JP2021116684A - Material arrangement system and complete body assembly method - Google Patents

Material arrangement system and complete body assembly method Download PDF

Info

Publication number
JP2021116684A
JP2021116684A JP2021004641A JP2021004641A JP2021116684A JP 2021116684 A JP2021116684 A JP 2021116684A JP 2021004641 A JP2021004641 A JP 2021004641A JP 2021004641 A JP2021004641 A JP 2021004641A JP 2021116684 A JP2021116684 A JP 2021116684A
Authority
JP
Japan
Prior art keywords
difference
individual
adjustment
dimensional model
individual members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021004641A
Other languages
Japanese (ja)
Inventor
博文 亀川
Hirobumi Kamegawa
博文 亀川
豊 高嶋
Yutaka Takashima
豊 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Bridge Corp
Original Assignee
Yokogawa Bridge Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Bridge Corp filed Critical Yokogawa Bridge Corp
Publication of JP2021116684A publication Critical patent/JP2021116684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a material arrangement system and a complete body assembly method using the same which solve the problems of the prior art and with which a worker in charge of jack adjustment is not assigned and a worker in charge of measurement is not assigned.SOLUTION: A material arrangement system of the present invention is a system in which each individual member is arranged at an appropriate position in order to assemble a complete body composed of two or more individual members, and comprises: an adjustment jack; model storage means; and control means. Of these, the control means obtains the difference between a 3D model and measured data by comparing the 3D model read from the model storage means with the measured data obtained by measuring the positions of the provisionally arranged individual members, and controls the adjustment jack according to the difference.SELECTED DRAWING: Figure 3

Description

本願発明は、2以上の個別部材を組み立てる技術に関し、より具体的には、自動的に個別部材を適正位置に配置する部材配置システムとこれを用いた完成体組立て方法に関するものである。 The present invention relates to a technique for assembling two or more individual members, and more specifically, to a member arrangement system for automatically arranging individual members at appropriate positions and a method for assembling a finished product using the same.

橋梁は、橋台や橋脚といった下部工と、主桁や床版といった上部工によって主に構成される。この主桁は、下部工の上で直接構築されることもあるし、一旦他の場所で組立てた後に下部工上に架設することもある。このように、構造物を構築するにあたって、例えばヤードや工場などであらかじめ完成品を組立てたうえで正規の場所に設置することもあり、他の場所で完成品を組立てる手法は「地組立て」と呼ばれている。 Bridges are mainly composed of substructures such as abutments and piers and superstructures such as main girders and decks. This main girder may be built directly on the substructure, or it may be erected on the substructure after being assembled elsewhere. In this way, when constructing a structure, for example, the finished product may be assembled in advance in a yard or factory and then installed in a regular place, and the method of assembling the finished product in another place is called "ground assembly". being called.

例えば主桁を地組立てする場合、工場で製作された2以上の個別部材を下部工近くのヤードで連結する。そして、所定の延長になった完成品を橋脚等の上に架設していく。もちろん、個別部材を連結して完成品を組立てるには、計画どおりの寸法や形状となるように出来形を管理しながら行われる。 For example, when assembling the main girder by ground, two or more individual members manufactured at the factory are connected in a yard near the substructure. Then, the finished product, which is a predetermined extension, is erected on a pier or the like. Of course, in order to connect individual members and assemble a finished product, it is performed while managing the finished shape so that the dimensions and shape are as planned.

従来、主桁を地組立てする際の出来形管理は、作業者が実施する計測に基づいて行われていた。具体的には、連結された個別部材をスチールテープなどで計測することで「総延長」を管理し、基準となる水糸から連結された個別部材までの距離を計測することで「通り」を管理し、連結された個別部材上の所定位置に配置したスタッフを水準器で計測することで「そり」を管理していた。そして、完成品が計画通りの寸法や形状となるよう、個別部材の下に配置されたジャッキで位置調整を行う。 Conventionally, assembling the main girder on the ground has been performed based on the measurement performed by the operator. Specifically, the "total extension" is managed by measuring the connected individual members with steel tape, etc., and the "street" is measured by measuring the distance from the reference water thread to the connected individual members. The "sled" was managed by managing and measuring the staff placed at predetermined positions on the connected individual members with a spirit level. Then, the position is adjusted by the jacks arranged under the individual members so that the finished product has the planned dimensions and shape.

この一連の作業を行うには、2人一組の作業者が計測を担当し、やはり2人一組の作業者がジャッキ調整を担当し、すなわち4人の作業者が必要であった。しかしながら、建設業界における近年の人手不足を考えると、地組立ての出来形管理のために4人の作業者を配置することは望ましいことではない。また従来手法では、作業者の判断によるところが大きく、ヒューマンエラーが生じやすいという難点もある。さらに、日中は直射日光等の影響で部材の温度が変化しやすいため温度ムラによる部材変形が生じることもあり、そのため一般的には地組立て作業は温度ムラの影響が小さい就業時間外(つまり、早朝や夜間)に行われることが多く、時間外労働を余儀なくされていた。 In order to perform this series of operations, a pair of workers was in charge of measurement, and a pair of workers was also in charge of jack adjustment, that is, four workers were required. However, given the recent labor shortage in the construction industry, it is not desirable to have four workers to manage the finished form of the ground assembly. In addition, the conventional method has a drawback that human error is likely to occur because it depends largely on the judgment of the operator. Furthermore, during the daytime, the temperature of the members tends to change due to the influence of direct sunlight, etc., which may cause deformation of the members due to temperature unevenness. , Early morning and night), and was forced to work overtime.

そこで、地組立ての出来形管理に係る作業を自動化し、省人化を図ることが考えられる。例えば特許文献1では、被制御体の位置合わせを行うため、被制御体移動用のアクチュエータを遠隔操作する技術を提案している。 Therefore, it is conceivable to automate the work related to the finished form management of the ground assembly to save labor. For example, Patent Document 1 proposes a technique for remotely controlling an actuator for moving a controlled body in order to align the controlled body.

特開2003−341985号公報Japanese Unexamined Patent Publication No. 2003-341985

特許文献1が開示する技術は、遠隔操作によってアクチュエータを制御するため、アクチュエータを直接操作する作業者を省くことができ、すなわち省人化を図ることができる。しかしながら特許文献1が開示する技術は、あくまで単体として被制御体の位置合わせを行うものであって、地組立ての出来形管理を行うものではない。そのため、ジャッキ調整を担当する作業者は省くことができても、計測を担当する2人の作業者は変わらず必要となる。 Since the technique disclosed in Patent Document 1 controls the actuator by remote control, it is possible to omit an operator who directly operates the actuator, that is, it is possible to save manpower. However, the technique disclosed in Patent Document 1 only aligns the controlled body as a single unit, and does not manage the finished shape of the ground assembly. Therefore, even if the worker in charge of jack adjustment can be omitted, the two workers in charge of measurement are still required.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、ジャッキ調整を担当する作業者を配置することなく、しかも計測を担当する作業者も配置しない部材配置システムとこれを用いた完成体組立て方法を提供することにある。 An object of the present invention is to solve a problem of the prior art, that is, to use a member arrangement system in which a worker in charge of jack adjustment is not assigned and a worker in charge of measurement is not assigned. It is to provide a method of assembling the finished product.

本願発明は、完成体の3次元モデルと個別部材の位置計測データを照らし合わせ、その結果に応じて自動的にジャッキで調整する、という点に着目してなされたものであり、従来にはない発想に基づいて行われた発明である。 The present invention has been made focusing on the point that the three-dimensional model of the completed body is compared with the position measurement data of the individual members, and the jack is automatically adjusted according to the result, which has not been achieved in the past. It is an invention made based on an idea.

