JPH1077609A - Steel member manufacturing method - Google Patents

Steel member manufacturing method

Info

Publication number
JPH1077609A
JPH1077609A JP8248507A JP24850796A JPH1077609A JP H1077609 A JPH1077609 A JP H1077609A JP 8248507 A JP8248507 A JP 8248507A JP 24850796 A JP24850796 A JP 24850796A JP H1077609 A JPH1077609 A JP H1077609A
Authority
JP
Japan
Prior art keywords
assembly
shape
manufacturing
temporary assembly
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8248507A
Other languages
Japanese (ja)
Inventor
Kazumori Takada
和守 高田
Tetsuro Matsubara
哲朗 松原
Takashi Toshiro
高司 戸城
Yutaka Kudo
裕 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP8248507A priority Critical patent/JPH1077609A/en
Publication of JPH1077609A publication Critical patent/JPH1077609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Automatic Assembly (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • General Factory Administration (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure precision same as in the case where temporary assembly is executed and to eliminate a temporary assembly work by a method wherein verification of an assembly shape is performed without actual temporary assembly of manufactured steel bridge members and under the condition that the manufacture error of the member is managed within a specified value. SOLUTION: Manufacture of individual members, such as a main girder and a horizontal girder, includes a proceeding works and steps, such as assembly and a welding, and main constituting members necessary to an object steel bridge, in which a plurality of site joint bolt holes are formed, are manufactured with machining precision within an allowance preset at an NC full size system. The size of each part of an individual member is measured and a measuring result is inputted to a temporary assembly simulation system by a computer When the size and the shape of each part of each manufactured member are confirmed, virtual temporary assembly is effected by computer simulation displaying as 'member assembly', and a shape and a size at a manufacture completion stage and propriety of a joining state between members are confirmed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼橋を構成するた
めの主桁、横桁及び対傾構等の主要構成部材並びに架設
現場での各主要構成部材の接合に供される添設板及び下
横溝部材等の組立部材を工場製作する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a main member such as a main girder, a cross girder and an inclined structure for forming a steel bridge, and an additional plate used for joining each main member at an erection site. The present invention relates to a method of manufacturing an assembly member such as a lower lateral groove member at a factory.

【0002】[0002]

【従来の技術】従来より、鋼橋を構成するための主桁、
横桁及び対傾構等の主要構成部材並びに架設現場での各
主要構成部材の接合に供される添設板及び下横溝部材等
の組立部材は、予め工場で製作されてから架設現場に搬
入され、現場組立工事によって架設される。工場におけ
る鋼橋部材の製作においては、CAD/CAMを利用し
た設計技術の進歩やNC工作機械及び溶接ロボット等の
普及に伴って一応の省力化が達成されているが、製作さ
れた鋼橋部材を架設現場へ搬出するに先立って工場ヤー
ドにて各部材を仮組立して検査・確認する仮組立作業が
依然として行われており、この仮組立作業には多くの工
数と人員が必要とされている。
2. Description of the Related Art Conventionally, a main girder for forming a steel bridge,
The main structural members such as the horizontal girder and the inclined structure and the assembling members such as the auxiliary plate and the lower horizontal groove member used for joining the main structural members at the erection site are manufactured in advance at the factory and then carried into the erection site. Erected by on-site assembly work. In the production of steel bridge members in factories, tentative labor savings have been achieved with advances in design technology using CAD / CAM and the spread of NC machine tools and welding robots. Prior to transporting the equipment to the construction site, temporary assembly work for temporarily assembling and inspecting and confirming each member in the factory yard is still performed, and this temporary assembly work requires many man-hours and personnel. I have.

【0003】仮組立が行われる目的としては、各部材
間の接合状態の確認、製作完了段階での形状・寸法の
確認、付属物の取付状態の確認、及び架設手順の確
認等が挙げられ、製品を架設現場に搬出する前に工場ヤ
ードにて部材を仮組立して検査・確認し、その後これを
再び分解して梱包し、架設現場へ出荷している。
[0003] The purpose of the temporary assembly is to confirm the joining state between the members, confirm the shape and dimensions at the stage of completing the production, confirm the attachment state of accessories, and confirm the erection procedure. The members are temporarily assembled and inspected and checked in the factory yard before the products are carried out to the construction site, and then disassembled and packed again, and shipped to the construction site.

【0004】[0004]

【発明が解決しようとする課題】鋼橋部材の製作におけ
る仮組立工程の存在は、工数、人員、敷地、機材、安全
対策等の面で特別な作業コストを必要とし、架設現場へ
の搬出までに長期間の工程が要求されると共に、仮組立
に合わせた工程スケジュールで部材を製作しなければな
らないので製作効率の良い分割生産に不向きであり、搬
出輸送スケジュールに合わせた効率的な部材製作にも適
合しない不都合が指摘されている。
The existence of a temporary assembly process in the manufacture of steel bridge members requires special work costs in terms of man-hours, personnel, site, equipment, safety measures, etc., and is required to be carried out to the erection site. In addition to the need for a long-term process, members must be manufactured according to the process schedule that matches the temporary assembly, which is not suitable for split production with high manufacturing efficiency. Have been pointed out as inconvenient.

