JPH1070272A - Semiconductor device and fabrication thereof - Google Patents

Semiconductor device and fabrication thereof

Info

Publication number
JPH1070272A
JPH1070272A JP9183142A JP18314297A JPH1070272A JP H1070272 A JPH1070272 A JP H1070272A JP 9183142 A JP9183142 A JP 9183142A JP 18314297 A JP18314297 A JP 18314297A JP H1070272 A JPH1070272 A JP H1070272A
Authority
JP
Japan
Prior art keywords
substrate
threshold voltage
ions
active region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9183142A
Other languages
Japanese (ja)
Inventor
Saiko Kin
載 甲 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JPH1070272A publication Critical patent/JPH1070272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a leakage current due to impurity depletion in an active region by defining the active region with a field insulator, forming an impurity region of same conductivity type as a substrate and then forming a gate pattern on a gate insulator and the field insulator. SOLUTION: A field oxide 32 is deposited on an initial P type semiconductor substrate 31 and the active region AA of an NMOS transistor having low threshold voltage is defined. A screen insulator 90 is then deposited on the active regions AA, AA' and a P well 33 is formed on the substrate to include an extended active region, i.e., the projecting part AA', while surrounding the field oxide 32. Subsequently, the screen insulator 90 is removed and a gate insulator 34 is deposited on the active regions AA, AA'. Finally, a gate 35 is formed on the substrate. According to the method, the active region AA beneath the field oxide 32 underlying the gate 35 of an NMOS transistor having a low threshold voltage is extended to the P well 33.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置にかか
り、特に低いしきい電圧(threshold voltage) を有する
MOSトランジスタ及びその製造方法に関する。
The present invention relates to a semiconductor device, and more particularly to a MOS transistor having a low threshold voltage and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体装置の高集積化及び機能の複雑化
に応じて集積回路の特殊な性能が要求される。例えば、
相対的に低いしきい電圧を有するMOSトランジスタを
用いてソース及びドレインの間の電圧降下を最小化し、
MOSトランジスタの電気的特性を向上させて半導体装
置の機能を向上させる。
2. Description of the Related Art As semiconductor devices become more highly integrated and their functions become more complicated, special performance of integrated circuits is required. For example,
Minimizing the voltage drop between the source and drain using a MOS transistor having a relatively low threshold voltage,
The function of the semiconductor device is improved by improving the electrical characteristics of the MOS transistor.

【0003】一般に、低いしきい電圧を有するNMOS
トランジスタを実現するために、NMOSトランジスタ
を形成した後、基板にしきい電圧調節用P形不純物イオ
ンをカウントドーピング(count doping)してしきい電圧
を低めている。しかし、基板にドーピングされたP形不
純物の増加のため電子の移動度(mobility)が低まる。
Generally, an NMOS having a low threshold voltage
In order to realize a transistor, after forming an NMOS transistor, the substrate is count-doped with P-type impurity ions for adjusting a threshold voltage to lower the threshold voltage. However, the mobility of electrons decreases due to an increase in the amount of P-type impurities doped into the substrate.

【0004】また、低いしきい電圧を有するNMOSト
ランジスタを実現するために、Pウェルが形成されてい
ない初期のP形半導体基板にしきい電圧調節用P形不純
物イオンを注入してしきい電圧を低めている。即ち、初
期のP形基板がPウェルより相対的にP形不純物の濃度
が低いので、初期の基板上に形成されるNMOSトラン
ジスタは相対的に低いしきい電圧を有する。
Further, in order to realize an NMOS transistor having a low threshold voltage, P-type impurity ions for adjusting a threshold voltage are implanted into an initial P-type semiconductor substrate on which no P-well is formed to lower the threshold voltage. ing. That is, since the initial P-type substrate has a relatively lower concentration of P-type impurities than the P-well, the NMOS transistor formed on the initial substrate has a relatively low threshold voltage.

【0005】図1は前述した低い電圧を有するNMOS
トランジスタの平面図である。
FIG. 1 shows an NMOS having a low voltage as described above.
FIG. 3 is a plan view of a transistor.

