WO2007108104A1 - Semiconductor device and its fabrication process - Google Patents

Semiconductor device and its fabrication process Download PDF

Info

Publication number
WO2007108104A1
WO2007108104A1 PCT/JP2006/305596 JP2006305596W WO2007108104A1 WO 2007108104 A1 WO2007108104 A1 WO 2007108104A1 JP 2006305596 W JP2006305596 W JP 2006305596W WO 2007108104 A1 WO2007108104 A1 WO 2007108104A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gate electrode
semiconductor substrate
conductive
channel stop
Prior art date
Application number
PCT/JP2006/305596
Other languages
French (fr)
Japanese (ja)
Inventor
Sachie Tone
Yoshio Matsuzawa
Taiji Ema
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/305596 priority Critical patent/WO2007108104A1/en
Publication of WO2007108104A1 publication Critical patent/WO2007108104A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls

Definitions

  • the present invention relates to a semiconductor device that requires a high breakdown voltage and a method for manufacturing the same, and particularly to a semiconductor device having a transistor structure in which a drain has an offset structure.
  • a MOS transistor will be described as an example of a high breakdown voltage semiconductor element.
  • FIG. 22 and FIGS. 23A to 23D are schematic diagrams showing a conventional high voltage MOS transistor.
  • FIG. 22 is a plan view
  • FIG. 23A is a cross-sectional view along broken line I- ⁇ in FIG. 22
  • FIG. 23B is a cross-sectional view along broken line II— ⁇ ⁇ ⁇ in FIG. 22
  • FIG. 23C is a broken line in FIG. III—A cross-sectional view along ⁇
  • FIG. 23D is a cross-sectional view along the broken line IV—IV ′ in FIG.
  • an element isolation structure here, a field oxide film 102 is formed on a semiconductor substrate 100 by a LOCOS method to define a rectangular element region 103.
  • the well 101 is formed so as to include the element region 103.
  • a strip-like gate electrode 105 is patterned on the element region 103 through the gate insulating film 104 so as to cross the element region 103, and side insulating films are formed on both sides of the gate electrode 105.
  • 111 is formed, and on the surface layer of the element region 103 on both sides of the gate electrode 105, a pair of LDD regions 106 into which impurities are introduced at a low concentration are formed, and overlap with the LD D regions 106, respectively.
  • a source region 107 and a drain region 108 into which impurities are introduced at a higher concentration than these are formed.
  • the source region 107 and the source region 107 are formed in order to prevent charge outflow between the impurity regions with the adjacent semiconductor element through the field oxide film 102.
  • a stop region 109 is formed.
  • the drain region 108 is provided with an LD in order to ensure a high breakdown voltage of the MOS transistor.
  • the channel stop region 109 is also separated from the end of the LDD region 106 by a predetermined distance to ensure a high breakdown voltage.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-216380
  • Patent Document 2 JP 2004-207499 A
  • the element region 103 is spaced apart from its end that is wider than the element region 103 by a certain distance. Then, the semiconductor substrate 100 is ion-implanted with the resist mask 110 covered. Therefore, as shown in FIGS. 23A and 23D, the region between the end of the element region 103 under the gate electrode 105 and the end of the resist mask 110 (removed after the channel stop region 109 is formed). Under 103a, the semiconductor substrate 100 through the field oxide film 102 is in a state where only the well 101 exists.
  • Patent Document 1 discloses a MOS transistor configuration in which a rectangular ring-shaped impurity region is formed in an element region so as to surround a source / drain region by introducing an impurity of an opposite conductivity type to the source / drain region. Yes.
  • the portion corresponding to the gate width of the gate electrode overlaps with the channel stop region, which results in deterioration of transistor characteristics.
  • the resist mask for forming the channel stop region is formed in a concave shape so as to expose a portion corresponding to the region 103a of the element region 103 in FIG. By introducing impurities using this resist mask, a channel stop region can be formed under the element isolation structure corresponding to the region 103a.
  • the hump shown in FIG. 24 is improved.
  • the element isolation structure is transmitted with a high acceleration energy so that the impurity concentration peak is located near the bottom. Need to be injected.
  • a region having a high impurity concentration is formed below the portion corresponding to the gate width of the gate electrode.
  • the presence of this high impurity concentration region causes a change in transistor characteristics.
  • the formation form of the region is unstable due to manufacturing variations, and there is a problem that the variation in transistor characteristics cannot be controlled.
  • the element isolation structure forming method is limited to the LO COS method, and there is an oxidation resistant film pattern when forming the field oxide film. It was necessary to form a channel stop region before performing.
  • the present invention has been made in view of the above-described problems, and suppresses deterioration in transistor characteristics regardless of the method of forming an element isolation structure and the position of the process, and relatively easily and reliably achieves a high breakdown voltage.
  • An object of the present invention is to provide a highly reliable semiconductor device that achieves the above and a manufacturing method thereof.
  • a semiconductor device of the present invention includes an element isolation structure that is formed in an element isolation region on the surface of a semiconductor substrate and demarcates the element region on the semiconductor substrate, and a gate that is formed across the element region.
  • An impurity region is overlapped, and at least one of the conductive regions includes the high impurity region in the low concentration region and the low concentration region.
  • the element isolation structure is formed so that the element region protrudes outward with a width narrower than the gate length at a portion below the gate electrode.
  • a surface conductive region formed by introducing an impurity of a conductivity type opposite to the conductive region is formed in a surface layer of the projecting portion.
  • a method for manufacturing a semiconductor device includes a step of forming an element isolation structure for defining an element region on the semiconductor substrate in an element isolation region on the surface of the semiconductor substrate, and a gate so as to cross the element region. Forming a pair of conductive regions by introducing impurities into the element regions on both sides of the gate electrode, and each of the conductive regions is divided into a low concentration region and a low concentration region, respectively. And a high impurity region having a higher impurity concentration is superimposed, and at least one of the conductive regions is formed in a state where the high impurity region is offset in the low concentration region by an end force of the low concentration region.
  • the element isolation structure has a portion below the gate electrode such that the element region has a protruding portion that is narrower than the gate length and protrudes outward in the portion below the gate electrode.
  • the surface conductive region is formed by introducing an impurity of a conductivity type opposite to the conductive region into the surface layer of the protruding portion.
  • FIG. 1 is a schematic plan view showing a configuration of a high breakdown voltage MOS transistor according to a first embodiment.
  • FIG. 2A is a schematic cross-sectional view taken along broken line ⁇ - ⁇ in FIG.
  • FIG. 2B is a schematic cross-sectional view taken along broken lines ⁇ — ⁇ in FIG.
