JPH1098139A - Forcedly air cooled structure and electronic equipment thereof - Google Patents

Forcedly air cooled structure and electronic equipment thereof

Info

Publication number
JPH1098139A
JPH1098139A JP24974696A JP24974696A JPH1098139A JP H1098139 A JPH1098139 A JP H1098139A JP 24974696 A JP24974696 A JP 24974696A JP 24974696 A JP24974696 A JP 24974696A JP H1098139 A JPH1098139 A JP H1098139A
Authority
JP
Japan
Prior art keywords
heat
substrate
air
generating member
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24974696A
Other languages
Japanese (ja)
Inventor
Mitsuru Honma
満 本間
Yoshifumi Sasao
桂史 笹尾
Atsuo Nishihara
淳夫 西原
Takahiro Oguro
崇弘 大黒
Takayuki Shin
隆之 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24974696A priority Critical patent/JPH1098139A/en
Publication of JPH1098139A publication Critical patent/JPH1098139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To hold all heat generative members at a specified temp. by cooling heat generating members having high heat-generating densities by a jet flow structure which utilizes a gas flow mixed with a gas flow approximately along a substrate and crosses it with a flow along the fin surface of a heat sink. SOLUTION: A multiple-chip module 30 has a high heat-generating density and hence needs a jet flow cooling structure to cool the individual members. It jets air 4 from both side fins, approximately perpendicularly to a gas flowing direction, while a cooling air 1 blown approximately parallel to a substrate is accelerated in a restricted passage at the module 30 being cooled with the jet flow. At a heat sink the air flow cooled with the jet flow is jetted, approximately perpendicularly to the gas flow approximately in parallel with the substrate, and hence both air flows are mixed to send the cooled air enough to small electronic elements 40 round the module so that electronic elements 45, 46 mounted on the heat sink 20 are well cooled with the low temp. air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子素子等の発熱部
材を有する電子機器において、電子機器筐体内に積層さ
れる単数あるいは、複数の基板上に配置された電子素子
の冷却構造に係わり、基板上に高密度且つ複雑に実装さ
れた複数の発熱部材を効率よく冷却する強制空冷構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for an electronic device having a heat generating member such as an electronic device, and more particularly to a cooling structure for an electronic device disposed on one or more substrates stacked in a housing of the electronic device. The present invention relates to a forced air cooling structure that efficiently cools a plurality of heat-generating members mounted on a high-density and complicated structure.

【0002】[0002]

【従来の技術】近年、コンピュータをはじめとする電子
機器では、処理能力の向上,小型化,低コスト化等が強
く要求され、電子機器に搭載される電子素子の発熱量、
並びに搭載数は増加する傾向にある。一方、筐体サイズ
は小型化が進むため、筐体内部の発熱密度は大きく増加
することになる。また、演算処理用の電子素子には、信
号伝搬遅延時間を短縮するために、多数のチップをセラ
ミック等の基板上に搭載し、一括して冷却するマルチチ
ップモジュールという実装形態が多く用いられる。マル
チチップモジュールは、発熱量,発熱密度ともに大き
く、それ自体の冷却も重要であるが、空気冷却の場合マ
ルチチップモジュールにより加熱された空気が周囲の発
熱部材に与える影響も大きい。
2. Description of the Related Art In recent years, in electronic devices such as computers, there has been a strong demand for improvements in processing capability, miniaturization, and cost reduction.
In addition, the number of mounted devices tends to increase. On the other hand, as the size of the housing is reduced, the heat generation density inside the housing is greatly increased. In addition, in order to reduce the signal propagation delay time, a mounting form of a multi-chip module in which a large number of chips are mounted on a substrate such as a ceramic and cooled collectively is used for the electronic element for arithmetic processing. The heat generation and heat density of the multi-chip module are both large, and cooling of the multi-chip module itself is also important. However, in the case of air cooling, the air heated by the multi-chip module greatly affects the surrounding heat generating members.

【0003】それぞれの発熱部材は、過度な温度上昇に
よる素子の損傷や誤動作のないように定格温度以下に保
たれていなければならない。このため、電子機器の冷却
には、放熱面積を拡大して冷却性能を向上させるヒート
シンクを用いた構造が多く見られる。特に、高発熱する
電子素子には、その発熱密度と仕様温度に応じて様々な
強制空冷用ヒートシンクがその表面に設置される。その
ヒートシンクは、高熱伝導性の材質、例えば、アルミニ
ウムや銅製であり、一般的に一金属製平面板に複数の平
行平面板を1〜3mm程度の間隔で複数並べた平板フィン
形ヒートシンク(図11(a))や金属製平面板上に角柱
あるいは円柱が多数配置されたピンフィン形ヒートシン
ク(図11(b))が多く用いられている。平板フィン形
ヒートシンクは、製作が比較的容易且つ安価であり、放
熱面積が多く取れるわりに圧力損失が小さいという利点
がある。また、ピンフィン形ヒートシンクには、流れに
対して無指向性であるという利点があり、それぞれ目的
に応じて使用されている。
[0003] Each heat generating member must be maintained at a rated temperature or lower so as not to damage or malfunction the element due to an excessive temperature rise. For this reason, in cooling electronic devices, there are many structures using a heat sink for increasing the heat radiation area and improving the cooling performance. In particular, various forced air cooling heat sinks are installed on the surface of an electronic element that generates a large amount of heat depending on the heat generation density and the specified temperature. The heat sink is made of a material having high thermal conductivity, for example, aluminum or copper. Generally, a flat fin type heat sink (FIG. 11) in which a plurality of parallel flat plates are arranged on a single metal flat plate at intervals of about 1 to 3 mm. (a)) and a pin fin-type heat sink (FIG. 11B) in which a large number of prisms or cylinders are arranged on a metal flat plate are often used. The flat fin-type heat sink has the advantages that it is relatively easy and inexpensive to manufacture, has a large heat dissipation area, and has a small pressure loss. Further, the pin fin type heat sink has an advantage of being non-directional with respect to the flow, and is used according to the purpose.

