WO2020250779A1 - Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program - Google Patents

Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program Download PDF

Info

Publication number
WO2020250779A1
WO2020250779A1 PCT/JP2020/021975 JP2020021975W WO2020250779A1 WO 2020250779 A1 WO2020250779 A1 WO 2020250779A1 JP 2020021975 W JP2020021975 W JP 2020021975W WO 2020250779 A1 WO2020250779 A1 WO 2020250779A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment amount
coordinates
adjustment
unit
machine
Prior art date
Application number
PCT/JP2020/021975
Other languages
French (fr)
Japanese (ja)
Inventor
翼 菅野
直也 寺澤
文彦 浅見
隆史 稲垣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021526040A priority Critical patent/JP7158582B2/en
Priority to CN202080042002.0A priority patent/CN113950650A/en
Publication of WO2020250779A1 publication Critical patent/WO2020250779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/64Movable or adjustable work or tool supports characterised by the purpose of the movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32026Order code follows article through all operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35408Calculate new position data from actual data to compensate for contour error

Definitions

  • the present disclosure relates to an adjustment amount estimation device, an adjustment amount estimation method, and an adjustment amount estimation program.
  • Patent Document 1 describes a machine tool adjustment system that calculates a correction value for inclination of a guide surface. This machine tool adjustment system measures the displacement of a moving body moving on a guide surface, and calculates the amount of inclination adjustment based on the measured displacement.
  • Patent Document 2 discloses a method of calculating the adjustment amount based on the reference coordinates of the tool and the geometric error.
  • Patent Documents 1 and 2 are techniques for actually measuring the inclination of the surface of the machine tool to obtain a correction value, they cannot be used at the manufacturing stage of the machine tool in which the assembled machine tool does not exist. Similar problems exist for any surface other than the guide surface. Further, the same problem exists not only at the manufacturing stage but also when the machine tool is disassembled and reassembled for maintenance or the like. Such a problem is not limited to machine tools, but generally occurs when a plurality of parts are assembled to manufacture a machine. Furthermore, the same problem occurs not only for the inclination of the surface but also for any geometric error.
  • the present disclosure has been made in view of the above circumstances, and is an adjustment amount estimation device capable of estimating an adjustment amount for suppressing a geometrical error at an arbitrary part of the machine to be less than a geometrical tolerance before assembling the machine. , It is an object of the present invention to provide an adjustment amount estimation method and an adjustment amount estimation program.
  • the adjustment amount estimation device of the present disclosure includes a coordinate measuring unit that measures the coordinates of a point on a surface included in a component of a machine, and the shape of the surface based on the measured coordinates. It is provided with a geometric error calculation unit for calculating a geometric error which is an error from a reference value of a geometric characteristic of a posture or a position. Further, the geometric error calculation unit of the adjustment amount estimation device of the present disclosure includes a surface included in the component after the machine is assembled, based on the geometric error before the assembly of the machine and before the assembly of the component. The displacement from the reference position of is predicted and calculated, and the adjustment amount of the adjustment member that changes the geometrical characteristics of the surface is calculated from this displacement to estimate the adjustment amount.
  • the adjustment amount is estimated by calculating the adjustment amount based on the geometric error of the component of the machine. Therefore, the geometric error of any part of the machine is performed before the assembly of the machine. The amount of adjustment to keep the amount below the geometrical tolerance can be estimated.
  • a block diagram showing the configuration of the adjustment amount estimation device according to the first embodiment of the present disclosure The figure which shows an example of the hardware configuration which concretely realizes the adjustment amount estimation device of FIG. Explanatory drawing of the appearance of the machine tool to be adjusted using the adjustment amount estimation device of FIG.
  • Explanatory drawing which shows an example of the spacer used for changing the height of the connection point of FIG. 4, which has the thickness of the minimum unit.
  • Explanatory drawing which shows an example of one spacer which is used for changing the height of the connection point of FIG. 4, and has a thickness 4 times the smallest unit.
  • Flow chart of adjustment amount estimation process and work using the adjustment amount estimation device of FIG. Flow chart of calculation of geometric error correction term using the adjustment amount estimation device of FIG.
  • the figure which shows the structure of the data stored in the measurement position master storage part The figure which shows the structure of the data stored in the 3D measurement result storage part
  • the figure which shows the structure of the data stored in the adjustment amount storage part The figure which shows the structure of the data which is stored in the measurement result storage part after adjustment.
  • the figure which shows the structure of the data stored in the correction term storage part Flow chart of adjustment amount estimation processing and work using the adjustment amount estimation device according to the third embodiment of the present disclosure.
  • the adjustment amount estimation device 100 is a device that estimates the adjustment amount of the height of the support member of the machine tool P based on the geometrical error of the components constituting the machine tool P.
  • the support material of the machine tool P supports the surface in order to bring the inclination of each surface including the guide surface of the machine tool P after assembling the components and the upper surface of the table on which the workpiece is mounted close to the target value. It is a member located at a plurality of points.
  • the machine tool P includes, but is not limited to, for example, a lathe, a milling machine, an electric discharge machine, a laser machine, and the like. As shown in FIG.
  • the adjustment amount estimation device 100 includes a data storage unit 20 that stores various data described later, a calculation unit 40 that performs various calculations, and a communication unit 70 that exchanges information with an external device. Be prepared. Further, the data storage unit 20, the data acquisition unit 41, and the calculation unit 40 can communicate with each other with an external device including the worker terminal 60 via the communication unit 70. Further, as shown in FIG. 1, a three-dimensional measuring device M for measuring the three-dimensional shape of the object to be measured including the machine tool P is connected to the adjustment amount estimation device 100. The adjustment amount estimation device 100 communicates with the coordinate measuring device M via the communication unit 70.
  • the data storage unit 20 includes a measurement position master storage unit 21 for storing the measurement position master information illustrated in FIG. 16, a three-dimensional measurement result storage unit 22 for storing the three-dimensional measurement result information exemplified in FIG.
  • the adjusted amount storage unit 23 for storing the height adjustment amount information exemplified in FIG. 18, the adjusted measurement result storage unit 24 for storing the adjusted measurement result information exemplified in FIG. 19, and FIG. 20 are exemplified.
  • the correction term storage unit 25 for storing the correction term information is provided.
  • the measurement position master storage unit 21 includes the types of parts constituting the machine tool P, in other words, the identification information of parts such as part names, part numbers, specifications, and the types of measurement points including information on the dimensions or accuracy of measurement points.
  • the measurement position master including the measurement point identification information, the position or coordinate range of the measurement point on the data which is the preset measurement point position, the design coordinate value of the measurement point of the machine tool P, and the like. Memorize information.
  • the dimension of the measurement point is, for example, "2" in the case of two dimensions and "3" in the case of three dimensions, but is not limited to this.
  • the measurement position master information is stored in the measurement position master storage unit 21 in advance by the user of the adjustment amount estimation device 100. Further, the measurement position master information is an example of the measurement position information in the claim.
  • the three-dimensional measurement result storage unit 22 includes a measurement order of coordinates by the three-dimensional measuring device M, a measurement ID (identification, identification code) for identifying the measurement time, and three-dimensional coordinates of points measured by the three-dimensional measurement. Store the original measurement result information.
  • the three-dimensional measurement result storage unit 22 is an example of the coordinate storage unit in the claim.
  • the adjustment amount storage unit 23 stores the adjustment amount information of the height for adjusting the inclination of the guide surface of the machine tool.
  • the adjusted measurement result storage unit 24 stores the adjusted measurement result information including the three-dimensional coordinates of the points measured by the three-dimensional measurement after the adjustment.
  • the correction term storage unit 25 stores the correction term information which is the difference between the estimated value of the height of the guide surface calculated in the past and the actual value.
  • the calculation unit 40 performs various calculations for estimating the adjustment amount.
  • the calculation unit 40 includes a data acquisition unit 41 that acquires various data, a data conversion unit 42 that converts data by associating information including coordinates with each other, and a geometric error calculation unit 43 that calculates a geometric error.
  • An adjustment amount calculation unit 44 that calculates an adjustment amount of a component, an adjustment amount instruction unit 45 that instructs an adjustment amount, and a measurement result collection unit 46 that collects three-dimensional measurement result information are provided.
  • the data acquisition unit 41 acquires various data necessary for calculation from the data storage unit 20.
  • the data acquisition unit 41 is an example of the coordinate measurement unit, the coordinate acquisition unit, the pre-adjustment measurement result acquisition unit, or the post-adjustment measurement result acquisition unit in the claim.
  • the data conversion unit 42 associates the information of the measurement point stored in the measurement position master storage unit 21 with the acquired coordinates.
  • the data conversion unit 42 is an example of the coordinate data conversion unit in the claim.
  • the geometric error calculation unit 43 calculates the geometric error of the entire machine tool P after assembly based on the geometric error of each part.
  • the adjustment amount calculation unit 44 calculates the adjustment amount of each part from the geometric error of the entire machine tool P after assembly.
  • the adjustment amount indicating unit 45 instructs the adjustment amount by outputting the calculated adjustment amount to the display unit 61.
  • the measurement result collection unit 46 collects the three-dimensional measurement result information of the assembled parts.
  • the worker terminal 60 includes a display unit 61 such as a liquid crystal display and an organic EL (Electro-Luminescence) display for displaying various information, an input unit 62 such as a mouse, a keyboard, and a touch panel for inputting information by an operator's operation. To be equipped.
  • the display unit 61 is an example of the adjustment amount output unit according to the claim.
  • the coordinate measuring device M is a device that measures the geometric characteristics of the object to be measured by acquiring the coordinates of each part of the object to be measured. This geometric property contains data on parallelism, straightness, squareness, and so on.
  • the communication unit 70 exchanges information with an external device connected to the adjustment amount estimation device 100 such as the worker terminal 60 and the coordinate measuring device M.
  • FIG. 2 is a diagram showing an example of a hardware configuration that specifically realizes the adjustment amount estimation device 100 shown in FIG.
  • the information arithmetic unit 10 is, for example, a general-purpose computer.
  • the information arithmetic unit 10 includes a processor 101, a communication unit 102, a main storage unit 103 that temporarily stores information, an auxiliary storage unit 104 that permanently stores information, and information calculation.
  • An internal bus 105 for exchanging data inside the device 10 is provided.
  • the processor 101 is, for example, a CPU (Central Processing Unit) and performs various logical operation processes.
  • the communication unit 102 is an interface for communicating with another device.
  • the main storage unit 103 includes, for example, a DRAM (Dynamic Random Access Memory) and a SRAM (Static Random Access Memory), and the auxiliary storage unit 104 includes, for example, a hard disk drive (HDD) and a solid state drive (SSD).
  • the data storage unit 20 of the adjustment amount estimation device 100 is realized by the main storage unit 103 or the auxiliary storage unit 104 of the information calculation device 10.
  • the arithmetic unit 40 is realized by the processor 101 executing a program stored in the main storage unit 103 or the auxiliary storage unit 104.
  • the communication unit 70 is realized by the communication unit 102. Communication between the data storage unit 20, the data acquisition unit 41, and the calculation unit 40 is realized by an internal bus 105 that connects them.
  • the plurality of support members C that support the table P12, the column P13, and the like of the machine tool P are not shown in FIG. 3 for easy understanding.
  • the support member C is provided in a slider mechanism arranged between the upper surface of the bed P11 and the table P12 and between the bed P11 and the column P13, and the table P12 and the column P13 are connected to the plurality of connection points P21. It is supported in ⁇ P28.
  • These support members C are, for example, spacers, washers, etc. whose length, height, thickness, etc. can be adjusted in minute units.
  • the support material C is an example of the adjusting member according to the claim.
  • the adjusting member may be a precision screw type adjusting mechanism.
  • the machine tool P includes a bed P11 having a guide surface Sx in the x direction and a guide surface Sy in the y direction, a table P12 movable on the bed P11, a column P13 having a guide surface Sz in the z direction, and a column P13 in the z direction. It includes a movable z-axis base P14 and a head P15 fixed to the tip of the z-axis base P14.
  • the table P12 is provided on the guide surface Sx of the bed P11 and is a table that can move on the bed P11 in the x direction.
  • the column P13 is provided on the guide surface Sy of the bed P11, can move on the bed P11 in the y direction, and has a guide surface Sz in the z direction on the side surface.
  • the z-axis base P14 is in contact with the guide surface Sz on the column P13.
  • the head P15 processes an workpiece.
  • the machining position using the machine tool P is determined by the table P12 in the x direction, the column P13 in the y direction, and the z-axis base P14 in the z direction. Therefore, the processing accuracy of the work piece is affected by the geometric error of the guide surfaces Sx and Sy of the bed P11 and the guide surface Sz of the column P13.
  • the operator adjusts the inclinations of the guide surfaces Sx and Sy of the bed P11 and the guide surfaces Sz of the column P13.
  • a method of horizontally adjusting the guide surface Sx which is the upper surface of the bed P11, will be described using the adjustment amount estimation device 100 with reference to FIGS. 3 and 4.
  • FIG. 4 shows an example of connection points P21 to P24 on the guide surface Sx of the bed P11 of the machine tool P shown in FIG. 3 and connection points P25 to P28 on the guide surface Sy of the bed P11. ..
  • the height of the connection points P25 to 28 in the z direction is the support member C arranged so as to be sandwiched between the bed P11 and the table P12 or between the bed P11 and the column P13 at these connection points P25 to 28. It can be adjusted according to the dimensions of.
  • the flat plate spacer R is used as an example of the support material C
  • the minimum unit in which the dimensions of the table P12 or the column P13 can be changed in the z direction will be described as L.
  • FIG. 5A is an explanatory view illustrating a spacer R having a thickness of L, which is the smallest unit.
  • FIG. 5B is an explanatory diagram illustrating one spacer R1 having a thickness of 4 L, which is four times the minimum unit L.
  • FIG. 5C is an explanatory diagram illustrating an example in which four spacers R having a thickness of the minimum unit L are stacked to form a spacer R2 having a thickness of 4 L as a whole.
  • the height of the connection points P21 to P28 in the z direction is L by using the support material C having a thickness that is an integral multiple of L, or by using a plurality of support materials C having a thickness of L. It can be changed one by one.
  • the inclination of the upper surface of the table P12 can be adjusted by individually changing the thickness of the support member C at the four connection points P21 to P24. Further, the inclination of the guide surface Sz of the column P13 can be adjusted by individually changing the thickness of the support member C at the four points of the connection points P25 to P28.
  • the work flow shown by the broken line on the left side of FIG. 6 is a flowchart of the machining work using the machine tool P
  • the processing flow shown by the broken line on the right side is the adjustment amount estimation process using the adjustment amount estimation device 100. It is a flowchart of.
  • the flow of the corresponding information is indicated by a left-pointing or right-pointing arrow.
  • the worker performs machining of the guide surface of the bed P11 and the guide surface of the column P13 in order to smooth the movement of the table P12 with respect to the bed P11 and the movement of the column P13 with respect to the bed P11.
  • the operator also performs machining on the upper surface of the table P12 in order to process the workpiece on a flat surface (step S11).
  • These machining are, for example, grinding.
  • Step S12 the operator measures the coordinates of a plurality of points on the surfaces of the machined bed P11, the table P12, and the column P13 by using the coordinate measuring device M in order to confirm the result of the machining.
  • step S12 the three-dimensional measurement
  • Step S12 is an example of the coordinate measurement step, the coordinate acquisition step, or the pre-adjustment measurement result acquisition step in the claim.
  • the measurement result collecting unit 46 transmits the three-dimensional measurement result data, which is the result of the measurement in step S12 performed by the operator, from the coordinate measuring device M via the communication unit 70 for the subsequent processing. Collect (step S21). Further, the measurement result collecting unit 46 stores and stores the collected data in the three-dimensional measurement result storage unit 22.
  • the geometric error calculation unit 43 After the measurement result collection unit 46 completes the collection of the three-dimensional measurement results for all of the bed P11, the table P12 and the column P13, the geometric error calculation unit 43 after assembling the table P12, the bed P11 and the column P13.
  • the calculation for predicting the geometrical error of is performed (step S22).
  • the geometric error calculated here is, for example, the deviation of the postures of the guide surface of the bed P11, the guide surface of the column P13, and the upper surface of the table P12, that is, the inclination calculated as an angle.
  • the three-dimensional measurement result data measured by the coordinate measuring device M does not include the inclination of these surfaces.
  • the geometric error calculation unit 43 calculates the angle by calculating the ratio of the difference in the z-coordinate to the difference in the x-coordinate and the y-coordinate between the plurality of points included in the three-dimensional measurement result data, for example. calculate. Then, based on the geometric error calculated here, the displacement of the component after assembly from each reference position is predicted and calculated. Step S22 is an example of the displacement calculation step or the geometric error calculation step in the claim.
  • the adjustment amount indicating unit 45 instructs the operator to adjust the height of the connection points P21 to P28.
  • the adjustment amount is instructed, for example, by the adjustment amount estimation device 100 issuing a command to the worker terminal 60 and displaying the adjustment amount data on the display unit 61.
  • This instruction is given by numerically indicating the difference in height from the current value for each connection point. For example, in the case of an instruction of the adjustment amount regarding the table P12, the adjustment amount estimation device 100 displays "P21: 0.0 mm, P22: +0.1 mm, P23: +0.1 mm, P24: +0.2 mm" on the display unit 61. Display it.
  • Step S23 is an example of the adjustment amount output step in the claim.
  • the worker performs the adjustment work according to the instruction in step S23, that is, based on the adjustment amount data displayed on the display unit 61 of the worker terminal 60 ( Step S13).
  • the operator reads the display of the display unit 61 described above, leaves the height of the connection point P21 as the reference value L, sets P22 and P23 to L + 0.1 mm, and sets P24 to L + 0.2 mm in step S14 described later. Assemble.
  • the operator carries out the assembly work of each part after the completion of the three-dimensional measurement (step S12) before assembly (step S14), and then the geometry of the connection points P21 to 28 for the machine tool P after assembly.
  • the measurement of the scientific error is carried out (step S15).
  • the measurement result collection unit 46 collects the geometric error measurement result data acquired as a result of the measurement in step S15 (step S24). Specifically, the measurement result collecting unit 46 has three dimensions of the guide surface of the bed P11, the guide surface of the column P13, and the upper surface of the table P12 after changing the thickness of the support material C of the connection points P21 to P28 from L. Collect coordinates. As a result, the processing of the adjustment amount estimation device 100 is completed.
  • the measurement result collecting unit 46 stores and stores the collected geometric error measurement result data in the adjusted measurement result storage unit 24.
  • the correction term stored in the correction term storage unit 25 can be corrected by the geometric error measurement result data stored in the adjusted measurement result storage unit 24.