  • FIG. 2C is a schematic cross-sectional view along the broken line ⁇ _ ⁇ in FIG.
  • FIG. 2D is a schematic cross-sectional view taken along broken line IV-IV ′ in FIG.
  • Fig. 2 ⁇ is a schematic cross-sectional view along the broken line VV 'in Fig. 1.
  • FIG. 3B is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 3B is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 3C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 3D is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 4A is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 4B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the first embodiment.
  • FIG. 4C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 5A is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 5B-1 is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 5B-2 is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 6A is a schematic cross-sectional view showing a method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 6B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the first embodiment.
  • FIG. 6C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
  • FIG. 7 is a schematic plan view showing the configuration of the high voltage MOS transistor according to the second embodiment.
  • FIG. 8A is a schematic cross-sectional view taken along broken line ⁇ - ⁇ in FIG.
  • FIG. 8B is a schematic cross-sectional view taken along broken lines ⁇ — ⁇ in FIG.
  • FIG. 8C is a schematic cross-sectional view taken along the broken line ⁇ _ ⁇ in FIG.
  • FIG. 8D is a schematic sectional view taken along broken line IV-IV ′ in FIG. 9A]
  • FIG. 9A is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the second embodiment.
  • FIG. 9B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the second embodiment.
  • FIG. 9C is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the second embodiment.
  • FIG. 10A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the second embodiment.
  • FIG. 10B-1 is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the second embodiment.
  • FIG. 10B-2 is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the second embodiment.
  • FIG. 11A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the second embodiment.
  • FIG. 11B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the second embodiment.
  • FIG. 11C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the second embodiment.
  • FIG. 12A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the second embodiment.
  • FIG. 12B is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the second embodiment.
  • FIG. 12C is a schematic cross-sectional view showing the method for manufacturing the high voltage MOS transistor according to the second embodiment.
  • FIG. 13 is a schematic plan view showing the configuration of a high voltage MOS transistor according to the third embodiment.
  • FIG. 14A is a schematic cross-sectional view taken along broken line ⁇ ⁇ - ⁇ in FIG.
  • FIG. 14B is a schematic cross-sectional view taken along broken lines ⁇ — ⁇ in FIG.
  • FIG. 14C is a schematic cross-sectional view along broken line III— ⁇ in FIG.
  • FIG. 14D is a schematic sectional view taken along broken line IV-IV ′ in FIG.
  • FIG. 14E is a schematic cross-sectional view along the broken line VV ′ of FIG.
  • FIG. 15A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
  • FIG. 15B is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
  • FIG. 15C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the third embodiment.
  • FIG. 15D is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the third embodiment.
  • FIG. 16A-1 is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
  • FIG. 16A-2 is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
  • FIG. 16B-1 is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the third embodiment.
  • FIG. 16B-2 is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
  • FIG. 17 is a schematic plan view showing the configuration of a high voltage MOS transistor according to the fourth embodiment.
  • FIG. 18A is a schematic cross-sectional view along broken line ⁇ - ⁇ in FIG.
  • FIG. 18B is a schematic sectional view taken along broken lines ⁇ ⁇ — ⁇ in FIG.
  • FIG. 18C is a schematic cross-sectional view along the broken line ⁇ _ ⁇ ⁇ ⁇ in FIG.
  • FIG. 18D is a schematic cross-sectional view taken along broken line IV-IV ′ in FIG.
  • FIG. 19 is a schematic plan view showing another example of the structure of the high voltage MOS transistor according to the fourth embodiment.
  • FIG. 20 is a schematic diagram showing a configuration of a high voltage MOS transistor according to the fifth embodiment. It is a top view.
  • FIG. 21A is a schematic cross-sectional view along broken line I ⁇ in FIG.
  • FIG. 21B is a schematic cross-sectional view along broken line II— ⁇ ⁇ ⁇ in FIG.
  • FIG. 22 is a schematic plan view showing a configuration of a high voltage MOS transistor according to a conventional embodiment.
  • FIG. 23A is a schematic cross-sectional view along the broken line ⁇ in FIG.
  • FIG. 23B is a schematic cross-sectional view taken along broken lines ⁇ — ⁇ ⁇ ⁇ in FIG.
  • FIG. 23C is a schematic cross-sectional view taken along broken lines ⁇ ⁇ ⁇ in FIG.
  • FIG. 23D is a schematic sectional view taken along broken line IV-IV ′ in FIG.
  • FIG. 24 is a characteristic diagram showing the relationship between the gate electrode and the drain current.
  • the inventor of the present invention has contrived the following main configuration as a result of intensive studies to suppress the deterioration of transistor characteristics regardless of the method of forming the element isolation structure and the process position. That is, the element isolation structure is formed in a concave shape in the portion under the gate electrode so that the element region has a protruding portion that is narrower than the gate length and protrudes outward in the portion under the gate electrode. Then, for example, an impurity having a conductivity type opposite to that of the conductive region to be the source / drain region is introduced into the surface layer of the protruding portion to form the surface conductive region.
  • a sufficient threshold voltage can be ensured by forming a surface conductive region at least in the protruding portion of the element region below the gate electrode.
  • the protrusion is formed narrower than the gate length, so it does not function as an active region although it is part of the device region. Therefore, even if a channel stop region is formed under the element isolation structure and the end of the channel stop region protrudes from the end of the element isolation structure, a channel stop region is formed below the portion corresponding to the gate width of the gate electrode. There is no stop region (the end of the channel stop region does not reach the portion corresponding to the gate width), and the portion corresponding to the gate width of the gate electrode and the end of the channel stop region are kept apart. Be drunk. Therefore, fluctuation deterioration of the transistor characteristics is suppressed, and stable and sufficient transistor characteristics can be obtained. [0023] Specific embodiments to which the present invention is applied
  • FIG. 1 and 2A to 2E are schematic diagrams showing the configuration of the high-breakdown-voltage MOS transistor according to the first embodiment.
  • FIG. 1 is a plan view
  • FIG. 2A is a cross-sectional view along broken line ⁇ in FIG. 1
  • FIG. 2B is a cross-sectional view along broken line ⁇ ⁇ — ⁇ ⁇ ⁇ in FIG. 1
  • FIG. 2C is a broken line in FIG. — Cross-sectional view along ⁇
  • Figure 2D is a cross-sectional view along IV-IV 'in Figure 1
  • Figure 2E is a broken line V in Figure 1.
  • an element isolation structure here STI, is formed on a silicon semiconductor substrate 1.
  • An STI element isolation structure 7 is formed by the Trench Isolation method, and an element region 10 is defined on the semiconductor substrate 1.