本願発明の部材配置システムは、2以上の個別部材からなる完成体を組み立てるためそれぞれの個別部材を適正位置に配置するシステムであり、調整ジャッキとモデル記憶手段、制御手段を備えたものである。このうち調整ジャッキは、載置された個別部材を3方向に移動させ得るもので、モデル記憶手段は、完成体の3次元モデルを記憶する手段である。また制御手段は、モデル記憶手段から読み出した3次元モデルと暫定的に配置された個別部材の位置を計測した実測データとを照らし合わせることによって、3次元モデルと実測データとの較差を求めるとともに、この較差に応じて調整ジャッキを制御する手段である。そして、制御手段が調整ジャッキを制御し、個別部材が較差だけ3方向に移動することによって、個別部材が適正位置に配置される。 The member arrangement system of the present invention is a system in which each individual member is arranged at an appropriate position in order to assemble a completed body composed of two or more individual members, and includes an adjustment jack, a model storage means, and a control means. Of these, the adjustment jack can move the mounted individual members in three directions, and the model storage means is a means for storing the three-dimensional model of the completed body. Further, the control means obtains the difference between the three-dimensional model and the actually measured data by comparing the three-dimensional model read from the model storage means with the actually measured data obtained by measuring the positions of the provisionally arranged individual members. It is a means for controlling the adjustment jack according to this difference. Then, the control means controls the adjustment jack, and the individual members move in three directions by the difference, so that the individual members are arranged at appropriate positions.

本願発明の部材配置システムは、測量機器をさらに備えたものとすることもできる。この測量機器は、2以上の個別部材の要所に設置された反射体を自動追尾してその反射体の座標を計測するものである。この場合、制御手段は、測量機器によって計測された実測データと3次元モデルとを照らし合わせる。 The member arrangement system of the present invention may further include a surveying instrument. This surveying instrument automatically tracks reflectors installed at key points of two or more individual members and measures the coordinates of the reflectors. In this case, the control means compares the measured data measured by the surveying instrument with the three-dimensional model.

本願発明の部材配置システムは、較差と許容値(「規格値」と呼ぶこともできる)を比較する適否判定手段をさらに備えたものとすることもできる。この適否判定手段は、較差が許容値の範囲外であれば、制御手段に調整ジャッキを制御させるものである。 The member arrangement system of the present invention may further include a suitability determination means for comparing the difference and the permissible value (which may also be referred to as a "standard value"). This suitability determination means causes the control means to control the adjustment jack if the difference is out of the allowable value range.

本願発明の部材配置システムは、2以上の温度検知手段(温度センサ)をさらに備えたものとすることもできる。この場合、本願発明の部材配置システムは、2以上の温度検知手段で計測された温度が略均一(均一含む)になったときに自動的に起動する。 The member arrangement system of the present invention may further include two or more temperature detecting means (temperature sensors). In this case, the member arrangement system of the present invention is automatically activated when the temperatures measured by two or more temperature detecting means become substantially uniform (including uniform).

本願発明の完成体組立て方法は、2以上の個別部材からなる完成体を組み立てる方法であり、暫定配置工程と計測工程、調整工程を備えた方法である。このうち暫定配置工程では、3方向に移動させ得る複数の調整ジャッキに載置することで個別部材(調整対象である個別部材)を暫定的に配置し、計測工程では、個別部材の要所の座標を計測して実測データを取得する。また調整工程では、完成体の3次元モデルと実測データとを照らし合わせることによって3次元モデルと実測データとの較差を求め、制御手段を用いて調整ジャッキを制御する。そして、制御手段が較差に応じて調整ジャッキを制御し、個別部材を較差だけ3方向に移動させることによって個別部材を適正位置に配置したうえで、完成体を組み立てる。 The finished body assembling method of the present invention is a method of assembling a finished body composed of two or more individual members, and is a method including a provisional arrangement step, a measurement step, and an adjustment step. Of these, in the provisional placement process, individual members (individual members to be adjusted) are provisionally placed by placing them on a plurality of adjustment jacks that can be moved in three directions, and in the measurement process, the key points of the individual members are Measure the coordinates and acquire the actual measurement data. Further, in the adjustment step, the difference between the three-dimensional model and the actually measured data is obtained by comparing the three-dimensional model of the completed product with the actually measured data, and the adjustment jack is controlled by using the control means. Then, the control means controls the adjustment jack according to the difference, and the individual members are moved in three directions by the difference to arrange the individual members at appropriate positions, and then the finished product is assembled.

本願発明の完成体組立て方法は、適否判定工程をさらに備えた方法とすることもできる。この適否判定工程では、調整工程の後に再度、実測データを取得するとともに、実測データと3次元モデルを照らし合わせることによって較差を求め、較差と許容値を比較する。 The finished product assembly method of the present invention may be a method further including a suitability determination step. In this suitability determination step, after the adjustment step, the actual measurement data is acquired again, and the difference is obtained by comparing the actual measurement data with the three-dimensional model, and the difference and the allowable value are compared.

本願発明の完成体組立て方法は、個別部材の要所に設置された反射体を自動追尾する測量機器を用いて反射体の座標を計測する方法とすることもできる。この場合、調整工程では、自動追尾の測量機器によって計測された実測データと3次元モデルとを照らし合わせる。そして適否判定工程において、較差が許容値の範囲内であれば完成体を組み立て、較差が許容値の範囲外であれば繰り返し調整工程を行う。 The finished body assembly method of the present invention can also be a method of measuring the coordinates of the reflector using a surveying instrument that automatically tracks the reflector installed at a key point of each individual member. In this case, in the adjustment step, the measured data measured by the automatic tracking surveying instrument is compared with the three-dimensional model. Then, in the suitability determination step, if the difference is within the allowable value range, the finished product is assembled, and if the difference is outside the allowable value range, the repeated adjustment step is performed.

本願発明の完成体組立て方法は、橋梁の主桁を地組立によって完成させる方法とすることもできる。そして完成された主桁は、下部工上に設置される。 The finished body assembly method of the present invention may also be a method of completing the main girder of the bridge by ground assembly. The completed main girder is then installed on the substructure.

本願発明の部材配置システム、完成体組立て方法には、次のような効果がある。
(1)ジャッキ調整を担当する作業者を配置することなく、しかも計測を担当する作業者も配置しないことから、従来手法に比べて大幅に省人化を図ることができる。
(2)完成体の3次元モデルと暫定的に配置された個別部材の位置とを自動的に比較し、その較差に応じて自動的にジャッキが位置調整を行うことから、作業者の判断によるところが小さく、すなわちヒューマンエラーを回避することができる。
(3)計測と位置調整を機械に委ねることから、昼夜を問わず作業を行うことができる。
The member arrangement system and the finished product assembly method of the present invention have the following effects.
(1) Since no worker in charge of jack adjustment is assigned and no worker in charge of measurement is assigned, labor saving can be significantly reduced as compared with the conventional method.
(2) The 3D model of the completed product is automatically compared with the positions of the tentatively placed individual members, and the jack automatically adjusts the position according to the difference, so it is at the discretion of the operator. However, it is small, that is, human error can be avoided.
(3) Since the measurement and position adjustment are entrusted to the machine, the work can be performed day and night.