  • the calculation unit 40 determines whether or not the measured geometric error is within the specified range (step S16). If the measured geometric error is within the specified range (step S16: YES), the operator finishes all the work and completes the adjustment (step S17). If it is not within the specified range (step S16: NO), the adjustment according to the adjustment amount instructed by the adjustment amount indicator 45 has not been performed. Therefore, the process returns to the adjustment work (step S13) and the operator adjusts. The adjustment work with the adjustment amount instructed by the amount indicating unit 45 is performed again. In addition, the number of times of returning from step S16 to step S13 may be limited in consideration of the case where the measured geometric error does not fall within the specified range even if the adjustment is made according to the instructed adjustment amount.
  • the corrected correction term is used from the next time onward, so that the adjustment is made according to the instructed adjustment amount. If so, the geometrical error will be within the specified range.
  • the adjustment amount estimation device 100 by executing steps S11 to S12 in order, the operator can obtain the adjustment amount before the assembly work (step S14) (step S13). , S23).
  • the required adjustment amount is not known in advance by the conventional method, after assembling once, the position of the head P15 on the table P12 of the machine tool P is fixed, and only the table P12 is translated on the guide surface. , The amount of change in the perpendicular direction must be measured and the height of the connection points P21 to P24 must be adjusted.
  • FIG. 7 is a detailed flowchart of the three-dimensional measurement result collection step (step S21) of FIG.
  • the data acquisition unit 41 includes a set of coordinates that are measurement result information acquired by the three-dimensional measurement (step S12), coordinates of measurement points measured by the coordinate data measurement function of the machine tool, and measurement input by the operator. Acquire the resulting coordinates and the like (step S31).
  • the data conversion unit 42 acquires the coordinates of the measurement points via the data acquisition unit 41, and also refers to the measurement position master storage unit 21, and the information of the measurement points stored in the measurement position master storage unit 21. And the acquired coordinates are linked.
  • the information stored in the measurement position master storage unit 21 is not limited to the above-mentioned examples, that is, the type of parts, the type of measurement points, the position of measurement points on data, the coordinate values in design, and the like.
  • Measurement position master information Any format may be used as long as the measured coordinate data can be distinguished from the coordinate data of which point to be measured and can be linked with the acquired coordinate information.
  • Step S32 is an example of the coordinate data conversion step in the claim.
  • step S32 when using only the general CMM, if the data format output for each part, the reference point for measurement, or the surface is different, only manual measurement can be performed by the operator, and the coordinate values in only one direction. That is, data about parts, data formats, measurement reference points, reference positions or reference planes may only be available for unknown information. However, even in such a case, according to the adjustment amount estimation device 100, by performing the data conversion process (step S32), the information including the data format, the measurement reference point, and the reference plane data can be obtained. Can be stored.
  • FIG. 8 is a detailed flowchart of the geometric error calculation step (step S22) after assembly.
  • the geometric error calculation unit 43 acquires the correction term, which is a parameter stored in advance in the correction term storage unit 25, and accumulates the correction term from the three-dimensional measurement result storage unit 22 by collecting the three-dimensional measurement results (step S21). Acquire the three-dimensional measurement information of each part of the machine tool P.
  • the geometric error calculation unit 43 uses the geometric error measurement result data accumulated in the adjusted measurement result storage unit 24 to perform the correction term. You may modify it. Then, the geometric error calculation unit 43 calculates the entire geometric error when these parts are assembled into the machine tool P from the geometric errors of the individual parts (step S71).
  • the geometry is geometric when the allowable value of the bed P11 is ⁇ 1 ° and the allowable value of the table P12 is ⁇ 2 °.
  • the target error calculation unit 43 simply adds the lower limit value and the upper limit value, respectively, and sets the geometric error of the assembled bed P11 and table P12 to ⁇ 3 °.
  • this is only an example of the calculation of the geometric error by the geometric error calculation unit 43.
  • the geometric error of the combination of all the parts is calculated in consideration of the type of parts, the combination method, the type of geometric error to be calculated, the direction, and the like.
  • the adjustment amount calculation unit 44 calculates the adjustment amount (step S72). Specifically, since the geometric error calculated in step S71 includes an upper limit value and a lower limit value, the adjustment amount calculation unit 44 calculates, for example, the average value of the upper limit value and the lower limit value. Then, when the average value is between the upper limit value and the lower limit value of the design value, the adjustment amount calculation unit 44 sets the average value and the upper limit value and the lower limit value of the design value. The difference between the average value and the average value is calculated to obtain the adjustment amount. If this average value does not fall between the upper and lower limits of the design value, the difference between this average value and the upper or lower limit of the design value, whichever is closer to the average value.
  • the adjustment amount calculation unit 44 calculates the difference between the average value of the upper limit value and the lower limit value of the geometric error and the average value of the upper limit value and the lower limit value of the design value in all cases. It may be adjusted as an amount. Further, the adjustment amount calculation unit 44 stores the calculated adjustment amount information in the adjustment amount storage unit 23. Step S72 is an example of the adjustment amount calculation step in the claim.
  • FIG. 9 is a more detailed flowchart in which the steps of FIG. 8 are subdivided. Steps S81 to S84 are included in step S71, and steps S85 to S87 are included in step S72.
  • the geometric error calculation unit 43 acquires the three-dimensional information of each part necessary for the calculation of the geometric error after assembly (step S81). Subsequently, the geometric error calculation unit 43 unifies the xyz direction and the reference datum plane of the three-dimensional information of each component, and executes the three-dimensional information of the component, that is, the conversion of the coordinates (step S82).
  • the geometric error calculation unit 43 calculates the amount of change in the coordinates between the measurement points before and after assembly by using the three-dimensional coordinates of each part converted in the step of converting the three-dimensional coordinates (step S82). (Step S83).
  • the geometric error calculation unit 43 applies the correction value stored in the correction term storage unit 25 to the change amount obtained by calculating the change amount of the coordinates of each measurement point (step S83), and applies the correction value stored in the correction term storage unit 25 to step S83.
  • the coordinates of each measurement point calculated in step 1 are corrected (step S84).
  • step S85 The estimated value of the adjusted amount obtained in step S85 and the estimated value of the measured value of the measured point after assembly at that time are stored in the adjusted amount storage unit 23 (step S86). It is determined whether or not the calculation of the change amount and the necessary adjustment amount between the measurement points in all the directions to be predicted including x, y and z is completed (step S87), and if it is completed (step S87). : YES), the process is completed, and if it is not completed (step S87: NO), the process returns to the conversion of the three-dimensional information (step S82), and the calculation in another direction is performed.
  • FIG. Figure 10 shows an example of the arrangement of the measurement points a 0 ⁇ by the three-dimensional measuring device M on the table P12 after assembly work a n, b 0 ⁇ b n , c 0 ⁇ c n, d 0 ⁇ d n It is a figure.
  • an example of a calculation procedure will be described in a case where the amount of change in z before and after assembly is estimated in advance and the amount of adjustment of the height of the connection point with the guide surface of the table P12 and the column P13 is estimated in advance. To do.
  • the y-coordinates of the measurement points c 0 to c n and d 0 to d n arranged along the y direction are obtained by the connection points P25 to P28 between the guide surface in the y direction of the bed P11 and the column P13. ..
  • the deviation of the points d n in the z direction can be calculated by the same method as the calculation at the point b n .
  • the adjustment amount calculation unit 44 corrects the calculation of the coordinates of each measurement point (step S83) (step S84). As described above, the correction is performed by adding the correction amount to the calculated deviation in the z direction at each measurement point.
  • FIG. 11 is a diagram showing changes in the coordinates of each point when the height of the connection point with the guide surface is adjusted.
  • the broken line rectangle is a view of the connection point of the bed P11 and its upper surface in the y-axis direction before tilting
  • the solid line rectangle is a view of the connection point of the bed P11 and its upper surface in the y-axis direction after tilting by an angle ⁇ . It is a figure seen in. As shown in FIG.
  • connection point s 1 On the connection point s 1, around the connection point s 1, consider the case where lifting the x-direction of one side of the bed P11 in the z-direction upward. At this time, the coordinates of the connection point s 1 do not change before and after tilting the bed P11, and the connection point s 2 is moved by t to be located at s ' 2 . Since the triangle is an isosceles triangle that these three connection points s 1, s 2 and s' 2 and vertex connection points x_s 2 the x-coordinate of x_s 1, s 2 and x-coordinate of s 1, a When the n x coordinate of the x_a n, the inclination angle theta, the following relationship holds from the law of cosines.
  • step S85 in order to make the estimated value of the adjustment amount less than the specified value, the adjustment amount of the connection points P21 to P24 is comprehensively changed under the following objective functions and constraints to be optimal. Perform a multipoint search to find the value.
  • ⁇ zmax_a, ⁇ zmax_b, ⁇ zmax_c, ⁇ zmax_d is the maximum value of the absolute values of, a n, b n, c n, the z direction in the d n deviation, t 1, t 2, t 3, t 4 Is the adjustment amount of the connection point between the table and the guide surface in the x-axis direction of the bed.
  • T 1 to t 4 obtained by the above processing are used as estimated values of the adjustment amount, and these values are stored in the adjustment amount storage unit 23 (step S86).
  • step S87: YES If it is determined that all the processes have been completed (step S87: YES), the calculation is completed, otherwise (step S87: NO), the process returns to the conversion of three-dimensional information (step S82).
  • FIG. 12 is a detailed flowchart of the adjustment amount instruction (step S23) and the measurement result collection (step S24) shown in FIG.
  • the data acquisition unit 41 is calculated by the calculation of the geometric error after assembly (step S22) and is held in the adjustment amount storage unit 23 after the assembly work of the product to be executed in the assembly work (step S14).
  • the coordinate data of each connection point is acquired (step S91).
  • the adjustment amount indicating unit 45 acquires the information of the estimated value of the adjustment amount of each connection point after the assembly work via the data acquisition unit 41, transmits the instruction information to the worker terminal 60, and displays it on the display unit 61. By doing so, the operator is instructed on the adjustment amount (step S92). The operator performs the adjustment work of the table P12 with the estimated value of the adjustment amount of each connection point displayed on the display unit 61. After performing the adjustment work (step S13), the assembly work (step S14), and the measurement of the geometric error (step S15) shown in FIG. 6, the worker operates the input unit 62 of the worker terminal 60. , Enter the adjustment amount and measurement result after assembly. The measurement result collection unit 46 collects the adjusted measurement result information (step S93). Further, the measurement result collecting unit 46 stores the collected information in the adjusted measurement result storage unit 24.
  • the machine tool for which the inclination of the table P12 has been adjusted as described above is not limited to the machine tool P, but is another type of machine tool having two or more translational axes orthogonal to each other and positioning the tool. There may be. It may also be another type of machine, device, instrument, device or the like that requires precise adjustment of surface tilt.
  • the device for measuring the three-dimensional shape of the object to be measured is not limited to the coordinate measuring device M. For example, it may be an on-machine measurement unit attached to a machine tool. Further, the three-dimensional shape of the object to be measured may be calculated from the information obtained by the operator operating the dial gauge.
  • the adjustment amount estimation device 100 In the adjustment amount estimation device 100 according to the first embodiment, as a result of making adjustments using the estimated adjustment amount, thermal deformation of each part, elastic deformation due to its own weight, etc., and parts not measured three-dimensionally Even if an error occurs due to the influence of a geometric error or the like, the process ends when the adjustment is completed. Then, the adjusted measurement result is stored in the adjusted measurement result storage unit 24, and can be used at the time of acquiring the correction term at the time of the next and subsequent adjustments. On the other hand, the adjustment amount estimation device 700 according to the second embodiment acquires the adjusted geometric error by the time the processing is completed, and analyzes this by machine learning as described later. Calculate the correction term and use it for the next and subsequent adjustments.
  • the adjustment is performed using only the adjustment amount estimation device 100 according to the first embodiment, it is not possible to calculate the error of the part that has not been measured in three dimensions and the surface that cannot be measured in three dimensions.
  • the influence of various parts and surfaces is large, for example, a change in the processing method of an outsourced part, a change in a component part, or the like may cause a large difference between the estimated adjustment amount and the actual adjustment amount. Even if this difference is constant after the next adjustment, it is necessary to consider the possibility that the difference that has occurred is a mistake in three-dimensional measurement or thermal deformation, so the correction amount is determined if a certain number of times is not continued. Can not do it.
  • the adjustment amount estimation device 700 By calculating the correction term using machine learning with the adjustment amount estimation device 700, the difference between the estimated adjustment amount and the actual adjustment amount at the time of the next adjustment can be reduced, and the heat of each component can be reduced.
  • the amount of adjustment can be estimated more quickly in response to errors caused by deformation, elastic deformation due to its own weight, geometrical errors of parts that have not been measured three-dimensionally, and the like. Hereinafter, only the portion different from the adjustment amount estimation device 100 will be described.
  • FIG. 13 is a block diagram showing the configuration of the adjustment amount estimation device 700.
  • the adjustment amount estimation device 700 includes a machine learning unit 50 including a neural network that outputs an adjustment amount.
  • the adjustment amount estimation device 700 measures the geometric error after the adjustment work (step S13) and the assembly work (step S14) even after the worker's work is completed (step S15). ) Is collected (step S124), and the geometric error correction term is calculated based on this data (step S125).
  • FIG. 15 is a flowchart showing the details of the calculation of the geometric error correction term (step S125) using the adjustment amount estimation device 700.
  • the data acquisition unit 41 receives the three-dimensional measurement result A of the component from the three-dimensional measurement result storage unit 22, the adjustment amount storage unit 23, and the adjusted measurement result storage unit 24, and the adjustment amount estimation device 700 from the three-dimensional measurement result A.
  • Each information of the geometric error B predicted and calculated in the above, the estimated adjustment amount C, the measurement result D of the geometric error after the actual assembly work is performed, and the adjustment amount E is acquired (step S1301). Since the geometric error B is calculated based on the three-dimensional measurement result A, it is not specified in FIG. Further, since the adjustment amount E may be calculated from the measurement result D of the geometric error, it is not specified in FIG. 15, but the measurement result collection unit 46 adjusts the adjustment amount E together with the measurement result D of the geometric error.
  • the measurement result D and the adjustment amount E may be obtained from the post-adjustment measurement result storage unit 24 by accumulating the measurement result storage unit 24.
  • Step S1301 is an example of the adjusted measurement result acquisition step in the claim.
  • the machine learning unit 50 uses the three-dimensional measurement result A, the geometric error B predicted and calculated, and the estimated adjustment amount C as input information for machine learning, and the measurement result of the geometric error after the actual assembly work is performed. Supervised learning is performed with D and the adjustment amount E after actually performing the assembly work as outputs (step S1302). Since the geometric error B and the adjustment amount C are calculated from the three-dimensional measurement result A as described above, the machine learning unit 50 may use only the three-dimensional measurement result A as input information for machine learning.
  • the value acquired by the machine learning unit 50 may be only the adjustment amount E, and there is no problem even if the measurement result D of the geometric error cannot be acquired. Therefore, the machine learning unit 50 uses only the adjustment amount E. Supervised learning may be performed as output information of machine learning.
  • the machine learning unit 50 receives each information via the data acquisition unit 41, and estimates the three-dimensional measurement result A', the predicted geometric error B', which is the result of the adjustment executed in advance.
  • the information of the adjustment amount C', the measurement result D'of the geometrical error after the actual assembly work, and the adjustment amount E'after the actual assembly work are summarized for each product and stored in the data storage unit. I remember it in 20.
  • the adjustment amount calculation unit 44 of the adjustment amount estimation device 700 inputs the three-dimensional measurement result A to the machine learning unit 50, and instructs the adjustment amount based on the information of the adjustment amount E acquired from the machine learning unit 50. .. Acquisition of the adjustment amount E using the machine learning unit 50 after learning is an example of the estimation step in the claim.
  • the adjustment amount estimation device 700 According to the adjustment amount estimation device 700, the error actually generated can be fed back and the estimation result can be corrected. Therefore, the accuracy of the adjustment amount estimation can be improved by repeatedly using the adjustment amount estimation device 700. it can.
  • the adjustment amount estimation devices 100 and 700 are adjustment amount estimation devices for machine tools, but the subject of the present disclosure is not limited to machine tools.
  • the configuration of the adjustment amount estimation device according to the third embodiment is the same as the adjustment amount estimation device 100 shown in FIG. 1 or the adjustment amount estimation device 700 shown in FIG. 13, but the geometric error is small. It is a device for a measuring device having a surface that is required to be used.
  • the process executed by the adjustment amount estimation device according to the present embodiment is the same as the process executed by the adjustment amount estimation device 100 or the adjustment amount estimation device 700, but as illustrated in the broken line on the left side of FIG. The difference is that the work performed by the operator is not the processing work but the assembly of the measuring device. Further, it is assumed that this measuring device is assembled only once, and another measuring device is not assembled later. Therefore, as shown in FIG. 21, the measurement result in step S15 is not collected by the adjustment amount estimation device.
  • the method described in the above embodiment can be applied to various devices by writing to a storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory as a program that can be executed by a computer. is there.
  • a computer that realizes the present disclosure reads a program stored in a storage medium, and the operation is controlled by the program to execute the above-described processing. It is also possible to apply the method described in the above embodiment by storing the program in a storage on the Internet and downloading the program.
  • 10 Information calculation device, 20 ... Data storage unit, 21 ... Measurement position master storage unit, 22 ... Three-dimensional measurement result storage unit, 23 ... Adjustment amount storage unit, 24 ... Adjusted measurement result storage unit, 25 ... Correction term storage Unit, 30 ... Data acquisition unit, 40 ... Calculation unit, 41 ... Data acquisition unit, 42 ... Data conversion unit, 43 ... Geometric error calculation unit, 44 ... Adjustment amount calculation unit, 45 ... Adjustment amount indication unit, 46 ... Measurement result collection unit, 50 ... Machine learning unit, 60 ... Worker terminal, 61 ... Display unit, 62 ... Input unit, 70 ... Communication unit, 100 ... Adjustment amount estimation device, 101 ... Processor, 102 ... Communication unit, 103 ...
  • Main memory 104 ... Auxiliary storage, 105 ... Internal bus, 700 ... Adjustment amount estimation device, C ... Support material, M ... Three-dimensional measuring instrument, P ... Machine, P11 ... Bed, P12 ... Table, P13 ... Column , P14 ... base, P15 ... head, P21 to P28 ... connection points, R, R1, R2 ... spacers, Sx, Sy, Sz ... guide surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Units (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