  • the well 21 is formed so as to include the element region 10.
  • a strip-shaped gate electrode 16 is patterned on the element region 10 via the gate insulating film 14 so as to cross the element region 10, and sidewall insulating films 18 are formed on both side surfaces of the gate electrode 16.
  • a pair of LDD regions 19 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 19, respectively.
  • a source region 24 and a drain region 25 into which impurities are introduced at a high concentration are formed.
  • a channel stop region 23 is formed in which an impurity having a conductivity type opposite to that of the region 24 and the drain region 25 is introduced.
  • the drain region 25 is formed and offset so as to be offset from the end of the LDD region 19 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. This offset As a result, the channel stop region 23 is also separated from the end of the LDD region 19 by a predetermined distance.
  • the STI element isolation structure 7 has a portion under the gate electrode 16 such that the element region 10 has a pair of protrusions 10a protruding outward in the portion under the gate electrode 16. It is formed in a concave shape.
  • the protrusion 10a has a width W narrower than the gate length G of the gate electrode 16 and the expected width.
  • the length L is at least the distance d between the element region 10 and a resist mask 11 for forming a channel stop region 23 described later, and the pattern for forming the element region 10 and the formation of the gate electrode 16 are formed.
  • the dimension is set to allow for a margin, for example, 0 or more so as to satisfy the alignment accuracy with the pattern for use.
  • an impurity having a conductivity type opposite to that of the source region 24 and the drain region 25 is introduced into the surface layer of the protruding portion 10a to form a surface conductive region.
  • a channel dose region 22 is formed in the surface layer of the silicon element region 10 including the protruding portion 10a under the gate electrode 16 as the surface layer conductive region.
  • a sufficient threshold voltage can be secured by forming the channel dose region 22 in the well 21 below the gate electrode 16.
  • the protruding portion 10a is formed narrower than the gate length, it does not function as an active region although it is a part of the element region 10. Therefore, as shown in FIG. 2D, even if the end of the channel stop region 23 protrudes from the end of the STI element isolation structure 7 for the channel stop region 23 formed under the STI element isolation structure 7, the gate electrode The channel stop region 23 does not exist under the portion corresponding to the gate width G of 16 (the
  • the end of the channel stop region 23 does not reach the part corresponding to the gate width G),
  • the portion corresponding to the gate width G of the gate electrode 16 is separated from the end of the channel stop region 23.
  • FIGS. 3A to 6C are schematic cross-sectional views showing the method of manufacturing the high voltage MOS transistor according to this embodiment in the order of steps.
  • FIGS. 3A to 6C each figure except for FIG. 5B-2 is a cross-sectional view taken along the broken line II— ⁇ in FIG. 1, and FIG. 5B-2 is a cross section taken along the broken line IV—IV ′ in FIG. Corresponds to the figure.
  • an oxidation resistant material film 3 is formed on a silicon semiconductor substrate 1 with an insulating film 2 interposed therebetween.
  • an insulating film 2 having a thickness of about 30 nm is formed on the surface of the semiconductor substrate 1 by a thermal oxidation method, and then an oxidation resistant material, for example, silicon nitride is deposited by the CVD method, and the oxidation resistance of a thickness of about lOO nm is deposited.
  • a material film 3 is formed.
  • an isolation groove 4 is formed in the element isolation region.
  • the oxidation-resistant material film 3 and the insulating film 2 are patterned by lithography and dry etching so that the element isolation region is exposed so as to cover a portion to be the element region 10 of the semiconductor substrate 1.
  • the semiconductor substrate 1 is dry-etched to a depth of about 200 nm to 500 nm to obtain a semiconductor substrate
  • An isolation groove 4 is formed in the element isolation region 1.
  • the separation groove 4 has a gate electrode so that the element region 10 has a pair of projecting portions 10a projecting outward under the formation portion of the gate electrode 16 when viewed in plan as shown in FIG. It is formed in a concave shape under 16 formation sites.
  • the insulator 6 is deposited on the entire surface.
  • the inner wall surface of the separation groove 4 is wet-oxidized to form the insulating film 5 having a thickness of about 20 nm.
  • an insulator 6, here a silicon oxide film, is deposited to a thickness of about 300 nm to 800 nm by the CVD method on the entire surface of the semiconductor substrate 1 so as to receive the separation groove 4.
  • the STI element isolation structure 7 is formed.
  • the insulator 6 is CMP (Chemi cal Polishing and flattening by a mechanical polishing method. Then, the remaining oxidation-resistant material film 3 and insulating film 2 are removed, thereby forming the STI element isolation structure 7 that fills the isolation groove 4 with the insulator 6.
  • This STI element isolation structure 7 defines an element region 10 on the semiconductor substrate 1.
  • the STI element isolation structure 7 has a pair of protrusions 10a that protrude outwardly under the formation region of the gate electrode 16, It is formed in a concave shape under the formation site of the gate electrode 16. Thereafter, the insulating film 2 is formed again on the semiconductor substrate 1 by thermal oxidation.
  • impurities for forming wells are introduced into the semiconductor substrate 1.
  • a resist mask 8 is formed so as to expose a part of the element region 10 on the semiconductor substrate 1 and the surrounding STI element isolation structure 7. Then, using the resist mask 8, a P-type impurity, here boron (B + ), is ion-implanted into the semiconductor substrate 1 corresponding to the lower portion of the portion exposed from the resist mask 8.
  • the acceleration energy is 200 keV to 500 keV
  • the dose is 1 ⁇ 10 10 / cm 2 to 1 ⁇ 10 13 / cm 2 .
  • a P-type impurity region 9 is formed.
  • the resist mask 8 is removed by ashing or the like.
  • impurities for forming a channel stop region are introduced into the semiconductor substrate 1.
  • a resist mask 11 is formed so as to surround the element region 10 by being separated from the element region 10 by a predetermined distance on the entire surface of the element region 10 and on the STI element isolation structure 7.
  • the resist mask 11 exposes a ring-shaped portion on the STI element isolation structure 7.
  • a P-type impurity here, boron (B + ) is ion-implanted into the semiconductor substrate 1 corresponding to the lower portion of the portion exposed from the resist mask 11.
  • the calo-speed energy energy is 70 keV to 180 keV
  • the dose is 1 ⁇ 10 10 / cm 2 to 1 ⁇ 10 14 / cm 2 .
  • a P-type impurity region 12 is formed in a portion immediately below the STI element isolation structure 7 in the opening portion of the resist mask 11.
  • the resist mask 11 is removed by ashing or the like.
  • a channel dose region for forming a semiconductor substrate 1 is formed. Impurities are introduced.