【0005】そこで本発明では、製作された鋼橋部材を
実際に仮組立することなく、部材の製作誤差を一定値以
内に管理した条件のもとで組立形状を検証することによ
り仮組立を行う場合と同等の精度を保証することのでき
る方法、即ち従来の仮組立作業を省略することのできる
鋼橋部材製作方法を提供しようとするものである。
Therefore, in the present invention, the temporary assembly is performed by verifying the assembly shape under the condition that the manufacturing error of the member is controlled within a certain value without actually assembling the manufactured steel bridge member. An object of the present invention is to provide a method capable of guaranteeing the same accuracy as in the case, that is, a method of manufacturing a steel bridge member capable of omitting a conventional temporary assembly operation.

【0006】[0006]

【課題を解決するための手段】請求項1の発明による鋼
橋部材製作方法は、鋼橋を構成するための主桁、横桁及
び対傾構等の主要構成部材並びに架設現場での各主要構
成部材の接合に供される添設板及び下横溝部材等の組立
部材を工場製作する方法であって、前述の課題を解決す
るために、部材設計データに基づいて誤差許容値内の加
工精度で複数の現場継手部ボルト孔を有する各主要構成
部材を製作する工程と、製作された各主要構成部材の各
部の位置寸法を計測する工程と、計測によって得られた
計測データを用いて各主要構成部材の設計データを目標
とする仮組立シミュレーションをコンピュータ上で実行
することにより所定の仮組立精度を満たす適正組立形状
を得るに必要な各部の位置及び形状修正加工のための調
整量を求める工程と、求められた調整量に応じて適正組
立形状を与えるための各組立部材の加工情報を算出する
工程と、算出された加工情報にしたがって各組立部材に
孔明け等の後加工を施す工程とを備えている。
According to a first aspect of the present invention, there is provided a method of manufacturing a steel bridge member, comprising: a main girder, a cross girder, and an inclined structure for forming a steel bridge; This is a method of manufacturing an assembly member such as an additional plate and a lower lateral groove member provided for joining members at a factory. In order to solve the above-described problem, a processing accuracy within an allowable error value based on member design data is used. A step of manufacturing each main component having a plurality of on-site joint bolt holes, a step of measuring the position dimensions of each part of each manufactured main component, and each main configuration using measurement data obtained by the measurement. A step of executing a tentative assembly simulation on a computer with a target of design data of a member to obtain a position of each part necessary for obtaining an appropriate assembling shape satisfying a predetermined tentative assembling accuracy and an adjustment amount for shape correction processing. A step of calculating processing information of each assembly member to give an appropriate assembly shape according to the obtained adjustment amount; and a step of performing post-processing such as drilling on each assembly member according to the calculated processing information. Have.

【0007】請求項2の発明による鋼橋部材製作方法で
は、上記方法における各主要構成部材を製作する工程に
おいて個々の主要構成部材の部分的な位置寸法を計測
し、設計値との比較判定結果に基づいて矯正仕上げを行
う。
In the method for manufacturing a steel bridge member according to the second aspect of the present invention, in the step of manufacturing each main component in the above method, the partial positional dimension of each main component is measured, and the result of comparison with the design value is determined. Perform corrective finishing based on

【0008】本発明においては、コンピュータによる設
計製図システム及び製作情報システム(原寸展開システ
ムと自動原寸システムを含む)から与えられる部材設計
データに基づいて、NC加工作業及び組付け溶接作業に
より複数の現場継手部ボルト孔を有する各主要構成部材
を製作する段階から各主要構成部材の部品製作及び組み
立てを予め定められた誤差許容値内の加工精度内に管理
することを基本とし、まず各製作作業で誤差許容値の管
理目標値を設け、個々の主要構成部材の部分的な位置及
び寸法を計測して設計値との比較判定を行い、そこでの
誤差がある許容値(例えば±3 mm程度)内に収まってい
るかの判定を行う。もし、ここで許容値外(いわゆる誤
差)と判定された場合は、その箇所における矯正または
作り直しを実施する。
In the present invention, based on member design data provided from a computer-aided design drafting system and a production information system (including a full-scale unfolding system and an automatic full-scale system), a plurality of sites are formed by NC machining work and assembly welding work. From the stage of manufacturing each main component having a joint bolt hole, it is basically to manage the production and assembly of the parts of each main component within the processing accuracy within a predetermined error tolerance. Set a target value for error tolerance, measure the partial position and dimensions of each major component, compare it with the design value, and determine if there is an error within the tolerance (for example, about ± 3 mm). It is determined whether or not it is within. If it is determined that the value is outside the allowable value (so-called error), correction or re-creation is performed at that location.

【0009】許容値内であることが確認されれば、組立
によって製作された各主要構成部材の各部の位置寸法を
計測し、この計測データを用いて設計データを目標にし
た仮組立シミュレーションをコンピュータ上で実行し、
製作完了段階の形状・寸法並びに各主要構成部材間の接
合状態の良否を確認する。その際に仮組立精度が満たさ
れない場合は、現場継手部のボルト孔間の距離等をシミ
ュレーション作業上で調整することによって組立形状が
調整される。そして、組立形状の調整結果並びに添接板
及び下横溝等の組立部材の後加工のための情報(ボルト
孔間距離の調整量等)を算出し、算出された加工情報に
したがって各組立部材に孔明け等の後加工を施すと共
に、仮説現場への搬出(出荷)に際して必要に応じて調
整情報のプリントアウトを施工情報として添付する。
If it is confirmed that the value is within the allowable range, the positional dimensions of each part of each of the main constituent members manufactured by the assembly are measured, and a temporary assembly simulation targeting design data is made using the measured data. Run on,
The shape and dimensions at the stage of completion of production and the quality of the joint between the main components are checked. At this time, if the provisional assembly accuracy is not satisfied, the assembly shape is adjusted by adjusting the distance between the bolt holes of the on-site joint portion in a simulation operation. Then, the result of adjustment of the assembly shape and post-processing information (such as the adjustment amount of the distance between the bolt holes) for post-processing of the assembly member such as the attachment plate and the lower lateral groove are calculated. Post-processing such as drilling is performed, and a printout of the adjustment information is attached as construction information as needed when being carried out (shipped) to the hypothetical site.