本願発明の部材配置システムの主な構成を示すブロック図。The block diagram which shows the main structure of the member arrangement system of this invention. 本願発明の部材配置システムの主な処理の流れを示すフロー図。The flow chart which shows the main processing flow of the member arrangement system of this invention. 測量機器が個別部材の要所の座標を計測する状況を模式的に示すモデル図。A model diagram schematically showing a situation in which a surveying instrument measures the coordinates of key points of individual members. (a)は実測データを3次元座標系に配置した状況を模式的に示すモデル図、(b)は完成体の3次元モデルを模式的に示すモデル図。(A) is a model diagram schematically showing the situation where the measured data is arranged in the three-dimensional coordinate system, and (b) is a model diagram schematically showing the three-dimensional model of the completed product. (a)は架台上に配置され個別部材を支持する調整ジャッキを示す部分斜視図、(b)は3軸方向に独立して伸縮する調整ジャッキを示す部分斜視図。(A) is a partial perspective view showing an adjustment jack arranged on a gantry and supporting individual members, and (b) is a partial perspective view showing an adjustment jack that expands and contracts independently in the three axial directions. (a)は位置調整を行う前の個別部材を模式的に示す側面図、(b)は位置調整を行った後の個別部材を模式的に示す側面図。(A) is a side view schematically showing an individual member before the position adjustment is performed, and (b) is a side view schematically showing the individual member after the position adjustment is performed. 本願発明の完成体組立て方法の主な工程の流れを示すフロー図。The flow chart which shows the flow of the main process of the finished body assembly method of this invention. 実際に個別部材の仮組みを行って形成された仮の完成体に基づいて3次元モデルを作成する手順を示すフロー図。The flow chart which shows the procedure which creates the 3D model based on the tentatively completed body formed by tentatively assembling individual members. 個別部材の仮想組み立てを行うことで形成された仮の完成体に基づいて3次元モデルを作成する手順を示すフロー図。A flow chart showing a procedure for creating a three-dimensional model based on a tentative perfect body formed by virtually assembling individual members.

本願発明の部材配置システム、完成体組立て方法の実施の例を図に基づいて説明する。なお、本願発明の部材配置システム、完成体組立て方法は、2以上の独立した部品(以下、「個別部材」という。)によって組立てられる様々な物に適用することができるが、便宜上ここでは橋梁の主桁を対象とした例で説明する。なお、2以上の個別部材を組立てたもののことを、ここでは「完成体」ということとする。つまり、主桁を橋軸方向や橋軸直角方向に分割した部品が「個別部材」であり、この個別部材を少なくとも2個連結したものが「完成体」であって、必ずしも橋長分だけ個別部材が連結されたもののみが完成体ではない。 An example of the implementation of the member arrangement system and the finished product assembly method of the present invention will be described with reference to the drawings. The member arrangement system and the finished body assembly method of the present invention can be applied to various objects assembled by two or more independent parts (hereinafter, referred to as "individual members"), but here for convenience, the bridge. An example of the main digit will be described. It should be noted that the assembly of two or more individual members is referred to as a "completed body" here. In other words, the part that divides the main girder in the direction of the bridge axis or the direction perpendicular to the bridge axis is the "individual member", and the one that connects at least two of these individual members is the "completed body", which is not necessarily individual by the length of the bridge. The finished product is not the only one in which the members are connected.

1.全体概要
本願発明は、個別部材が配置される場所とは異なる場所で、個別部材の配置を制御することができる。例えば、既に構築された下部工付近に現地ヤードを設け、この現地ヤードに個別部材を配置し、現地ヤードから離れた管理事務所などから個別部材の配置を制御するわけである。もちろん、後述するように携帯端末などを利用することによって、現地ヤードにおいて個別部材の配置を調整することもできる。
1. 1. Overall Overview According to the present invention, the arrangement of individual members can be controlled at a place different from the place where the individual members are arranged. For example, a local yard is provided near the already constructed substructure, individual members are placed in the local yard, and the placement of the individual members is controlled from a management office or the like away from the local yard. Of course, the arrangement of individual members can be adjusted in the local yard by using a mobile terminal or the like as described later.

2.部材配置システム
次に、本願発明の部材配置システムについて詳しく説明する。なお、本願発明の完成体組立て方法は、本願発明の部材配置システムを用いて完成体を組立てる方法である。したがって、まずは本願発明の部材配置システムについて説明し、その後に本願発明の完成体組立て方法について説明することとする。
2. Member placement system Next, the member placement system of the present invention will be described in detail. The finished product assembly method of the present invention is a method of assembling the finished product using the member arrangement system of the present invention. Therefore, first, the member arrangement system of the present invention will be described, and then the finished assembly method of the present invention will be described.

図1は、本願発明の部材配置システム100の主な構成を示すブロック図である。この図に示すように本願発明の部材配置システム100は、制御手段101と調整ジャッキ102、モデル記憶手段103を含んで構成され、さらに測量機器104や適否判定手段105、ディスプレイといった表示手段106を含んで構成することもできる。 FIG. 1 is a block diagram showing a main configuration of the member arrangement system 100 of the present invention. As shown in this figure, the member arrangement system 100 of the present invention includes a control means 101, an adjustment jack 102, and a model storage means 103, and further includes a surveying instrument 104, a suitability determination means 105, and a display means 106 such as a display. It can also be configured with.

部材配置システム100を構成する制御手段101と適否判定手段105は、専用のものとして製造することもできるし、汎用的なコンピュータ装置を利用することもできる。このコンピュータ装置は、CPU等のプロセッサ、ROMやRAMといったメモリ、マウスやキーボード等の入力手段やディスプレイ(表示手段106)を具備するもので、パーソナルコンピュータ(PC)や、iPad(登録商標)といったタブレット型PC、スマートフォンを含む携帯端末などによって構成することができる。コンピュータ装置を利用する場合、そのコンピュータ装置は管理事務所など個別部材とは異なる場所に置くこともできるし、特にタブレット型PCや携帯端末を利用する場合は作業者が携行することもできる。なお管理事務所などにコンピュータ装置を設置するときは、後述するように調整ジャッキ102に信号を送るため、あるいは測量機器104とのデータ通信を行うために、無線通信(あるいは有線通信)手段を設けるとよい。 The control means 101 and the suitability determination means 105 constituting the member arrangement system 100 can be manufactured as dedicated ones, or a general-purpose computer device can be used. This computer device includes a processor such as a CPU, a memory such as a ROM and a RAM, an input means such as a mouse and a keyboard, and a display (display means 106), and is a personal computer (PC) or a tablet such as an iPad (registered trademark). It can be configured by a type PC, a mobile terminal including a smartphone, and the like. When using a computer device, the computer device can be placed in a place different from individual members such as a management office, and can be carried by an operator, especially when using a tablet PC or a mobile terminal. When a computer device is installed in a management office or the like, a wireless communication (or wired communication) means is provided to send a signal to the adjustment jack 102 or to perform data communication with the surveying instrument 104 as described later. It is good.

またモデル記憶手段103は、汎用的コンピュータの記憶装置を利用することもできるし、データベースサーバに構築することもできる。またデータベースサーバに構築する場合、ローカルなネットワーク(LAN:Local Area Network)に置くこともできるし、インターネット経由(つまり無線通信)で保存するクラウドサーバとすることもできる。 Further, the model storage means 103 can use a storage device of a general-purpose computer or can be built on a database server. When it is built on a database server, it can be placed on a local network (LAN: Local Area Network), or it can be a cloud server that saves via the Internet (that is, wireless communication).