  • a resist mask 26 is formed so as to expose the formation site of the gate electrode 16 in the element region 10. Then, using the resist mask 26, a P-type impurity, here boron (B + ), is ion-implanted into the surface layer (here near the surface) of the semiconductor substrate 1 corresponding to the lower part of the portion exposed from the resist mask 26. To do. As ion implantation conditions, the acceleration energy is 10 keV to 50 keV, and the dose is 1 ⁇ 10 10 / cm 2 to 1 ⁇ 10 13 / cm 2 . By this ion implantation, a P-type impurity region 13 is formed. The resist mask 26 is removed by ashing or the like.
  • the gate insulating film 14 and the gate electrode material film 15 are formed.
  • annealing is performed at 1100 ° C. to 1200 ° C. for about 0.5 to 9 hours to activate the P-type impurity regions 9, 12 and 13 implanted into the semiconductor substrate 1. To become sexual.
  • the well 21, the channel dose region 22 and the channel stop region 23 are formed.
  • the gate insulating film 14 is formed in the element region 10 to a film thickness of about 20 nm by thermal oxidation. Thereafter, a gate electrode material film 15, here a polycrystalline silicon film, is deposited to a thickness of about 300 nm by CVD.
  • the gate electrode 16 is patterned.
  • the gate electrode material film 15 is patterned into an electrode shape by lithography and dry etching to form the gate electrode 16.
  • the gate electrode 16 is formed in a pattern so that the channel dose region 22 exists in the lower portion and the protruding portion 10a of the element region is included in the lower portion.
  • a resist mask 27 that exposes part of the element region 10 and the STI element isolation structure 7 is formed, and the resist mask 27 is used to form N-type impurities on both sides of the gate electrode 16 in the element region 10.
  • phosphorus (P + ) is ion-implanted.
  • the conditions for the ion implantation are as follows: Caro-speed energy energy is 70 keV to 150 keV, and dose is 1 X 10 "/ (111 2 to 1 X 10 13 / cm 2 By this ion implantation, an N-type impurity region 17 is formed.
  • the resist mask 27 is removed by ashing or the like.
  • annealing is performed at 900 ° C. to 1000 ° C. for about 10 seconds to 20 seconds to activate phosphorus in the N-type impurity region 17.
  • a pair of LDD regions 19 is formed by this annealing process.
  • an insulator here a silicon oxide film (not shown) is deposited on the entire surface so as to cover the gate electrode 16 by a CVD method to a film thickness of about 500 nm. Then, the entire surface of the silicon oxide film is subjected to anisotropic dry etching (etchback), and the silicon oxide film is left only on both side surfaces of the gate electrode 16 to form a sidewall insulating film 18.
  • the source region 24 and the drain region 25 are formed.
  • a resist mask (not shown) that exposes only the surface of the element region 10 on one side (source formation region) of the gate electrode 16 is formed, and an N-type impurity, here arsenic, is formed using this resist mask.
  • (As + ) ions are implanted.
  • the ion implantation conditions are such that the acceleration energy is 70 keV to 120 keV and the dose is 1 X 10 15 / cm 2 to l X 10 16 / so that it is superimposed on the LDD region 19 at a higher impurity concentration than the L DD region 19. cm 2
  • a resist mask (not shown) that exposes only the surface of the element region 10 on the other side (drain formation region) of the gate electrode 16 is formed.
  • N-type impurities here arsenic (As + ) are ion-implanted.
  • the ion implantation conditions are such that the calo-velocity energy is 70 keV to 120 keV and the dose is 1 X 10 15 / cm to 1 X 10 / cm so that it is superimposed on the LDD region 19 at a higher impurity concentration than the LDD region 19.
  • annealing treatment is performed at 900 ° C to 1000 ° C for about 10 seconds to 20 seconds to activate the ion-implanted phosphorus.
  • a source region 24 and a drain region 25 are formed.
  • the drain region 25 is formed to be offset from the end of the LDD region 19 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor.
  • interlayer insulation films, contact holes, gate electrodes 16, source regions 24, drain regions 25, wirings connected to the drain region 25, etc. are sequentially formed. Type MOS transistor is completed.
  • FIG. 7 and 8A to 8D are schematic views showing the configuration of the high voltage MOS transistor according to the second embodiment.
  • FIG. 7 is a plan view
  • FIG. 8A is a sectional view taken along the broken line ⁇ - ⁇ in FIG. 7
  • FIG. 8B is a sectional view taken along the broken line ⁇ — ⁇ in FIG. 7
  • FIG. 8D is a cross-sectional view taken along the broken line IV-IV ′ of FIG.
  • an element isolation structure here, a field oxide film 39 by a L OCOS (LOCal Oxidation of Silicon) method is formed on a silicon semiconductor substrate 31, and an element region 30 is defined on the semiconductor substrate 31. Is done.
  • the well 41 is formed so as to include the element region 30.
  • a strip-shaped gate electrode 47 is patterned on the element region 30 through the gate insulating film 45 so as to cross the element region 30, and sidewall insulating films 52 are formed on both side surfaces of the gate electrode 47.
  • a pair of LDD regions 51 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 51, respectively.
  • a source region 53 and a drain region 54 into which impurities are introduced at a high concentration are formed.
  • a source region is formed in order to prevent charge outflow between the impurity regions with the adjacent MOS transistor via the field oxide film 39.
  • a channel stop region 42 into which impurities of the opposite conductivity type to 53 and drain region 54 are introduced is formed.
  • the drain region 54 is formed so as to be offset from the end of the LDD region 51 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. This offset As a result, the channel stop region 42 is also separated from the end of the LDD region 51 by a predetermined distance.
  • the field oxide film 39 is formed at a portion below the gate electrode 47 so that the element region 30 has a pair of protruding portions 30a protruding outward at the portion below the gate electrode 47. It is formed in a concave shape.
  • the protrusion 30a has a width W that is narrower than the gate length G of the gate electrode 47 and is expected.
  • the length L is at least a distance d between the element region 30 and a resist mask 36 for forming a channel stop region 42 described later, and the pattern for forming the element region 30 and the formation of the gate electrode 47 are formed.
  • the dimension is set to allow for a margin, for example, 0 or more so as to satisfy the alignment accuracy with the pattern for use.
  • an impurity having a conductivity type opposite to that of the source region 53 and the drain region 54 is introduced into the surface layer of the protrusion 30a to form a surface conductive region.
  • a channel dose region 48 is formed in the surface layer of the silicon element region 30 including the protruding portion 30a under the gate electrode 47 as the surface conductive region.