【0004】強制空冷構造では、主にファンあるいはブ
ロアを用いて、それぞれの発熱部材に冷却空気が送風さ
れる。その送風方式には、基板と概略水平方向から送風
する平行流方式の冷却構造と、基板に対して概略垂直方
向から送風する噴流方式の冷却構造があり、特に発熱密
度の高い発熱部材の冷却には、交換熱量の大きい噴流方
式の冷却構造が用いられる。
In the forced air cooling structure, cooling air is sent to each heat generating member mainly using a fan or a blower. There are two types of cooling systems: a parallel-flow cooling structure that blows air from the substrate in a substantially horizontal direction, and a jet-flow cooling structure that blows air from the substrate in a substantially vertical direction. A jet type cooling structure having a large heat exchange capacity is used.

【0005】最近の電子機器では、高発熱密度化に加
え、筐体内部で大きさの異なる電子素子が冷却空気の流
れ方向に並ぶ傾向が進んでいる。このため、高密度実装
された電子素子を空気冷却する場合の課題として、マル
チチップモジュール等に代表されるような大きく,高さ
の高い発熱部材に隣接して配置された、小さく,高さの
低い電子素子の冷却性能の悪化が挙げられる。大きく,
高さの高い発熱部材の下流部には冷却空気が入りにく
く、基板近傍に流速が低く風温の高い領域が広範囲に形
成される。この領域に小さく,高さの低い発熱部材が配
置されると、その冷却性能は著しく悪化する。
In recent electronic devices, in addition to increasing the heat generation density, electronic elements having different sizes inside the housing tend to be arranged in the flow direction of the cooling air. For this reason, when air-cooling an electronic element mounted at a high density, there is a problem in that a small, high-height heating element such as a multi-chip module is disposed adjacent to a large and high heat generating member. Low cooling performance of the electronic element is deteriorated. big,
Cooling air is less likely to enter the downstream of the high heat generating member, and a region with a low flow velocity and a high wind temperature is formed in a wide area near the substrate. If a small, low-height heat-generating member is arranged in this area, its cooling performance will deteriorate significantly.

【0006】前述のように、高密度実装化の傾向が進ん
でいるため、図11(a)や(b)に示すヒートシンク
を高発熱する発熱部材に設置し、単に冷却空気を送風す
るだけでは基板上のすべての電子素子まで十分に冷却で
きない。また、発熱密度の高いマルチチップモジュール
の冷却には、交換熱量の大きい噴流冷却が有効であるた
め、この冷却構造を活かした方法が必要である。しか
し、従来の噴流冷却の構造例(特開平5−291447 号公
報)では、図11(c)のように発熱部材に設置された
ヒートシンクに集中的に衝突させ、その発熱部材のみを
冷却するものであった。その構造は、基板上に滞留する
ヒートシンクから出た暖かい空気の排出手法に重点が置
かれており、図11(c)では基板に対して平行な気流
の流れを利用して排出するものである。また、この他の
特開平6−112382号,特開平6−112383号、及び特開平6
−120387 号公報等の噴流冷却構造は、いずれも、冷却
対象である発熱部材のみを集中冷却するための構造であ
る。
As described above, since the tendency of high-density mounting is progressing, it is not enough to install a heat sink shown in FIGS. 11A and 11B on a heat-generating member that generates high heat and simply blow cooling air. Insufficient cooling of all electronic elements on the substrate. In addition, jet cooling with a large amount of exchanged heat is effective for cooling a multichip module having a high heat generation density. Therefore, a method utilizing this cooling structure is required. However, in the conventional jet cooling structure example (Japanese Patent Laid-Open Publication No. Hei 5-2914747), as shown in FIG. 11C, the heat is intensively collided with a heat sink provided on a heat generating member, and only the heat generating member is cooled. Met. The structure focuses on a method of discharging warm air from a heat sink staying on a substrate, and in FIG. 11C, discharge is performed using an air flow parallel to the substrate. . In addition, JP-A-6-112382, JP-A-6-112383, and JP-A-6-112383
All of the jet cooling structures disclosed in JP-A-1220387 and the like are structures for centrally cooling only a heat-generating member to be cooled.

【0007】[0007]

【発明が解決しようとする課題】従来の噴流冷却の構造
例では、発熱密度の高いマルチチップモジュールが、一
基板上に規則的に配列された場合で個々の冷却を目的と
した構造であるため、一基板上に大小様々な発熱部材が
不規則的に配置された実装系の冷却を考慮していない場
合が多い。つまり、高密度実装された基板上で、発熱密
度の高い発熱部材のみを噴流冷却する構造では、同じ基
板上に搭載される他の小さい発熱部材に十分な冷却空気
が送風されず、誤動作等の障害を起こす原因になり易
い。このため、それらの電子素子にも十分な冷却空気を
導風する手段が必要となる。ここで、導風構造やヒート
シンク形状の複雑化は、圧力損失の増加に影響するた
め、冷却設計上十分な配慮を要する。
In the conventional example of the structure of jet cooling, a multi-chip module having a high heat generation density is a structure for individual cooling when it is regularly arranged on one substrate. In many cases, cooling of a mounting system in which heat generating members of various sizes are irregularly arranged on one substrate is not considered. In other words, in a structure in which only heat generating members having a high heat generation density are jet-cooled on a board mounted with high density, sufficient cooling air is not blown to other small heat generating members mounted on the same board, resulting in malfunction or the like. It is easy to cause trouble. Therefore, a means for guiding sufficient cooling air is required for those electronic elements. Here, the complexity of the air guiding structure and the shape of the heat sink affects the increase in pressure loss, so that sufficient consideration is required in cooling design.