This adjustment amount estimation apparatus (100) comprises: a data acquisition unit (41) which measures, via a communication unit 70, coordinates of a point on a surface included in a constituent component of a machine; and a geometric error computation unit (43) which, on the basis of the measured coordinates, computes a geometric error in the surface with respect to a reference value for geometric characteristics such as the shape, the attitude, or the position of said surface. Prior to machine assembly, the geometric error computation unit (43) executes, on the basis of the pre-assembly geometric error in the constituent component, a predictive calculation of post-machine assembly displacement of the surface from a reference position, and uses the displacement obtained by the predictive calculation to compute an adjustment amount for an adjustment member which changes the geometric characteristics of the surface.

Description

調整量推定装置、調整量推定方法及び調整量推定プログラムAdjustment amount estimation device, adjustment amount estimation method and adjustment amount estimation program
 本開示は、調整量推定装置、調整量推定方法及び調整量推定プログラムに関する。 The present disclosure relates to an adjustment amount estimation device, an adjustment amount estimation method, and an adjustment amount estimation program.
 工作機械の加工精度を規定の範囲内に維持するため、被加工物を搭載するテーブルの上面の傾きを幾何公差以下に抑える必要があり、場合によっては、工作機械の調整が必要になる。 In order to maintain the machining accuracy of the machine tool within the specified range, it is necessary to keep the inclination of the upper surface of the table on which the workpiece is mounted to be less than the geometric tolerance, and in some cases, it is necessary to adjust the machine tool.
 しかし、工作機械のどの構成部品のどの箇所をどの程度調整すれば、傾斜を幾何公差以下に抑えることができるのかを判断することは難しい。 However, it is difficult to judge which part of which component of the machine tool should be adjusted and how much the inclination can be suppressed below the geometrical tolerance.
特開2016-26892号公報Japanese Unexamined Patent Publication No. 2016-26892 特開2016-38674号公報Japanese Unexamined Patent Publication No. 2016-38674
 この課題に対応して、自動的に基準値に対する補正値、すなわち、調整量を算出する技術が提案されている。
 例えば、特許文献1には、案内面の傾きの補正値を算出する工作機械調整システムが記載されている。この工作機械調整システムは、案内面上を移動する移動体の変位を測定し、測定した変位に基づいて傾きの調整量を算出する。
In response to this problem, a technique for automatically calculating a correction value with respect to a reference value, that is, an adjustment amount has been proposed.
For example, Patent Document 1 describes a machine tool adjustment system that calculates a correction value for inclination of a guide surface. This machine tool adjustment system measures the displacement of a moving body moving on a guide surface, and calculates the amount of inclination adjustment based on the measured displacement.
 また、特許文献2には、工具の基準座標と幾何学的誤差とに基づいて、調整量を算出する方法が開示されている。 Further, Patent Document 2 discloses a method of calculating the adjustment amount based on the reference coordinates of the tool and the geometric error.
 一方、工作機械の製造段階において、それぞれの誤差が幾何公差以下である構成部品を設計通りに組み合わせて工作機械を組み立てたとしても、組立方法、誤差の累積等により、幾何公差以上の傾きが生じてしまうことがある。このような場合に、工作機械の組立後の各構成部品の傾きを予想し、所望の傾きが得られるように設計値を補正して、補正した設計値に基づいて構成部品を組み立てることができれば、組立後の煩雑な調整が必要なくなり、作業効率の向上が期待できる。 On the other hand, in the manufacturing stage of a machine tool, even if a machine tool is assembled by combining components whose errors are less than or equal to the geometrical tolerance as designed, a inclination of more than the geometrical tolerance occurs due to the assembly method, accumulation of errors, and the like. It may end up. In such a case, if it is possible to predict the inclination of each component after assembling the machine tool, correct the design value so that the desired inclination can be obtained, and assemble the component based on the corrected design value. It eliminates the need for complicated adjustments after assembly, and can be expected to improve work efficiency.
 しかし、特許文献1、2に記載の技術は、工作機械の面の傾斜を実測して補正値を求める技術であるため、組み立てられた工作機械が存在しない工作機械の製造段階では利用できない。
 同様の問題は、案内面以外の任意の面について存在する。また、製造段階に限らず、メンテナンスなどのために、工作機械を分解し、再度組み上げる場合等にも同様の問題が存在する。このような問題は、工作機械に限らず、複数の部品を組み立てて機械を製造する場合に一般的に発生する。
 さらには、面の傾斜に限らず、任意の幾何学的誤差についても同様の問題が発生する。
However, since the techniques described in Patent Documents 1 and 2 are techniques for actually measuring the inclination of the surface of the machine tool to obtain a correction value, they cannot be used at the manufacturing stage of the machine tool in which the assembled machine tool does not exist.
Similar problems exist for any surface other than the guide surface. Further, the same problem exists not only at the manufacturing stage but also when the machine tool is disassembled and reassembled for maintenance or the like. Such a problem is not limited to machine tools, but generally occurs when a plurality of parts are assembled to manufacture a machine.
Furthermore, the same problem occurs not only for the inclination of the surface but also for any geometric error.
 本開示は上記実情に鑑みてなされたものであり、機械の組立前に、機械の任意の箇所の幾何学的誤差を幾何公差以下に抑えるための調整量を推定することができる調整量推定装置、調整量推定方法及び調整量推定プログラムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and is an adjustment amount estimation device capable of estimating an adjustment amount for suppressing a geometrical error at an arbitrary part of the machine to be less than a geometrical tolerance before assembling the machine. , It is an object of the present invention to provide an adjustment amount estimation method and an adjustment amount estimation program.
 上記目的を達成するため、本開示の調整量推定装置は、機械の構成部品に含まれる面の上の点の座標を測定する座標測定部と、測定された座標に基づいてその面の形状、姿勢又は位置の幾何特性の基準値との誤差である幾何学的誤差を演算する幾何学的誤差演算部と、を備える。また、本開示の調整量推定装置の幾何学的誤差演算部は、機械の組立前に、構成部品の組立前の幾何学的誤差に基づいて、機械の組立後の前記構成部品に含まれる面の基準位置からの変位を予測計算し、この変位から、面の幾何特性を変更する調整部材の調整量を演算して、調整量を推定する。 In order to achieve the above object, the adjustment amount estimation device of the present disclosure includes a coordinate measuring unit that measures the coordinates of a point on a surface included in a component of a machine, and the shape of the surface based on the measured coordinates. It is provided with a geometric error calculation unit for calculating a geometric error which is an error from a reference value of a geometric characteristic of a posture or a position. Further, the geometric error calculation unit of the adjustment amount estimation device of the present disclosure includes a surface included in the component after the machine is assembled, based on the geometric error before the assembly of the machine and before the assembly of the component. The displacement from the reference position of is predicted and calculated, and the adjustment amount of the adjustment member that changes the geometrical characteristics of the surface is calculated from this displacement to estimate the adjustment amount.
 本開示によれば、機械の構成部品の幾何学的誤差に基づいて調整量が演算されることで調整量が推定されるので、機械の組立前に、機械の任意の箇所の幾何学的誤差を幾何公差以下に抑えるための調整量を推定することができる。 According to the present disclosure, the adjustment amount is estimated by calculating the adjustment amount based on the geometric error of the component of the machine. Therefore, the geometric error of any part of the machine is performed before the assembly of the machine. The amount of adjustment to keep the amount below the geometrical tolerance can be estimated.
本開示の第1の実施の形態に係る調整量推定装置の構成を示すブロック図A block diagram showing the configuration of the adjustment amount estimation device according to the first embodiment of the present disclosure. 図1の調整量推定装置を具体的に実現するハードウェア構成の一例を示す図The figure which shows an example of the hardware configuration which concretely realizes the adjustment amount estimation device of FIG. 図1の調整量推定装置を用いて調整する対象である工作機械の外観の説明図Explanatory drawing of the appearance of the machine tool to be adjusted using the adjustment amount estimation device of FIG. 図3の工作機械のベッドとテーブル、ベッドとコラムの、案内面との接続点の概略を表す図The figure which shows the outline of the connection point with the guide surface of the bed and the table of the machine tool of FIG. 図4の接続点の高さの変更に用いるスペーサであって、最小単位の厚さを有するスペーサの例を示す説明図Explanatory drawing which shows an example of the spacer used for changing the height of the connection point of FIG. 4, which has the thickness of the minimum unit. 図4の接続点の高さの変更に用いるスペーサであって、最小単位の4倍の厚さを有する1つのスペーサの例を示す説明図Explanatory drawing which shows an example of one spacer which is used for changing the height of the connection point of FIG. 4, and has a thickness 4 times the smallest unit. 図4の接続点の高さの変更に用いるスペーサであって、最小単位の厚さを有するスペーサを4枚重ねることで全体として最小単位の4倍の厚さを有するスペーサとしたものの例を示す説明図An example of a spacer used for changing the height of the connection point in FIG. 4 is shown in which four spacers having the minimum unit thickness are stacked to form a spacer having a thickness four times the minimum unit as a whole. Explanatory drawing 図1の調整量推定装置を用いた調整量の推定の処理と作業のフローチャートFlow chart of adjustment amount estimation process and work using the adjustment amount estimation device of FIG. 図6の三次元測定結果の収集の詳細なフローチャートDetailed flowchart of collection of 3D measurement results in FIG. 図6の組立後の幾何学的誤差の演算のフローチャートFlow chart of calculation of geometric error after assembly in FIG. 図8のステップを細分化した、より詳細なフローチャートA more detailed flowchart that subdivides the steps of FIG. 図3の工作機械の組立作業後のテーブル上の平行度を推定するための測定点の例を示す図The figure which shows the example of the measurement point for estimating the parallelism on the table after the assembly work of the machine tool of FIG. 図3の工作機械の案内面との接続点の高さを調整する場合の座標の変換方法を示す図The figure which shows the conversion method of the coordinate when adjusting the height of the connection point with the guide surface of the machine tool of FIG. 図7の調整量の指示及び測定結果の収集のフローチャートFlow chart of instruction of adjustment amount and collection of measurement result of FIG. 本開示の第2の実施の形態に係る調整量推定装置の構成を示すブロック図A block diagram showing a configuration of an adjustment amount estimation device according to a second embodiment of the present disclosure. 図13の調整量推定装置を用いた調整量の推定の処理と作業のフローチャートFlow chart of adjustment amount estimation process and work using the adjustment amount estimation device of FIG. 図13の調整量推定装置を用いた幾何学的誤差補正項の演算のフローチャートFlow chart of calculation of geometric error correction term using the adjustment amount estimation device of FIG. 測定位置マスタ記憶部に記憶されるデータの構成を示す図The figure which shows the structure of the data stored in the measurement position master storage part 三次元測定結果記憶部に記憶されるデータの構成を示す図The figure which shows the structure of the data stored in the 3D measurement result storage part 調整量記憶部に記憶されるデータの構成を示す図The figure which shows the structure of the data stored in the adjustment amount storage part 調整後測定結果記憶部に記憶されるデータの構成を示す図The figure which shows the structure of the data which is stored in the measurement result storage part after adjustment. 補正項記憶部に記憶されるデータの構成を示す図The figure which shows the structure of the data stored in the correction term storage part 本開示の第3の実施の形態に係る調整量推定装置を用いた調整量の推定の処理と作業のフローチャートFlow chart of adjustment amount estimation processing and work using the adjustment amount estimation device according to the third embodiment of the present disclosure.
 (第1の実施の形態)
 以下、本開示の第1の実施の形態に係る調整量推定装置100について、図面を参照して説明する。
(First Embodiment)
Hereinafter, the adjustment amount estimation device 100 according to the first embodiment of the present disclosure will be described with reference to the drawings.
 調整量推定装置100は、工作機械Pを構成する構成部品の幾何学的誤差に基づいて、工作機械Pの支持材の高さの調整量を推定する装置である。なお、工作機械Pの支持材とは、構成部品を組み立てた後の工作機械Pの案内面及び被加工物を搭載するテーブルの上面を含む各面の傾きを目標値に近づけるため、面を支持する複数の点に位置する部材である。工作機械Pは、例えば、旋盤、フライス盤、放電加工機、レーザ加工機等を含むが、これらに限られない。
 この調整量推定装置100は、図1に示すように、後述する各種データを記憶するデータ記憶部20と、各種演算を行う演算部40と、外部機器と情報をやり取りする通信部70と、を備える。また、データ記憶部20、データ取得部41及び演算部40は、通信部70を介して作業者端末60を含む外部機器と相互に通信することができる。
 また、図1に示すように、調整量推定装置100には、工作機械Pを含む測定対象物の3次元形状を測定する三次元測定器Mが接続されている。調整量推定装置100は通信部70を介して三次元測定器Mと通信する。
The adjustment amount estimation device 100 is a device that estimates the adjustment amount of the height of the support member of the machine tool P based on the geometrical error of the components constituting the machine tool P. The support material of the machine tool P supports the surface in order to bring the inclination of each surface including the guide surface of the machine tool P after assembling the components and the upper surface of the table on which the workpiece is mounted close to the target value. It is a member located at a plurality of points. The machine tool P includes, but is not limited to, for example, a lathe, a milling machine, an electric discharge machine, a laser machine, and the like.
As shown in FIG. 1, the adjustment amount estimation device 100 includes a data storage unit 20 that stores various data described later, a calculation unit 40 that performs various calculations, and a communication unit 70 that exchanges information with an external device. Be prepared. Further, the data storage unit 20, the data acquisition unit 41, and the calculation unit 40 can communicate with each other with an external device including the worker terminal 60 via the communication unit 70.
Further, as shown in FIG. 1, a three-dimensional measuring device M for measuring the three-dimensional shape of the object to be measured including the machine tool P is connected to the adjustment amount estimation device 100. The adjustment amount estimation device 100 communicates with the coordinate measuring device M via the communication unit 70.
 データ記憶部20は、図16に例示した、測定位置マスタ情報を記憶する測定位置マスタ記憶部21と、図17に例示した、三次元測定結果情報を記憶する三次元測定結果記憶部22と、図18に例示した、高さの調整量情報を記憶する調整量記憶部23と、図19に例示した、調整後測定結果情報を記憶する調整後測定結果記憶部24と、図20に例示した、補正項情報を記憶する補正項記憶部25と、を備える。 The data storage unit 20 includes a measurement position master storage unit 21 for storing the measurement position master information illustrated in FIG. 16, a three-dimensional measurement result storage unit 22 for storing the three-dimensional measurement result information exemplified in FIG. The adjusted amount storage unit 23 for storing the height adjustment amount information exemplified in FIG. 18, the adjusted measurement result storage unit 24 for storing the adjusted measurement result information exemplified in FIG. 19, and FIG. 20 are exemplified. The correction term storage unit 25 for storing the correction term information is provided.
 測定位置マスタ記憶部21は、工作機械Pを構成する部品の種類、換言すると部品の名称、部品番号、仕様等の部品の識別情報、測定点の次元又は精度に関する情報を含む測定点の種類、換言すると測定点の識別情報、予め設定された測定点の位置であるデータ上の測定点の位置又は座標のとり得る範囲、工作機械Pの測定点の設計上の座標値等を含む測定位置マスタ情報を記憶する。測定点の次元とは、例えば、二次元の場合には「2」、三次元の場合には「3」であるが、これに限られない。なお、測定位置マスタ情報は、事前に調整量推定装置100の利用者によって、測定位置マスタ記憶部21に記憶されている。また、測定位置マスタ情報は、請求項における測定位置情報の一例である。 The measurement position master storage unit 21 includes the types of parts constituting the machine tool P, in other words, the identification information of parts such as part names, part numbers, specifications, and the types of measurement points including information on the dimensions or accuracy of measurement points. In other words, the measurement position master including the measurement point identification information, the position or coordinate range of the measurement point on the data which is the preset measurement point position, the design coordinate value of the measurement point of the machine tool P, and the like. Memorize information. The dimension of the measurement point is, for example, "2" in the case of two dimensions and "3" in the case of three dimensions, but is not limited to this. The measurement position master information is stored in the measurement position master storage unit 21 in advance by the user of the adjustment amount estimation device 100. Further, the measurement position master information is an example of the measurement position information in the claim.
 三次元測定結果記憶部22は、三次元測定器Mによる座標の測定順序、測定時刻等を識別する測定ID(identification、識別符号)、三次元測定によって測定された点の三次元座標を含む三次元測定結果情報を記憶する。なお、三次元測定結果記憶部22は、請求項における座標記憶部の一例である。 The three-dimensional measurement result storage unit 22 includes a measurement order of coordinates by the three-dimensional measuring device M, a measurement ID (identification, identification code) for identifying the measurement time, and three-dimensional coordinates of points measured by the three-dimensional measurement. Store the original measurement result information. The three-dimensional measurement result storage unit 22 is an example of the coordinate storage unit in the claim.
 調整量記憶部23は、工作機械の案内面の傾きを調整する高さの調整量情報を記憶する。
 調整後測定結果記憶部24は、調整後に三次元測定によって測定された点の三次元座標を含む調整後測定結果情報を記憶する。
 補正項記憶部25は、過去に算出された案内面の高さの推定値と実際の値との差である補正項情報を記憶する。
The adjustment amount storage unit 23 stores the adjustment amount information of the height for adjusting the inclination of the guide surface of the machine tool.
The adjusted measurement result storage unit 24 stores the adjusted measurement result information including the three-dimensional coordinates of the points measured by the three-dimensional measurement after the adjustment.
The correction term storage unit 25 stores the correction term information which is the difference between the estimated value of the height of the guide surface calculated in the past and the actual value.
 演算部40は、調整量を推定するための様々な演算を行う。演算部40は、各種データを取得するデータ取得部41と、座標を含む情報同士を紐付けてデータの変換を行うデータ変換部42と、幾何学的誤差を演算する幾何学的誤差演算部43と、部品の調整量を演算する調整量演算部44と、調整量を指示する調整量指示部45と、三次元測定結果情報を収集する測定結果収集部46と、を備える。 The calculation unit 40 performs various calculations for estimating the adjustment amount. The calculation unit 40 includes a data acquisition unit 41 that acquires various data, a data conversion unit 42 that converts data by associating information including coordinates with each other, and a geometric error calculation unit 43 that calculates a geometric error. An adjustment amount calculation unit 44 that calculates an adjustment amount of a component, an adjustment amount instruction unit 45 that instructs an adjustment amount, and a measurement result collection unit 46 that collects three-dimensional measurement result information are provided.
 データ取得部41は、データ記憶部20から演算に必要な各種データを取得する。データ取得部41は、請求項における座標測定部、座標取得部、調整前測定結果取得部又は調整後測定結果取得部の一例である。 The data acquisition unit 41 acquires various data necessary for calculation from the data storage unit 20. The data acquisition unit 41 is an example of the coordinate measurement unit, the coordinate acquisition unit, the pre-adjustment measurement result acquisition unit, or the post-adjustment measurement result acquisition unit in the claim.
 データ変換部42は、測定位置マスタ記憶部21に記憶されている測定点の情報と取得された座標とを紐付ける。データ変換部42は、請求項における座標データ変換部の一例である。 The data conversion unit 42 associates the information of the measurement point stored in the measurement position master storage unit 21 with the acquired coordinates. The data conversion unit 42 is an example of the coordinate data conversion unit in the claim.
 幾何学的誤差演算部43は、個々の部品の幾何学的誤差に基づいて組立後の工作機械P全体の幾何学的誤差を演算する。調整量演算部44は、組立後の工作機械P全体の幾何学的誤差から個々の部品の調整量を演算する。調整量指示部45は、演算された調整量を表示部61に出力することで調整量を指示する。測定結果収集部46は、組立後の部品の三次元測定結果情報を収集する。 The geometric error calculation unit 43 calculates the geometric error of the entire machine tool P after assembly based on the geometric error of each part. The adjustment amount calculation unit 44 calculates the adjustment amount of each part from the geometric error of the entire machine tool P after assembly. The adjustment amount indicating unit 45 instructs the adjustment amount by outputting the calculated adjustment amount to the display unit 61. The measurement result collection unit 46 collects the three-dimensional measurement result information of the assembled parts.
 作業者端末60は、各種情報を表示する液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ等の表示部61と、作業者の操作により情報を入力するマウス、キーボード、タッチパネル等の入力部62と、を備える。
 表示部61は、請求項における調整量出力部の一例である。
The worker terminal 60 includes a display unit 61 such as a liquid crystal display and an organic EL (Electro-Luminescence) display for displaying various information, an input unit 62 such as a mouse, a keyboard, and a touch panel for inputting information by an operator's operation. To be equipped.