【0006】図1に示すように、低いしきい電圧を有す
るNMOSトランジスタの活成領域(active region) A
が初期のP形基板(図示せず)に定められる。活性領域
Aから所定間隔をおいてPウェル3が形成されて活性領
域Aの周辺を囲む活性領域A’が定められる。活性領域
A,A’の中央に縦の方にPウェル2に所定部分拡張さ
れたゲート5がおかれる。
As shown in FIG. 1, an active region A of an NMOS transistor having a low threshold voltage.
Are defined for the initial P-type substrate (not shown). A P-well 3 is formed at a predetermined distance from the active region A to define an active region A ′ surrounding the periphery of the active region A. In the center of the active regions A and A ', a gate 5 extended in a predetermined portion in the P well 2 is provided vertically.

【0007】図2は図1のII−II’線に沿って切断され
た断面図であって、図2を参照して低いしきい電圧を有
するNMOSトランジスタの製造方法を説明する。
FIG. 2 is a cross-sectional view taken along the line II-II 'of FIG. 1. Referring to FIG. 2, a method of manufacturing an NMOS transistor having a low threshold voltage will be described.

【0008】図2に示すように、初期のP形半導体基板
1上にフィールド酸化膜2が形成され、低いしきい電圧
を有するNMOSトランジスタ領域を除外した基板1内
にPウェル3が形成されて活性領域A,A’が定められ
る。基板1内にしきい電圧調節用P形不純物イオン10
が注入され、活性領域A上にゲート絶縁膜4が形成され
る。そして、基板1上にゲート5が予定された形態に形
成され、図示してはいない、ゲート5の両側の活性領域
AにN形不純物イオンが注入されてソース及びドレイン
が形成される。
As shown in FIG. 2, a field oxide film 2 is formed on an initial P-type semiconductor substrate 1, and a P well 3 is formed in the substrate 1 excluding an NMOS transistor region having a low threshold voltage. Active regions A and A 'are defined. P-type impurity ions 10 for adjusting threshold voltage in substrate 1
Is implanted to form gate insulating film 4 on active region A. Then, a gate 5 is formed on the substrate 1 in a predetermined form, and N-type impurity ions (not shown) are implanted into the active regions A on both sides of the gate 5 to form a source and a drain.

【0009】[0009]

【発明が解決しようとする課題】しかし、前記NMOS
トランジスタは、しきい電圧調節用P形不純物イオン1
0の注入後、ゲート5の下部にあるフィールド酸化膜2
の下部の活性領域A’にP形不純物の欠乏層20が形成
される。このような欠乏層20はNMOSトランジスタ
の動作時にソース及びドレインの間に漏洩電流(lea
kage current)を発生させて素子の電気的
特性を低下させる。
However, the above-mentioned NMOS
The transistor is a threshold voltage adjusting P-type impurity ion 1
After the implantation of 0, the field oxide film 2 under the gate 5
A p-type impurity deficient layer 20 is formed in an active region A 'below. The depletion layer 20 has a leakage current between the source and the drain during operation of the NMOS transistor.
Kage current is generated to degrade the electrical characteristics of the device.

【0010】従って、本発明の目的は、低いしきい電圧
を有するトランジスタにおいて、活性領域の不純物欠乏
による漏洩電流を防止することのできるMOSトランジ
スタ及びその製造方法を提供することにある。
It is therefore an object of the present invention to provide a MOS transistor having a low threshold voltage and capable of preventing a leakage current due to a lack of impurities in an active region, and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明による低いしきい電圧を有する半導体装置
は、所定の導電型の半導体基板と、基板上に形成された
フィールド絶縁膜と、フィールド絶縁膜によって前記基
板内に定められた活性領域と、フィールド絶縁膜を囲む
ように基板に形成された基板と同一の導電型の不純物領
域と、基板上に形成されたゲート絶縁膜と、ゲート絶縁
膜及びフィールド絶縁膜上に形成されたゲートパターン
とを含む。
In order to achieve the above object, a semiconductor device having a low threshold voltage according to the present invention comprises a semiconductor substrate of a predetermined conductivity type, a field insulating film formed on the substrate, An active region defined in the substrate by the field insulating film, an impurity region of the same conductivity type as the substrate formed on the substrate so as to surround the field insulating film, a gate insulating film formed on the substrate, and a gate. An insulating film and a gate pattern formed on the field insulating film.