【0008】本発明の目的は、高密度実装された電子機
器の強制空冷構造について、一基板上の様々な発熱部材
に対し、平行流方式と噴流方式の送風構造を同時に取り
入れることで、圧力損失が大きく増加することなく、す
べての発熱部材温度を所定の温度に保つことができる強
制空冷構造を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a forced air cooling structure for electronic equipment mounted at high density, by simultaneously introducing a parallel flow type and a jet type air blowing structure to various heat generating members on one substrate, thereby achieving a pressure loss. An object of the present invention is to provide a forced air cooling structure capable of keeping all the heat generating member temperatures at a predetermined temperature without greatly increasing the temperature.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、大きく発熱密度の高い発熱部材を噴流
構造により冷却し、その他の高さの低い発熱部材に対し
ては、基板に概略沿って流れる気流と噴流による気流を
混合気流を利用して冷却する。この時、噴流の噴出部高
さを個別冷却する発熱部材高さとヒートシンク高さの和
の1.4 倍以下にするとともに、その発熱部材に設置す
るヒートシンクのフィン面を流れと交差させる。この構
造により、基板に沿う気流の高流速域は基板近傍に形成
する。さらに、基板に沿う気流の高流速域が基板近傍に
形成する導風板を基板に概略沿う気流の上流側に設ける
ため、基板近傍に気流の主流域が形成する。
In order to achieve the above object, according to the present invention, a large heat generating member having a high heat generation density is cooled by a jet structure, and other heat generating members having a low height are provided on a substrate. The airflow generated by the airflow and the jet flow flowing along the outline is cooled using the mixed airflow. At this time, the height of the jet part of the jet is set to be 1.4 times or less the sum of the height of the heat-generating member for individually cooling and the height of the heat sink, and the fin surface of the heat sink installed on the heat-generating member intersects the flow. With this structure, a high flow velocity region of the airflow along the substrate is formed near the substrate. Further, since a baffle plate in which the high flow velocity region of the airflow along the substrate is formed near the substrate is provided upstream of the airflow substantially along the substrate, a main flow region of the airflow is formed near the substrate.

【0010】また、個別冷却する発熱部材に設置された
ヒートシンク及び発熱部材周辺に、気流を制御する板を
設け、個別冷却に用いた暖かい空気が気流流路上部を流
れる構造とする。
A heat sink provided on the heat-generating member for individual cooling and a plate for controlling airflow are provided around the heat-generating member, so that warm air used for individual cooling flows through the upper part of the airflow channel.

【0011】[0011]

【発明の実施の形態】図1及び図2に本発明の強制空冷
構造の第一の実施例の斜視図及び断面図を示す。電子機
器の筐体内部は、複数基板が積層される実装形態になっ
ている。その基板50の1枚1枚は、メモリ90が多数
搭載されたカード列95とマルチチップモジュール30
やその他の電子素子40等が交互に数列搭載される。基
板上に搭載された、これらのマルチチップモジュール3
0や電子素子40は、冷却空気の気流方向3に不規則的
に搭載される。発熱密度の高いマルチチップモジュール
30には、平板フィン形ヒートシンク20が気流方向に
対してフィン面が概略交差するように設置されている。
その上部には、噴流ノズル80が設けられ、エアダクト
85から送風される空気を直接ヒートシンクベース面に
衝突させる。
1 and 2 show a perspective view and a sectional view of a first embodiment of a forced air cooling structure according to the present invention. The inside of the housing of the electronic device has a mounting form in which a plurality of substrates are stacked. Each of the substrates 50 includes a card array 95 on which a large number of memories 90 are mounted and a multi-chip module 30.
And other electronic elements 40 are alternately mounted in several rows. These multi-chip modules 3 mounted on a substrate
0 and the electronic element 40 are mounted irregularly in the airflow direction 3 of the cooling air. In the multi-chip module 30 having a high heat generation density, the flat fin type heat sink 20 is installed so that the fin surface substantially intersects the air flow direction.
A jet nozzle 80 is provided on the upper part thereof, and the air blown from the air duct 85 directly collides with the heat sink base surface.

【0012】平板フィン形ヒートシンク20は、高熱伝
導性の材質、例えば、アルミニウムや銅製であり、一金
属製平面板に複数の平行平面板が1〜3mm程度の間隔で
複数積層されたものである。そのため、製作が容易であ
り放熱面積が大きく取れる利点がある。また、流れに対
して指向性をもっているため、フィン間に流入した空気
を決まった方向に排出できる。
The flat fin type heat sink 20 is made of a material having high thermal conductivity, for example, aluminum or copper, and is formed by stacking a plurality of parallel flat plates on a single metal flat plate at an interval of about 1 to 3 mm. . Therefore, there is an advantage that manufacture is easy and a large heat radiation area can be obtained. In addition, since it has directivity with respect to the flow, the air flowing between the fins can be discharged in a predetermined direction.