The display unit 61 is an example of the adjustment amount output unit according to the claim.
 三次元測定器Mは、測定対象の各部の座標を取得することで、その測定対象物の幾何特性を測定する装置である。この幾何特性は、平行度、真直度、直角度などに関するデータを含む。 The coordinate measuring device M is a device that measures the geometric characteristics of the object to be measured by acquiring the coordinates of each part of the object to be measured. This geometric property contains data on parallelism, straightness, squareness, and so on.
 通信部70は、作業者端末60、三次元測定器M等の調整量推定装置100に接続された外部の装置との間で情報をやり取りする。 The communication unit 70 exchanges information with an external device connected to the adjustment amount estimation device 100 such as the worker terminal 60 and the coordinate measuring device M.
 図2は、図1に示した調整量推定装置100を具体的に実現するハードウェア構成の一例を示す図である。
 具体的には、情報演算装置10は、例えば汎用のコンピュータである。情報演算装置10は、図2に示すように、プロセッサ101と、通信部102と、情報を一時的に記憶する主記憶部103と、情報を永続的に記憶する補助記憶部104と、情報演算装置10の内部でデータをやり取りする内部バス105と、を備える。
 プロセッサ101は、例えば、CPU(Central Processing Unit)であり、様々な論理演算処理を行う。
 通信部102は、他装置と通信するインタフェースである。
 主記憶部103は、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)を含み、補助記憶部104は、例えば、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)を含む。
 例えば、調整量推定装置100のデータ記憶部20は情報演算装置10の主記憶部103又は補助記憶部104によって実現される。演算部40は、主記憶部103又は補助記憶部104に記憶されたプログラムをプロセッサ101が実行することによって実現される。通信部70は、通信部102によって実現される。データ記憶部20、データ取得部41、演算部40の相互の通信は、これらを接続する内部バス105によって実現される。
FIG. 2 is a diagram showing an example of a hardware configuration that specifically realizes the adjustment amount estimation device 100 shown in FIG.
Specifically, the information arithmetic unit 10 is, for example, a general-purpose computer. As shown in FIG. 2, the information arithmetic unit 10 includes a processor 101, a communication unit 102, a main storage unit 103 that temporarily stores information, an auxiliary storage unit 104 that permanently stores information, and information calculation. An internal bus 105 for exchanging data inside the device 10 is provided.
The processor 101 is, for example, a CPU (Central Processing Unit) and performs various logical operation processes.
The communication unit 102 is an interface for communicating with another device.
The main storage unit 103 includes, for example, a DRAM (Dynamic Random Access Memory) and a SRAM (Static Random Access Memory), and the auxiliary storage unit 104 includes, for example, a hard disk drive (HDD) and a solid state drive (SSD).
For example, the data storage unit 20 of the adjustment amount estimation device 100 is realized by the main storage unit 103 or the auxiliary storage unit 104 of the information calculation device 10. The arithmetic unit 40 is realized by the processor 101 executing a program stored in the main storage unit 103 or the auxiliary storage unit 104. The communication unit 70 is realized by the communication unit 102. Communication between the data storage unit 20, the data acquisition unit 41, and the calculation unit 40 is realized by an internal bus 105 that connects them.
 以下、図3を参照しながら、工作機械Pを用いて、テーブルP12、コラムP13等を支持する複数の支持材Cの長さ、高さ、厚さ等の調整量を推定する処理の流れを説明する。
 なお、工作機械PのテーブルP12、コラムP13等を支持する複数の支持材Cは、理解を容易にするため図3には図示されていない。しかし、支持材Cは、ベッドP11の上面とテーブルP12との間、ベッドP11とコラムP13との間に配置されているスライダ機構に設けられており、テーブルP12及びコラムP13を複数の接続点P21~P28において支持する。これらの支持材Cは、例えば、微小な単位で長さ、高さ、厚さ等の調節可能なスペーサ、座金等である。
 支持材Cは、請求項における調整部材の一例である。
 調整部材は精密ネジ式の調整機構であってもよい。
Hereinafter, with reference to FIG. 3, the flow of processing for estimating the adjustment amount of the length, height, thickness, etc. of the plurality of support members C for supporting the table P12, the column P13, etc., using the machine tool P will be described. explain.
The plurality of support members C that support the table P12, the column P13, and the like of the machine tool P are not shown in FIG. 3 for easy understanding. However, the support member C is provided in a slider mechanism arranged between the upper surface of the bed P11 and the table P12 and between the bed P11 and the column P13, and the table P12 and the column P13 are connected to the plurality of connection points P21. It is supported in ~ P28. These support members C are, for example, spacers, washers, etc. whose length, height, thickness, etc. can be adjusted in minute units.
The support material C is an example of the adjusting member according to the claim.
The adjusting member may be a precision screw type adjusting mechanism.
 工作機械Pは、x方向の案内面Sxとy方向の案内面Syを備えるベッドP11と、ベッドP11の上を移動可能なテーブルP12、z方向の案内面Szを備えるコラムP13と、z方向に移動可能であるz軸ベースP14と、z軸ベースP14の先端に固定されたヘッドP15と、を備える。
 テーブルP12は、ベッドP11の案内面Sxに設けられ、ベッドP11の上をx方向に移動可能なテーブルである。コラムP13は、ベッドP11の案内面Syに設けられ、ベッドP11の上をy方向に移動可能であり、側面にz方向の案内面Szを備える。z軸ベースP14は、コラムP13上の案内面Szに接している。ヘッドP15は、被加工物を加工するものである。
The machine tool P includes a bed P11 having a guide surface Sx in the x direction and a guide surface Sy in the y direction, a table P12 movable on the bed P11, a column P13 having a guide surface Sz in the z direction, and a column P13 in the z direction. It includes a movable z-axis base P14 and a head P15 fixed to the tip of the z-axis base P14.
The table P12 is provided on the guide surface Sx of the bed P11 and is a table that can move on the bed P11 in the x direction. The column P13 is provided on the guide surface Sy of the bed P11, can move on the bed P11 in the y direction, and has a guide surface Sz in the z direction on the side surface. The z-axis base P14 is in contact with the guide surface Sz on the column P13. The head P15 processes an workpiece.
 このように、工作機械Pを用いた加工の位置は、x方向についてはテーブルP12で、y方向についてはコラムP13で、z方向についてはz軸ベースP14で定められる。このため、被加工物の加工精度は、ベッドP11の案内面Sx、Sy及びコラムP13の案内面Szの幾何学的誤差に影響される。 As described above, the machining position using the machine tool P is determined by the table P12 in the x direction, the column P13 in the y direction, and the z-axis base P14 in the z direction. Therefore, the processing accuracy of the work piece is affected by the geometric error of the guide surfaces Sx and Sy of the bed P11 and the guide surface Sz of the column P13.
 工作機械Pによる被加工物の加工精度を規定の範囲内に維持するため、作業者は、ベッドP11の案内面Sx、Sy及びコラムP13の案内面Szの傾きを調整する。
 以下、図3及び図4を参照して、調整量推定装置100を用いてベッドP11の上面である案内面Sxを水平に調整する方法を説明する。
In order to maintain the machining accuracy of the workpiece by the machine tool P within the specified range, the operator adjusts the inclinations of the guide surfaces Sx and Sy of the bed P11 and the guide surfaces Sz of the column P13.
Hereinafter, a method of horizontally adjusting the guide surface Sx, which is the upper surface of the bed P11, will be described using the adjustment amount estimation device 100 with reference to FIGS. 3 and 4.
 図4は、図3に示した工作機械PのベッドP11の案内面Sx上の接続点P21~P24、及び、ベッドP11の案内面Sy上の接続点P25~P28の例を示したものである。接続点P25~28のz方向の高さは、これらの接続点P25~28において、ベッドP11とテーブルP12との間、又はベッドP11とコラムP13との間に挟まれて配置される支持材Cの寸法によって調整可能である。以下、支持材Cの例として平板状のスペーサRを用いる場合について、テーブルP12又はコラムP13のz方向の寸法の変更可能な最小単位をLとして説明する。
 図5Aは、最小単位であるLの厚さを有するスペーサRを例示した説明図である。図5Bは、最小単位Lの4倍である4Lの厚さを有する1つのスペーサR1を例示した説明図である。図5Cは、最小単位Lの厚さを有するスペーサRを4枚重ねることで全体として4Lの厚さを有するスペーサR2としたものを例示した説明図である。図5A~図5Cに例示したスペーサR、R1、R2をベッドP11とテーブルP12との間、又はベッドP11とコラムP13との間に配置することで、ベッドP11とコラムP13のz方向の寸法、接続点P21~P28におけるz方向の高さを変更することができる。なお、z方向の高さを変更する手段については、例示した平板状のスペーサR、R1、R2等に限定されない。
FIG. 4 shows an example of connection points P21 to P24 on the guide surface Sx of the bed P11 of the machine tool P shown in FIG. 3 and connection points P25 to P28 on the guide surface Sy of the bed P11. .. The height of the connection points P25 to 28 in the z direction is the support member C arranged so as to be sandwiched between the bed P11 and the table P12 or between the bed P11 and the column P13 at these connection points P25 to 28. It can be adjusted according to the dimensions of. Hereinafter, in the case where the flat plate spacer R is used as an example of the support material C, the minimum unit in which the dimensions of the table P12 or the column P13 can be changed in the z direction will be described as L.
FIG. 5A is an explanatory view illustrating a spacer R having a thickness of L, which is the smallest unit. FIG. 5B is an explanatory diagram illustrating one spacer R1 having a thickness of 4 L, which is four times the minimum unit L. FIG. 5C is an explanatory diagram illustrating an example in which four spacers R having a thickness of the minimum unit L are stacked to form a spacer R2 having a thickness of 4 L as a whole. By arranging the spacers R, R1 and R2 illustrated in FIGS. 5A to 5C between the bed P11 and the table P12 or between the bed P11 and the column P13, the dimensions of the bed P11 and the column P13 in the z direction. The height in the z direction at the connection points P21 to P28 can be changed. The means for changing the height in the z direction is not limited to the illustrated flat spacers R, R1, R2 and the like.
 このように、接続点P21~P28のz方向の高さは、Lの整数倍の厚さを有する支持材Cを用いるか、又はLの厚さを有する支持材Cを複数用いることで、Lずつ変更することができる。そして、テーブルP12の上面の傾きは、接続点P21~P24の4点における支持材Cの厚さを個別に変更することで調整できる。また、コラムP13の案内面Szの傾きは、接続点P25~P28の4点における支持材Cの厚さを個別に変更することで調整できる。 As described above, the height of the connection points P21 to P28 in the z direction is L by using the support material C having a thickness that is an integral multiple of L, or by using a plurality of support materials C having a thickness of L. It can be changed one by one. The inclination of the upper surface of the table P12 can be adjusted by individually changing the thickness of the support member C at the four connection points P21 to P24. Further, the inclination of the guide surface Sz of the column P13 can be adjusted by individually changing the thickness of the support member C at the four points of the connection points P25 to P28.
 以下、調整量推定装置100を用いて工作機械PのテーブルP12を支持する支持材Cの調整量を推定する全体の流れを説明する。
 図6の左側の破線で示した作業の流れは、工作機械Pを用いた加工作業のフローチャートであり、右側の破線で示した処理の流れは、調整量推定装置100を用いた調整量推定処理のフローチャートである。加工作業と調整量推定処理とで共通して用いられる情報のうち、対応するものの流れを左向き又は右向きの矢印で示す。
Hereinafter, the overall flow of estimating the adjustment amount of the support member C that supports the table P12 of the machine tool P by using the adjustment amount estimation device 100 will be described.
The work flow shown by the broken line on the left side of FIG. 6 is a flowchart of the machining work using the machine tool P, and the processing flow shown by the broken line on the right side is the adjustment amount estimation process using the adjustment amount estimation device 100. It is a flowchart of. Of the information commonly used in the processing work and the adjustment amount estimation process, the flow of the corresponding information is indicated by a left-pointing or right-pointing arrow.
 作業者は、テーブルP12のベッドP11に対する移動及びコラムP13のベッドP11に対する移動を滑らかにするため、ベッドP11の案内面及びコラムP13の案内面の機械加工を実施する。また、作業者は、平坦な面上で被加工物を加工するため、テーブルP12の上面の機械加工も行う(ステップS11)。これらの機械加工とは、例えば研削加工である。 The worker performs machining of the guide surface of the bed P11 and the guide surface of the column P13 in order to smooth the movement of the table P12 with respect to the bed P11 and the movement of the column P13 with respect to the bed P11. In addition, the operator also performs machining on the upper surface of the table P12 in order to process the workpiece on a flat surface (step S11). These machining are, for example, grinding.
 その後、作業者は、機械加工の結果を確認するため、三次元測定器Mを用いて、機械加工を施したベッドP11、テーブルP12及びコラムP13の面の上にある複数の点の座標を測定する三次元測定を実施する(ステップS12)。
 このステップでは、ベッドP11、テーブルP12及びコラムP13という工作機械Pの構成部品は、個別に三次元測定される。このように個別の測定が行われるのは、まだ工作機械Pの構成部品を組み合わせていないためである。
 ステップS12は、請求項における座標測定ステップ、座標取得ステップ又は調整前測定結果取得ステップの一例である。
After that, the operator measures the coordinates of a plurality of points on the surfaces of the machined bed P11, the table P12, and the column P13 by using the coordinate measuring device M in order to confirm the result of the machining. Perform the three-dimensional measurement (step S12).
In this step, the components of the machine tool P, the bed P11, the table P12, and the column P13, are individually measured three-dimensionally. The reason why the individual measurements are performed in this way is that the components of the machine tool P have not been combined yet.
Step S12 is an example of the coordinate measurement step, the coordinate acquisition step, or the pre-adjustment measurement result acquisition step in the claim.
 次に、測定結果収集部46は、後続の処理のため、作業者によって行われたステップS12の測定の結果である三次元測定結果データを、通信部70を介して、三次元測定器Mから収集する(ステップS21)。また、測定結果収集部46は、収集したデータを三次元測定結果記憶部22に記憶して蓄積する。 Next, the measurement result collecting unit 46 transmits the three-dimensional measurement result data, which is the result of the measurement in step S12 performed by the operator, from the coordinate measuring device M via the communication unit 70 for the subsequent processing. Collect (step S21). Further, the measurement result collecting unit 46 stores and stores the collected data in the three-dimensional measurement result storage unit 22.
 測定結果収集部46がベッドP11、テーブルP12及びコラムP13のすべてについて三次元測定の結果の収集を完了した後、幾何学的誤差演算部43は、テーブルP12、ベッドP11及びコラムP13を組み立てた後の幾何学的誤差を予測する演算を実施する(ステップS22)。
 ここで演算される幾何学的誤差とは、例えば、ベッドP11の案内面、コラムP13の案内面及びテーブルP12の上面の姿勢のずれ、すなわち、角度として演算される傾きである。三次元測定器Mによって測定された三次元測定結果データには、これらの面の傾きは含まれない。このため、幾何学的誤差演算部43は、例えば、三次元測定結果データに含まれる複数の点の同士のx座標及びy座標の差に対するz座標の差の比を計算することで、角度を算出する。そして、ここで演算された幾何学的誤差に基づいて、組立後の構成部品の各基準位置からの変位が予測計算される。
 ステップS22は、請求項における変位計算ステップ又は幾何学的誤差演算ステップの一例である。
After the measurement result collection unit 46 completes the collection of the three-dimensional measurement results for all of the bed P11, the table P12 and the column P13, the geometric error calculation unit 43 after assembling the table P12, the bed P11 and the column P13. The calculation for predicting the geometrical error of is performed (step S22).
The geometric error calculated here is, for example, the deviation of the postures of the guide surface of the bed P11, the guide surface of the column P13, and the upper surface of the table P12, that is, the inclination calculated as an angle. The three-dimensional measurement result data measured by the coordinate measuring device M does not include the inclination of these surfaces. Therefore, the geometric error calculation unit 43 calculates the angle by calculating the ratio of the difference in the z-coordinate to the difference in the x-coordinate and the y-coordinate between the plurality of points included in the three-dimensional measurement result data, for example. calculate. Then, based on the geometric error calculated here, the displacement of the component after assembly from each reference position is predicted and calculated.
Step S22 is an example of the displacement calculation step or the geometric error calculation step in the claim.
 ステップS22の組立後の幾何学的誤差の予測演算により予測計算された各基準位置からの変位に基づき、調整量指示部45は、作業者に接続点P21からP28の高さの調整量を指示する(ステップS23)。調整量の指示は、例えば、調整量推定装置100が、作業者端末60に命令を発行し、表示部61に調整量のデータを表示させることにより行われる。この指示は、接続点ごとに、高さの現在値からの差を数値で示すことにより行われる。
 例えば、テーブルP12に関する調整量の指示であれば、調整量推定装置100は、表示部61に「P21:0.0mm、P22:+0.1mm、P23:+0.1mm、P24:+0.2mm」と表示させる。これにより、作業者は、基準となる高さに対して、接続点P21の支持材Cの厚さを基準値Lと同一にし、接続点P22及びP23の支持材Cの厚さをL+0.1mmとし、接続点P24の支持材Cの厚さをL+0.2mmとすると、テーブルP12の傾きを目標値に近づけることができると理解する。
 ステップS23は、請求項における調整量出力ステップの一例である。
Based on the displacement from each reference position predicted and calculated by the prediction calculation of the geometric error after assembly in step S22, the adjustment amount indicating unit 45 instructs the operator to adjust the height of the connection points P21 to P28. (Step S23). The adjustment amount is instructed, for example, by the adjustment amount estimation device 100 issuing a command to the worker terminal 60 and displaying the adjustment amount data on the display unit 61. This instruction is given by numerically indicating the difference in height from the current value for each connection point.
For example, in the case of an instruction of the adjustment amount regarding the table P12, the adjustment amount estimation device 100 displays "P21: 0.0 mm, P22: +0.1 mm, P23: +0.1 mm, P24: +0.2 mm" on the display unit 61. Display it. As a result, the operator makes the thickness of the support material C at the connection point P21 the same as the reference value L with respect to the reference height, and makes the thickness of the support material C at the connection points P22 and P23 L + 0.1 mm. Then, if the thickness of the support material C at the connection point P24 is L + 0.2 mm, it is understood that the inclination of the table P12 can be brought close to the target value.
Step S23 is an example of the adjustment amount output step in the claim.
 図6の左の破線内の加工作業に戻り、作業者は、ステップS23の指示に従い、すなわち、作業者端末60の表示部61に表示された調整量のデータに基づいて調整作業を実施する(ステップS13)。例えば、作業者は、前述の表示部61の表示を読んで、接続点P21の高さを基準値Lのままとし、P22及びP23をL+0.1mm、P24をL+0.2mmとして後述するステップS14での組立てを行う。 Returning to the processing work in the broken line on the left side of FIG. 6, the worker performs the adjustment work according to the instruction in step S23, that is, based on the adjustment amount data displayed on the display unit 61 of the worker terminal 60 ( Step S13). For example, the operator reads the display of the display unit 61 described above, leaves the height of the connection point P21 as the reference value L, sets P22 and P23 to L + 0.1 mm, and sets P24 to L + 0.2 mm in step S14 described later. Assemble.
 作業者は、組立前の三次元測定(ステップS12)が完了した後の各部品の組立作業を実施し(ステップS14)、続いて、組立後の工作機械Pについて、接続点P21~28の幾何学的誤差の測定を実施する(ステップS15)。
 測定結果収集部46は、ステップS15の測定の結果取得された幾何学的誤差測定結果データを収集する(ステップS24)。具体的には、測定結果収集部46は、接続点P21~P28の支持材Cの厚さをLから変更した後のベッドP11の案内面、コラムP13の案内面及びテーブルP12の上面の3次元座標を収集する。これにより、調整量推定装置100の処理は終了する。
 なお、測定結果収集部46は、収集した幾何学的誤差測定結果データを調整後測定結果記憶部24に記憶して蓄積する。後述するように、調整後測定結果記憶部24に蓄積された幾何学的誤差測定結果データにより補正項記憶部25に記憶された補正項は修正され得る。
The operator carries out the assembly work of each part after the completion of the three-dimensional measurement (step S12) before assembly (step S14), and then the geometry of the connection points P21 to 28 for the machine tool P after assembly. The measurement of the scientific error is carried out (step S15).
The measurement result collection unit 46 collects the geometric error measurement result data acquired as a result of the measurement in step S15 (step S24). Specifically, the measurement result collecting unit 46 has three dimensions of the guide surface of the bed P11, the guide surface of the column P13, and the upper surface of the table P12 after changing the thickness of the support material C of the connection points P21 to P28 from L. Collect coordinates. As a result, the processing of the adjustment amount estimation device 100 is completed.
The measurement result collecting unit 46 stores and stores the collected geometric error measurement result data in the adjusted measurement result storage unit 24. As will be described later, the correction term stored in the correction term storage unit 25 can be corrected by the geometric error measurement result data stored in the adjusted measurement result storage unit 24.
 演算部40は、測定された幾何学的誤差が規定の範囲内かどうかを判別する(ステップS16)。
 測定された幾何学的誤差が規定の範囲内であれば(ステップS16:YES)、作業者はすべての作業を終了し、調整完了とする(ステップS17)。規定の範囲内になければ(ステップS16:NO)、調整量指示部45に指示された調整量どおりの調整ができていないことになるので、調整作業(ステップS13)に戻り、作業者は調整量指示部45に指示された調整量での調整作業を再度実施する。なお、指示された調整量どおりの調整をしても測定された幾何学的誤差が規定の範囲内にならない場合を考慮して、ステップS16からステップS13に戻る回数を制限してもよい。このような場合でも、調整後測定結果記憶部24に記憶された幾何学的誤差測定結果データに基づき、次回以降は修正された補正項が用いられることにより、指示された調整量どおりに調整すれば幾何学的誤差が規定の範囲内に収まるようになる。
The calculation unit 40 determines whether or not the measured geometric error is within the specified range (step S16).