【0012】また、上記目的を達成するために、本発明
による低いしきい電圧を有する半導体装置の製造方法
は、所定の導電型の半導体基板上にフィールド絶縁膜を
形成して活性領域を定められる工程と、基板に前記フィ
ールド絶縁膜の下部を囲むように基板と同一の導電型の
不純物領域を形成する工程と、基板にしきい電圧調節イ
オンを注入する工程と、基板上にゲート絶縁膜を形成す
る工程と、ゲート絶縁膜及びフィールド絶縁膜上にゲー
トパターンを形成する工程とを含む。
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device having a low threshold voltage, wherein a field insulating film is formed on a semiconductor substrate of a predetermined conductivity type to define an active region. Forming an impurity region of the same conductivity type as the substrate so as to surround a lower portion of the field insulating film in the substrate, implanting threshold voltage adjusting ions into the substrate, and forming a gate insulating film on the substrate And forming a gate pattern on the gate insulating film and the field insulating film.

【0013】本発明によれば、ゲートの下部のフィール
ド絶縁膜の下部の活性領域が不純物領域まで拡張され
る。これにより、形不純物領域より不純物の濃度が相対
的に低い基板の活性領域で不純物の欠乏が防止される。
According to the present invention, the active region below the field insulating film below the gate is extended to the impurity region. This prevents impurity deficiency in the active region of the substrate where the impurity concentration is relatively lower than that of the shaped impurity region.

【0014】[0014]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施例を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図3は本発明による低いしきい電圧を有す
るNMOSトランジスタの平面図である。
FIG. 3 is a plan view of an NMOS transistor having a low threshold voltage according to the present invention.

【0016】図3に示すように、初期のP形基板(図示
せず)に低いしきい電圧を有するNMOSトランジスタ
の活性領域AAが定められる。この際、活性領域AAは
その中央部分の両側の所定部分が縦の方に突出した突出
部位AA’を有する。活性領域AAの突出部位AA’と
所定部分が重なると共に、活性領域AAから所定間隔を
おいて前記基板にPウェル33が形成される。活性領域
AAの前記中央上部に突出部位AA’及びPウェル33
まで所定部分が拡張されたゲート35が形成される。即
ち、活性領域AAの所定部分がゲート35の下部でPウ
ェル33に拡張されている。
As shown in FIG. 3, an active region AA of an NMOS transistor having a low threshold voltage is defined on an initial P-type substrate (not shown). At this time, the active region AA has a protruding portion AA ′ in which predetermined portions on both sides of the central portion protrude vertically. A P-well 33 is formed in the substrate at a predetermined distance from the active region AA while a predetermined portion overlaps with the projecting portion AA ′ of the active region AA. The protruding portion AA ′ and the P well 33 are provided at the upper center of the active region AA
A gate 35 having a predetermined portion extended to the above is formed. That is, a predetermined portion of the active region AA is extended to the P well 33 below the gate 35.

【0017】図4A乃至図4Cは図3のIV−IV’線に沿
って切断された断面図であって、図4A乃至図4Cを参
照して本発明の一実施例によるNMOSトランジスタの
製造方法を説明する。
FIGS. 4A to 4C are cross-sectional views taken along the line IV-IV 'of FIG. 3. Referring to FIGS. 4A to 4C, a method of manufacturing an NMOS transistor according to an embodiment of the present invention will be described. Will be described.

【0018】図4Aに示すように、初期のP形半導体基
板31上にフィールド酸化膜32が形成されて低いしき
い電圧を有するNMOSトランジスタの活性領域AAが
定められる。この時、フィールド酸化膜32は従来のも
のより一定距離だけさらに離れて形成され、活性領域A
Aが図面に示すように、従来の活性領域A,A’より所
定領域だけ拡張されて定められる。そして、活性領域A
A,AA’上にスクリーン絶縁膜90が形成される。
As shown in FIG. 4A, a field oxide film 32 is formed on an initial P-type semiconductor substrate 31 to define an active region AA of an NMOS transistor having a low threshold voltage. At this time, the field oxide film 32 is formed further apart from the conventional one by a certain distance, and the active region A is formed.
As shown in the drawing, A is defined by extending a predetermined area from the conventional active areas A and A '. And the active region A
The screen insulating film 90 is formed on A and AA '.