【0013】送風手段は、ファンあるいはブロア等で送
風された冷却空気の一部をエアダクト85を介して高発
熱するマルチチップモジュール30に、その他の冷却空
気を基板に対して概略平行に送風する構造である。ま
た、各々個別送風方式でもよい。この時の気流な流れに
ついて説明すると、まずマルチチップモジュール30
は、発熱密度が高いため、噴流冷却構造により個別冷却
の必要がある。そのため、そこで熱交換された空気4が
気流方向に対して概略垂直方向に両側のフィン部から流
出される。一方、基板に概略平行に送風される冷却空気
流1は、噴流冷却されるマルチチップモジュール部でそ
の流路が縮小され、加速される。さらに、ヒートシンク
部では、基板に概略平行な気流に対して噴流冷却した空
気流が概略直角に噴出しているため、二つの空気流は混
合され、基板近傍に高速流領域を形成して、モジュール
側面を通ることになる。よって、モジュール周辺の小さ
い電子素子40にも混合された十分な冷却空気が送ら
れ、電子素子40及び図11(a),(b)の従来型ヒー
トシンクが設置された電子素子45,46に十分な低温
空気送風ができる。各電子素子では、その表面及びフィ
ン面での熱伝達率が高くなるので、電子素子温度を所定
の温度に冷却することができる。
The blowing means blows a part of the cooling air blown by a fan, a blower or the like to the multi-chip module 30 which generates a large amount of heat through the air duct 85, and blows other cooling air substantially parallel to the substrate. It is. Moreover, each may be an individual blowing system. The airflow at this time will be described.
Because of the high heat generation density, individual cooling is required by a jet cooling structure. Therefore, the air 4 subjected to heat exchange therefrom flows out of the fin portions on both sides in a direction substantially perpendicular to the airflow direction. On the other hand, the flow of the cooling air flow 1 blown substantially parallel to the substrate is reduced and accelerated in the multi-chip module portion to be jet-cooled. Furthermore, in the heat sink portion, since the airflow jet-cooled against the airflow substantially parallel to the substrate is ejected at a substantially right angle, the two airflows are mixed to form a high-speed flow region near the substrate, and the module is formed. You will pass through the side. Therefore, sufficient cooling air mixed with the small electronic elements 40 around the module is sent to the electronic elements 40 and the electronic elements 45 and 46 provided with the conventional heat sinks of FIGS. 11 (a) and 11 (b). Low-temperature air blowing is possible. In each electronic element, the heat transfer coefficient on the surface and the fin surface is increased, so that the electronic element temperature can be cooled to a predetermined temperature.

【0014】図9は、本実施例に示した平行流と噴流の
組み合わせによる冷却空気の流速分布を表す。長方形断
面ダクト(高さHd,幅Wd)中に搭載された発熱部材
(高さHd/2)、及びその表面のフィン部(高さHd
/2)で構成されている。ダクト内への冷却風の流入
は、流入域A断面とヒートシンク設置向きにより異なる
流入域B断面或いはC断面である。本実施例の冷却構造
(流入域A,Bの場合)では、高流速域が基板近傍に気
流後方まで続いていることが分かる。Aから流入した空
気は、Aに直交したBの流れと混合し、基板側に流され
る。そのため、基板近傍に形成された高速域は、狭い発
熱部材側面を通過後もその領域が下流まで残ることにな
る。一方、噴流冷却(流入域Bの場合)のみでは、その
気流が発熱部材後方で急速に拡散していることが分か
る。噴流のみでは、ヒートシンクから流出された空気流
が、下流側に流されにくいため、ダクト上部方向へ拡散
する流速成分が強くなる。よって、基板に搭載された下
流の小さい電子素子の冷却が困難である。また、本実施
例に対し、ヒートシンクの設置向きを90度変えた場合
(流入域A,Cの場合)では、気流の主流がダクト隅に
片寄っていることが分かる。この場合においても、ダク
ト中央付近後方の小さい電子素子の冷却には不向きであ
る。
FIG. 9 shows the flow velocity distribution of the cooling air by the combination of the parallel flow and the jet shown in the present embodiment. Heating member (height Hd / 2) mounted in a rectangular section duct (height Hd, width Wd) and fins (height Hd) on its surface
/ 2). The flow of the cooling air into the duct is a cross section of the inflow area B or a cross section of the inflow area B or C that differs depending on the installation direction of the heat sink. In the cooling structure of the present embodiment (in the case of the inflow regions A and B), it can be seen that the high flow velocity region continues near the substrate to the rear of the airflow. The air flowing from A mixes with the flow of B orthogonal to A and flows toward the substrate. Therefore, the high-speed region formed near the substrate remains downstream even after passing through the narrow side surface of the heat-generating member. On the other hand, it can be seen that only by jet cooling (in the case of the inflow area B), the airflow is rapidly diffused behind the heating member. With the jet flow alone, the airflow that has flowed out of the heat sink is less likely to flow downstream, so that the flow velocity component that diffuses upward in the duct becomes stronger. Therefore, it is difficult to cool a small downstream electronic element mounted on the substrate. In addition, when the installation direction of the heat sink is changed by 90 degrees with respect to the present embodiment (in the case of the inflow areas A and C), it can be seen that the main flow of the air current is biased toward the corner of the duct. Also in this case, it is unsuitable for cooling a small electronic element in the vicinity near the center of the duct.