【0010】このようにして、本発明では、製作された
鋼橋部材を実際に仮組立することなく、部材の製作誤差
を一定値以内に管理した条件のもとで組立形状を検証す
ることにより仮組立を行う場合と同等の精度を保証する
ことができる。
As described above, according to the present invention, it is possible to verify the assembled shape under the condition that the manufacturing error of the member is controlled within a certain value without actually assembling the manufactured steel bridge member. Accuracy equivalent to that in the case of temporary assembly can be guaranteed.

【0011】[0011]

【発明の実施の形態】図1に本発明による鋼橋部材製作
の基本的なフローを示す。図示のように、主桁、横桁、
対傾構等の個々の部材の製作は、先孔加工と組付・溶接
の各工程を含んでいる。先孔加工においては、コンピュ
ータによるNC原寸システムに予め蓄積された部材設計
データに基づいて、主桁の主要部品であるフランジ及び
ウエブのNC罫書、NC切断、NC孔明作業と、主桁の
補助部品であるスティフナ、ガゼット及び横桁仕口のマ
ニュアルによる罫書、切断、孔明の各作業と、横桁及び
対傾構のマニュアルによる罫書、切断、孔明の各作業と
が前記NC原寸システムに予め設定された誤差許容値内
の加工精度で実行される。先孔加工後の各部品は次の組
付・溶接工程で個々に組立てられる。例えば主桁につい
ては、加工済のフランジとウエブをI型に組み付けて溶
接し、それに加工済のスティフナ、ガゼット、横桁仕口
等の補助部品を組み付けて溶接する。これらの先孔加工
及び組付・溶接の各工程内においては、個々の作業工程
の区切りで部材各部の位置寸法を鋼製巻尺等で計測・検
査し、その結果を前記部材設計データと比較判定し、判
定結果に応じて修正加工、溶接の矯正仕上げまたは作り
直しを行ない、予め設定された誤差許容値内の加工精度
が保たれた部材として仕上げられる。このようにして目
的の鋼橋に必要な主桁、横桁、対傾構等、複数の現場継
手部ボルト孔を有する主要構成部材が誤差許容値内の加
工精度で製作される。
FIG. 1 shows a basic flow of manufacturing a steel bridge member according to the present invention. As shown, the main girder, horizontal girder,
The manufacture of individual members such as a tilted structure includes the steps of drilling a hole, assembling and welding. In the pre-drilling, based on the member design data previously stored in the NC full-scale system by the computer, the main parts of the main girder, such as the NC marking of the flange and the web, the NC cutting, the NC drilling work, and the auxiliary parts of the main girder The stiffener, gusset, and cross-girder connections are manually marked, cut, and drilled, and the horizontal spar and inclined work are manually marked, cut, and drilled. The processing is performed with the processing accuracy within the error tolerance. The parts after the pre-hole processing are individually assembled in the following assembling / welding process. For example, as for the main girder, the processed flange and the web are assembled into an I-shape and welded, and the processed auxiliary parts such as stiffeners, gussets, and horizontal girder connections are assembled and welded. In each of these pre-drilling and assembling / welding processes, the position dimensions of each part of the member are measured and inspected with a steel tape measure, etc. at the break of each work process, and the result is compared with the above-mentioned member design data. Then, correction processing, corrective finishing of welding, or reworking is performed according to the determination result, and the member is finished as a member having a processing accuracy within a preset allowable error value. In this way, the main structural members having a plurality of bolts at the site joint, such as the main girder, the cross girder, and the inclined structure required for the target steel bridge, are manufactured with a processing accuracy within an allowable error value.

【0012】製作された各部材の各部寸法や形状の精度
は、従来は各部材を実際に仮組立して確認していたが、
本発明ではこの仮組立を図1に「部材組立」として示す
コンピュータシミュレーションにより仮想的に行なうこ
とにより実際の仮組立作業を省略する。そのため、本発
明による方法では、製作された各部材の精度を確認する
ために、個々の部材の各部寸法の計測を行ない、その結
果をコンピュータによる仮組立シミュレーションシステ
ムに取込む。
In the past, the accuracy of the dimensions and the shape of each part of each manufactured member was confirmed by actually temporarily assembling each member.
In the present invention, this temporary assembly is virtually performed by computer simulation shown as "member assembly" in FIG. Therefore, in the method according to the present invention, in order to confirm the accuracy of each manufactured member, the dimensions of each part of the individual member are measured, and the result is taken into a temporary assembly simulation system using a computer.

