269597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191142A Pending JPH0920562A (en) 1995-07-04 1995-07-04 Production of high-strength sintered compact

Country Status (1)

Country Link
JP (1) JPH0920562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105938A (en) * 2006-09-29 2008-05-08 Nippon Tungsten Co Ltd Composite ceramic
JP2013144622A (en) * 2012-01-16 2013-07-25 Shimane Prefecture Ceramic sintering raw material, method for manufacturing ceramic sintered body, and functional ceramic sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105938A (en) * 2006-09-29 2008-05-08 Nippon Tungsten Co Ltd Composite ceramic
JP2013144622A (en) * 2012-01-16 2013-07-25 Shimane Prefecture Ceramic sintering raw material, method for manufacturing ceramic sintered body, and functional ceramic sintered body

Similar Documents

Publication Publication Date Title
US4022584A (en) Sintered cermets for tool and wear applications
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JP2007254249A (en) Cbn-based ultra-high pressure sintered compact
JPH0920562A (en) Production of high-strength sintered compact
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP3010774B2 (en) Alumina-based ceramics
US5036028A (en) High density metal boride-based ceramic sintered body
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPH06329470A (en) Sintered silicon nitride and its sintered and coated material
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3051603B2 (en) Titanium compound sintered body
JPH07172924A (en) Highly tough sintered compact for tool and its production
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JPH01122971A (en) Cubic boron nitride sintered product
JP2001179508A (en) Cutting tool
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JPH1136022A (en) Production of cemented carbide containing plate crystal wc
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPS6021352A (en) Cermet for tool and its production
JPH01115873A (en) Sintered form containing boron nitride of cubic system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060710