  • a sufficient threshold voltage can be secured by forming the channel dose region 48 in the wall 41 under the gate electrode 47.
  • the projecting portion 30a is formed narrower than the gate length, so it does not function as an active region although it is a part of the device region 30. Therefore, as shown in FIG. 8D, for the channel stop region 42 formed under the field oxide film 39, even if the end of the channel stop region 42 protrudes from the end of the field oxide film 39, the gate electrode 47 The channel stop region 42 does not exist under the portion corresponding to the gate width G of
  • the portion of the gate electrode 47 corresponding to the gate width G is separated from the end of the channel stop region 42.
  • FIG. 9A to FIG. 12C are schematic cross-sectional views showing the manufacturing method of the high voltage MOS transistor according to the present embodiment in the order of steps.
  • each figure except for FIG. 10B-2 is a sectional view taken along broken line II—— ⁇ in FIG. 7, and FIG. 10B-2 is a sectional view taken along broken line IV—IV ′ in FIG. Corresponds to the figure.
  • an oxidation resistant material film 33 is formed on a silicon semiconductor substrate 31 via an insulating film 32.
  • an insulating film 32 having a thickness of about 30 nm is formed on the surface of the semiconductor substrate 31 by a thermal oxidation method, and then an oxidation-resistant material, for example, silicon nitride is deposited by the CVD method to form an oxidation-resistant material film having a thickness of about lOOnm. 33 is formed.
  • an oxidation-resistant material for example, silicon nitride is deposited by the CVD method to form an oxidation-resistant material film having a thickness of about lOOnm. 33 is formed.
  • impurities for forming wells are introduced into the semiconductor substrate 31.
  • the oxidation-resistant material film 33 is patterned by lithography and dry etching so as to cover a portion to be the element region 30 of the semiconductor substrate 31.
  • a resist mask 34 is formed so as to expose part of the region where the element region 30 on the semiconductor substrate 31 and the peripheral field oxide film 39 are formed. Then, using the resist mask 34, a P-type impurity, here, passes through the oxidation-resistant material film 33 and the insulating film 32 and reaches the semiconductor substrate 1 corresponding to the lower part of the portion exposed from the resist mask 34. Then, boron (B + ) is ion-implanted. As ion implantation conditions, the acceleration energy is set to 200 keV to 500 keV, and the dose is set to 1 ⁇ 10 10 / cm 2 to 1 ⁇ 10 13 / cm 2 . By this ion implantation, a P-type impurity region 35 is formed. The resist mask 34 is removed by ashing or the like.
  • impurities for forming a channel stop region are introduced into the semiconductor substrate 31.
  • a resist mask 36 is formed on the formation site of the oxidation resistant material film 33 and the field oxide film 39 so as to surround the oxidation resistant material film 33 by being separated from the oxidation resistant material film 33 by a predetermined distance. To do.
  • the resist mask 36 exposes a ring-shaped portion on the site where the field oxide film 39 is formed.
  • P-type impurities this are introduced into the semiconductor substrate 31 corresponding to the lower part of the portion exposed from the resist mask 36.
  • boron (B + ) ions are implanted.
  • acceleration energy is set to 70 keV to 180 keV, and a dose amount is set to 1 X 10 10 / cm 2 to l X 10 "/ cm 2.
  • a dose amount is set to 1 X 10 10 / cm 2 to l X 10 "/ cm 2.
  • a well 41 and a channel dose region 42 are formed by annealing.
  • annealing is performed at 1000 to 1200 ° C. for about 0.5 to 9 hours to activate the P-type impurity regions 35 and 37 implanted into the semiconductor substrate 31.
  • a wall 41 and a channel stop region 42 are formed by this annealing process.
  • a field oxide film 39 is formed in the element isolation region.
  • the insulating film 32 and the semiconductor substrate 31 are field oxidized to form a field oxide film 39 in the element isolation region.
  • the device region 30 is defined on the semiconductor substrate 31 by the finered oxide film 39.
  • the finered oxide film 39 has a gate shape so that the element region 30 has a pair of projecting portions 30a projecting outward under the formation position of the gate electrode 47 when viewed in plan as shown in FIG.
  • the electrode 47 is formed in a concave shape under the formation site.
  • an insulating film 38 is formed on the semiconductor substrate 31 by a thermal oxidation method.
  • impurities for forming a channel dose region are introduced into the semiconductor substrate 31.
  • a resist mask 43 is formed so as to expose the formation site of the gate electrode 47 in the element region 30.
  • a P-type impurity here boron (B + )
  • B + a P-type impurity
  • the acceleration energy is 10 keV to 50 keV
  • the dose is 1 ⁇ 10 10 / cm 2 to 1 ⁇ 10 13 / cm 2 .
  • a P-type impurity region 44 is formed.
  • the resist mask 43 is removed by ashing or the like.
  • a gate insulating film 45 and a gate electrode material film 46 are formed.
  • the gate insulating film 45 is formed in the element region 30 to a thickness of about 20 nm by thermal oxidation.
  • the channel dose region 48 is formed by the annealing process when forming the gate insulating film.
  • a gate electrode material film 46 here a polycrystalline silicon film, is deposited to a thickness of about 300 nm by CVD.
  • the P-type impurity region 44 ion-implanted in the semiconductor substrate 31 is activated by annealing the gate for about 10 to 60 minutes with C.
  • a channel dose region 48 is formed by this annealing process.
  • the gate electrode 47 is patterned. Specifically, the gate electrode material film 46 is patterned into an electrode shape by lithography and dry etching to form the gate electrode 47.
  • the gate electrode 47 has a channel dose region 48 in the lower portion and is patterned so as to include the protruding portion 30a of the element region in the lower portion.
  • a resist mask 50 that exposes part of the element region 30 and the field oxide film 39 is formed, and the resist mask 50 is used to form an N-type impurity on both sides of the gate electrode 47 in the element region 30.
  • phosphorus (P + ) is ion-implanted.
  • the energy of the calo-velocity is 70 keV to 150 keV, and the dose is 1 X ⁇ ⁇ / ⁇ ⁇ ⁇ X 10 13 / cm 2 .
  • an N-type impurity region 49 is formed.
  • the resist mask 50 is removed by ashing or the like.
  • side wall insulating films 52 are formed on both side surfaces of the gate electrode 47.
  • annealing is performed at 900 ° C. to 1000 ° C. for about 10 seconds to 20 seconds, for example, to activate phosphorus in the N-type impurity region 49 as necessary.
  • annealing process a pair of LDD regions 51 are formed.