【0013】部材の計測には、前述の製作過程における
部分的な寸法(フランジ幅、芯ずれ等)を鋼製巻尺やノ
ギス等の計測器具で計測する二次元計測と、製作された
個々の主要構成部材について端部や各ボルト孔の相対位
置を三次元計測装置によって計測する三次元計測とがあ
る。これらの計測によって得られた計測データから各位
置寸法を算出し、これを設計データと比較してその誤差
がある許容値(例えば±3 mm)以内であるかの判定を行
い、部材の修正加工、矯正加工、作り直しの可否の決定
を行ない、また計測データ及び算出データは仮組立シミ
ュレーションにおける仮想的な仮組立にも利用する。
For the measurement of the members, two-dimensional measurement in which the partial dimensions (flange width, misalignment, etc.) in the above-mentioned manufacturing process are measured with a measuring instrument such as a steel tape measure or a caliper, and individual manufactured main components are measured. There is three-dimensional measurement in which the relative positions of the ends and bolt holes of the constituent members are measured by a three-dimensional measuring device. Calculate each position dimension from the measurement data obtained by these measurements, compare it with the design data, determine whether the error is within a certain tolerance (for example, ± 3 mm), and correct the member. In addition, the determination as to whether or not straightening and reworking is possible is performed, and the measurement data and calculation data are also used for virtual temporary assembly in a temporary assembly simulation.

【0014】三次元計測には、例えば(株)ソキア社の
三次元計測システム「MONMOS」等の光学式遠隔観測系と
計測データ処理システムからなる三次元計測システムを
用いることができる。尚、このような三次元計測システ
ムは、従来の仮組立作業時の計測に用いられていた鋼製
巻尺に比較して充分な精度の計測結果が得られ、したが
って計測精度は充分に信頼できるといえる。また、計測
者の違いによる計測精度のばらつきもほとんどなく、特
別な訓練は必要ないが、屋外では直射日光による部材表
面温度分布のばらつきや時間経過による温度変化が生じ
るため、計測は室内計測とすることが望ましい。
For the three-dimensional measurement, for example, a three-dimensional measurement system including an optical remote observation system such as a three-dimensional measurement system “MONMOS” manufactured by Sokia Corporation and a measurement data processing system can be used. It should be noted that such a three-dimensional measurement system can provide a measurement result with sufficient accuracy compared to a steel tape measure used for measurement during the conventional temporary assembly work, and that the measurement accuracy is sufficiently reliable. I can say. In addition, there is almost no variation in measurement accuracy due to the difference of the measurers, and no special training is required.However, measurement is performed indoors because variations in the surface temperature distribution of members due to direct sunlight and temperature changes over time occur. It is desirable.

【0015】主桁部材を三次元計測する際、作業性を考
慮して部材を縦置きとし、部材の自重によるたわみの影
響を排除するために拘束架台を用いることが望ましい。
またボルト孔に対しては、その位置を正しく捉えるため
に、計測補助具として適合された視準ターゲットを用い
て計測を行うことが望ましい。部材計測のフローを図2
に示す。また、主桁、横桁、対傾構について各部の計測
における計測項目等を例示すれば表1の通りである。
When three-dimensionally measuring the main girder member, it is desirable to place the member vertically in consideration of workability and to use a restraint gantry in order to eliminate the influence of bending due to its own weight.
In addition, it is desirable to measure the bolt holes using a collimating target adapted as a measuring aid in order to correctly grasp the position. Figure 2 shows the flow of component measurement
Shown in Table 1 shows an example of the measurement items and the like in the measurement of each part with respect to the main girder, the horizontal girder, and the inclined structure.

【0016】[0016]

【表1】 [Table 1]

【0017】図1に「部材組立」として示した仮組立シ
ミュレーションは図3に示される手順にて実施され、こ
のシミュレーションシステムには三次元CADシステム
を利用することができる。即ち、前述の部材計測によっ
て得られた各部材の三次元計測座標値と設計座標値(N
C原寸システムから作成されたデータで、シミュレーシ
ョンでの組立形状の目標とする)をもとに仮組立シミュ
レーションを行い、製作完了段階の形状・寸法並びに各
部材間の接合状態の良否を確認する。確認項目は、例え
ば鋼橋の全長、支間長、平面対角長、桁端の出入り差、
主桁の通り、桁の反り、主桁の鉛直度、主桁の中心間距
離、現場継手部の隙間、ソールプレートの位置などであ
る。この良否確認の際にNC原寸システムに予め設定し
てある仮組立精度が満たされない場合は、キャンバー、
現場継手部のボルト孔間距離等を仮組立精度が満たされ
るまで調整して組立形状を調整する。最終的には、実際
の組立に対して以下の情報が提供される。 製作完了段階における形状・寸法の調整結果 現場継手部のボルト孔間距離の調整量 添設板や下横溝の加工精度(孔明け加工) なお、シミュレーションでの調整を有効にするため、添
設板・下横溝はここで調整されたボルト孔間距離をもと
に二次加工(孔明け加工)を行う。勿論、このようにし
て加工された添設板や下横溝の精度を鋼製巻尺やノギス
で計測し、計測データを現場への作業資料に添付してお
くことは述べるまでもない。
The temporary assembly simulation shown as "member assembly" in FIG. 1 is performed according to the procedure shown in FIG. 3, and a three-dimensional CAD system can be used for this simulation system. That is, the three-dimensional measurement coordinate value and the design coordinate value (N
A temporary assembling simulation is performed based on the data created from the C full-scale system, which is the target of the assembling shape in the simulation), and the shape and dimensions at the stage of completion of production and the quality of the joint between the members are confirmed. Items to be checked are, for example, the total length of the steel bridge, span length, diagonal length of the plane,
As in the case of the main girder, the warp of the girder, the verticality of the main girder, the center-to-center distance of the main girder, the clearance of the joint at the site, the position of the sole plate, and the like. When the temporary assembly accuracy set in advance in the NC full-scale system is not satisfied at the time of this quality check, camber,
The assembling shape is adjusted by adjusting the distance between the bolt holes of the on-site joint until the tentative assembly accuracy is satisfied. Ultimately, the following information is provided for the actual assembly: Adjustment results of shape and dimensions at the stage of completion of production Amount of adjustment of distance between bolt holes in joints on site Attachment plate and lower horizontal groove machining accuracy (drilling) In order to make adjustments in the simulation effective,・ For the lower horizontal groove, secondary processing (drilling) is performed based on the distance between the bolt holes adjusted here. Of course, it goes without saying that the accuracy of the additional plate and the lower lateral groove processed in this way is measured with a steel tape measure or a vernier caliper, and the measurement data is attached to work materials on the site.