【0015】図3に本発明の強制空冷構造の第二の実施
例の断面図を示す。基板50上にマルチチップモジュー
ル30と電子素子40が気流方向に不規則的に配置され
た、図2と同様の実装形態である。基板上で発熱密度の
高い発熱部材は、エアダクト85から個別に冷却空気5
が送風され、噴流ノズル80を介して、発熱部材30に
設置されたヒートシンク20に基板50と概略垂直方向
から空気2が流入する。基板50と概略平行な気流に対
して交差するように設置されたヒートシンク20内で熱
交換された空気流4は、2方向に分かれてフィン間を流
出し、気流と混合して排出される。一方、基板50と概
略平行方向に小さい電子素子冷却用の空気1が送風され
る。この平行な空気流1は、個別冷却部で流れを抑制さ
れ、基板近傍にその高流速域が保たれるが、誘導板70
をこの平行流の上流側に設けることにより、基板上流で
平行な流れの高流速域を基板側に保つことができる。こ
のため、個別冷却部以降の高流速域をさらに基板側に寄
せることができるので、基板上の小さい電子素子40に
多量の冷却空気を送ることができる。そのため、電子素
子面での熱伝達は上昇し、冷却効果を高めることができ
る。
FIG. 3 is a sectional view of a second embodiment of the forced air cooling structure according to the present invention. This is a mounting form similar to FIG. 2, in which the multi-chip module 30 and the electronic elements 40 are irregularly arranged on the substrate 50 in the airflow direction. The heat-generating members having a high heat-generating density on the substrate are individually supplied from the air duct 85 to the cooling air 5.
Is blown, and the air 2 flows into the heat sink 20 provided on the heat generating member 30 from the direction substantially perpendicular to the substrate 50 via the jet nozzle 80. The air flow 4 heat-exchanged in the heat sink 20 installed so as to intersect with the air flow substantially parallel to the substrate 50 is divided into two directions, flows out between the fins, and is mixed with the air flow and discharged. On the other hand, small air 1 for cooling the electronic element is blown in a direction substantially parallel to the substrate 50. The flow of the parallel air flow 1 is suppressed in the individual cooling section, and the high flow velocity region is maintained near the substrate.
Is provided on the upstream side of the parallel flow, a high flow velocity region of the parallel flow upstream of the substrate can be maintained on the substrate side. For this reason, the high flow velocity region after the individual cooling unit can be further brought closer to the substrate side, so that a large amount of cooling air can be sent to the small electronic elements 40 on the substrate. Therefore, heat transfer on the electronic element surface increases, and the cooling effect can be enhanced.

【0016】図4に本発明の強制空冷構造の第三の実施
例を示す。基板50上にマルチチップモジュール30と
電子素子40が気流方向に不規則的に配置された図2及
び図3と同様な構造である。本実施例では、噴流ノズル
80部にヒートシンク20の上方空間高さと概略同じ高
さの平面板77を設けた。噴流ノズル高さによるヒート
シンク20上方を流れる通過空気量がほぼ零となり、基
板近傍の流速が高まるので、小さい電子素子40の冷却
を促進できる。図10は、図9の流入域A,C構造で、
ダクト高さHdのみを増加させた場合で、Hdと増加後
のダクト高さHd* の比に対する流速を記した。流速
は、基板近傍Z=3mm位置でy方向に0.2Wd,0.4
Wdの2ケ所について示した。ここで、図10の縦軸
は、流入域Aに対する流速比である。図10から、基板
近傍の流速がダクト高さ1.4 倍以上では、基板近傍を
流れる気流の流速比が1以下に減少していることが分か
る。よって、噴流ダクト80の高さを発熱部材30とヒ
ートシンク20高さの和の1.4 倍以下にすることで、
高密度実装された場合の小さい電子素子に冷却に十分な
空気流を送ることができる。
FIG. 4 shows a third embodiment of the forced air cooling structure of the present invention. 2 and FIG. 3 in which the multi-chip module 30 and the electronic elements 40 are irregularly arranged on the substrate 50 in the airflow direction. In this embodiment, a flat plate 77 having substantially the same height as the space above the heat sink 20 is provided at the jet nozzle 80. Since the amount of air passing above the heat sink 20 due to the height of the jet nozzle becomes substantially zero and the flow velocity near the substrate increases, cooling of the small electronic element 40 can be promoted. FIG. 10 shows the structure of the inflow areas A and C in FIG.
In the case where only the duct height Hd was increased, the flow velocity was described with respect to the ratio of Hd to the increased duct height Hd *. The flow velocity is 0.2 Wd, 0.4 in the y direction at a position Z = 3 mm near the substrate.
Two locations of Wd are shown. Here, the vertical axis in FIG. FIG. 10 shows that when the flow velocity near the substrate is 1.4 times or more the duct height, the flow velocity ratio of the airflow flowing near the substrate decreases to 1 or less. Therefore, by setting the height of the jet duct 80 to be 1.4 times or less the sum of the heights of the heat generating member 30 and the heat sink 20,
An air flow sufficient for cooling can be sent to a small electronic element when mounted at high density.

【0017】図5に本発明の強制空冷構造の他の実施例
の斜視図を示す。メモリ90が多数搭載されたカード列
と95マルチチップモジュール30と電子素子40が気
流方向に不規則的に配置された基板50が並んだ、図1
と同様の実装形態である。高発熱するマルチチップモジ
ュール30は、冷却空気2から噴流方式で個別に冷却
し、その他の電子素子冷却用に基板50と平行な気流1
を送風する。本実施例では、個別冷却部の空気流出部に
誘導板73及びその他の基板上に誘導板72を設けてい
る。誘導板73は、発熱部材30と概略同じ高さであ
り、基板との設置部は、平面板で支持している。誘導板
72は、基板上に同様に設置されており、これらの誘導
板が、基板近傍の気流流路を構成している。誘導板と基
板の設置部の平面板を流れ方向に対して傾けて設置する
ことにより、冷却空気の入りにくい位置に十分な空気を
送ることができるので、高密度実装でもすべて電子素子
を冷却できる。ここで、誘導板は、基板に対して傾斜が
あっても良い。また、基板との設置部は、平面板でな
く、曲面板であれば滑らかに流れの向きを変えられる。
FIG. 5 is a perspective view of another embodiment of the forced air cooling structure of the present invention. FIG. 1 shows a card array on which a large number of memories 90 are mounted, and a board 50 on which 95 multi-chip modules 30 and electronic elements 40 are arranged irregularly in the airflow direction.
This is a mounting form similar to. The multi-chip module 30 that generates high heat is cooled individually from the cooling air 2 by a jet flow method, and the air flow 1 parallel to the substrate 50 is used for cooling other electronic elements.
To blow. In this embodiment, the guide plate 73 is provided at the air outlet of the individual cooling unit, and the guide plate 72 is provided on another substrate. The guide plate 73 has substantially the same height as the heat-generating member 30, and the installation portion with the substrate is supported by a flat plate. The guide plates 72 are similarly installed on the substrate, and these guide plates constitute an airflow channel near the substrate. By installing the guide plate and the flat plate at the installation part of the board at an angle to the flow direction, sufficient air can be sent to a position where cooling air does not easily enter, so that all electronic elements can be cooled even in high-density mounting . Here, the guide plate may be inclined with respect to the substrate. Further, if the installation portion with the substrate is not a flat plate but a curved plate, the flow direction can be smoothly changed.