【0019】図4Bに示すように、フィールド酸化膜3
2を囲みつつ拡張された活性領域、即ち図3の突出部位
AA’を含むように基板にPウェル33が形成される。
その後、活性領域AA,AA’にしきい電圧調節用P形
不純物イオン100、好ましくはBイオンを約10〜5
0KeVのエネルギーと5×1011〜5×1012ions/
cm2 の濃度でイオン注入するか、またはBF2 イオンを
30〜80KeVのエネルギーと5×1011〜5×10
12ions/cm2 の濃度でイオン注入する。これによって調
節されたしきい電圧は約0.2〜0.4V程度になる。
As shown in FIG. 4B, the field oxide film 3
A P-well 33 is formed in the substrate so as to include an extended active region surrounding the area 2, that is, the protruding portion AA ′ of FIG.
Thereafter, P-type impurity ions 100 for adjusting the threshold voltage, preferably B ions, are applied to the active regions AA and AA 'for about 10 to 5 times.
Energy of 0 KeV and 5 × 10 11 to 5 × 10 12 ions /
Ion implantation at a concentration of cm 2 or BF 2 ions at an energy of 30 to 80 KeV and 5 × 10 11 to 5 × 10
Ions are implanted at a concentration of 12 ions / cm 2 . The adjusted threshold voltage is about 0.2 to 0.4V.

【0020】図4Cに示すように、スクリーン絶縁膜9
0が除去され、活性領域AA,AA’上にゲート絶縁膜
34が形成される。そして、基板上部にゲート35が形
成される。
As shown in FIG. 4C, the screen insulating film 9
0 is removed, and a gate insulating film 34 is formed on the active regions AA and AA '. Then, a gate 35 is formed above the substrate.

【0021】上記実施例によれば、低いしきい電圧を持
つNMOSトランジスタのゲート35下部のフィールド
酸化膜32下部の活性領域AAがPウェル33まで拡張
される。これにより、Pウェル33より相対的にP形不
純物の濃度が低い初期のP形基板31の活性領域AAで
P形不純物の欠乏が防止される。
According to the above embodiment, the active region AA under the field oxide film 32 under the gate 35 of the NMOS transistor having a low threshold voltage is extended to the P well 33. As a result, deficiency of the P-type impurity in the active region AA of the P-type substrate 31 in which the concentration of the P-type impurity is relatively lower than that of the P-well 33 is prevented.

【0022】図5A及び図5Bは本発明の他の実施例に
よるNMOSトランジスタの断面図であって、断面方向
は図3のIV−IV’線に沿って切断された方向を示す。一
方、ここでは基板にPウェルが形成された状態で、相対
的に低いしきい電圧を有するNMOSトランジスタの製
造方法を説明する。
FIGS. 5A and 5B are cross-sectional views of an NMOS transistor according to another embodiment of the present invention, and the cross-sectional direction is a direction cut along line IV-IV ′ of FIG. On the other hand, a method of manufacturing an NMOS transistor having a relatively low threshold voltage in a state where a P well is formed in a substrate will be described.

【0023】図5Aに示すように、初期のP形半導体基
板51のNMOSトランジスタ予定領域にP形不純物イ
オン、好ましくはBイオンが約50〜150KeVのエ
ネルギーと5×1012〜5×1013ions/cm2 の濃度で
イオン注入された後、拡散工程によってPウェル52が
形成される。これにより、NMOSトランジスタのしき
い電圧は0.2〜0.4V程度になる。そして、Pウェ
ル52上にフィールド酸化膜53が形成されて活性領域
AAが定められる。この時、フィールド酸化膜52は従
来より一定距離だけさらに離れて形成され、活性領域A
Aが図面に示されたように、従来の活性領域A,A’よ
り図3の突出部位AA’だけ拡張されて定められる。そ
の後、活性領域AA,AA’上にスクリーン絶縁膜54
が形成される。
As shown in FIG. 5A, P-type impurity ions, preferably B ions, are added to the region where the NMOS transistor is to be formed in the initial P-type semiconductor substrate 51 at an energy of about 50 to 150 KeV and 5 × 10 12 to 5 × 10 13 ions. After ion implantation at a concentration of / cm 2, a P well 52 is formed by a diffusion process. As a result, the threshold voltage of the NMOS transistor becomes about 0.2 to 0.4V. Then, a field oxide film 53 is formed on the P well 52 to define an active region AA. At this time, the field oxide film 52 is formed further apart from the conventional device by a certain distance, and
As shown in the drawing, A is defined by extending from the conventional active regions A and A 'by the protruding portion AA' in FIG. Thereafter, the screen insulating film 54 is formed on the active regions AA and AA '.
Is formed.