【0018】[0018]

【実施例】本発明に従って仮組立シミュレーションを実
際に適用した工事の一覧を表2に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Table 2 shows a list of constructions to which a temporary assembly simulation was actually applied according to the present invention.

【0019】[0019]

【表2】 [Table 2]

【0020】仮組立シミュレーションでは、設計時の組
立形状を目標にして計測データの部材連結部のボルト孔
での孔ずれが生じないように組立形状を決めていくが、
前述のように仮組立精度を満たさない場合は組立形状を
調整する必要がある。このとき、図4のように各現場継
手部のボルト孔間距離に対してLu、Lbを与え、これを調
整することでキャンバー、支間長、現場継手部の隙間等
を調整する。尚、最初に行う調整前のシミュレーション
では、このLuとLbに設計寸法を与えている。
In the tentative assembly simulation, the assembly shape is determined with the aim of the assembly shape at the time of design so as not to cause a hole displacement in the bolt hole of the member connecting portion of the measurement data.
If the temporary assembly accuracy is not satisfied as described above, it is necessary to adjust the assembly shape. At this time, as shown in FIG. 4, Lu and Lb are given to the distance between the bolt holes of each joint at the site, and the camber, the span length, the gap at the joint at the site and the like are adjusted by adjusting Lu and Lb. In the first simulation before adjustment, design dimensions are given to Lu and Lb.

【0021】表1のC橋での仮組立シミュレーションに
よる組立形状の調整結果を図5〜7に示す。これらか
ら、調整前の組立形状として次の結果が得られた。 支間長誤差についてはほぼプラス傾向だが、一部マ
イナスの誤差が発生した。(図5の□印)。 キャンバー誤差は全体的にマイナス傾向を示し、許
容値を越えるものもあった(図6の□印)。 現場継手部の透き間は設計値10mmに対して許容誤
差5mm以内に収まっている(図7の(a) )。
FIGS. 5 to 7 show the results of adjusting the assembling shape by the tentative assembling simulation on the bridge C in Table 1. FIG. From these, the following results were obtained as the assembled shape before adjustment. The span length error was almost positive, but some negative error occurred. (D in FIG. 5). The camber error showed a negative tendency as a whole, and in some cases exceeded the allowable value (indicated by a square in FIG. 6). The clearance of the joint at the site is within a tolerance of 5 mm for a design value of 10 mm (FIG. 7 (a)).

【0022】よって、C橋では次のように調整した。 キャンバー誤差がマイナスに大きくなったG1〜G3と
G6について一部の現場継手部でボルト孔間距離Lu(図
4)を設計寸法より約1mm大きな値にしてキャンバー誤
差をプラス方向に調整した。 全ての主桁で桁反り形状が合うように各現場継手部
でボルト孔間距離LuとLb(図4)を調整した。 このように調整を行って仮組み立て精度を確保した場合
のシミュレーション結果を図5及び図6に○印で示す。
Therefore, the following adjustment was made for Bridge C. G1 to G3 with camber error increased to minus
For G6, the camber error was adjusted in the positive direction by setting the distance Lu between bolt holes (FIG. 4) to about 1 mm larger than the design dimension at some field joints. The bolt-to-bolt distances Lu and Lb (FIG. 4) were adjusted at each field joint so that the girder warping shapes of all the main girders matched. Simulation results in the case where the temporary assembly accuracy is ensured by performing the adjustment as described above are shown by the circles in FIGS. 5 and 6.

【0023】このようにして得たシミュレーション結果
のて仮組立出来形形における仮組立精度(シミュレーシ
ョン予測値)と実際に仮組立を行なって得た実測値と
を、表1のC橋について比較したところ、以下の結果が
得られた。 (1) 支間長 図8に支間長誤差の比較結果を示す。これより、シミュ
レーション予測値と仮組立実測値は全体的に誤差傾向が
よく一致し、誤差についてもすべて±2.6 mm以下であ
り、許容誤差(±13 mm )を充分満足している。また、
相互に誤差を比較すると最大相対差は1.6 mm(G1)であ
った。 (2) キャンバー 図9にキャンバー誤差の比較結果を示す。ここでも、シ
ミュレーション予測値と仮組立実測値の誤差はいずれも
−3.0 mm〜+4.0 mmの範囲で傾向がよく一致しており、
最大相対差については4.8 mm(G1の)で、平均すると
相対差−0.9 mmであった。
The tentative assembly accuracy (simulated predicted value) in the tentatively assembled ready-made form of the simulation result obtained in this way was compared with the actually measured value obtained by actually performing the tentative assembly for the C bridge in Table 1. However, the following results were obtained. (1) Strut length Fig. 8 shows the comparison result of span length error. As a result, the simulation prediction value and the temporary assembly actual measurement value have a good error tendency as a whole, and all the errors are less than ± 2.6 mm, which sufficiently satisfies the allowable error (± 13 mm). Also,
When the errors were compared with each other, the maximum relative difference was 1.6 mm (G1). (2) Camber Fig. 9 shows the comparison result of camber error. Here also, the error between the simulation predicted value and the tentatively-assembled actually measured value is in good agreement with each other in the range of -3.0 mm to +4.0 mm.
The maximum relative difference was 4.8 mm (for G1), averaging -0.9 mm.