【0018】図6に本発明の強制空冷構造の第五の実施
例の斜視図を示す。メモリ90が多数搭載されたカード
列と95マルチチップモジュール30と電子素子40が
気流方向に不規則的に配置された基板50が並んだ実装
形態であり、誘導板75を概略基板全面に構成した。誘
導板75は、個別冷却部に貫通孔が設けられ、マルチチ
ップモジュール30に設置されたヒートシンク20がそ
の上部に突き出るようになっている。このため、個別冷
却による気流2と平行流1の流れは、概略切り分けられ
る。また、誘導板75は板面の数カ所の切り欠き部を基
板側に折り曲げた支持部79であるため、切り欠き形状
や切り欠き角度により、基板近傍の流れを基板全体に誘
導し、すべての発熱部材を冷却することができる。ま
た、図7に示すように、平板76を片面からプレス加工
し、容易に製作できる。
FIG. 6 is a perspective view of a fifth embodiment of the forced air cooling structure according to the present invention. This is a mounting form in which a card row on which a large number of memories 90 are mounted, a board 50 on which a multi-chip module 30 and electronic elements 40 are randomly arranged in the airflow direction are arranged, and a guide plate 75 is formed on the entire surface of the board. . The guide plate 75 is provided with a through-hole in the individual cooling unit, and the heat sink 20 installed in the multi-chip module 30 projects upward. For this reason, the flows of the air flow 2 and the parallel flow 1 by the individual cooling are roughly separated. In addition, since the guide plate 75 is a support portion 79 formed by bending several notches on the plate surface toward the substrate, the flow near the substrate is guided to the entire substrate by the notch shape and the notch angle, and all heat is generated. The component can be cooled. Further, as shown in FIG. 7, the flat plate 76 can be easily manufactured by pressing from one side.

【0019】図8(a),(b)に本発明の強制空冷構造
で、個別冷却用ヒートシンクの構造に関する実施例を示
す。(a)のヒートシンク21では、ベース部を延長
し、ベース面に対して傾斜θを設けた。よって、冷却空
気2は、噴流ダクト80を介してフィン間に流入し、ヒ
ートシンク部で熱交換し流出する。この時、流出部の傾
斜により、ベース面と逆向きに空気が流れるため、平行
流による冷却空気が基板側に入りやすくなる。このた
め、基板近傍の混合気流温度を下げることができる。ま
た、(b)のヒートシンク22でも同様に、ヒートシン
クのフィン面を傾斜を付けることで、上流側の比較的低
温な空気流を基板側に向けるため、混合空気流温度を下
げられる。よってこれらのヒートシンクを用いること
で、噴流冷却される発熱部材以外の電子素子の冷却効果
が促進できる。
FIGS. 8A and 8B show an embodiment relating to the structure of the heat sink for individual cooling in the forced air cooling structure of the present invention. In the heat sink 21 of (a), the base portion is extended, and an inclination θ is provided with respect to the base surface. Therefore, the cooling air 2 flows between the fins via the jet duct 80, exchanges heat with the heat sink, and flows out. At this time, since the air flows in the direction opposite to the base surface due to the inclination of the outflow portion, the cooling air by the parallel flow easily enters the substrate side. Therefore, the temperature of the mixed gas flow near the substrate can be reduced. Similarly, in the heat sink 22 of (b), the fin surface of the heat sink is inclined to direct the relatively low-temperature air flow on the upstream side to the substrate side, so that the temperature of the mixed air flow can be lowered. Therefore, by using these heat sinks, the cooling effect of electronic elements other than the heat-generating member to be jet-cooled can be promoted.

【0020】[0020]

【発明の効果】本発明によれば、大小様々な発熱部材が
複雑に配置した高密度実装系の冷却構造に対して、発熱
密度の高い発熱部材を個別冷却する一方、個別冷却をし
ない他の発熱部材についても十分な冷却空気が送風され
るので、各発熱部材から発生する熱を効率よく放熱し、
各発熱部材温度を所定の温度に保つことができる。
According to the present invention, in a cooling structure of a high-density mounting system in which various heat-generating members of various sizes are arranged in a complicated manner, while the heat-generating members having a high heat-generating density are individually cooled, other cooling is not performed. Sufficient cooling air is also sent to the heat generating members, so the heat generated from each heat generating member is efficiently radiated,
Each heating member temperature can be maintained at a predetermined temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における第一の実施例の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】本発明における第一の実施例の断面図FIG. 2 is a sectional view of a first embodiment of the present invention.

【図3】本発明における第二の実施例の断面図FIG. 3 is a sectional view of a second embodiment of the present invention.