  • an insulator here a silicon oxide film (not shown) is deposited on the entire surface so as to cover the gate electrode 47 by a CVD method to a thickness of about 500 nm. Then, the entire surface of the silicon oxide film is subjected to anisotropic dry etching (etchback), and silicon oxide is formed only on both sides of the gate electrode 47. A sidewall insulating film 52 is formed by leaving the film.
  • a source region 53 and a drain region 54 are formed.
  • a resist mask (not shown) that exposes only the surface of the element region 30 on one side (source formation region) of the gate electrode 47 is formed, and this resist mask is used to form an N-type impurity, here arsenic.
  • (As + ) ions are implanted.
  • the ion implantation conditions are such that the acceleration energy is 70 keV to 120 keV and the dose is 1 X 10 15 / cm 2 to l X 10 16 / so that it is superimposed on the LDD region 51 at a higher impurity concentration than the L DD region 51.
  • a resist mask (not shown) that exposes only the surface of the element region 30 on the other side of the gate electrode 47 (drain formation region) is formed.
  • N-type impurities here arsenic (As + )
  • the ion implantation conditions are such that the calo-velocity energy is 70 keV to 120 keV and the dose is 1 X 10 15 so that it is superimposed on the LDD region 51 at a higher impurity concentration than the LDD region 51.
  • annealing treatment is performed at 900 ° C to 1000 ° C for about 10 seconds to 20 seconds to activate the ion-implanted phosphorus.
  • a source region 53 and a drain region 54 are formed.
  • the drain region 54 is formed to be offset from the end of the LDD region 51 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor.
  • interlayer insulation films, contact holes, gate electrodes 47, wirings connected to the source region 53 and the drain region 54 are sequentially formed, and the high breakdown voltage N according to the present embodiment is formed.
  • Completed type MOS transistor is sequentially formed, and the high breakdown voltage N according to the present embodiment is formed.
  • FIG. 13 and FIGS. 14A to 14E are schematic diagrams showing the configuration of a high-breakdown-voltage MOS transistor according to the third embodiment. Note that the structure of the MOO transistor described in the second embodiment is used. The components corresponding to the component members are denoted by the same reference numerals.
  • FIG. 13 is a plan view
  • FIG. 14A is a cross-sectional view taken along the broken line ⁇ - ⁇ in FIG. 13
  • FIG. 14B is a cross-sectional view taken along the broken line ⁇ - ⁇ in FIG.
  • FIG. 14D is a cross-sectional view taken along the broken line IV-IV in FIG. 13
  • FIG. 14D is a cross-sectional view taken along the broken line V_V ′ in FIG.
  • an element isolation structure here, a field oxide film 39 by a L OCOS (LOCal Oxidation of Silicon) method is formed on a silicon semiconductor substrate 31, and an element region 30 is defined on the semiconductor substrate 31. Is done.
  • a wall 41 is formed on the surface layer of the semiconductor substrate 31 so as to include the element region 30.
  • a strip-shaped gate electrode 47 is patterned on the element region 30 through the gate insulating film 45 so as to cross the element region 30, and sidewall insulating films 52 are formed on both side surfaces of the gate electrode 47.
  • a pair of LDD regions 51 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 51, respectively.
  • a source region 53 and a drain region 54 into which impurities are introduced at a high concentration are formed.
  • the source region 53 and A channel stop region 62 is formed in which impurities having a conductivity type opposite to that of the drain region 54 are introduced.
  • the drain region 54 is formed so as to be offset by a predetermined distance from the end of the LDD region 51 in order to ensure a high breakdown voltage of the MOS transistor.
  • the channel stop region 62 is also separated from the end of the LDD region 51 by a predetermined distance to ensure a high breakdown voltage.
  • the field oxide film 39 is formed at a portion below the gate electrode 47 so that the element region 30 has a pair of protruding portions 30a protruding outward at the portion below the gate electrode 47. It is formed in a concave shape.
  • the protrusion 30 a has a width W that is narrower than the gate length G of the gate electrode 47 and is
  • the length L is at least the element area.
  • the distance between the region 30 and a resist mask 36 for forming a channel stop region 42 described later is at least d, and the alignment accuracy between the pattern for forming the element region 30 and the pattern for forming the gate electrode 47 is satisfied.
  • the dimension is set to be more than 0.6 ⁇ .
  • an impurity having a conductivity type opposite to that of the source region 53 and the drain region 54 is introduced into the surface layer of the protrusion 30a to form a surface conductive region.
  • a channel dose region 48 is formed in the surface layer of the silicon element region 30 including the protruding portion 30a under the gate electrode 47 as the surface conductive region.
  • the channel dose region 48 in the wall 41 under the gate electrode 47 by forming the channel dose region 48 in the wall 41 under the gate electrode 47, a sufficient threshold voltage can be ensured.
  • the protrusion 30a is formed to be narrower than the gate length, so it does not function as an active region although it is a part of the element region 30.
  • the channel stop region 62 is formed below the field oxide film 39 so that the end 62a of the channel stop region 62 protrudes from the end of the field oxide film 39.
  • the stop region 62 does not exist (the end 62a of the channel stop region 62 does not reach the portion corresponding to the gate width G w), and the portion corresponding to the gate width G of the gate electrode 47
  • FIG. 15A to FIG. 16B-2 are schematic cross-sectional views showing the method of manufacturing the high voltage MOS transistor according to this embodiment in the order of steps.
  • each figure except FIGS. 16A-2 and 16B-2 is a cross-sectional view taken along the broken line ⁇ — ⁇ in FIG. 13, and FIGS. 16A-2 and 16B-2 are This corresponds to the cross-sectional view along the broken line IV_IV ′ in FIG.
  • an oxidation resistant material film 33 is formed on a silicon semiconductor substrate 31 via an insulating film 32.
  • an insulating film 32 having a thickness of about 30 nm is formed on the surface of the semiconductor substrate 31 by a thermal oxidation method.
  • an oxidation resistant material for example, silicon nitride is deposited by a CVD method to form an oxidation resistant material film 33 having a thickness of about lOOnm.
  • the oxidation-resistant material film 33 is patterned into the shape of the element region.
  • the oxidation-resistant material film 33 is patterned by lithography and dry etching so as to cover a portion that becomes the element region 30 of the semiconductor substrate 31.
  • a field oxide film 39 is formed in the element isolation region.
  • the insulating film 32 and the semiconductor substrate 31 are field oxidized to form a field oxide film 39 in the element isolation region.
  • the device region 30 is defined on the semiconductor substrate 31 by the finered oxide film 39.
  • the field oxide film 39 has a gate shape so that the element region 30 has a pair of projecting portions 30a projecting outward under the formation position of the gate electrode 47 when viewed in plan as shown in FIG.