【0024】以上のことより、シミュレーション予測値
と仮組立実測値とには大きな差異は見受けられない。ま
た、桁端の出入り等仮組立精度の検査項目について調査
した結果、すべてについてよく一致していた。
From the above, there is no significant difference between the simulation predicted value and the temporary assembly actual measured value. In addition, as a result of examining inspection items for provisional assembly accuracy, such as entry and exit at the end of the girder, all items were in good agreement.

【0025】表2に示したA〜Iの1桁橋について仮組
立シミュレーションと実際の仮組立並びに架設時とで出
来形形状を比較した結果を、支間長とキャンバーについ
て表3及び表4に示す。これらの表に示されているシミ
ュレーション予測値と仮組立実測値または架設時実測値
との相対差からわかるように、シミュレーションによっ
て得られた結果は、仮組立または架設時においても忠実
に反映されている。
Tables 3 and 4 show the results of a comparison of the completed shapes of the single-girder bridges A to I shown in Table 2 between the simulated assembly simulation and the actual tentative assembly and erection for the span length and camber. . As can be seen from the relative differences between the simulation prediction values shown in these tables and the actual measured values during temporary assembly or installation, the results obtained by simulation are faithfully reflected even during temporary assembly or installation. I have.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】尚、以上に示した実施例では、標準的なI
桁橋に適用した場合について例示したが、本発明は例え
ば箱桁橋等、各種の桁構造の鋼橋に適用可能であること
は述べるまでもない。
In the embodiment described above, the standard I
Although the case where the present invention is applied to a girder bridge is illustrated, it is needless to say that the present invention is applicable to steel bridges having various girder structures such as a box girder bridge.

【0029】[0029]

【発明の効果】以上に述べたように、本発明によれば、
鋼橋製作における仮組立の実作業を省略することがで
き、従って、仮組立実作業コスト(工数、敷地、機材、
安全対策等)の削減ができるだけでなく、製作工程の短
縮と分割生産ができるため、生産能力の向上並びに輸送
工程に合わせたジャストインタイム生産が可能となり、
効率的な生産計画が可能となるため、最小限の敷地(仮
置き、塗装等)で生産が可能となる等、顕著な効果が得
られるものである。
As described above, according to the present invention,
The actual work of temporary assembly in steel bridge production can be omitted, and therefore the actual work of temporary assembly (man-hours, site, equipment,
Safety measures, etc.), as well as shortening the manufacturing process and split production, improving production capacity and enabling just-in-time production in line with the transport process.
Since an efficient production plan can be achieved, remarkable effects can be obtained, such as production can be performed on a minimum site (temporary placement, painting, etc.).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による鋼橋部材製作の基本的なフローを
示す説明図である。
FIG. 1 is an explanatory diagram showing a basic flow of manufacturing a steel bridge member according to the present invention.

【図2】部材計測のフローを例示する説明図である。FIG. 2 is an explanatory diagram illustrating a flow of member measurement.

【図3】仮組立シミュレーションの手順を示す流れ図で
ある。
FIG. 3 is a flowchart showing a procedure of a temporary assembly simulation.

【図4】仮組立形状の調整箇所を例示するI桁接合部の
側面図である。
FIG. 4 is a side view of an I-girder joint illustrating an adjustment position of a temporary assembly shape.

【図5】組立形状調整前後の支間長誤差の計測結果を示
す線図であり、横軸は桁番号、縦軸は誤差(mm)を表わ
す。
FIG. 5 is a diagram showing measurement results of span length errors before and after adjustment of the assembly shape, in which the horizontal axis represents the digit number and the vertical axis represents the error (mm).

【図6】各桁の組立形状調整前後のキャンバー誤差の計
測結果を示す線図であり、横軸は計測位置、縦軸は誤差
(mm)を表わす。
FIG. 6 is a diagram showing a measurement result of a camber error before and after adjustment of an assembling shape of each girder, in which a horizontal axis represents a measurement position and a vertical axis represents an error (mm).

【図7】桁G3における二箇所の継手部J1,J2での
組立形状調整前後の現場継手誤差の計測結果を示す説明
図である。
FIG. 7 is an explanatory diagram showing measurement results of field joint errors before and after assembly shape adjustment at two joint portions J1 and J2 in the girder G3.

【図8】仮組立シミュレーション結果と実仮組立実測値
との支間長誤差の比較を示す線図であり、横軸は桁番
号、縦軸は誤差(mm)を表わす。
FIG. 8 is a diagram showing a comparison of a span length error between the temporary assembly simulation result and the actual temporary assembly actual measurement value, wherein the horizontal axis represents the digit number and the vertical axis represents the error (mm).