【図4】本発明における第三の実施例の断面図FIG. 4 is a sectional view of a third embodiment of the present invention.

【図5】本発明における第四の実施例の斜視図。FIG. 5 is a perspective view of a fourth embodiment of the present invention.

【図6】本発明における第五の実施例の斜視図。FIG. 6 is a perspective view of a fifth embodiment of the present invention.

【図7】本発明における第六の実施例の斜視図。FIG. 7 is a perspective view of a sixth embodiment of the present invention.

【図8】本発明における第七の実施例の斜視図。FIG. 8 is a perspective view of a seventh embodiment of the present invention.

【図9】本発明よる流速分布を表す計算結果の説明図。FIG. 9 is an explanatory diagram of a calculation result representing a flow velocity distribution according to the present invention.

【図10】本発明よる流速変化を表す計算結果の説明
図。
FIG. 10 is an explanatory diagram of a calculation result representing a change in flow velocity according to the present invention.

【図11】従来例の説明図。FIG. 11 is an explanatory view of a conventional example.

【符号の説明】[Explanation of symbols]

1,2…冷却空気、20…ヒートシンク、30…マルチ
チップモジュール、40…電子素子、50…基板、70
…誘導板、80…噴流ノズル、85…エアダクト、90
…メモリ、95…カード列。
1, 2, cooling air, 20, heat sink, 30, multi-chip module, 40, electronic element, 50, substrate, 70
... guide plate, 80 ... jet nozzle, 85 ... air duct, 90
... memory, 95 ... card row.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大黒 崇弘 神奈川県秦野市堀山下1番地 株式会社日 立製作所汎用コンピュータ事業部内 (72)発明者 新 隆之 神奈川県秦野市堀山下1番地 株式会社日 立製作所汎用コンピュータ事業部内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takahiro Oguro 1st Horiyamashita, Hadano-shi, Kanagawa Prefecture Nichi Works, Ltd. General-purpose Computer Business Division (72) Inventor Takayuki Shin 1st Horiyamashita, Hadano-shi, Kanagawa 1st Hitachi, Ltd. General Computer Division of Manufacturing

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】冷却空気の流れ方向に発熱部材が複数搭載
された基板上で、前記基板に概略沿って前記発熱部材に
冷却空気を送風し、前記基板に対して概略垂直方向から
前記発熱部材の一部に冷却空気を個別に送風し、個別冷
却する発熱部材に、金属平面板上に垂直に他の金属板が
複数枚並べられたヒートシンクが設置された電子機器の
強制空冷構造において、 個別冷却する前記発熱部材に設置された前記ヒートシン
クの金属平面板を基板に概略沿って流れる気流方向と交
差するように設置したことを特徴とする強制空冷構造。
1. A cooling air is blown to a heat generating member on a substrate on which a plurality of heat generating members are mounted in a flow direction of the cooling air. In the forced air-cooling structure of electronic equipment in which a heat sink in which a plurality of other metal plates are vertically arranged on a flat metal plate is installed on a heat generating member that individually sends cooling air to a part of A forced air cooling structure, wherein a metal flat plate of the heat sink provided on the heat-generating member to be cooled is installed so as to intersect with an air flow direction flowing substantially along a substrate.
【請求項2】請求項1において、個別冷却される前記発
熱部材に設置されたヒートシンクの冷却風上流側フィン
底部に気流方向に対して、傾斜して張り出す流れ誘導部
材を設けた強制空冷構造。
2. A forced air cooling structure according to claim 1, wherein a flow guide member is provided at the bottom of the fin on the cooling air upstream side of the heat sink provided on the heat-generating member to be individually cooled. .
【請求項3】請求項1において、個別冷却される前記発
熱部材に設置されたヒートシンクベース部金属板をフィ
ン長手方向に傾斜を設けて突出させた強制空冷構造。
3. A forced air cooling structure according to claim 1, wherein the heat sink base metal plate provided on the heat-generating member to be individually cooled is projected with an inclination in the longitudinal direction of the fin.
【請求項4】請求項1において、発熱部材が搭載された
基板上に、個別冷却される前記発熱部材と概略同じ高さ
の板を基板面上に少なくとも1ケ以上設置した強制空冷
構造。
4. A forced air cooling structure according to claim 1, wherein at least one plate having substantially the same height as the heat-generating member to be individually cooled is installed on the substrate on which the heat-generating member is mounted.
【請求項5】請求項4において、基板面上に、個別冷却
される前記発熱部材と概略同じ高さに設置された板の支
持部が、基板上の流れ方向に対し、傾斜を設けた平面状
あるいは曲面状の板である強制空冷構造。
5. A flat plate according to claim 4, wherein a supporting portion of the plate, which is provided on the substrate surface at substantially the same height as the heat-generating member to be individually cooled, is inclined with respect to the flow direction on the substrate. Forced air cooling structure, which is a flat or curved plate.
【請求項6】請求項4において、基板面上に、個別冷却
される前記発熱部材と概略同じ高さに設置された板が基
板に対して傾斜をもって設置される強制空冷構造。
6. A forced air cooling structure according to claim 4, wherein a plate provided on the surface of the substrate at substantially the same height as the heat-generating member to be individually cooled is installed obliquely with respect to the substrate.
【請求項7】請求項4において、基板面上に、個別冷却
される前記発熱部材と概略同じ高さに設置された板の面
に、少なくとも一つ以上の切り欠き部を設けた強制空冷
構造。
7. A forced air cooling structure according to claim 4, wherein at least one notch is provided on a surface of a plate provided on the substrate surface at substantially the same height as said heat-generating member to be individually cooled. .
【請求項8】請求項7において、切り欠き部を片面から
の局部的な加圧により形成される強制空冷構造。
8. A forced air cooling structure according to claim 7, wherein the notch is formed by local pressurization from one side.
【請求項9】請求項1において、個別冷却される発熱部
材に設置されたヒートシンク上部に冷却空気を流入する
導入部と概略同じ高さの平面板あるいは曲面板を設置し
た強制空冷構造。
9. A forced air cooling structure according to claim 1, wherein a flat plate or a curved plate having substantially the same height as an introduction portion for introducing cooling air is provided above a heat sink provided on the heat-generating member to be individually cooled.
【請求項10】請求項9において、ヒートシンク上部に
設置された板が基板と概略平行な気流に対して傾斜をも
つ強制空冷構造。
10. A forced air cooling structure according to claim 9, wherein the plate provided above the heat sink has a slope with respect to an air flow substantially parallel to the substrate.
【請求項11】請求項1から10の冷却構造のいずれか
において、個別冷却される発熱部材に設置されたヒート
シンクに、冷却空気を導入するダクト部の高さが、前記
発熱部材高さと前記ヒートシンク高さの和の1.4 倍以
下である強制空冷構造。
11. The cooling structure according to claim 1, wherein a height of a duct portion for introducing cooling air to a heat sink provided on the heat-generating member to be individually cooled is equal to the height of the heat-generating member and the heat sink. Forced air cooling structure that is less than 1.4 times the sum of heights.
【請求項12】単数あるいは複数の配線基板上に少なく
とも一つ以上搭載された発熱部材に送風手段を設け、請
求項1から11のいずれかの強制冷却構造を単独あるい
は複数設けた電子機器。
12. An electronic device comprising a heating member mounted on at least one of a single or a plurality of wiring boards, and a blower means provided thereon, and the forced cooling structure according to any one of claims 1 to 11 provided alone or in plurality.
JP24974696A 1996-09-20 1996-09-20 Forcedly air cooled structure and electronic equipment thereof Pending JPH1098139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24974696A JPH1098139A (en) 1996-09-20 1996-09-20 Forcedly air cooled structure and electronic equipment thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24974696A JPH1098139A (en) 1996-09-20 1996-09-20 Forcedly air cooled structure and electronic equipment thereof