【0024】図5Bに示すように、フィールド酸化膜5
3を囲みつつ活性領域AAの突出部位AA’を含むよう
にP形不純物領域55a,55bが形成される。この
際、P形不純物領域55a,55bはBイオンが約60
〜150KeVのエネルギーと1×1012〜1×1013
ions/cm2 の濃度でイオン注入されて形成される。この
時、P形不純物領域55a,55bは活性領域AAのソ
ース及びドレイン予定領域(図3参照)には形成されな
い。即ち、活性領域AAの突出部位AA’はP形不純物
領域55a,55bからなる。そして、スクリーン絶縁
膜54が除去され、活性領域AA,AA’上にゲート絶
縁膜56が形成される。その後、基板上にゲート57が
形成される。
As shown in FIG. 5B, the field oxide film 5
P-type impurity regions 55a and 55b are formed so as to include a protruding portion AA ′ of active region AA while surrounding 3. At this time, the P-type impurity regions 55a and 55b
Energy of ~ 150 KeV and 1 × 10 12 -1 × 10 13
It is formed by ion implantation at a concentration of ions / cm 2 . At this time, the P-type impurity regions 55a and 55b are not formed in the planned source and drain regions (see FIG. 3) of the active region AA. That is, the protruding portion AA 'of the active region AA includes the P-type impurity regions 55a and 55b. Then, the screen insulating film 54 is removed, and a gate insulating film 56 is formed on the active regions AA and AA '. Thereafter, a gate 57 is formed on the substrate.

【0025】上記実施例によれば、Pウェルが形成され
た状態で、相対的に低いしきい電圧を有するNMOSト
ランジスタのゲート57下部のフィールド酸化膜53の
下部の活性領域AAがP形不純物領域まで拡張される。
これにより、P形不純物領域よりP形不純物の濃度が相
対的に低いPウェルの活性領域AAでP形不純物の欠乏
が防止される。
According to the above embodiment, when the P well is formed, the active region AA under the field oxide film 53 under the gate 57 of the NMOS transistor having a relatively low threshold voltage is replaced with the P type impurity region. Extended to
This prevents P-type impurity deficiency in the active region AA of the P-well where the concentration of the P-type impurity is relatively lower than that of the P-type impurity region.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
低いしきい電圧を有するトランジスタのゲート下部にあ
る活性領域で生じる不純物の欠乏が防止される。これに
より、トランジスタの動作時にソース及びドレインの間
で発生する漏洩電流が防止されることにより、低いしき
い電圧を有するトランジスタの特性が向上する。
As described above, according to the present invention,
Impurity depletion, which occurs in the active region below the gate of a transistor having a low threshold voltage, is prevented. Accordingly, leakage current generated between the source and the drain during operation of the transistor is prevented, so that characteristics of the transistor having a low threshold voltage are improved.

【0027】尚、本発明は前記実施例に限らず、本発明
の技術的な要旨から外れない範囲内で多様に変形させて
実施することができる。
It should be noted that the present invention is not limited to the above-described embodiment, but can be carried out in various modifications without departing from the technical scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の低いしきい電圧を有するNMOSトラン
ジスタの平面図である。
FIG. 1 is a plan view of a conventional NMOS transistor having a low threshold voltage.

【図2】従来の低いしきい電圧を有するNMOSトラン
ジスタの断面図である。
FIG. 2 is a cross-sectional view of a conventional NMOS transistor having a low threshold voltage.

【図3】本発明による低いしきい電圧を有するNMOS
トランジスタの平面図である。
FIG. 3 shows a low threshold voltage NMOS according to the present invention.
FIG. 3 is a plan view of a transistor.