  • the electrode 47 is formed in a concave shape under the formation site.
  • an insulating film 38 is formed on the semiconductor substrate 31 by a thermal oxidation method.
  • impurities for forming wells are introduced into the semiconductor substrate 31.
  • a resist mask 34 is formed so as to expose a part of the element region 30 on the semiconductor substrate 31 and the field oxide film 39 in the vicinity thereof. Then, the resist mask 34 is used to transmit the field oxide film 39 present in the opening of the resist mask 34 and reach the semiconductor substrate 1 corresponding to the lower portion of the portion exposed from the resist mask 34.
  • Impurities here boron (B + ) are ion-implanted.
  • the acceleration energy is 200 keV to 500 keV
  • the dose is 1 ⁇ 10 10 / cm 2 to 1 ⁇ 10 13 / cm 2 .
  • a P-type impurity region 35 is formed.
  • the resist mask 34 is removed by ashing or the like.
  • impurities for forming a channel stop region are introduced into the semiconductor substrate 31.
  • the device region 30 is separated from the element region 30 by a predetermined distance on the field oxide film 39.
  • a resist mask 36 is formed so as to surround the element region 30 excluding the element region protruding portion 30a.
  • the resist mask 36 exposes a ring-shaped portion on the field oxide film 39.
  • a P-type impurity here boron (B + )
  • B + boron
  • the acceleration energy is set to 100 keV to 240 keV
  • the dose is set to 1 ⁇ 10 10 Zcm 2 to 1 ⁇ 10 M / cm 2 .
  • a P-type impurity region 61 is formed immediately below the field oxide film 39 in alignment with the opening of the resist mask 36.
  • B is exposed from the opening of the resist mask 36 through the end force insulating film 38 of the element region 30 and is ion-implanted into the end portion.
  • + Is introduced deeper than the other part of the P-type impurity region 61.
  • the resist mask 36 is removed by ashing or the like.
  • an impurity for forming a channel dose region is introduced into the semiconductor substrate 31.
  • a resist mask 43 is formed so that the element region 30 is exposed. Then, using the resist mask 43, a P-type impurity, here boron (B + ), is ionized on the surface layer (here near the surface) of the semiconductor substrate 31 corresponding to the lower part of the portion exposed from the resist mask 43. inject.
  • the acceleration energy is 10 keV to 50 keV, and the dose is 1 ⁇ 10 lc> / cm 2 to l ⁇ 10 13 / cm 2 .
  • a P-type impurity region 44 is formed.
  • the resist mask 43 is removed by ashing or the like.
  • the various processes such as the formation of the sidewall insulating film 52, the source region 53, and the drain region 54, the high breakdown voltage N-type MOS transistor according to the present embodiment is completed.
  • This embodiment has substantially the same configuration as that of the second embodiment and is manufactured by substantially the same manufacturing method, but is different in that the form of the channel stop region is slightly different. This embodiment is a modification of the second embodiment.
  • FIGS. 17 and 18A to 18D are schematic views showing the configuration of a high voltage MOS transistor according to the fourth embodiment.
  • FIG. 17 is a plan view
  • FIG. 18A is a cross-sectional view taken along the broken line I—I ′ in FIG. 17
  • FIG. 18B is a cross-sectional view taken along the broken line ⁇ — ⁇ in FIG.
  • FIG. 18D is a cross-sectional view taken along the broken line IV—IV ′ of FIG. 17.
  • an element isolation structure here a field oxide film 39 formed by the LOCOS (LOCal Oxidation of Silicon) method is formed on a silicon semiconductor substrate 31, and an element region 30 is defined on the semiconductor substrate 31. Is done.
  • the well 41 is formed so as to include the element region 30.
  • a strip-shaped gate electrode 47 is patterned on the element region 30 via the gate insulating film 45 so as to cross the element region 30, and sidewall insulating films 52 are formed on both side surfaces of the gate electrode 47.
  • a pair of LDD regions 51 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 51, respectively.
  • a source region 53 and a drain region 54 into which impurities are introduced at a high concentration are formed.
  • a source region is formed in order to prevent charge outflow between the impurity regions with the adjacent MOS transistor through the field oxide film 39.
  • a channelless top region 71 is formed in which impurities having the conductivity type opposite to that of the drain region 54 and the drain region 54 are introduced.
  • the drain region 54 is formed so as to be offset from the end of the LDD region 51 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. With this offset, the channel stop region 71 is also separated from the end of the LDD region 51 by a predetermined distance. High breakdown voltage is ensured.
  • the channel stop region 71 has a field on the almost right half (on the drain region 54 side) of FIG. 17 except for the formation position of the resist mask 36 as in FIG. 7 of the second embodiment.
  • An oxide film 39 is formed immediately below.
  • almost the left half (source region 53 side) of FIG. 17 is formed directly under the entire field oxide film 39. Therefore, in this case, as shown in FIG. 18A, a part of the channel stop region 71 is formed only on the source region 53 side of the portion surrounding the protruding portion 30a in the field oxide film 39. That is, in this embodiment, the channel stop region 71 is formed before the field oxide film 39 is formed, as in the second embodiment.
  • the oxidation-resistant material film 33 is patterned so as to be aligned with the formation region of the element region 30, so that the oxidation-resistant material film 33 is masked during channel stop ion implantation.
  • the intrusion of impurities into the formation region of the element region 30 is prevented.
  • the channel stop region is formed after the field oxide film 39 is formed
  • the channel stop region 71 when the channel stop region 71 is formed, the element region 30 is formed in an acid resistant region. Chemical film 33 does not exist. Accordingly, in this case, as shown in FIG. 19, a resist mask 72 is formed so as to include the element region 30 in the almost right half (drain region 54 side) of FIG. 17, and channel stop ion implantation is performed. It takes a thing.
  • the finered acid oxide film 39 is provided under the gate electrode 47 so that the element region 30 has a pair of protruding portions 30a protruding outward at the portion under the gate electrode 47.
  • the part is formed in a concave shape.
  • the protrusion 30a has a width W narrower than the gate length G of the gate electrode 47 and is
  • the length L is at least a distance d between the element region 30 and a resist mask 36 for forming a channel stop region 71 described later, and the pattern for forming the element region 30 and the formation of the gate electrode 47 are formed. Dimension with allowance, for example, 0. It is.
  • an impurity having a conductivity type opposite to that of the source region 53 and the drain region 54 is introduced into the surface layer of the protrusion 30a to form a surface conductive region.
  • a channel dose region 48 is formed in the surface layer of the silicon element region 30 including the protruding portion 30a under the gate electrode 47 as the surface conductive region.