以下、主に図2を参照しながら部材配置システム100を用いて行われる主な処理について詳しく説明する。図2は、本願発明の部材配置システム100の主な処理の流れを示すフロー図である。なおこれらのフロー図では、中央の列に実施する行為を示し、左列にはその行為に必要なものを、右列にはその行為から生ずるものを示している。 Hereinafter, the main processing performed by using the member arrangement system 100 will be described in detail mainly with reference to FIG. FIG. 2 is a flow chart showing a main processing flow of the member arrangement system 100 of the present invention. In these flow charts, the central column shows the actions to be performed, the left column shows what is necessary for the action, and the right column shows what results from the action.

まず、H型鋼などの鋼材を敷きならべて架台を設置するとともに、要所(例えば、個別部材の四隅など)に調整ジャッキ102を配置する。そして、第1の個別部材を複数の調整ジャッキ102の上に載置し、続いて第2の個別部材も複数の調整ジャッキ102の上に載置する。3以上の個別部材を連結する場合は、第3、第4・・・と順次載置していく。なお後述するように、基準とされる個別部材は位置の調整を行わないようにすることもできることから、一方の個別部材(例えば、第1の個別部材)は調整ジャッキ102上に載置しない(つまり、一方の個別部材の下には調整ジャッキ102を配置しない)こともできる。ここで調整ジャッキ102上に載置する個別部材の位置は正確である必要はなく、あくまで暫定である。また、調整ジャッキ102上に載置された第1の個別部材と第2の個別部材は、仮締めボルトによって仮に連結しておくとよい。 First, steel materials such as H-shaped steel are laid out to install a pedestal, and adjustment jacks 102 are arranged at key points (for example, four corners of individual members). Then, the first individual member is placed on the plurality of adjustment jacks 102, and subsequently the second individual member is also placed on the plurality of adjustment jacks 102. When connecting three or more individual members, they are placed in the order of third, fourth, .... As will be described later, since it is possible not to adjust the position of the reference individual member, one individual member (for example, the first individual member) is not placed on the adjustment jack 102 (for example, the first individual member) is not placed on the adjustment jack 102. That is, the adjustment jack 102 may not be arranged under one of the individual members). Here, the positions of the individual members placed on the adjustment jack 102 do not have to be accurate, and are only provisional. Further, the first individual member and the second individual member mounted on the adjustment jack 102 may be temporarily connected by temporary tightening bolts.

計画された数(便宜上ここでは、2個の場合で説明する)の個別部材が調整ジャッキ102上に載置されると、図3に示すように個別部材DEの要所(例えば、隅角部など)の座標を計測する(図2のStep10)。図3は、測量機器104が個別部材DEの要所の座標を計測する状況を模式的に示すモデル図である。この測量機器104は、通常のトータルステーション(TS:Total Station)を利用することもできるし、自動追尾型のトータルステーションを利用することもできるし、あるいは写真測量を行うためカメラを利用することも、レーザースキャナを利用することも、3D−TOF(Time of Flight)カメラを用いて反射体を使わずに3次元座標を取得する計測手法を利用することも、その他従来用いられている様々な測量手段を利用することもできる。測量機器104として自動追尾型のトータルステーションを利用する場合、個別部材DEの要所には測量用プリズム(ミラーやターゲットとも呼ばれる)が設置される。すなわち、自動追尾型の測量機器104が測量用プリズムを自動的に検出したうえで、測量用プリズムの位置(3次元座標)を取得するわけである。また、自動追尾型の測量機器104によって計測された測量用プリズムの座標(以下、「実測データ」という。)は、無線通信(あるいは有線通信)手段を介して制御手段101に送信され、制御手段101はこの実測データを受信する。 When the planned number of individual members (for convenience, described here in the case of two) are placed on the adjustment jack 102, the key points of the individual member DE (for example, the corner portion) as shown in FIG. Etc.) (Step 10 in FIG. 2). FIG. 3 is a model diagram schematically showing a situation in which the surveying instrument 104 measures the coordinates of the key points of the individual member DE. The surveying instrument 104 can use a normal total station (TS: Total Station), can use an automatic tracking type total station, can use a camera for photographic surveying, or can use a laser. You can use a scanner, a measurement method that uses a 3D-TOF (Time of Flight) camera to acquire 3D coordinates without using a reflector, or various other conventional surveying means. You can also use it. When an automatic tracking type total station is used as the surveying instrument 104, a surveying prism (also called a mirror or a target) is installed at a key point of the individual member DE. That is, the automatic tracking type surveying instrument 104 automatically detects the surveying prism and then acquires the position (three-dimensional coordinates) of the surveying prism. Further, the coordinates of the surveying prism (hereinafter referred to as "actual measurement data") measured by the automatic tracking type surveying instrument 104 are transmitted to the control means 101 via wireless communication (or wired communication) means, and the control means. 101 receives this actual measurement data.

実測データが得られると、制御手段101がモデル記憶手段103から3次元モデルを読み出すとともに、実測データと3次元モデルを照らし合わせる(図2のStep20)。ここで「3次元モデル」とは、複数の個別部材DEが正しい配置で連結された完成体のモデルであり、コンピュータの仮想空間に作成された立体形状(つまり3次元)モデルである。なおこの3次元モデルは、設計図から直接作成することもできるし、設計図にしたがって個別部材DEを一旦仮組みした「仮の完成体」に基づいて作成することもできる。設計図から直接作成する場合、例えば3D−CAD(Computer−Aided Design)を操作することによって、設計図データから3次元モデルを作成することができる。一方、仮の完成体に基づいて作成する場合、設計図データにしたがって実際に個別部材DEを仮組みし、設計図データとの較差が最小になるように仮の完成体を完成させる。そして、実際の現場で形状が再現できるように基準孔(パイロットホール)や基準線を設置するとともに、仮の完成体の形状を測量して得られた3次元座標に基づいて3次元モデルを作成することができる。あるいは、それぞれ個別部材DEの形状を測量して3次元座標を取得し、これら3次元座標に基づいて例えば3D−CADコンピュータ上で個別部材DEを仮想組み立て(シミュレーション)することによって3次元モデルを作成することもできる。実測データも3次元座標であるから、座標系を合わせることによって、実測データと3次元モデルを照らし合わせる(例えば、重ね合わせる)ことができる。図4(a)に実測データを3次元座標系に配置した状況を示し、図4(b)に完成体の3次元モデルを示す。なお、3次元モデルはあらかじめ作成しておき、モデル記憶手段103に記憶させておくとよい。 When the measured data is obtained, the control means 101 reads out the three-dimensional model from the model storage means 103 and compares the measured data with the three-dimensional model (Step 20 in FIG. 2). Here, the "three-dimensional model" is a model of a completed body in which a plurality of individual member DEs are connected in a correct arrangement, and is a three-dimensional shape (that is, three-dimensional) model created in a virtual space of a computer. It should be noted that this three-dimensional model can be created directly from the design drawing, or can be created based on a "temporary perfected body" in which the individual member DEs are temporarily assembled according to the design drawing. When creating directly from the design drawing, a 3D model can be created from the design drawing data by, for example, operating 3D-CAD (Computer-Aided Design). On the other hand, when creating based on the temporary finished body, the individual member DE is actually temporarily assembled according to the design drawing data, and the temporary finished body is completed so that the difference from the design drawing data is minimized. Then, a reference hole (pilot hole) and a reference line are set so that the shape can be reproduced at the actual site, and a three-dimensional model is created based on the three-dimensional coordinates obtained by surveying the shape of the temporary completed body. can do. Alternatively, a three-dimensional model is created by measuring the shape of each individual member DE, acquiring three-dimensional coordinates, and virtually assembling (simulating) the individual member DE on, for example, a 3D-CAD computer based on these three-dimensional coordinates. You can also do it. Since the actually measured data is also three-dimensional coordinates, it is possible to compare (for example, superimpose) the actually measured data with the three-dimensional model by matching the coordinate system. FIG. 4A shows a situation in which the measured data is arranged in the three-dimensional coordinate system, and FIG. 4B shows a three-dimensional model of the completed product. It is preferable to create a three-dimensional model in advance and store it in the model storage means 103.