Publications (1)

Publication Number Publication Date
JPH1098139A true JPH1098139A (en) 1998-04-14

Family

ID=17197607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24974696A Pending JPH1098139A (en) 1996-09-20 1996-09-20 Forcedly air cooled structure and electronic equipment thereof

Country Status (1)

Country Link
JP (1) JPH1098139A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074458A1 (en) * 1999-06-01 2000-12-07 Volker Dalheimer Housing system for housing electronic components, especially a flat desktop pc or multimedia housing
GB2377086A (en) * 2001-04-17 2002-12-31 Hewlett Packard Co Active heat sink structure with directed airflow
US6888725B2 (en) 2000-12-11 2005-05-03 Fujitsu Limited Electronics device unit
EP2151863A1 (en) * 2008-07-31 2010-02-10 Lucent Technologies Inc. A jet impingement cooling system
JP2011119395A (en) * 2009-12-02 2011-06-16 Fujitsu Telecom Networks Ltd Cooling structure of electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074458A1 (en) * 1999-06-01 2000-12-07 Volker Dalheimer Housing system for housing electronic components, especially a flat desktop pc or multimedia housing
US6618248B1 (en) 1999-06-01 2003-09-09 Volker Dalheimer Housing system for housing electronic components, especially flat desktop PC or multimedia housing
US6888725B2 (en) 2000-12-11 2005-05-03 Fujitsu Limited Electronics device unit
GB2377086A (en) * 2001-04-17 2002-12-31 Hewlett Packard Co Active heat sink structure with directed airflow
GB2377086B (en) * 2001-04-17 2004-08-25 Hewlett Packard Co Active heat sink structure with directed air flow
EP2151863A1 (en) * 2008-07-31 2010-02-10 Lucent Technologies Inc. A jet impingement cooling system
JP2011119395A (en) * 2009-12-02 2011-06-16 Fujitsu Telecom Networks Ltd Cooling structure of electronic component

Similar Documents

Publication Publication Date Title
US5592363A (en) Electronic apparatus
JP3236137B2 (en) Semiconductor element cooling device
US7848101B2 (en) System and method for cooling electronic systems
US7299647B2 (en) Spray cooling system for transverse thin-film evaporative spray cooling
EP1036491B1 (en) Cooling system for semiconductor die carrier
US6704199B2 (en) Low profile equipment housing with angular fan
JPH09223883A (en) Cooling equipment of electronic apparatus
JPH10200278A (en) Cooler
JPH08288438A (en) Cooling device for electronic equipment
JPH02168697A (en) Cooling device for electronic equipment and radiating fin therefor
JP2003142637A (en) Cooling structure of heat sink and heating element
JP3340053B2 (en) Heat dissipation structure and electronic device using the same
JPH1012781A (en) Forced cooling heat sink
CN109936967A (en) Control device of electric motor
JP2804690B2 (en) Cooling structure of high heating element
JPH1098139A (en) Forcedly air cooled structure and electronic equipment thereof
JP3006361B2 (en) Heat sink, electronic device using the same, and electronic computer using the electronic device
JP2001094283A (en) Electronic equipment
US20030168208A1 (en) Electronic component cooling apparatus
JPH05251883A (en) Cooling mechanism for electronic device
JP2012059741A (en) Cooling device for electronic components
JP3840970B2 (en) heatsink
JP2010093034A (en) Cooling device for electronic component
JPH11145349A (en) Heat sink for forced cooling
JPH09116286A (en) Cooling device for electronic device