If the measured geometric error is within the specified range (step S16: YES), the operator finishes all the work and completes the adjustment (step S17). If it is not within the specified range (step S16: NO), the adjustment according to the adjustment amount instructed by the adjustment amount indicator 45 has not been performed. Therefore, the process returns to the adjustment work (step S13) and the operator adjusts. The adjustment work with the adjustment amount instructed by the amount indicating unit 45 is performed again. In addition, the number of times of returning from step S16 to step S13 may be limited in consideration of the case where the measured geometric error does not fall within the specified range even if the adjustment is made according to the instructed adjustment amount. Even in such a case, based on the geometric error measurement result data stored in the adjusted measurement result storage unit 24, the corrected correction term is used from the next time onward, so that the adjustment is made according to the instructed adjustment amount. If so, the geometrical error will be within the specified range.
 以上説明したように、調整量推定装置100によれば、ステップS11からS12までを順に実行することで、組立作業(ステップS14)より前に、作業者は調整量を求めることができる(ステップS13、S23)。
 これに対し、従来の方法では必要な調整量は事前にわからないため、一度組み立てた後、工作機械PのテーブルP12上のヘッドP15の位置を固定し、テーブルP12のみ案内面上を平行移動させて、直角方向の変化量を測定し、接続点P21~P24の高さ調整を実施しなければならない。
As described above, according to the adjustment amount estimation device 100, by executing steps S11 to S12 in order, the operator can obtain the adjustment amount before the assembly work (step S14) (step S13). , S23).
On the other hand, since the required adjustment amount is not known in advance by the conventional method, after assembling once, the position of the head P15 on the table P12 of the machine tool P is fixed, and only the table P12 is translated on the guide surface. , The amount of change in the perpendicular direction must be measured and the height of the connection points P21 to P24 must be adjusted.
 以下、図6で述べた各ステップの詳細を、数式も適宜参照して説明する。 Hereinafter, the details of each step described in FIG. 6 will be described with reference to mathematical formulas as appropriate.
 図7は、図6の三次元測定結果の収集ステップ(ステップS21)の詳細なフローチャートである。
 データ取得部41は、三次元測定(ステップS12)によって取得された、測定結果情報である座標の集合、工作機械の座標データ測定機能によって測定された測定点の座標、作業者によって入力された測定結果の座標等を取得する(ステップS31)。
FIG. 7 is a detailed flowchart of the three-dimensional measurement result collection step (step S21) of FIG.
The data acquisition unit 41 includes a set of coordinates that are measurement result information acquired by the three-dimensional measurement (step S12), coordinates of measurement points measured by the coordinate data measurement function of the machine tool, and measurement input by the operator. Acquire the resulting coordinates and the like (step S31).
 次に、データ変換部42は、データ取得部41を介して測定点の座標を取得するとともに、測定位置マスタ記憶部21を参照して、測定位置マスタ記憶部21に記憶される測定点の情報と取得された座標とを紐付ける。
 測定位置マスタ記憶部21に記憶される情報は、前述した例、すなわち、部品の種類、測定点の種類、データ上の測定点の位置、設計上の座標値等に限られない。測定位置マスタ情報測定した座標データを、測定したいどの点の座標データか区別でき、取得した座標情報と紐付けることができるものであれば、どのような形式でもよい。
Next, the data conversion unit 42 acquires the coordinates of the measurement points via the data acquisition unit 41, and also refers to the measurement position master storage unit 21, and the information of the measurement points stored in the measurement position master storage unit 21. And the acquired coordinates are linked.
The information stored in the measurement position master storage unit 21 is not limited to the above-mentioned examples, that is, the type of parts, the type of measurement points, the position of measurement points on data, the coordinate values in design, and the like. Measurement position master information Any format may be used as long as the measured coordinate data can be distinguished from the coordinate data of which point to be measured and can be linked with the acquired coordinate information.
 データ変換部42がデータ取得部41を介して取得した座標を測定位置マスタ記憶部21に記憶された測定点の情報と紐付けることで、三次元測定器Mによって測定された座標と設計上の三次元の座標とが一対一に対応したデータの形式に変換される(ステップS32)。
 データ変換部42はさらに、測定位置マスタ記憶部21に記憶された情報と部品の製造番号とを紐付け、変換した座標情報を三次元測定結果記憶部22に蓄積する。
 ステップS32は、請求項における座標データ変換ステップの一例である。
By associating the coordinates acquired by the data conversion unit 42 via the data acquisition unit 41 with the information of the measurement points stored in the measurement position master storage unit 21, the coordinates measured by the three-dimensional measuring instrument M and the design The three-dimensional coordinates are converted into a data format having a one-to-one correspondence (step S32).
The data conversion unit 42 further associates the information stored in the measurement position master storage unit 21 with the serial number of the part, and stores the converted coordinate information in the three-dimensional measurement result storage unit 22.
Step S32 is an example of the coordinate data conversion step in the claim.
 一般的な三次元測定器Mのみを用いる場合、部品ごとに出力されるデータ形式、測定の基準点又は面が違うと、作業者による手作業での測定しかできず、一方向のみの座標値、すなわち、部品、データ形式、測定の基準点、基準位置又は基準面についてのデータが不明な情報しか測定できないことがある。しかし、このような場合であっても、調整量推定装置100によれば、データ変換の処理(ステップS32)を行うことによって、データ形式、測定の基準点及び基準面のデータを備えた情報を蓄積しておくことができる。 When using only the general CMM, if the data format output for each part, the reference point for measurement, or the surface is different, only manual measurement can be performed by the operator, and the coordinate values in only one direction. That is, data about parts, data formats, measurement reference points, reference positions or reference planes may only be available for unknown information. However, even in such a case, according to the adjustment amount estimation device 100, by performing the data conversion process (step S32), the information including the data format, the measurement reference point, and the reference plane data can be obtained. Can be stored.
 図8は、組立後の幾何学的誤差の演算ステップ(ステップS22)の詳細なフローチャートである。
 幾何学的誤差演算部43は、補正項記憶部25に予め記憶されたパラメータである補正項を取得し、三次元測定結果記憶部22から、三次元測定結果の収集(ステップS21)によって蓄積された工作機械Pの個々の部品の三次元測定情報を取得する。なお、幾何学的誤差演算部43は、補正項記憶部25から補正項を取得する際に、調整後測定結果記憶部24に蓄積された幾何学的誤差測定結果データを用いて当該補正項を修正してもよい。そして、幾何学的誤差演算部43は、個々の部品の幾何学的誤差から、これらの部品を組み立てて工作機械Pとした場合の全体の幾何学的誤差を演算する(ステップS71)。
 例えば、幾何学的誤差としてx方向の角度を、部品としてベッドP11及びテーブルP12を取り上げると、ベッドP11の許容値が±1°、テーブルP12の許容値が±2°であるときに、幾何学的誤差演算部43は、下限値と上限値を単純にそれぞれ加算して、ベッドP11とテーブルP12を組み立てたものの幾何学的誤差を±3°とする。もっとも、これは幾何学的誤差演算部43による幾何学的誤差の演算の一例にすぎない。実際には、部品の種類、組合せ方、算出する幾何学的誤差の種類、方向等を考慮して、部品すべてを組み合わせたものの幾何学的誤差が演算される。
 幾何学的誤差の演算が完了した後、調整量演算部44は、調整量を演算する(ステップS72)。具体的には、ステップS71で算出された幾何学的誤差には上限値と下限値とが含まれるため、調整量演算部44は、例えば、上限値と下限値との平均値を計算する。そして、調整量演算部44は、この平均値が設計上の値の上限値と下限値との間に収まっている場合は、この平均値と、設計上の値の上限値と下限値との平均値と、の差を演算して調整量とする。この平均値が設計上の値の上限値と下限値との間に収まっていない場合はこの平均値と、設計上の値の上限値又は下限値のいずれか平均値に近い方と、の差を演算して調整量とする。これは調整量をできるだけ小さい値に収めるためである。ただし、これは調整量の算出方法の一例である。例えば調整量演算部44は、全ての場合に、幾何学的誤差の上限値と下限値との平均値と、設計上の値の上限値と下限値との平均値と、の差を演算して調整量としてもよい。また、調整量演算部44は、算出された調整量情報を調整量記憶部23に記憶する。
 ステップS72は、請求項における調整量演算ステップの一例である。
FIG. 8 is a detailed flowchart of the geometric error calculation step (step S22) after assembly.
The geometric error calculation unit 43 acquires the correction term, which is a parameter stored in advance in the correction term storage unit 25, and accumulates the correction term from the three-dimensional measurement result storage unit 22 by collecting the three-dimensional measurement results (step S21). Acquire the three-dimensional measurement information of each part of the machine tool P. When the geometric error calculation unit 43 acquires the correction term from the correction term storage unit 25, the geometric error calculation unit 43 uses the geometric error measurement result data accumulated in the adjusted measurement result storage unit 24 to perform the correction term. You may modify it. Then, the geometric error calculation unit 43 calculates the entire geometric error when these parts are assembled into the machine tool P from the geometric errors of the individual parts (step S71).
For example, if the angle in the x direction is taken as the geometric error and the bed P11 and the table P12 are taken as the parts, the geometry is geometric when the allowable value of the bed P11 is ± 1 ° and the allowable value of the table P12 is ± 2 °. The target error calculation unit 43 simply adds the lower limit value and the upper limit value, respectively, and sets the geometric error of the assembled bed P11 and table P12 to ± 3 °. However, this is only an example of the calculation of the geometric error by the geometric error calculation unit 43. Actually, the geometric error of the combination of all the parts is calculated in consideration of the type of parts, the combination method, the type of geometric error to be calculated, the direction, and the like.
After the calculation of the geometric error is completed, the adjustment amount calculation unit 44 calculates the adjustment amount (step S72). Specifically, since the geometric error calculated in step S71 includes an upper limit value and a lower limit value, the adjustment amount calculation unit 44 calculates, for example, the average value of the upper limit value and the lower limit value. Then, when the average value is between the upper limit value and the lower limit value of the design value, the adjustment amount calculation unit 44 sets the average value and the upper limit value and the lower limit value of the design value. The difference between the average value and the average value is calculated to obtain the adjustment amount. If this average value does not fall between the upper and lower limits of the design value, the difference between this average value and the upper or lower limit of the design value, whichever is closer to the average value. Is calculated to obtain the adjustment amount. This is to keep the adjustment amount as small as possible. However, this is an example of a method for calculating the adjustment amount. For example, the adjustment amount calculation unit 44 calculates the difference between the average value of the upper limit value and the lower limit value of the geometric error and the average value of the upper limit value and the lower limit value of the design value in all cases. It may be adjusted as an amount. Further, the adjustment amount calculation unit 44 stores the calculated adjustment amount information in the adjustment amount storage unit 23.
Step S72 is an example of the adjustment amount calculation step in the claim.
 図9は、図8のステップを細分化した、より詳細なフローチャートである。
 ステップS81からS84はステップS71に、ステップS85からS87はステップS72に含まれる。
 まず、幾何学的誤差演算部43は、組立後の幾何学的誤差の演算に必要な各部品の三次元情報を取得する(ステップS81)。
 続いて、幾何学的誤差演算部43は、各部品の三次元情報のxyz方向、基準データム面を統一し、部品の三次元情報、すなわち、座標の変換を実施する(ステップS82)。
 その後、幾何学的誤差演算部43は、三次元座標の変換のステップ(ステップS82)で変換された各部品の三次元座標を用いて、組立前後の各測定点間の座標の変化量を計算する(ステップS83)。
 幾何学的誤差演算部43は、各測定点の座標の変化量の計算(ステップS83)によって得られた変化量に、補正項記憶部25に記憶されている補正値を適用して、ステップS83で計算された各測定点の座標の補正を実施する(ステップS84)。
 次に、ステップS83及びS84で推定した変化量を規定値以下に抑えるため、ベッドP11、コラムP13等の案内面の調整量を、可能な限り多数の測定点において多点探索をすることで、変化量が最小となる値を見つけ、これを調整量の推定値とする調整量の算出を行う(ステップS85)。
 ステップS85で得られた調整量の推定値及びその時の組立後測定点の測定値の推測値を、調整量記憶部23に蓄積する(ステップS86)。
 x、y及びzを含む、予測したいすべての方向の測定点間の変化量及び必要な調整量の計算が完了しているか否かを判別し(ステップS87)、完了している場合(ステップS87:YES)には、処理を終了し、完了していない場合(ステップS87:NO)には、三次元情報の変換(ステップS82)に戻り、別の方向の計算を実施する。
FIG. 9 is a more detailed flowchart in which the steps of FIG. 8 are subdivided.
Steps S81 to S84 are included in step S71, and steps S85 to S87 are included in step S72.
First, the geometric error calculation unit 43 acquires the three-dimensional information of each part necessary for the calculation of the geometric error after assembly (step S81).
Subsequently, the geometric error calculation unit 43 unifies the xyz direction and the reference datum plane of the three-dimensional information of each component, and executes the three-dimensional information of the component, that is, the conversion of the coordinates (step S82).
After that, the geometric error calculation unit 43 calculates the amount of change in the coordinates between the measurement points before and after assembly by using the three-dimensional coordinates of each part converted in the step of converting the three-dimensional coordinates (step S82). (Step S83).
The geometric error calculation unit 43 applies the correction value stored in the correction term storage unit 25 to the change amount obtained by calculating the change amount of the coordinates of each measurement point (step S83), and applies the correction value stored in the correction term storage unit 25 to step S83. The coordinates of each measurement point calculated in step 1 are corrected (step S84).
Next, in order to suppress the amount of change estimated in steps S83 and S84 to the specified value or less, the adjustment amount of the guide surface of the bed P11, the column P13, etc. is searched at multiple points at as many measurement points as possible. The value that minimizes the amount of change is found, and the adjustment amount is calculated using this as the estimated value of the adjustment amount (step S85).
The estimated value of the adjusted amount obtained in step S85 and the estimated value of the measured value of the measured point after assembly at that time are stored in the adjusted amount storage unit 23 (step S86).
It is determined whether or not the calculation of the change amount and the necessary adjustment amount between the measurement points in all the directions to be predicted including x, y and z is completed (step S87), and if it is completed (step S87). : YES), the process is completed, and if it is not completed (step S87: NO), the process returns to the conversion of the three-dimensional information (step S82), and the calculation in another direction is performed.
 以下、これまで説明した方法を適用する手順について、図10を参照して説明する。
 図10は、組立作業後のテーブルP12上の三次元測定器Mによる測定点a~a、b~b、c~c、d~dの配置の一例を示した図である。以下では、特に、組立前後のzの変化量を事前に推定し、テーブルP12、コラムP13の案内面との接続点の高さの調整量について事前に推定を行う場合の計算手順の例を説明する。
Hereinafter, the procedure for applying the methods described so far will be described with reference to FIG.
Figure 10 shows an example of the arrangement of the measurement points a 0 ~ by the three-dimensional measuring device M on the table P12 after assembly work a n, b 0 ~ b n , c 0 ~ c n, d 0 ~ d n It is a figure. In particular, an example of a calculation procedure will be described in a case where the amount of change in z before and after assembly is estimated in advance and the amount of adjustment of the height of the connection point with the guide surface of the table P12 and the column P13 is estimated in advance. To do.
 図10に示すように、測定点a~a、b~b、c~c、d~dは、aとb、cとdのそれぞれのグループごとに、一直線上にある。
 したがって、x方向に沿って配置されている測定点a~a、b~bのx座標は、図4における接続点P21~P24の固有の4点によって求められる。また、y方向に沿って配置されている測定点c~c、d~dのy座標は、ベッドP11のy方向の案内面とコラムP13との接続点P25~P28によって求められる。
As shown in FIG. 10, the measurement points a 0 ~ a n, b 0 ~ b n, c 0 ~ c n, d 0 ~ d n , for each respective group of a and b, c and d, a straight line It is in.
Therefore, measuring points are arranged along the x-direction a 0 ~ a n, b 0 x -coordinate of the ~ b n is determined by the inherent four connection points P21 ~ P24 in FIG. Further, the y-coordinates of the measurement points c 0 to c n and d 0 to d n arranged along the y direction are obtained by the connection points P25 to P28 between the guide surface in the y direction of the bed P11 and the column P13. ..
 次に、ステップS11で機械加工されたテーブルP12上の点aにおけるz方向のずれを0とすると、点aから離れた点aのz方向のずれは、以下のように計算される。 Next, when the 0 in the z direction of the displacement at the point a 0 on the machined table P12 in step S11, z direction deviation distant points a n from point a 0 is calculated as follows ..
 (点aにおけるz方向のずれ)={(テーブル底面をxy平面の基準データムとした、テーブルの三次元測定結果での点aのz座標)+(ベッドのx方向案内面を基準データムとした、ベッドのx軸方向の案内面の三次元測定結果でのaでの接続点4点のz座標の平均)}-{(テーブル底面をxy平面の基準データムとした、テーブルの三次元測定結果の点aのz座標)-(ベッドのx方向案内面を基準データムとした、ベッドのx軸方向の案内面の三次元測定結果でのaでの接続点4点のz座標の平均)} (Deviation in the z direction at the point a n) = {(as the reference datum of the table bottom xy plane, z coordinates of the points a n in the three-dimensional measuring result of the table) + (the reference datum in the x-direction guide surface of the bed and the average of the z-coordinate of the connection point 4 points in a n in a three-dimensional measuring result of the guide surface of the x-axis direction of the bed)} - {(as the reference datum of the table bottom xy plane, the three tables order z coordinates of the points a 0 of the original measurement) - (as a reference datum in the x direction guide surface of the bed, z of the connection points 4 points at a 0 in the three-dimensional measuring result of the guide surface of the x-axis direction of the bed Coordinate average)}
 点b~bもx軸方向に沿って配置されているため、点bについても、点aにおける計算と同様の方法により、そのz方向のずれを計算することができる。 Since the points b 0 ~ b n are arranged along the x-axis direction, for the points b n, by the same method as calculating at point a n, can be calculated deviation of the z-direction.
 また、点cにおけるz方向のずれは以下のように計算される。
 (点cにおけるz方向のずれ)={(テーブル底面をxy平面の基準データムとした、テーブルの三次元測定結果での点cのz座標)+(ベッドのx方向案内面を基準データムとした、ベッドのy軸方向の案内面の三次元測定結果でのcでの接続点4点のz座標の平均)}-{(テーブル底面をxy平面の基準データムとした、テーブルの三次元測定結果の点cのz座標)-(ベッドのx方向案内面を基準データムとした、ベッドのy軸方向の案内面の三次元測定結果でのaでの接続点4点のz座標の平均)}
Further, z direction deviation at point c n is calculated as follows.
(Deviation in the z direction at the point c n) = {(as the reference datum of the table bottom xy plane, z coordinates of the points c n of a three-dimensional measurement result table) + (the reference datum in the x-direction guide surface of the bed and the average of the z-coordinate of the connection point 4 points in c n of a three-dimensional measuring result of the guide surface of the y-axis direction of the bed)} - {(as the reference datum of the table bottom xy plane, the three tables order Original measurement result point c 0 z coordinate)-(z of 4 connection points at a 0 in the 3D measurement result of the guide surface in the y-axis direction of the bed with the x-direction guide surface of the bed as the reference datum) Coordinate average)}
 点d~dもy軸方向に沿って配置されているため、点dについても、点bにおける計算と同様の方法により、そのz方向のずれを計算することができる。 Since the points d 0 to d n are also arranged along the y-axis direction, the deviation of the points d n in the z direction can be calculated by the same method as the calculation at the point b n .
 以上のz方向のずれの計算が完了した後、調整量演算部44は、各測定点の座標の計算(ステップS83)について、補正を行う(ステップS84)。補正は、前述したように、各測定点における計算されたz方向のずれに、補正量を足し合わせることによって行われる。 After the above calculation of the deviation in the z direction is completed, the adjustment amount calculation unit 44 corrects the calculation of the coordinates of each measurement point (step S83) (step S84). As described above, the correction is performed by adding the correction amount to the calculated deviation in the z direction at each measurement point.
 その後、各測定値の変化量を規定値以下にするために必要な補正量の計算を実施する(ステップS85)。そこで、この補正量の計算の具体的な方法について、図11を参照して説明する。
 図11は、案内面との接続点の高さを調整した場合の各点の座標の変化を示した図である。破線の矩形は、傾ける前におけるベッドP11及びその上面の接続点をy軸方向に見た図であり、実線の矩形は角度θだけ傾けた後におけるベッドP11及びその上面の接続点をy軸方向に見た図である。
 図11のように、接続点sを中心に、ベッドP11のx方向の一辺をz方向上向きに持ち上げた場合を考える。このとき、接続点sの座標は、ベッドP11を傾ける前後で変化せず、接続点sをtだけ移動してs’に位置するものとする。これらの接続点s、s及びs’の3点を頂点とする三角形は二等辺三角形であるから、接続点sのx座標をx_s、sのx座標をx_s、aのx座標をx_aとすると、傾きの角度θについて、余弦定理より以下の関係が成り立つ。
 t=|x_s-x_s+|x_s-x_s-2|x_s-x_s×cosθ
 上式をθについて変形すると、以下のようになる。
 cosθ=(2|x_s-x_s-t)/2|x_s-x_s
 次に、傾きθを用いて、テーブルP12の上面にある点の高さaの変化量、すなわち、テーブルP12を傾ける前後におけるz座標の変化量Δzを求めると、以下のようになる。
 Δz=|x_a-x_s|×sinθ
 となる。
After that, the calculation of the correction amount required to reduce the change amount of each measured value to the specified value or less is performed (step S85). Therefore, a specific method for calculating the correction amount will be described with reference to FIG.
FIG. 11 is a diagram showing changes in the coordinates of each point when the height of the connection point with the guide surface is adjusted. The broken line rectangle is a view of the connection point of the bed P11 and its upper surface in the y-axis direction before tilting, and the solid line rectangle is a view of the connection point of the bed P11 and its upper surface in the y-axis direction after tilting by an angle θ. It is a figure seen in.