【図4】(A)〜(C)は、本発明の一実施例による低
いしきい電圧を有するNMOSトランジスタの製造方法
を説明するための断面図である。
FIGS. 4A to 4C are cross-sectional views illustrating a method for manufacturing an NMOS transistor having a low threshold voltage according to an embodiment of the present invention;

【図5】(A)及び(B)は、本発明の他の実施例によ
る低いしきい電圧を有するNMOSトランジスタの製造
方法を説明するための断面図である。
FIGS. 5A and 5B are cross-sectional views illustrating a method of manufacturing an NMOS transistor having a low threshold voltage according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A,A’,AA,AA’ 活性領域 31,51 P形半導体基板 32,53 フィールド酸化膜 33,52 Pウェル 34,56 ゲート絶縁膜 35,57 ゲート 90,54 スクリーン絶縁膜 55a,55b P形不純物領域 100 しきい電圧調節用P形不純物イオン A, A ', AA, AA' Active region 31, 51 P-type semiconductor substrate 32, 53 Field oxide film 33, 52 P well 34, 56 Gate insulating film 35, 57 Gate 90, 54 Screen insulating film 55a, 55b P-type Impurity region 100 P-type impurity ion for threshold voltage adjustment

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年9月1日[Submission date] September 1, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】図5Aに示すように、初期のP形半導体基
板51のNMOSトランジスタ予定領域にP形不純物イ
オン、好ましくはBイオンが約50〜150KeVのエ
ネルギーと5×1012〜5×1013ions/cm
の濃度でイオン注入された後、拡散工程によってPウ
ェル52が形成される。これにより、NMOSトランジ
スタのしきい電圧は0.2〜0.4V程度になる。そし
て、Pウェル52上にフィールド酸化膜52が形成され
て活性領域AAが定められる。この時、フィールド酸化
52は従来より一定距離だけさらに離れて形成され、
活性領域AAが図面に示されたように、従来の活性領域
A,A’より図3の突出部位AA’だけ拡張されて定め
られる。その後、活性領域AA,AA’上にスクリーン
絶縁膜54が形成される。
As shown in FIG. 5A, P-type impurity ions, preferably B ions, are added to the region where the NMOS transistor is to be formed in the initial P-type semiconductor substrate 51 at an energy of about 50 to 150 KeV and 5 × 10 12 to 5 × 10 13 ions. / Cm
After ion implantation at a concentration of 2, a P-well 52 is formed by a diffusion process. As a result, the threshold voltage of the NMOS transistor becomes about 0.2 to 0.4V. Then, a field oxide film 52 is formed on P well 52 to define an active region AA. At this time, the field oxide film 52 is formed further apart from the conventional device by a certain distance.
As shown in the drawing, the active region AA is defined by extending from the conventional active regions A and A 'by the protruding portion AA' in FIG. Thereafter, a screen insulating film 54 is formed on the active regions AA and AA '.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 低いしきい電圧を持つ半導体装置におい
て、 所定の導電型の半導体基板と、 前記基板上に形成されたフィールド絶縁膜と、 前記フィールド絶縁膜によって前記基板内に定められた
活性領域と、 前記フィールド絶縁膜を囲むように前記基板内に形成さ
れた前記基板と同一の導電型の不純物領域と、 前記基板上に形成されたゲート絶縁膜と、 前記ゲート絶縁膜及びフィールド絶縁膜上に形成された
ゲートパターンとを含むことを特徴とする半導体装置。
1. A semiconductor device having a low threshold voltage, comprising: a semiconductor substrate having a predetermined conductivity type; a field insulating film formed on the substrate; and an active region defined in the substrate by the field insulating film. An impurity region of the same conductivity type as the substrate formed in the substrate so as to surround the field insulating film; a gate insulating film formed on the substrate; And a gate pattern formed on the semiconductor device.
【請求項2】 低いしきい電圧を持つ半導体装置の製造
方法において、 所定の導電型の半導体基板上にフィールド絶縁膜を形成
して活性領域を定める工程と、 前記基板内に前記フィールド絶縁膜の下部を囲むように
前記基板と同一の導電型の不純物領域を形成する工程