【図9】各桁の仮組立シミュレーション結果と実仮組立
実測値とのキャンバー誤差の比較を示す線図であり、横
軸は計測位置、縦軸は誤差(mm)を表わす。
FIG. 9 is a diagram showing a comparison of the camber error between the tentative assembly simulation result of each digit and the actual tentative assembly actual measurement value. The horizontal axis represents the measurement position, and the vertical axis represents the error (mm).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 工藤 裕 香川県仲多度郡多度津町西港町17番地 川 田工業株式会社四国工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Kudo 17 Nishiminato-cho, Tadotsu-cho, Tadotsu-gun, Nakatado-gun, Kagawa Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼橋を構成するための主桁、横桁及び対
傾構等の主要構成部材並びに架設現場での各主要構成部
材の接合に供される添設板及び下横溝部材等の組立部材
を工場製作する方法であって、部材設計データに基づい
て誤差許容値内の加工精度で複数の現場継手部ボルト孔
を有する各主要構成部材を製作する工程と、製作された
各主要構成部材の各部の位置寸法を計測する工程と、計
測によって得られた計測データを用いて各主要構成部材
の設計データを目標とする仮組立シミュレーションをコ
ンピュータ上で実行し、所定の仮組立精度を満たす適正
組立形状を得るに必要な各部の位置及び形状修正加工の
ための調整量を求める工程と、求められた調整量に応じ
て適正組立形状を与えるための各組立部材の加工情報を
算出する工程と、算出された加工情報にしたがって各組
立部材に孔明け等の後加工を施す工程とを備えたことを
特徴とする鋼橋部材製作方法。
1. Assembly of main structural members such as a main girder, a cross girder, and an inclined structure for forming a steel bridge, and an additional plate and a lower horizontal groove member used for joining each main structural member at an erection site. A method of manufacturing a member at a factory, comprising: a step of manufacturing each main component having a plurality of on-site joint bolt holes with a processing accuracy within an error tolerance based on member design data; and a process of manufacturing each main component. The step of measuring the positional dimensions of each part and the provisional assembly simulation which targets the design data of each main component using the measurement data obtained by the measurement are executed on the computer, and the predetermined temporary assembly accuracy is satisfied. A step of calculating an adjustment amount for the position and shape correction processing of each part necessary to obtain an assembly shape; and a step of calculating processing information of each assembly member to give an appropriate assembly shape according to the obtained adjustment amount. , Arithmetic Subjecting each assembly member to post-processing such as drilling in accordance with the processing information output.
【請求項2】 各主要構成部材を製作する工程において
個々の主要構成部材の部分的な位置寸法を計測し、設計
値との比較判定結果に基づいて矯正仕上げを行うことを
特徴とする請求項1に記載の鋼橋部材製作方法。
2. The method according to claim 1, wherein in the step of manufacturing each main component, a partial positional dimension of each main component is measured, and a corrective finish is performed based on a result of comparison with a design value. 2. The method for manufacturing a steel bridge member according to 1.
JP8248507A 1996-09-02 1996-09-02 Steel member manufacturing method Pending JPH1077609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8248507A JPH1077609A (en) 1996-09-02 1996-09-02 Steel member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8248507A JPH1077609A (en) 1996-09-02 1996-09-02 Steel member manufacturing method

Publications (1)

Publication Number Publication Date
JPH1077609A true JPH1077609A (en) 1998-03-24

Family

ID=17179218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8248507A Pending JPH1077609A (en) 1996-09-02 1996-09-02 Steel member manufacturing method

Country Status (1)

Country Link
JP (1) JPH1077609A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594970B1 (en) 2005-08-29 2006-07-13 (주)이지로보틱스 Method for simulating provisional construction of steel structure
JP2007262730A (en) * 2006-03-28 2007-10-11 Kawada Industries Inc Girder manufacturing method, girder manufactured by the manufacturing method, and structure including the girder manufactured by the manufacturing method
JP2008106541A (en) * 2006-10-26 2008-05-08 Ihi Corp Method of evaluating shape of assembly member, and method of evaluating shape of assembly member after assembly
JP2008297837A (en) * 2007-06-01 2008-12-11 Nippon Sharyo Seizo Kaisha Ltd Design full size connection program
JP2010521362A (en) * 2007-03-14 2010-06-24 ザ・ボーイング・カンパニー Joining the body parts without using shims
JP2011500444A (en) * 2007-10-23 2011-01-06 エアバス オペレーションズ リミティド Wing structure and method for manufacturing rib of wing structure
CN102587289A (en) * 2012-03-31 2012-07-18 中铁宝桥(扬州)有限公司 Automatic control pre-assembly device and method for steel box girders
WO2016068235A1 (en) * 2014-10-29 2016-05-06 川崎重工業株式会社 Parts processsing assistance system and method
JP2016137839A (en) * 2015-01-28 2016-08-04 三菱重工業株式会社 Aircraft component positioning device, aircraft assembly system and aircraft assembly method
WO2018189870A1 (en) * 2017-04-13 2018-10-18 株式会社ニコン Information processing device, program, and work process generation device
JP2019125187A (en) * 2018-01-17 2019-07-25 株式会社東芝 Method for manufacturing gas-insulated switchgear, method for installing gas-insulated switchgear, support device for installing gas-insulated switchgear, and method for supporting installation of gas-insulated switchgear
WO2020250779A1 (en) * 2019-06-12 2020-12-17 三菱電機株式会社 Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program
JP2021095817A (en) * 2019-12-19 2021-06-24 鹿島建設株式会社 Prediction method for shapes of structures using precast members
CN113109191A (en) * 2021-03-26 2021-07-13 陕西飞机工业有限责任公司 2A50 and 2A14 alloy joint surface and R region strengthening method
JP2021130913A (en) * 2020-02-18 2021-09-09 株式会社釧路製作所 Full-scale work support program