As shown in FIG. 11, around the connection point s 1, consider the case where lifting the x-direction of one side of the bed P11 in the z-direction upward. At this time, the coordinates of the connection point s 1 do not change before and after tilting the bed P11, and the connection point s 2 is moved by t to be located at s ' 2 . Since the triangle is an isosceles triangle that these three connection points s 1, s 2 and s' 2 and vertex connection points x_s 2 the x-coordinate of x_s 1, s 2 and x-coordinate of s 1, a When the n x coordinate of the x_a n, the inclination angle theta, the following relationship holds from the law of cosines.
t 2 = | x_s 2- x_s 1 | 2 + | x_s 2- x_s 1 | 2 -2 | x_s 2- x_s 1 | 2 x cos θ
When the above equation is transformed with respect to θ, it becomes as follows.
cosθ = (2 | x_s 2- x_s 1 | 2- t 2 ) / 2 | x_s 2- x_s 1 | 2
Next, using a gradient theta, variation in the height a n of a point on the top of the table P12, i.e., when determining the change amount Δz in the z-coordinate before and after tilting the table P12, as follows.
Δz = | x_a n -x_s 1 | × sinθ
Will be.
 調整量の算出(ステップS85)では、調整量の推定値を規定値以下にするために、以下の目的関数および制約条件の下、接続点P21~P24の調整量を網羅的に変化させて最適値を見つける多点探索を実施する。
 ここで、Δzmax_a、Δzmax_b、Δzmax_c、Δzmax_dは、それぞれ、a、b、c、dにおけるz方向のずれの絶対値の最大値であり、t、t、t、tはテーブルとベッドのx軸方向の案内面との接続点の調整量である。
  目的関数: Minimize(Δzmax_a+Δzmax_b+Δzmax_c+Δzmax_d)
  変数:   t、t、t、t
  制約条件: t≧0、t≧0、t≧0、t≧0、ここで、t、t、t、tは、tの整数倍(tは単位調整量)
  Minimizeは、最小化関数である。
In the calculation of the adjustment amount (step S85), in order to make the estimated value of the adjustment amount less than the specified value, the adjustment amount of the connection points P21 to P24 is comprehensively changed under the following objective functions and constraints to be optimal. Perform a multipoint search to find the value.
Here, Δzmax_a, Δzmax_b, Δzmax_c, Δzmax_d is the maximum value of the absolute values of, a n, b n, c n, the z direction in the d n deviation, t 1, t 2, t 3, t 4 Is the adjustment amount of the connection point between the table and the guide surface in the x-axis direction of the bed.
Objective function: Minimize (Δzmax_a + Δzmax_b + Δzmax_c + Δzmax_d)
Variables: t 1 , t 2 , t 3 , t 4
Constraints: t 1 ≧ 0, t 2 ≧ 0, t 3 ≧ 0, t 4 ≧ 0, where t 1 , t 2 , t 3 , t 4 are integer multiples of t (t is a unit adjustment amount)
Minimize is a minimization function.
 以上の処理で得られたt~tを調整量の推測値とし、これらの値を調整量記憶部23に保存する(ステップS86)。 T 1 to t 4 obtained by the above processing are used as estimated values of the adjustment amount, and these values are stored in the adjustment amount storage unit 23 (step S86).
 すべての処理が完了していると判断される場合(ステップS87:YES)には、計算を終了し、そうでなければ(ステップS87:NO)、三次元情報の変換(ステップS82)に戻る。 If it is determined that all the processes have been completed (step S87: YES), the calculation is completed, otherwise (step S87: NO), the process returns to the conversion of three-dimensional information (step S82).
 図12は、図6に示された調整量の指示(ステップS23)及び測定結果の収集(ステップS24)の詳細なフローチャートである。
 データ取得部41は、組立後の幾何学的誤差の演算(ステップS22)で計算され、調整量記憶部23に保持されている、組立作業(ステップS14)の実施対象の製品の組立作業後の各接続点の座標データを取得する(ステップS91)。
FIG. 12 is a detailed flowchart of the adjustment amount instruction (step S23) and the measurement result collection (step S24) shown in FIG.
The data acquisition unit 41 is calculated by the calculation of the geometric error after assembly (step S22) and is held in the adjustment amount storage unit 23 after the assembly work of the product to be executed in the assembly work (step S14). The coordinate data of each connection point is acquired (step S91).
 調整量指示部45は、データ取得部41を介して、組立作業後の各接続点の調整量の推定値の情報を取得し、指示情報を作業者端末60に送信し、表示部61に表示することで、作業者に調整量の指示を行う(ステップS92)。作業者は、表示部61に表示されている各接続点の調整量の推定値でテーブルP12の調整作業を実施する。
 図6に示した調整作業(ステップS13)および組立作業(ステップS14)、幾何学的誤差の測定(ステップS15)を実施した後、作業者は、作業者端末60の入力部62を操作して、組立後の調整量及び測定結果を入力する。
 測定結果収集部46は、調整後測定結果情報を収集する(ステップS93)。また、測定結果収集部46は、収集した情報を調整後測定結果記憶部24に蓄積する。
The adjustment amount indicating unit 45 acquires the information of the estimated value of the adjustment amount of each connection point after the assembly work via the data acquisition unit 41, transmits the instruction information to the worker terminal 60, and displays it on the display unit 61. By doing so, the operator is instructed on the adjustment amount (step S92). The operator performs the adjustment work of the table P12 with the estimated value of the adjustment amount of each connection point displayed on the display unit 61.
After performing the adjustment work (step S13), the assembly work (step S14), and the measurement of the geometric error (step S15) shown in FIG. 6, the worker operates the input unit 62 of the worker terminal 60. , Enter the adjustment amount and measurement result after assembly.
The measurement result collection unit 46 collects the adjusted measurement result information (step S93). Further, the measurement result collecting unit 46 stores the collected information in the adjusted measurement result storage unit 24.
 なお、以上説明してきたテーブルP12の傾きの調整対象となる工作機械は、工作機械Pに限られず、2軸以上の互いに直交する並進軸を持ち、工具の位置決めを行う他の種類の工作機械であってもよい。また、面の傾きを精密に調整する必要のある他の種類の機械、装置、器具、デバイス等であってもよい。
 また、測定対象物の3次元形状を測定する機器は、三次元測定器Mに限られない。例えば、工作機械に付属する機上測定ユニットであってもよい。さらに、作業者がダイヤルゲージを操作して得られた情報から測定対象物の3次元形状を算出してもよい。
The machine tool for which the inclination of the table P12 has been adjusted as described above is not limited to the machine tool P, but is another type of machine tool having two or more translational axes orthogonal to each other and positioning the tool. There may be. It may also be another type of machine, device, instrument, device or the like that requires precise adjustment of surface tilt.
Further, the device for measuring the three-dimensional shape of the object to be measured is not limited to the coordinate measuring device M. For example, it may be an on-machine measurement unit attached to a machine tool. Further, the three-dimensional shape of the object to be measured may be calculated from the information obtained by the operator operating the dial gauge.
 (第2の実施の形態)
 第1の実施の形態に係る調整量推定装置100においては、推定された調整量を用いて調整を行った結果、各部品の熱変形、自重等による弾性変形、三次元測定されていない部品の幾何学的誤差等の影響によって誤差が生じても、調整が完了すれば処理を終了する。そして、調整後の測定結果は調整後測定結果記憶部24に蓄積され、次回以降の調整時の補正項取得時に利用され得る。
 これに対して、第2の実施の形態に係る調整量推定装置700は、後述するように、処理を終了するまでに調整後の幾何学的誤差を取得し、これを機械学習によって分析して補正項を算出し、次回以降の調整に利用する。第1の実施の形態に係る調整量推定装置100のみを用いて調整を行う場合、三次元測定されていない部品及び三次元測定することができない面の誤差を計算することができないため、このような部品及び面の影響が大きい場合、例えば、外注部品の加工方法の変更、構成部品の変更などによって、推定された調整量と実際の調整量とに大きな差異が発生することがある。この差異が次回調整以降一定であっても、発生した差異が、三次元測定のミス又は熱変形である可能性も考慮する必要があるため、ある程度の回数を継続しなければ、補正量を決定することができない。調整量推定装置700により、機械学習を用いて補正項を算出することで、次回調整時の推定された調整量と実際の調整量との差異を小さくすることができることに加え、各部品の熱変形、自重等による弾性変形、三次元測定されていない部品の幾何学的誤差等の影響によって発生する誤差により早く対応して調整量を推定することができる。
 以下、調整量推定装置100と異なる部分についてのみ説明する。
(Second Embodiment)
In the adjustment amount estimation device 100 according to the first embodiment, as a result of making adjustments using the estimated adjustment amount, thermal deformation of each part, elastic deformation due to its own weight, etc., and parts not measured three-dimensionally Even if an error occurs due to the influence of a geometric error or the like, the process ends when the adjustment is completed. Then, the adjusted measurement result is stored in the adjusted measurement result storage unit 24, and can be used at the time of acquiring the correction term at the time of the next and subsequent adjustments.
On the other hand, the adjustment amount estimation device 700 according to the second embodiment acquires the adjusted geometric error by the time the processing is completed, and analyzes this by machine learning as described later. Calculate the correction term and use it for the next and subsequent adjustments. When the adjustment is performed using only the adjustment amount estimation device 100 according to the first embodiment, it is not possible to calculate the error of the part that has not been measured in three dimensions and the surface that cannot be measured in three dimensions. When the influence of various parts and surfaces is large, for example, a change in the processing method of an outsourced part, a change in a component part, or the like may cause a large difference between the estimated adjustment amount and the actual adjustment amount. Even if this difference is constant after the next adjustment, it is necessary to consider the possibility that the difference that has occurred is a mistake in three-dimensional measurement or thermal deformation, so the correction amount is determined if a certain number of times is not continued. Can not do it. By calculating the correction term using machine learning with the adjustment amount estimation device 700, the difference between the estimated adjustment amount and the actual adjustment amount at the time of the next adjustment can be reduced, and the heat of each component can be reduced. The amount of adjustment can be estimated more quickly in response to errors caused by deformation, elastic deformation due to its own weight, geometrical errors of parts that have not been measured three-dimensionally, and the like.
Hereinafter, only the portion different from the adjustment amount estimation device 100 will be described.
 図13は、調整量推定装置700の構成を示すブロック図である。
 調整量推定装置700は、調整量を出力とするニューラルネットワークを含む機械学習部50を備える。
FIG. 13 is a block diagram showing the configuration of the adjustment amount estimation device 700.
The adjustment amount estimation device 700 includes a machine learning unit 50 including a neural network that outputs an adjustment amount.
 調整量推定装置700は、図14に示すように、作業者の作業が終了しても、調整作業(ステップS13)及び組立作業(ステップS14)を経た後の幾何学的誤差の測定(ステップS15)で測定された幾何学的誤差測定結果データを収集し(ステップS124)、このデータに基づいて、幾何学的誤差補正項の演算を行う(ステップS125)。 As shown in FIG. 14, the adjustment amount estimation device 700 measures the geometric error after the adjustment work (step S13) and the assembly work (step S14) even after the worker's work is completed (step S15). ) Is collected (step S124), and the geometric error correction term is calculated based on this data (step S125).
 図15は、調整量推定装置700を用いた幾何学的誤差補正項の演算(ステップS125)の詳細を示したフローチャートである。 FIG. 15 is a flowchart showing the details of the calculation of the geometric error correction term (step S125) using the adjustment amount estimation device 700.
 データ取得部41は、三次元測定結果記憶部22、調整量記憶部23、調整後測定結果記憶部24から、構成部品の三次元測定結果Aと、三次元測定結果Aから調整量推定装置700で予測演算した幾何学的誤差Bと、推定した調整量C、実際に組立作業を実施した後の幾何学的誤差の測定結果Dと調整量Eの各情報を取得する(ステップS1301)。なお、幾何学的誤差Bは三次元測定結果Aに基づいて算出されるため、図15では明示されていない。また、調整量Eは幾何学的誤差の測定結果Dから算出してもよいので図15では明示されていないが、測定結果収集部46が幾何学的誤差の測定結果Dとともに調整量Eも調整後測定結果記憶部24に蓄積するようにして、調整後測定結果記憶部24から測定結果Dと調整量Eを取得できるようにしてもよい。
 ステップS1301は、請求項における調整後測定結果取得ステップの一例である。
 機械学習部50は、三次元測定結果A、予測演算した幾何学的誤差B及び推定した調整量Cを機械学習の入力情報とし、実際に組立作業を実施した後の幾何学的誤差の測定結果D及び実際に組立作業を実施した後の調整量Eを出力として、教師あり学習を行う(ステップS1302)。なお、上述したように幾何学的誤差Bと調整量Cは三次元測定結果Aから算出されるので、機械学習部50は三次元測定結果Aのみを機械学習の入力情報としてもよい。また、後述するように機械学習部50で取得する値は調整量Eのみでよく、幾何学的誤差の測定結果Dは取得できなくても問題ないので、機械学習部50は調整量Eのみを機械学習の出力情報として、教師あり学習を行ってもよい。
The data acquisition unit 41 receives the three-dimensional measurement result A of the component from the three-dimensional measurement result storage unit 22, the adjustment amount storage unit 23, and the adjusted measurement result storage unit 24, and the adjustment amount estimation device 700 from the three-dimensional measurement result A. Each information of the geometric error B predicted and calculated in the above, the estimated adjustment amount C, the measurement result D of the geometric error after the actual assembly work is performed, and the adjustment amount E is acquired (step S1301). Since the geometric error B is calculated based on the three-dimensional measurement result A, it is not specified in FIG. Further, since the adjustment amount E may be calculated from the measurement result D of the geometric error, it is not specified in FIG. 15, but the measurement result collection unit 46 adjusts the adjustment amount E together with the measurement result D of the geometric error. The measurement result D and the adjustment amount E may be obtained from the post-adjustment measurement result storage unit 24 by accumulating the measurement result storage unit 24.
Step S1301 is an example of the adjusted measurement result acquisition step in the claim.
The machine learning unit 50 uses the three-dimensional measurement result A, the geometric error B predicted and calculated, and the estimated adjustment amount C as input information for machine learning, and the measurement result of the geometric error after the actual assembly work is performed. Supervised learning is performed with D and the adjustment amount E after actually performing the assembly work as outputs (step S1302). Since the geometric error B and the adjustment amount C are calculated from the three-dimensional measurement result A as described above, the machine learning unit 50 may use only the three-dimensional measurement result A as input information for machine learning. Further, as will be described later, the value acquired by the machine learning unit 50 may be only the adjustment amount E, and there is no problem even if the measurement result D of the geometric error cannot be acquired. Therefore, the machine learning unit 50 uses only the adjustment amount E. Supervised learning may be performed as output information of machine learning.
 なお、機械学習部50は、データ取得部41を介して各情報を受け取り、事前に実行された調整の結果である、三次元測定結果A’、予測演算した幾何学的誤差B’、推定した調整量C’、実際に組立作業を実施した後の幾何学的誤差の測定結果D’、実際に組立作業を実施した後の調整量E’の各情報をそれぞれ製品単位でまとめ、データ記憶部20に記憶している。 The machine learning unit 50 receives each information via the data acquisition unit 41, and estimates the three-dimensional measurement result A', the predicted geometric error B', which is the result of the adjustment executed in advance. The information of the adjustment amount C', the measurement result D'of the geometrical error after the actual assembly work, and the adjustment amount E'after the actual assembly work are summarized for each product and stored in the data storage unit. I remember it in 20.
 調整量推定装置700の調整量演算部44は、機械学習部50に三次元測定結果Aを入力し、機械学習部50から取得した調整量Eの情報をもとに、調整量の指示を行う。
 学習後の機械学習部50を用いた調整量Eの取得は、請求項における推定ステップの一例である。
The adjustment amount calculation unit 44 of the adjustment amount estimation device 700 inputs the three-dimensional measurement result A to the machine learning unit 50, and instructs the adjustment amount based on the information of the adjustment amount E acquired from the machine learning unit 50. ..
Acquisition of the adjustment amount E using the machine learning unit 50 after learning is an example of the estimation step in the claim.
 調整量推定装置700によれば、現実に生じた誤差をフィードバックし、推定の結果を補正することができるので、調整量推定装置700を繰り返し使用することで調整量の推定の精度を高めることができる。 According to the adjustment amount estimation device 700, the error actually generated can be fed back and the estimation result can be corrected. Therefore, the accuracy of the adjustment amount estimation can be improved by repeatedly using the adjustment amount estimation device 700. it can.
 (第3の実施の形態)
 調整量推定装置100、700は、工作機械を対象とする調整量の推定装置であるが、本開示の対象は工作機械に限られない。
 第3の実施の形態に係る調整量推定装置の構成は、図1に示した調整量推定装置100又は図13に示した調整量推定装置700と同一であるが、幾何学的な誤差を小さくすることが求められる面を有する測定装置を対象とする装置である。
 本実施の形態に係る調整量推定装置の実行する処理は、調整量推定装置100又は調整量推定装置700の実行する処理と同一であるが、図21の左側の破線内に例示したように、作業者の実行する作業が加工作業ではなく測定装置の組立である点において異なる。また、この測定装置の組立は一度限りで、後々別の測定装置の組立は行われないことを想定している。このため、図21に示すように、ステップS15での測定結果は調整量推定装置で収集されない。
(Third Embodiment)
The adjustment amount estimation devices 100 and 700 are adjustment amount estimation devices for machine tools, but the subject of the present disclosure is not limited to machine tools.
The configuration of the adjustment amount estimation device according to the third embodiment is the same as the adjustment amount estimation device 100 shown in FIG. 1 or the adjustment amount estimation device 700 shown in FIG. 13, but the geometric error is small. It is a device for a measuring device having a surface that is required to be used.
The process executed by the adjustment amount estimation device according to the present embodiment is the same as the process executed by the adjustment amount estimation device 100 or the adjustment amount estimation device 700, but as illustrated in the broken line on the left side of FIG. The difference is that the work performed by the operator is not the processing work but the assembly of the measuring device. Further, it is assumed that this measuring device is assembled only once, and another measuring device is not assembled later. Therefore, as shown in FIG. 21, the measurement result in step S15 is not collected by the adjustment amount estimation device.
 なお、上記実施の形態において記載した手法は、コンピュータに実行させることのできるプログラムとして、例えば磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどの記憶媒体に書き込んで各種装置に適用することが可能である。本開示を実現するコンピュータは、記憶媒体に記憶されたプログラムを読み込み、このプログラムによって動作が制御されることにより、上述した処理を実行するものである。また、インターネット上のストレージにプログラムを格納しておき、これをダウンロードすることにより上記実施の形態において記載した手法を適用することもできる。 The method described in the above embodiment can be applied to various devices by writing to a storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory as a program that can be executed by a computer. is there. A computer that realizes the present disclosure reads a program stored in a storage medium, and the operation is controlled by the program to execute the above-described processing. It is also possible to apply the method described in the above embodiment by storing the program in a storage on the Internet and downloading the program.
 なお、本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。即ち、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 It should be noted that the present disclosure allows various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated not by the embodiment but by the claims. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of this disclosure.
 本出願は、2019年6月12日に出願された、日本国特許出願特願2019-109883号に基づく。本明細書中に日本国特許出願特願2019-109883号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-109883 filed on June 12, 2019. The specification, claims, and the entire drawing of Japanese Patent Application No. 2019-109883 shall be incorporated into this specification as a reference.
 10…情報演算装置、20…データ記憶部、21…測定位置マスタ記憶部、22…三次元測定結果記憶部、23…調整量記憶部、24…調整後測定結果記憶部、25…補正項記憶部、30…データ取得部、40…演算部、41…データ取得部、42…データ変換部、43…幾何学的誤差演算部、44…調整量演算部、45…調整量指示部、46…測定結果収集部、50…機械学習部、60…作業者端末、61…表示部、62…入力部、70…通信部、100…調整量推定装置、101…プロセッサ、102…通信部、103…主記憶部、104…補助記憶部、105…内部バス、700…調整量推定装置、C…支持材、M…三次元測定器、P…工作機械、P11…ベッド、P12…テーブル、P13…コラム、P14…ベース、P15…ヘッド、P21~P28…接続点、R、R1、R2…スペーサ、Sx、Sy、Sz…案内面。 10 ... Information calculation device, 20 ... Data storage unit, 21 ... Measurement position master storage unit, 22 ... Three-dimensional measurement result storage unit, 23 ... Adjustment amount storage unit, 24 ... Adjusted measurement result storage unit, 25 ... Correction term storage Unit, 30 ... Data acquisition unit, 40 ... Calculation unit, 41 ... Data acquisition unit, 42 ... Data conversion unit, 43 ... Geometric error calculation unit, 44 ... Adjustment amount calculation unit, 45 ... Adjustment amount indication unit, 46 ... Measurement result collection unit, 50 ... Machine learning unit, 60 ... Worker terminal, 61 ... Display unit, 62 ... Input unit, 70 ... Communication unit, 100 ... Adjustment amount estimation device, 101 ... Processor, 102 ... Communication unit, 103 ... Main memory, 104 ... Auxiliary storage, 105 ... Internal bus, 700 ... Adjustment amount estimation device, C ... Support material, M ... Three-dimensional measuring instrument, P ... Machine, P11 ... Bed, P12 ... Table, P13 ... Column , P14 ... base, P15 ... head, P21 to P28 ... connection points, R, R1, R2 ... spacers, Sx, Sy, Sz ... guide surfaces.