と、 前記基板内にしきい電圧調節イオンを注入する工程と、 前記基板上にゲート絶縁膜を形成する工程と、 前記ゲート絶縁膜及びフィールド絶縁膜上にゲートパタ
ーンを形成する工程とを含むことを特徴とする半導体装
置の製造方法。
2. A method of manufacturing a semiconductor device having a low threshold voltage, comprising: forming a field insulating film on a semiconductor substrate of a predetermined conductivity type to define an active region; Forming an impurity region of the same conductivity type as that of the substrate so as to surround the lower part; implanting a threshold voltage adjusting ion into the substrate; forming a gate insulating film on the substrate; Forming a gate pattern on the insulating film and the field insulating film.
【請求項3】 前記半導体基板は不純物がドーピングさ
れていない初期の基板であることを特徴とする請求項2
記載の半導体装置の製造方法。
3. The semiconductor substrate according to claim 2, wherein the semiconductor substrate is an initial substrate that is not doped with impurities.
The manufacturing method of the semiconductor device described in the above.
【請求項4】 前記しきい電圧調節イオンを注入する工
程はBイオンを約10〜50KeVのエネルギーと5×
1011〜5×1012ions/cm2 の濃度でイオン注入する
ことを特徴とする請求項3記載の半導体装置の製造方
法。
4. The step of implanting the threshold voltage adjusting ions comprises implanting B ions with an energy of about 10 to 50 KeV and 5 ×
4. The method according to claim 3, wherein ions are implanted at a concentration of 10 11 to 5 × 10 12 ions / cm 2 .
【請求項5】 前記しきい電圧調節イオンを注入する工
程はBF2 を30〜80keVのエネルギーと5×10
11〜5×1012ions/cm2 の濃度でイオン注入すること
を特徴とする請求項3記載の半導体装置の製造方法。
5. The step of implanting the threshold voltage adjusting ions comprises the step of implanting BF 2 with energy of 30 to 80 keV and 5 × 10 5
4. The method according to claim 3, wherein ions are implanted at a concentration of 11 to 5 * 10 < 12 > ions / cm < 2 >.
【請求項6】 前記半導体基板はウェルが形成された基
板であることを特徴とする請求項2記載の半導体装置の
製造方法。
6. The method according to claim 2, wherein the semiconductor substrate is a substrate on which a well is formed.
【請求項7】 前記ウェルはBイオンを50〜150K
eVのエネルギーと5×1012〜5×1013ions/cm2
の濃度でイオン注入して形成することを特徴とする請求
項6記載の半導体装置の製造方法。
7. The well according to claim 5, wherein the B ion is 50 to 150K.
eV energy and 5 × 10 12 to 5 × 10 13 ions / cm 2
7. The method for manufacturing a semiconductor device according to claim 6, wherein the semiconductor device is formed by ion implantation at a concentration of.
【請求項8】 前記不純物領域はBイオンを60〜15
0KeVのエネルギーと1×1012〜1×1013ions/
cm2 でイオン注入して形成することを特徴とする請求項
6記載の半導体装置の製造方法。
8. The semiconductor device according to claim 1, wherein the impurity region contains 60 to 15 B ions.
Energy of 0 KeV and 1 × 10 12 to 1 × 10 13 ions /
7. The method for manufacturing a semiconductor device according to claim 6, wherein the semiconductor device is formed by ion-implantation at cm 2 .
JP9183142A 1996-06-29 1997-06-24 Semiconductor device and fabrication thereof Pending JPH1070272A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960026296A KR100233558B1 (en) 1996-06-29 1996-06-29 Manufacturing method of a semiconductor device
KR1996P26296 1996-06-29

Publications (1)

Publication Number Publication Date
JPH1070272A true JPH1070272A (en) 1998-03-10

Family

ID=19465048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183142A Pending JPH1070272A (en) 1996-06-29 1997-06-24 Semiconductor device and fabrication thereof

Country Status (6)