実測データと3次元モデルを照らし合わせるにあたっては、実測データに基づく座標系を設定するとよい。例えば、第1の個別部材DEの要所(測量用プリズム)を原点に設定するとともに、個別部材DEの部材軸方向(あるいは橋軸方向)をX軸、個別部材DEの部材軸直角方向(あるいは橋軸直角方向)をY軸、鉛直軸をZ軸とするわけである。もちろん原点の位置や軸方向は、適宜設定することができる。 When comparing the measured data with the 3D model, it is advisable to set the coordinate system based on the measured data. For example, the key point (surveying prism) of the first individual member DE is set as the origin, the member axial direction (or bridge axis direction) of the individual member DE is the X axis, and the member axis perpendicular direction (or the individual member DE). The direction perpendicular to the bridge axis) is the Y-axis, and the vertical axis is the Z-axis. Of course, the position of the origin and the axial direction can be set as appropriate.

ところで、個別部材DEは暫定的に配置されていることから、この段階では個別部材DEの位置は計画どおりとはなっていないはずである。したがって、同じ座標系で実測データと3次元モデルを配置すると、両者には較差(ズレ)が生じている。より詳しくは、座標系を設定した個別部材DE(例えば、第1の個別部材DE)の実測データと3次元モデルは略一致しているが、他の個別部材DE(例えば、第2の個別部材DE)の実測データと3次元モデルには較差が生じている。そこで制御手段101は、実測データと3次元モデルとの3軸方向の座標差(dX、dY、dZ)を較差として求める。 By the way, since the individual member DE is provisionally arranged, the position of the individual member DE should not be as planned at this stage. Therefore, if the measured data and the three-dimensional model are arranged in the same coordinate system, there is a difference (deviation) between the two. More specifically, the measured data of the individual member DE for which the coordinate system is set (for example, the first individual member DE) and the three-dimensional model are substantially the same, but the other individual member DE (for example, the second individual member DE) is substantially the same. There is a difference between the measured data of DE) and the 3D model. Therefore, the control means 101 obtains the coordinate difference (dX, dY, dZ) in the three-axis direction between the actually measured data and the three-dimensional model as a difference.

実測データと3次元モデルとの較差が得られると、制御手段101が調整ジャッキ102を制御することによって個別部材DEの位置を調整する(図2のStep30)。調整ジャッキ102は、図5(a)に示すようにH型鋼などの鋼材を敷きならべた架台TRの上に配置され、要所で個別部材DEを支持するものである。またこの調整ジャッキ102は、図5(b)に示すように3軸方向に独立して個別部材DEを移動させることができる。より詳しくは、制御手段101から無線通信(あるいは有線通信)手段を介して制御信号が電動ポンプEPに送信され、これを受信した電動ポンプEPがその制御信号にしたがって調整ジャッキ102を3軸方向に伸縮させる。このとき制御手段101は、実測データと3次元モデルとの較差(dX、dY、dZ)だけ個別部材DEが移動するような制御信号を送信する。 When the difference between the measured data and the three-dimensional model is obtained, the control means 101 adjusts the position of the individual member DE by controlling the adjustment jack 102 (Step 30 in FIG. 2). As shown in FIG. 5A, the adjusting jack 102 is arranged on a pedestal TR on which steel materials such as H-shaped steel are laid, and supports the individual member DE at key points. Further, as shown in FIG. 5B, the adjustment jack 102 can independently move the individual member DE in the three axial directions. More specifically, a control signal is transmitted from the control means 101 to the electric pump EP via wireless communication (or wired communication) means, and the electric pump EP that receives the control signal adjusts the adjustment jack 102 in the three-axis direction according to the control signal. Expand and contract. At this time, the control means 101 transmits a control signal such that the individual member DE moves by the difference (dX, dY, dZ) between the actually measured data and the three-dimensional model.

図6は、個別部材DEの位置を調整する状況を模式的に示すモデル図であり、(a)は位置調整を行う前の個別部材DEの側面図を示し、(b)は位置調整を行った後の個別部材DEの側面図を示している。この図の例では、個別部材A(図では左側の個別部材DE)の要所を原点とする座標系を設定しており、したがって個別部材B(図では右側の個別部材DE)の位置を調整している。すなわち、図6(a)に示す個別部材Bは計画配置(ここでは水平配置)に対して右上がりに傾斜しているため、個別部材B側にある調整ジャッキ102を較差(dZ)分だけ鉛直方向に縮めることによって、図6(b)に示すように個別部材Bが計画配置となるように調整する。なおこの図では、鉛直方向にのみ個別部材DEの位置を調整しているが、もちろん水平方向にも較差(dX、dY)が生じているときは、その較差(dX、dY)分だけ伸縮するように調整ジャッキ102を制御する。 6A and 6B are model diagrams schematically showing a situation in which the position of the individual member DE is adjusted. FIG. 6A shows a side view of the individual member DE before the position adjustment is performed, and FIG. 6B shows the position adjustment. The side view of the individual member DE after that is shown. In the example of this figure, the coordinate system is set with the key point of the individual member A (individual member DE on the left side in the figure) as the origin, and therefore the position of the individual member B (individual member DE on the right side in the figure) is adjusted. is doing. That is, since the individual member B shown in FIG. 6A is inclined upward to the right with respect to the planned arrangement (horizontal arrangement in this case), the adjustment jack 102 on the individual member B side is vertically aligned by the difference (dZ). By contracting in the direction, the individual members B are adjusted so as to have the planned arrangement as shown in FIG. 6 (b). In this figure, the position of the individual member DE is adjusted only in the vertical direction, but of course, when there is a difference (dX, dY) in the horizontal direction, it expands and contracts by the difference (dX, dY). The adjustment jack 102 is controlled so as to.

制御手段101が求めた較差(dX、dY)分だけ個別部材DEの位置を調整しても、なお個別部材DEが計画どおりの配置となっていないこともある。そこで、適否判定手段105が調整後の個別部材DEの配置の適否判定を行う仕様にするとよい。この場合、調整後の個別部材DEの実測データが制御手段101に送られる。自動追尾型のトータルステーションを利用する場合、測量機器104が測量用プリズムを自動的に検出することから、作業者が特段の操作を行うことなく、継続的に個別部材DEの座標が計測される。 Even if the positions of the individual member DEs are adjusted by the difference (dX, dY) obtained by the control means 101, the individual member DEs may not be arranged as planned. Therefore, it is preferable that the suitability determination means 105 determines the suitability of the arrangement of the individual member DE after adjustment. In this case, the measured data of the adjusted individual member DE is sent to the control means 101. When using an automatic tracking type total station, the surveying instrument 104 automatically detects the surveying prism, so that the coordinates of the individual member DE are continuously measured without the operator performing any special operation.