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594970B1 (en) 2005-08-29 2006-07-13 (주)이지로보틱스 Method for simulating provisional construction of steel structure
JP2007262730A (en) * 2006-03-28 2007-10-11 Kawada Industries Inc Girder manufacturing method, girder manufactured by the manufacturing method, and structure including the girder manufactured by the manufacturing method
JP2008106541A (en) * 2006-10-26 2008-05-08 Ihi Corp Method of evaluating shape of assembly member, and method of evaluating shape of assembly member after assembly
JP2010521362A (en) * 2007-03-14 2010-06-24 ザ・ボーイング・カンパニー Joining the body parts without using shims
JP2008297837A (en) * 2007-06-01 2008-12-11 Nippon Sharyo Seizo Kaisha Ltd Design full size connection program
JP4531791B2 (en) * 2007-06-01 2010-08-25 日本車輌製造株式会社 Design size connection program
JP2011500444A (en) * 2007-10-23 2011-01-06 エアバス オペレーションズ リミティド Wing structure and method for manufacturing rib of wing structure
CN102587289A (en) * 2012-03-31 2012-07-18 中铁宝桥(扬州)有限公司 Automatic control pre-assembly device and method for steel box girders
JPWO2016068235A1 (en) * 2014-10-29 2017-10-19 川崎重工業株式会社 Parts processing support system and method
WO2016068235A1 (en) * 2014-10-29 2016-05-06 川崎重工業株式会社 Parts processsing assistance system and method
JP2016137839A (en) * 2015-01-28 2016-08-04 三菱重工業株式会社 Aircraft component positioning device, aircraft assembly system and aircraft assembly method
WO2018189870A1 (en) * 2017-04-13 2018-10-18 株式会社ニコン Information processing device, program, and work process generation device
JPWO2018189870A1 (en) * 2017-04-13 2020-02-27 株式会社ニコン Information processing device, program, work process generation device, and method of creating finished product
JP2019125187A (en) * 2018-01-17 2019-07-25 株式会社東芝 Method for manufacturing gas-insulated switchgear, method for installing gas-insulated switchgear, support device for installing gas-insulated switchgear, and method for supporting installation of gas-insulated switchgear
WO2020250779A1 (en) * 2019-06-12 2020-12-17 三菱電機株式会社 Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program
JPWO2020250779A1 (en) * 2019-06-12 2021-11-25 三菱電機株式会社 Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program and machine tool assembly method
CN113950650A (en) * 2019-06-12 2022-01-18 三菱电机株式会社 Adjustment amount estimation device, adjustment amount estimation method, and adjustment amount estimation program
JP2021095817A (en) * 2019-12-19 2021-06-24 鹿島建設株式会社 Prediction method for shapes of structures using precast members
JP2021130913A (en) * 2020-02-18 2021-09-09 株式会社釧路製作所 Full-scale work support program
CN113109191A (en) * 2021-03-26 2021-07-13 陕西飞机工业有限责任公司 2A50 and 2A14 alloy joint surface and R region strengthening method

Similar Documents

Publication Publication Date Title
CN109184213B (en) Steel truss construction process based on BIM lofting and three-dimensional scanning
CN108049302B (en) A kind of manufacturing method of full welding steel case and full bolt truss combined bridge lower edge steel box-girder
JPH1077609A (en) Steel member manufacturing method
CN108914782A (en) A kind of large size open web type highway steel box girder stayed-cable bridge manufacturing method
JP4234792B2 (en) Aircraft wing components, spar and methods for assembling them
Maropoulos et al. A new paradigm in large-scale assembly—research priorities in measurement assisted assembly
US7756321B2 (en) Method for fitting part assemblies
CN111776164B (en) High-precision rapid positioning method for side outer plate body
DE10136691A1 (en) Method for compensating a position of a robot using a laser measuring instrument
CN107009097A (en) The preparation method of large-scale bending steel stair
CN109469333A (en) The oblique davit accurate positioning method of the more bracket complex nodes of multi-angle
US6661930B1 (en) Method for nesting a computer model of a part with a computer model of a fixture
CN104594508A (en) Multidimensional space steel structure installation joint positioning construction method
CN112129221A (en) Prefabricated measuring method for segmented folding pipe
CN116446293A (en) Construction method of concrete beam cable guide pipe of cable-stayed bridge
Yuzaki et al. An approach to a new ship production system based on advanced accuracy control
JP2002092047A (en) System for manufacturing steel structure constituting member and virtual assembly simulation device for the same system
CN115821753A (en) Precision positioning method for main tower cable guide pipe of cable-stayed bridge
JPH08142034A (en) Automatic control device of form for short line match casting
CN115203776A (en) Hyperbolic net rack crown ball cutting space positioning and mounting method based on BIM
JP2007177541A (en) Structure in-situ installation system
RU2555263C1 (en) Method of riveting of curvilinear panels at drilling-riveting machine
JP2021116684A (en) Material arrangement system and complete body assembly method
CN111026030A (en) Hole position double correction method for numerical control machine tool
JPH10293776A (en) Piping temporary set simulation device and piping manufacture method