Claims (9)

  1.  機械の構成部品に含まれる面の上の点の座標を測定する座標測定部と、
     前記座標測定部により測定された座標に基づいて前記面の形状、姿勢又は位置の幾何特性の基準値との誤差である幾何学的誤差を演算する幾何学的誤差演算部と、を備え、
     前記幾何学的誤差演算部は、前記機械の組立前に、前記構成部品の組立前の幾何学的誤差に基づいて、前記機械の組立後の前記構成部品の前記面の基準位置からの変位を予測計算し、
     前記幾何学的誤差演算部は、前記予測計算された前記変位から、前記機械の備える調整部材であって前記面の前記幾何特性を変更する調整部材の調整量を演算する、
     調整量推定装置。
    A coordinate measuring unit that measures the coordinates of points on a surface included in machine components,
    A geometric error calculation unit that calculates a geometric error that is an error from a reference value of the geometric characteristics of the shape, orientation, or position of the surface based on the coordinates measured by the coordinate measurement unit is provided.
    Before assembling the machine, the geometric error calculation unit determines the displacement of the component from the reference position of the surface of the component after assembling the machine, based on the geometric error before assembling the component. Predictive calculation,
    The geometric error calculation unit calculates the adjustment amount of the adjustment member included in the machine that changes the geometric characteristic of the surface from the predicted and calculated displacement.
    Adjustment amount estimation device.
  2.  前記座標測定部により測定された座標を記憶する座標記憶部と、
     前記座標記憶部に記憶された座標を取得する座標取得部と、
     前記機械の設計上の座標と、前記構成部品の識別情報と、測定点の座標、次元又は精度に関する情報を含む測定点の識別情報と、を含む測定位置情報を記憶する測定位置マスタ記憶部と、
     前記測定位置マスタ記憶部を参照して、前記座標取得部から取得した座標を前記測定位置情報と対応付ける座標データ変換部と、を備える、
     請求項1に記載の調整量推定装置。
    A coordinate storage unit that stores the coordinates measured by the coordinate measurement unit, and
    A coordinate acquisition unit that acquires the coordinates stored in the coordinate storage unit, and
    A measurement position master storage unit that stores measurement position information including design coordinates of the machine, identification information of the component, and measurement point identification information including information on coordinates, dimensions, or accuracy of the measurement point. ,
    A coordinate data conversion unit that associates coordinates acquired from the coordinate acquisition unit with the measurement position information with reference to the measurement position master storage unit is provided.
    The adjustment amount estimation device according to claim 1.
  3.  演算された前記調整量を出力する調整量出力部を備える、
     請求項1又は2に記載の調整量推定装置。
    An adjustment amount output unit for outputting the calculated adjustment amount is provided.
    The adjustment amount estimation device according to claim 1 or 2.
  4.  前記機械の調整前の前記構成部品の座標を取得する調整前測定結果取得部と、
     前記機械の調整後の前記構成部品の座標を取得する調整後測定結果取得部と、
     前記調整前の前記構成部品の座標、前記調整後の前記構成部品の座標及び前記調整量を入力、前記調整量の予測値を出力として学習を行った機械学習部と、を備える、
     請求項1から3のいずれか1項に記載の調整量推定装置。
    A pre-adjustment measurement result acquisition unit that acquires the coordinates of the component before adjustment of the machine,
    An adjusted measurement result acquisition unit that acquires the coordinates of the component after adjustment of the machine,
    It includes a machine learning unit that inputs the coordinates of the component before the adjustment, the coordinates of the component after the adjustment, and the adjustment amount, and learns by using the predicted value of the adjustment amount as an output.
    The adjustment amount estimation device according to any one of claims 1 to 3.
  5.  機械の構成部品に含まれる面の上の点の座標を測定する座標測定ステップと、
     前記座標測定ステップで測定された座標に基づいて前記面の幾何特性の基準値との誤差である幾何学的誤差を演算する幾何学的誤差演算ステップと、
     前記機械の組立前に、前記幾何学的誤差演算ステップで演算された幾何学的誤差に基づいて前記機械の組立後の前記構成部品の前記面の基準位置からの変位を予測計算する変位計算ステップと、
     前記変位計算ステップで予測計算された前記変位から、前記機械の備える調整部材であって前記面の前記幾何特性を変更する調整部材の調整量を演算する調整量演算ステップと、を含む、
     調整量推定方法。
    A coordinate measurement step that measures the coordinates of a point on a surface contained in a machine component,
    A geometric error calculation step that calculates a geometric error that is an error from a reference value of the geometric characteristics of the surface based on the coordinates measured in the coordinate measurement step, and
    Before assembling the machine, a displacement calculation step of predicting and calculating the displacement of the component from the reference position of the surface of the component after the assembly of the machine based on the geometric error calculated in the geometric error calculation step. When,
    The adjustment amount calculation step of calculating the adjustment amount of the adjustment member provided in the machine and changing the geometric characteristic of the surface from the displacement predicted and calculated in the displacement calculation step is included.
    Adjustment amount estimation method.
  6.  前記座標を取得する座標取得ステップと、
     前記座標取得ステップで取得された前記座標を、前記機械の設計上の座標、前記構成部品の識別情報、及び測定点の座標、次元又は精度に関する情報を含む測定点の識別情報を含む情報である測定位置情報と対応付ける座標データ変換ステップと、を含む、
     請求項5に記載の調整量推定方法。
    The coordinate acquisition step for acquiring the coordinates and
    The coordinates acquired in the coordinate acquisition step are information including the design coordinates of the machine, the identification information of the component, and the identification information of the measurement point including the coordinates, dimensions or accuracy of the measurement point. Including the coordinate data conversion step associated with the measurement position information,
    The adjustment amount estimation method according to claim 5.
  7.  演算された前記調整量を出力する調整量出力ステップを含む、
     請求項5又は6に記載の調整量推定方法。
    Includes an adjustment amount output step that outputs the calculated adjustment amount.
    The adjustment amount estimation method according to claim 5 or 6.
  8.  前記機械の調整前の前記構成部品の座標を取得する調整前測定結果取得ステップと、
     前記機械の調整後の前記構成部品の座標を取得する調整後測定結果取得ステップと、
     前記調整前の前記構成部品の座標、前記調整後の前記構成部品の座標及び前記調整量を入力、前記調整量の予測値を出力として学習を行った機械学習部に、前記機械の調整前の前記構成部品の座標を入力する推定ステップと、を含む、
     請求項5から7のいずれか1項に記載の調整量推定方法。
    The pre-adjustment measurement result acquisition step for acquiring the coordinates of the component before the adjustment of the machine, and
    The post-adjustment measurement result acquisition step for acquiring the coordinates of the component after the adjustment of the machine, and
    Before the adjustment of the machine, the machine learning unit which input the coordinates of the component before the adjustment, the coordinates of the component after the adjustment and the adjustment amount, and learns by using the predicted value of the adjustment amount as an output. Including an estimation step of inputting the coordinates of the component.
    The adjustment amount estimation method according to any one of claims 5 to 7.
  9.  コンピュータに請求項5から8のいずれか1項に記載の方法のステップを実行させる調整量推定プログラム。 An adjustment amount estimation program that causes a computer to execute the step of the method according to any one of claims 5 to 8.
PCT/JP2020/021975 2019-06-12 2020-06-03 Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program WO2020250779A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021526040A JP7158582B2 (en) 2019-06-12 2020-06-03 Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program, and machine tool assembly method
CN202080042002.0A CN113950650A (en) 2019-06-12 2020-06-03 Adjustment amount estimation device, adjustment amount estimation method, and adjustment amount estimation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019109883 2019-06-12
JP2019-109883 2019-06-12