再計測により移動後の個別部材DEの実測データが得られると、制御手段101が改めて実測データと3次元モデルとの較差(dX、dY、dZ)を求め、あらかじめ定めた許容値(「規格値」でもよい)と照らし合わせる。この許容値は、正負を含めた範囲(例えば、「−10mm以上かつ10mm」以下など)で設定するとよい。ここで、3軸のうちいずれか一つでも較差が許容値の範囲外であれば(図2のStep40のNo)、適否判定手段105は、制御手段101に対して個別部材DEの位置を再調整するよう信号を送る。そして、この信号を受けた制御手段101は、再計測により得られた較差(dX、dY、dZ)分だけ伸縮するように調整ジャッキ102を制御する。一方、3軸すべての較差が許容値の範囲内に収まっていれば(図2のStep40のYes)、適否判定手段105は、例えば表示手段106などに「完了」などの情報を出力するとともに、制御手段101を介して自動追尾型の測量機器104の計測を停止させる。 When the actual measurement data of the individual member DE after movement is obtained by the remeasurement, the control means 101 again obtains the difference (dX, dY, dZ) between the actual measurement data and the three-dimensional model, and obtains a predetermined allowable value (“standard value”). "May be). This permissible value may be set in a range including positive and negative (for example, "-10 mm or more and 10 mm or less"). Here, if the difference is out of the allowable value range for any one of the three axes (No in Step 40 in FIG. 2), the suitability determination means 105 repositions the individual member DE with respect to the control means 101. Send a signal to make adjustments. Then, the control means 101 that receives this signal controls the adjustment jack 102 so as to expand and contract by the difference (dX, dY, dZ) obtained by the remeasurement. On the other hand, if the difference between all three axes is within the allowable value range (Yes in Step 40 in FIG. 2), the suitability determination means 105 outputs information such as "completed" to, for example, the display means 106, and also outputs information such as "completed". The measurement of the automatic tracking type surveying instrument 104 is stopped via the control means 101.

本願発明の部材配置システム100は、オペレータの操作によって起動する仕様とすることができる。すなわち、オペレータが所定の指示(クリック等の操作)を行うと、部材配置システム100による一連の処理が開始される。ところで、既述したとおり日中は直射日光等の影響で部材の温度が変化しやすく、温度ムラによる部材変形が生じることもある。このような状況下では、部材配置システム100によっても個別部材DEを適切に配置することは難しい。そこで、個別部材DEの所定位置(例えば、個別部材DEの上下)に温度を検知するセンサを設置し、それぞれの温度(例えば上下の温度)が略均一(均一含む)になったときに(例えば、上下の温度差があらかじめ定めた閾値以下になったときに)本システムが自動で起動する仕様とするとよい。具体的には、日中に個別部材DEを暫定配置しておき、温度が安定する夜間になると自動的に部材配置システム100が起動し、一連の処理(例えば、個別部材の計測〜調整ジャッキの制御)を行っていくわけである。あるいは、温度に関わらず(つまり温度センサを設置することなく)、あらかじめ設定された時刻を起動のトリガにすることもできる。この場合、部材配置システム100がタイマーを備えることとし、所定の時刻(例えば、22時など)になった時点で自動的に本システムが自動で起動する。 The member arrangement system 100 of the present invention can be specified to be activated by an operator's operation. That is, when the operator gives a predetermined instruction (operation such as clicking), a series of processes by the member arrangement system 100 is started. By the way, as described above, the temperature of the member is likely to change due to the influence of direct sunlight or the like during the daytime, and the member may be deformed due to temperature unevenness. Under such circumstances, it is difficult to properly arrange the individual member DEs even by the member arrangement system 100. Therefore, a sensor that detects the temperature is installed at a predetermined position of the individual member DE (for example, above and below the individual member DE), and when each temperature (for example, the upper and lower temperatures) becomes substantially uniform (including uniform) (for example). , It is advisable to specify that this system starts automatically (when the temperature difference between the top and bottom falls below a predetermined threshold value). Specifically, the individual member DE is provisionally arranged during the daytime, and the member arrangement system 100 is automatically activated at night when the temperature stabilizes, and a series of processes (for example, measurement of the individual member to adjustment jack) are performed. Control) is performed. Alternatively, a preset time can be used as a trigger for activation, regardless of temperature (ie, without installing a temperature sensor). In this case, the member arrangement system 100 is provided with a timer, and the system is automatically started at a predetermined time (for example, 22:00).

3.完成体組立て方法
続いて本願発明の完成体組立て方法について図7を参照しながら説明する。なお、本願発明の完成体組立て方法は、ここまで説明した部材配置システム100を用いて完成体を組立てる方法であり、したがって部材配置システム100で説明した内容と重複する説明は避け、本願発明の完成体組立て方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「2.部材配置システム」で説明したものと同様である。
3. 3. Completed Assembling Method Next, the completed assembling method of the present invention will be described with reference to FIG. 7. The method of assembling the finished product of the present invention is a method of assembling the finished product using the member arranging system 100 described so far. Therefore, the description overlapping with the contents described in the member arranging system 100 is avoided, and the present invention is completed. Only the contents specific to the body assembly method will be explained. That is, the contents not described here are the same as those described in "2. Member arrangement system".

まず、H型鋼などの鋼材を敷きならべて架台TRを設置するとともに、要所(例えば、個別部材DEの四隅など)に調整ジャッキ102を配置する(図7のStep101)。また、あらかじめ3次元モデルを作成しておく。既述したとおり3次元モデルは、設計図から直接作成することもできるし、設計図にしたがって個別部材DEを一旦仮組みした「仮の完成体」に基づいて作成することもできる。設計図から直接作成する場合、例えば3D−CADを操作することによって、設計図データから3次元モデルを作成することができる。一方、仮の完成体に基づいて作成する場合は、図8や図9に示す手順で作成することができる。図8のケースでは、まず設計図データにしたがって実際に個別部材DEの仮組みを行う(図8のStep101a)とともに設計図データと比較し、設計図データとの較差が最小になったときに仮の完成体の完成とする(図8のStep101b)。そして、実際の現場で形状が再現できるように基準孔(パイロットホール)や基準線を設置するとともに仮の完成体の形状の測量を行い(図8のStep101c)、ここで得られた3次元座標に基づいて3次元モデルを作成する(図8のStep101d)。図9のケースでは、まずそれぞれの個別部材DEの形状を測量して3次元座標を取得し(図8のStep101e)、これら3次元座標に基づいて例えば3D−CADコンピュータ上で個別部材DEの仮想組み立て(シミュレーション)を行い(図8のStep101f)、この仮想組み立てよって形成された仮の完成体に基づいて3次元モデルを作成する(図8のStep101d)。そして、第1の個別部材DEを複数の調整ジャッキ102の上に載置し、続いて第2の個別部材DEも複数の調整ジャッキ102の上に載置する(図7のStep102)。このとき、基準とされる個別部材DE(例えば、第1の個別部材DE)は調整ジャッキ102上に載置しない(つまり、一方の個別部材DEの下には調整ジャッキ102を配置しない)こともできる。なお、ここで調整ジャッキ102上に載置する個別部材DEの位置は正確である必要はなく、あくまで暫定である。調整ジャッキ102上に載置された第1の個別部材DEと第2の個別部材DEは、仮締めボルトによって仮に連結しておく(図7のStep103)。 First, steel materials such as H-shaped steel are laid out to install the gantry TR, and adjustment jacks 102 are arranged at key points (for example, the four corners of the individual member DE) (Step 101 in FIG. 7). In addition, a three-dimensional model is created in advance. As described above, the three-dimensional model can be created directly from the design drawing, or can be created based on the "temporary completed body" in which the individual member DE is temporarily assembled according to the design drawing. When creating directly from the design drawing, a 3D model can be created from the design drawing data, for example, by operating 3D-CAD. On the other hand, when it is created based on a temporary finished product, it can be created by the procedure shown in FIGS. 8 and 9. In the case of FIG. 8, first, the individual member DE is temporarily assembled according to the design drawing data (Step 101a in FIG. 8) and compared with the design drawing data, and when the difference from the design drawing data is minimized, it is provisionally assembled. (Step 101b in FIG. 8). Then, a reference hole (pilot hole) and a reference line are installed so that the shape can be reproduced at the actual site, and the shape of the temporary finished body is surveyed (Step 101c in FIG. 8), and the three-dimensional coordinates obtained here are obtained. A three-dimensional model is created based on (Step 101d in FIG. 8). In the case of FIG. 9, the shape of each individual member DE is first measured to obtain three-dimensional coordinates (Step 101e in FIG. 8), and based on these three-dimensional coordinates, for example, a virtual individual member DE is virtualized on a 3D-CAD computer. Assembly (simulation) is performed (Step 101f in FIG. 8), and a three-dimensional model is created based on the tentatively completed body formed by this virtual assembly (Step 101d in FIG. 8). Then, the first individual member DE is placed on the plurality of adjustment jacks 102, and subsequently the second individual member DE is also placed on the plurality of adjustment jacks 102 (Step 102 in FIG. 7). At this time, the reference individual member DE (for example, the first individual member DE) may not be placed on the adjustment jack 102 (that is, the adjustment jack 102 is not placed under one of the individual members DE). can. Here, the position of the individual member DE placed on the adjustment jack 102 does not have to be accurate, and is only provisional. The first individual member DE and the second individual member DE mounted on the adjustment jack 102 are temporarily connected by temporary tightening bolts (Step 103 in FIG. 7).