Country Link
JP (1) JPH1070272A (en)
KR (1) KR100233558B1 (en)
CN (1) CN1136613C (en)
DE (1) DE19727491A1 (en)
GB (1) GB2314973B (en)
TW (1) TW416113B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523481A (en) * 2004-02-17 2007-08-16 シリコン・スペース・テクノロジー・コーポレイション Embedded guard ring, radiation-resistant separation structure and manufacturing method thereof
WO2007108104A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Semiconductor device and its fabrication process
JP2009267027A (en) * 2008-04-24 2009-11-12 Seiko Epson Corp Semiconductor device, and method for manufacturing thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278719B2 (en) 2005-10-14 2012-10-02 Silicon Space Technology Corp. Radiation hardened isolation structures and fabrication methods
JP4288355B2 (en) * 2006-01-31 2009-07-01 国立大学法人北陸先端科学技術大学院大学 Ternary logic function circuit
US10038058B2 (en) 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2084794B (en) * 1980-10-03 1984-07-25 Philips Electronic Associated Methods of manufacturing insulated gate field effect transistors
JPH0693494B2 (en) * 1984-03-16 1994-11-16 株式会社日立製作所 Method for manufacturing semiconductor integrated circuit device
JPS61292358A (en) * 1985-06-19 1986-12-23 Fujitsu Ltd Manufacture of mis field effect transistor
JPS62200767A (en) * 1986-02-28 1987-09-04 Toshiba Corp Mos-type semiconductor device
JPS6425438A (en) * 1987-07-21 1989-01-27 Sony Corp Manufacture of semiconductor device
JPH0235778A (en) * 1988-07-26 1990-02-06 Seiko Epson Corp Semiconductor device
US5525823A (en) * 1992-05-08 1996-06-11 Sgs-Thomson Microelectronics, Inc. Manufacture of CMOS devices
US5396096A (en) * 1992-10-07 1995-03-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device and manufacturing method thereof
US5432107A (en) * 1992-11-04 1995-07-11 Matsushita Electric Industrial Co., Ltd. Semiconductor fabricating method forming channel stopper with diagonally implanted ions
JPH07135317A (en) * 1993-04-22 1995-05-23 Texas Instr Inc <Ti> Self-aligned silicide gate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523481A (en) * 2004-02-17 2007-08-16 シリコン・スペース・テクノロジー・コーポレイション Embedded guard ring, radiation-resistant separation structure and manufacturing method thereof
WO2007108104A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Semiconductor device and its fabrication process
JP2009267027A (en) * 2008-04-24 2009-11-12 Seiko Epson Corp Semiconductor device, and method for manufacturing thereof

Also Published As

Publication number Publication date
KR980006490A (en) 1998-03-30
GB9713545D0 (en) 1997-09-03
CN1173739A (en) 1998-02-18
DE19727491A1 (en) 1998-01-02
GB2314973A (en) 1998-01-14
KR100233558B1 (en) 1999-12-01
TW416113B (en) 2000-12-21
GB2314973B (en) 2001-09-19
CN1136613C (en) 2004-01-28

Similar Documents

Publication Publication Date Title
JP3489871B2 (en) MOS transistor and manufacturing method thereof
US6100143A (en) Method of making a depleted poly-silicon edged MOSFET structure
US6534787B2 (en) Asymmetrical MOS channel structure with drain extension
US20040110351A1 (en) Method and structure for reduction of junction capacitance in a semiconductor device and formation of a uniformly lowered threshold voltage device
US5554544A (en) Field edge manufacture of a T-gate LDD pocket device
JPH03119732A (en) Neutral impurity for increasing opera- tional life of semiconductor device
KR100374551B1 (en) Semiconductor device and method for fabricating thereof
JP2000196079A (en) Manufacture of mos semiconductor
KR100391959B1 (en) Semiconductor apparatus and method of manufacture
JPH1197709A (en) Mos transistor and manufacture of the same
JPH1084045A (en) Semiconductor integrated circuit device and its manufacturing method
JP2836515B2 (en) Method for manufacturing semiconductor device
US6525380B2 (en) CMOS with a fixed charge in the gate dielectric
JPH1070272A (en) Semiconductor device and fabrication thereof
JPH0878674A (en) Semiconductor device and its manufacture and bipolar transistor
JP2001007325A (en) Field-effect transistor
JPH0637309A (en) Semiconductor device and manufacture thereof
KR100281397B1 (en) A method of forming an ultra-thin soi electrostatic discharge protection device
KR20000031366A (en) Semiconductor device and production method thereof
KR100189751B1 (en) Semiconductor device and method of manufacturing the same
KR100470393B1 (en) Method for fabricating dual gate semiconductor device
JPH06232153A (en) Semiconductor device and manufacture thereof
JPH10163490A (en) Manufacture of transistor
KR100537272B1 (en) Method for fabricating of semiconductor device
JP2001274382A (en) Semiconductor device and manufacturing method thereof