Publications (1)

Publication Number Publication Date
WO2020250779A1 true WO2020250779A1 (en) 2020-12-17

Family

ID=73780907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021975 WO2020250779A1 (en) 2019-06-12 2020-06-03 Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program

Country Status (3)

Country Link
JP (1) JP7158582B2 (en)
CN (1) CN113950650A (en)
WO (1) WO2020250779A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022195845A1 (en) * 2021-03-19 2022-09-22
JP2023008950A (en) * 2021-07-06 2023-01-19 寧波大学 Correction method for optimizing ratio of correction of major geometric error in 5-axis numerical control machine tool
JP7456040B1 (en) 2023-03-31 2024-03-26 株式会社牧野フライス製作所 Machine tool table equipment and machine tools

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077609A (en) * 1996-09-02 1998-03-24 Kawada Kogyo Kk Steel member manufacturing method
JPH11176744A (en) * 1997-12-16 1999-07-02 Canon Inc Assembly adjustment method of projection optical system
JP2017027360A (en) * 2015-07-22 2017-02-02 オークマ株式会社 Error compensation system for machine, error compensation method, and error compensation program
JP2018142064A (en) * 2017-02-27 2018-09-13 中村留精密工業株式会社 Error identification method for machine tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691909A (en) 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
JP5963792B2 (en) 2014-02-27 2016-08-03 株式会社牧野フライス製作所 Error map creation method and apparatus, and numerically controlled machine tool having error map creation function
CN106250662A (en) 2016-09-10 2016-12-21 上海大学 A kind of gang tool component tolerances method for designing based on synthetic geometry precision
CN108763152A (en) 2018-04-27 2018-11-06 西安交通大学 A kind of precision machine tool computer aided tolerance analysis method based on stl file

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077609A (en) * 1996-09-02 1998-03-24 Kawada Kogyo Kk Steel member manufacturing method
JPH11176744A (en) * 1997-12-16 1999-07-02 Canon Inc Assembly adjustment method of projection optical system
JP2017027360A (en) * 2015-07-22 2017-02-02 オークマ株式会社 Error compensation system for machine, error compensation method, and error compensation program
JP2018142064A (en) * 2017-02-27 2018-09-13 中村留精密工業株式会社 Error identification method for machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022195845A1 (en) * 2021-03-19 2022-09-22
JP7303593B2 (en) 2021-03-19 2023-07-05 国立大学法人東海国立大学機構 POSITIONAL RELATIONSHIP MEASUREMENT METHOD AND PROCESSING DEVICE
JP2023008950A (en) * 2021-07-06 2023-01-19 寧波大学 Correction method for optimizing ratio of correction of major geometric error in 5-axis numerical control machine tool
JP7276788B2 (en) 2021-07-06 2023-05-18 寧波大学 Compensation method for optimizing the compensation ratio of major geometric errors of 5-axis numerically controlled machine tools
JP7456040B1 (en) 2023-03-31 2024-03-26 株式会社牧野フライス製作所 Machine tool table equipment and machine tools

Also Published As

Publication number Publication date
JPWO2020250779A1 (en) 2021-11-25
CN113950650A (en) 2022-01-18
JP7158582B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2020250779A1 (en) Adjustment amount estimation apparatus, adjustment amount estimation method and adjustment amount estimation program
JP4660779B2 (en) Method for evaluating position error of moving device and method for improving moving accuracy based on the evaluation result
Sartori et al. Geometric error measurement and compensation of machines
JP4638327B2 (en) Parallel mechanism device, parallel mechanism device calibration method, calibration program, and recording medium
Ibaraki et al. Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe
CN102649246B (en) The system and method for the dimensional accuracy of the digital control machining system of compensation calculation machine
Schwenke et al. Geometric error measurement and compensation of machines—an update
Lee et al. Accuracy improvement of miniaturized machine tool: geometric error modeling and compensation
JP4675047B2 (en) Measuring coordinate correction method for three-dimensional measuring machine and three-dimensional measuring system
CN109483322B (en) Zero calibration method of five-axis numerical control machine tool
JPS63182509A (en) Method and device for calibrating coordinate measuring machine
TW201432401A (en) System and method of measuring computer numerical control probe
CN103968790A (en) Variable modelling of a measuring device
CN107063060A (en) A kind of method and device for determining surface planarity
JP2017144534A (en) Work holder and processing system of using this work holder holding tool
Li et al. A volumetric positioning error compensation method for five-axis machine tools
CN115398360A (en) Machine tool control and method for feature map-based error compensation on a machine tool
Xing et al. Comparison of direct and indirect methods for five-axis machine tools geometric error measurement
Mussatayev et al. Thermal influences as an uncertainty contributor of the coordinate measuring machine (CMM)
JPS63302310A (en) Method and apparatus for determining absolute position of point within measuring control of coordinate measuring apparatus
CN205862210U (en) Manufacture system and manufacture robot
JP2020009191A (en) Numerical controller of machine tool
JP2023035004A (en) Calculation method of corrected parameter of motion error in machine tool and machine tool
Liu et al. A line measurement method for geometric error measurement of the vertical machining center
Kunzmann et al. Accuracy enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822122

Country of ref document: EP

Kind code of ref document: A1