計画された数(便宜上ここでは、2個の場合で説明する)の個別部材DEが調整ジャッキ102上に載置されると、個別部材DEの要所の座標を計測する(図7のStep104)。より詳しくは、個別部材DEの要所に設置された測量用プリズムを自動追尾型の測量機器104が自動的に検出したうえで、その測量用プリズムの位置(3次元座標)、すなわち実測データを取得する。 When the planned number of individual member DEs (described in the case of two here for convenience) are placed on the adjustment jack 102, the coordinates of the key points of the individual member DEs are measured (Step 104 in FIG. 7). .. More specifically, after the automatic tracking type surveying instrument 104 automatically detects the surveying prism installed at the key point of the individual member DE, the position (three-dimensional coordinates) of the surveying prism, that is, the measured data is obtained. get.

実測データが得られると、制御手段101を用いて実測データと3次元モデルを照らし合わせ、実測データと3次元モデルとの較差(dX、dY、dZ)を求める(図7のStep105)。そして、制御手段101を用いて調整ジャッキ102を制御することで個別部材DEの位置を調整する(図7のStep106)。 When the measured data is obtained, the measured data is compared with the three-dimensional model using the control means 101, and the difference (dX, dY, dZ) between the measured data and the three-dimensional model is obtained (Step 105 in FIG. 7). Then, the position of the individual member DE is adjusted by controlling the adjustment jack 102 using the control means 101 (Step 106 in FIG. 7).

個別部材DEの位置を調整すると、再度、個別部材DEの要所の座標を計測する(図7のStep107)。自動追尾型のトータルステーションを利用する場合、測量機器104が測量用プリズムを自動的に検出することから、作業者が特段の操作を行うことなく、移動後の個別部材DEの座標を再計測することができる。 When the position of the individual member DE is adjusted, the coordinates of the key points of the individual member DE are measured again (Step 107 in FIG. 7). When using an automatic tracking type total station, the surveying instrument 104 automatically detects the surveying prism, so the coordinates of the individual member DE after movement must be remeasured without the operator performing any special operation. Can be done.

再計測により移動後の個別部材DEの実測データが得られると、改めて実測データと3次元モデルとの較差(dX、dY、dZ)を求め、適否判定手段105によってこの較差と許容値を照らし合わせる(図7のStep108)。ここで、3軸のうちいずれか一つでも較差が許容値の範囲外であれば(図7のStep108のNo)、再度、個別部材DEの位置を調整する。一方、3軸すべての較差が許容値の範囲内に収まっていれば(図7のStep108のYes)、第1の個別部材DEと第2の個別部材DEを連結する(ボルトの締め付けを行う)ことで完成体を構築し(図7のStep109)、この完成体を橋台上や橋脚上の所定位置に架設する(図7のStep110)。 When the actual measurement data of the individual member DE after movement is obtained by the remeasurement, the difference (dX, dY, dZ) between the actual measurement data and the three-dimensional model is obtained again, and the difference and the allowable value are compared with the suitability determination means 105. (Step 108 in FIG. 7). Here, if the difference is out of the allowable value range for any one of the three axes (No in Step 108 in FIG. 7), the position of the individual member DE is adjusted again. On the other hand, if the difference between all three axes is within the allowable value range (Yes in Step 108 in FIG. 7), the first individual member DE and the second individual member DE are connected (bolts are tightened). As a result, a completed body is constructed (Step 109 in FIG. 7), and this completed body is erected at a predetermined position on an abutment or a pier (Step 110 in FIG. 7).

本願発明の部材配置システム、完成体組立て方法は、道路橋、鉄道橋、管路橋といったあらゆる用途の橋梁に利用でき、また橋梁の主桁以外の長尺物などを完成させる様々なケースで利用することができる。本願発明が、建設業界における人手不足という問題を解決することを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。 The member arrangement system and the finished body assembly method of the present invention can be used for bridges for all purposes such as road bridges, railway bridges, and pipeline bridges, and are used in various cases for completing long objects other than the main girder of the bridge. be able to. Considering that the invention of the present application solves the problem of labor shortage in the construction industry, it can be said that the invention can be used not only industrially but also can be expected to make a great contribution to society.

100 本願発明の部材配置システム
101 (部材配置システムの)制御手段
102 (部材配置システムの)調整ジャッキ
103 (部材配置システムの)モデル記憶手段
104 (部材配置システムの)測量機器
105 (部材配置システムの)適否判定手段
106 (部材配置システムの)表示手段
EP 電動ポンプ
DE 個別部材
TR 架台
100 Member placement system 101 (of member placement system) Control means 102 (of member placement system) Adjustment jack 103 (of member placement system) Model storage means 104 (of member placement system) Surveying instrument 105 (of member placement system) ) Appropriateness judgment means 106 Display means (of member placement system) EP Electric pump DE Individual member TR pedestal

Claims (8)

2以上の個別部材からなる完成体を組み立てるため、それぞれの該個別部材を適正位置に配置するシステムであって、
載置された前記個別部材を3方向に移動させ得る調整ジャッキと、
前記完成体の3次元モデルを記憶するモデル記憶手段と、
前記モデル記憶手段から読み出した前記3次元モデルと、暫定的に配置された前記個別部材の位置を計測した実測データと、を照らし合わせることによって該3次元モデルと該実測データとの較差を求め、該較差に応じて前記調整ジャッキを制御する制御手段と、を備え、
前記制御手段が前記調整ジャッキを制御し、前記個別部材が前記較差だけ3方向に移動することによって、該個別部材が適正位置に配置される、
ことを特徴とする部材配置システム。
A system in which each individual member is placed in an appropriate position in order to assemble a completed body composed of two or more individual members.
An adjustment jack that can move the mounted individual members in three directions,
A model storage means for storing the three-dimensional model of the completed product, and
By comparing the three-dimensional model read from the model storage means with the actually measured data obtained by measuring the positions of the tentatively arranged individual members, the difference between the three-dimensional model and the actually measured data is obtained. A control means for controlling the adjustment jack according to the difference is provided.
The control means controls the adjustment jack, and the individual member moves in three directions by the difference, so that the individual member is arranged at an appropriate position.
A member placement system characterized by this.
前記個別部材の要所に設置された反射体を自動追尾して、該反射体の座標を計測する測量機器を、さらに備え、
前記制御手段は、前記測量機器によって計測された前記実測データと、前記3次元モデルと、を照らし合わせる、
ことを特徴とする請求項1記載の部材配置システム。
A surveying instrument for automatically tracking a reflector installed at a key point of the individual member and measuring the coordinates of the reflector is further provided.
The control means compares the measured data measured by the surveying instrument with the three-dimensional model.
The member arrangement system according to claim 1.
該較差と許容値を比較する適否判定手段を、さらに備え、
前記適否判定手段は、前記較差が許容値の範囲外であれば、前記制御手段に前記調整ジャッキを制御させる、
ことを特徴とする請求項1又は請求項2記載の部材配置システム。
A suitability determination means for comparing the difference and the permissible value is further provided.
The suitability determination means causes the control means to control the adjustment jack if the difference is out of the allowable value range.
The member arrangement system according to claim 1 or 2, wherein the member arrangement system is characterized in that.
個別部材の所定位置に設置される2以上の温度検知手段を、さらに備え、
2以上の前記温度検知手段で計測された温度が、均一又は略均一になったときに自動で起動する、
ことを特徴とする請求項1乃至請求項3のいずれかに記載の部材配置システム。
Further equipped with two or more temperature detecting means installed at predetermined positions of individual members,
Automatically starts when the temperature measured by two or more of the temperature detecting means becomes uniform or substantially uniform.
The member arrangement system according to any one of claims 1 to 3, wherein the member arrangement system is characterized in that.
2以上の個別部材からなる完成体を組み立てる方法であって、
3方向に移動させ得る複数の調整ジャッキに調整対象である前記個別部材を載置することで、該個別部材を暫定的に配置する暫定配置工程と、
前記個別部材の要所の座標を計測して、実測データを取得する計測工程と、
前記完成体の3次元モデルと、前記実測データと、を照らし合わせることによって該3次元モデルと該実測データとの較差を求め、制御手段を用いて前記調整ジャッキを制御する調整工程と、を備え、
前記制御手段が前記較差に応じて前記調整ジャッキを制御し、前記個別部材を該較差だけ3方向に移動させることによって該個別部材を適正位置に配置したうえで、前記完成体を組み立てる、
ことを特徴とする完成体組立て方法。
It is a method of assembling a finished product consisting of two or more individual members.
A provisional arrangement step of tentatively arranging the individual members by placing the individual members to be adjusted on a plurality of adjustment jacks that can be moved in three directions.
A measurement process that measures the coordinates of the key points of the individual members and acquires actual measurement data,
It is provided with an adjustment step of obtaining a difference between the three-dimensional model and the actually measured data by comparing the three-dimensional model of the completed body with the actually measured data and controlling the adjustment jack by using a control means. ,
The control means controls the adjustment jack according to the difference, and the individual member is moved in three directions by the difference to arrange the individual member in an appropriate position, and then the finished product is assembled.
A method of assembling a finished product, which is characterized by the fact that.
前記計測工程では、前記個別部材の要所に設置された反射体を自動追尾して該反射体の座標を計測する測量機器を用いて計測し、
前記調整工程では、前記測量機器によって計測された前記実測データと、前記3次元モデルと、を照らし合わせる、
ことを特徴とする請求項5記載の部材配置システム。
In the measurement step, a reflector installed at a key point of the individual member is automatically tracked and measured using a surveying instrument that measures the coordinates of the reflector.
In the adjustment step, the actual measurement data measured by the surveying instrument is compared with the three-dimensional model.
5. The member arrangement system according to claim 5.
前記調整工程の後に、再度、前記実測データを取得するとともに、該実測データと前記3次元モデルを照らし合わせることによって前記較差を求め、該較差と許容値を比較する適否判定工程を、さらに備え、
前記適否判定工程において、前記較差が許容値の範囲内であれば前記完成体を組み立て、前記較差が許容値の範囲外であれば繰り返し前記調整工程を行う、
ことを特徴とする請求項5又は請求項6記載の完成体組立て方法。
After the adjustment step, the measurement data is acquired again, and the difference is obtained by comparing the measurement data with the three-dimensional model, and a suitability determination step of comparing the difference and the permissible value is further provided.
In the suitability determination step, if the difference is within the allowable value range, the finished product is assembled, and if the difference is outside the allowable value range, the adjustment step is repeated.
The finished body assembly method according to claim 5 or 6, wherein the finished product is assembled.
前記完成体が橋梁の主桁であり、地組立てによって完成させた該主桁を下部工上に設置する、
ことを特徴とする請求項5乃至請求項7のいずれかに記載の完成体組立て方法。
The completed body is the main girder of the bridge, and the main girder completed by ground assembly is installed on the substructure.
The finished body assembly method according to any one of claims 5 to 7, wherein the finished product is assembled.
JP2021004641A 2020-01-24 2021-01-15 Material arrangement system and complete body assembly method Pending JP2021116684A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009709 2020-01-24
JP2020009709 2020-01-24

Publications (1)

Publication Number Publication Date
JP2021116684A true JP2021116684A (en) 2021-08-10

Family

ID=77174330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004641A Pending JP2021116684A (en) 2020-01-24 2021-01-15 Material arrangement system and complete body assembly method

Country Status (1)

Country Link
JP (1) JP2021116684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086467A (en) * 2021-11-24 2022-02-25 中铁四局集团第五工程有限公司 Prefabricated installation construction method for steel-concrete composite beam bridge deck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086467A (en) * 2021-11-24 2022-02-25 中铁四局集团第五工程有限公司 Prefabricated installation construction method for steel-concrete composite beam bridge deck

Similar Documents

Publication Publication Date Title
CN109184213B (en) Steel truss construction process based on BIM lofting and three-dimensional scanning
JP4716175B2 (en) Construction support method and construction support system
JP6588869B2 (en) Concrete slab finish height management device
CN109680615A (en) The three-dimensional coordinate measurement construction method of short line casting beam sections
CN101360873A (en) An automated brick laying system for constructing a building from a plurality of bricks
JP2013019202A (en) Method for controlling finish height of concrete slab
CN111622110B (en) Intelligent installation and construction method for prefabricated bent cap based on three-dimensional measurement lofting technology
US20230279620A1 (en) Three-dimensional bridge deck finisher
JP2021116684A (en) Material arrangement system and complete body assembly method
CN106223623A (en) Steel construction box arched roof truss installation method
CN112195780A (en) Numerical control method for erection line shape of segmental precast bridge
CN104594508A (en) Multidimensional space steel structure installation joint positioning construction method
CN113386145B (en) Template robot, template robot control method and template robot system
JP4784886B2 (en) Construction management method for structures using precast members
JPH08142034A (en) Automatic control device of form for short line match casting
CN110144828A (en) The linear control method of the location structure of steel box girder assembling, support construction and bridge
CN106320186B (en) A kind of skewback embedded anchor bar positioning system and construction method
Ercan et al. Online synchronization of building model for on-site mobile robotic construction
CN113897821A (en) Subway track slab fine adjustment system and method
JP2007177541A (en) Structure in-situ installation system
JP7083129B2 (en) Installation height management system and installation height management method
JP2021075874A (en) Method to predict structure shape using precast member
JP7471123B2 (en) Construction work support system and construction work support method
JP7412864B2 (en) Construction method of concrete structure using precast segments
Yu et al. Design and construction of complex shell structure using U-shaped glass and steel frame with collaborative robotics and human expertise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231222