  • the channel dose region 48 in the wall 41 under the gate electrode 47 by forming the channel dose region 48 in the wall 41 under the gate electrode 47, a sufficient threshold voltage can be ensured.
  • the projecting portion 30a is formed narrower than the gate length, so it does not function as an active region although it is a part of the device region 30. Therefore, as shown in FIG. 8D, for the channel stop region 71 formed under the field oxide film 39, even if the end of this channel stop region 71 protrudes from the end of the field oxide film 39, the gate electrode 47 The channel stop region 71 does not exist under the part corresponding to the gate width G of
  • the end of the channel stop region 72 does not reach the portion corresponding to the gate width G)
  • the portion corresponding to the gate width G of the gate electrode 47 and the end of the channel stop region 71 are separated from each other.
  • This embodiment has substantially the same configuration as that of the first embodiment and is manufactured by substantially the same manufacturing method, but differs in that the source region is also formed in an offset structure like the drain region. To do.
  • This embodiment is a modification of the first embodiment.
  • FIG. 20, FIG. 21A, and FIG. 21B are schematic diagrams showing the configuration of the high-breakdown-voltage MSO transistor according to the fifth embodiment.
  • FIG. 20 is a plan view
  • FIG. 21A is a cross-sectional view taken along broken line II in FIG. 20
  • FIG. 21B is a cross-sectional view taken along broken line ⁇ - ⁇ ⁇ ⁇ in FIG.
  • an element isolation structure here STI, is formed on the silicon semiconductor substrate 1.
  • An STI element isolation structure 7 is formed by the Trench Isolation method, and an element region 10 is defined on the semiconductor substrate 1.
  • a wall 21 is formed on the surface layer of the semiconductor substrate 1 so as to include the element region 10.
  • a strip-shaped gate electrode 16 is patterned on the element region 10 via the gate insulating film 14 so as to cross the element region 10, and the surface layer of the element region 10 on both sides of the gate electrode 16 is formed on the surface layer. Then, a pair of LDD regions 19 formed by introducing impurities at a low concentration is formed, and source / drain regions 25 formed by introducing impurities at a higher concentration than these are formed so as to overlap with the LDD regions 19 respectively. It has been done.
  • a channel stop region 23 is formed in which an impurity having a conductivity type opposite to that of the Z drain region 25 is introduced.
  • the source / drain region 25 is formed to be offset from the end of the LDD region 19 by a predetermined distance in order to ensure a high breakdown voltage of the MOS transistor.
  • the channel stop region 23 is also separated from the end of the LDD region 19 by a predetermined distance to ensure a high breakdown voltage.
  • the STI element isolation structure 7 has a portion below the gate electrode 16 such that the element region 10 has a pair of protruding portions 10a protruding outward at the portion below the gate electrode 16. It is formed in a concave shape.
  • the protrusion 10a has a width W narrower than the gate length G of the gate electrode 16 and the desired width.
  • the length L is at least the distance d between the element region 10 and a resist mask 11 for forming a channel stop region 23 described later, and the pattern for forming the element region 10 and the formation of the gate electrode 16 are formed.
  • the dimension is set to allow for a margin, for example, 0 or more so as to satisfy the alignment accuracy with the pattern for use.
  • the surface conductive region is formed by introducing the impurity.
  • a channel dose region 22 is formed on the surface layer of the silicon element region 10 including the protruding portion 10a under the gate electrode 16 as the surface conductive region.
  • a sufficient threshold voltage can be secured by forming the channel dose region 22 in the wall 21 under the gate electrode 16.
  • the protruding portion 10a is formed narrower than the gate length, it does not function as an active region although it is a part of the element region 10. Therefore, for the channel stop region 23 formed under the STI element isolation structure 7, even if the end of this channel stop region 23 protrudes from the end of the STI element isolation structure 7, the gate width G of the gate electrode 16 Equivalent to
  • the channel stop region 23 does not exist in the lower part of the region where the gate electrode 16 does not exist (the end of the channel stop region 23 does not reach the portion corresponding to the gate width G).
  • the portion corresponding to G and the end of the channel stop region 23 are kept apart.
  • the transistor characteristics are prevented from being deteriorated and stable and sufficient transistor characteristics can be obtained.
  • the reliability of the transistor isolation structure can be suppressed relatively easily and reliably with high reliability, regardless of the element isolation structure forming method and its process position.
  • a semiconductor device can be provided.

Abstract

An STI isolation structure (7) is recessed under a gate electrode (16) such that an element region (10) has a pair of protrusions (10a) protruding outward from a portion under the gate electrode (16). On the surface layer of the protrusion (10a), a surface layer conductive region is formed by introducing impurities having a conductivity type opposite to that of a source region (24) and a drain region (25), e.g. a channel doze region (22) is formed on the surface layer of a silicon element region (10) including the protrusion (10a) under the gate electrode (16). With such an arrangement, variation and degradation in transistor characteristics are suppressed regardless of the process for fabricating the isolation structure and its process position, and a high breakdown voltage is achieved relatively easily and surely.

Description

明 細 書  Specification
半導体装置及びその製造方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、高耐圧を要求される半導体装置及びその製造方法に関し、特に少なく ともドレインがオフセット構造を有するトランジスタ構造の半導体装置を対象とする。 背景技術  The present invention relates to a semiconductor device that requires a high breakdown voltage and a method for manufacturing the same, and particularly to a semiconductor device having a transistor structure in which a drain has an offset structure. Background art
[0002] 近年、有機 EL、 LCD, PDP、 MEMS等に代表されるディスプレイ等に使用される 表示素子や、プリンタの各種ドライバ及び DCコンバータ等として使用される半導体素 子において、高い耐圧が要求されている。  [0002] In recent years, high withstand voltages have been required for display elements used in displays such as organic EL, LCD, PDP, and MEMS, as well as semiconductor elements used as printer drivers and DC converters. ing.
[0003] 高耐圧の半導体素子として、 MOSトランジスタを例示して説明する。  [0003] A MOS transistor will be described as an example of a high breakdown voltage semiconductor element.
図 22及び図 23A〜図 23Dは、従来の高耐圧の MOSトランジスタを示す概略図で ある。ここで、図 22が平面図であり、図 23Aが図 22の破線 I— Γに沿った断面図、図 23Bが図 22の破線 II— ΙΓに沿った断面図、図 23Cが図 22の破線 III— ΠΓに沿った 断面図、図 23Dが図 22の破線 IV— IV'に沿った断面図である。  FIG. 22 and FIGS. 23A to 23D are schematic diagrams showing a conventional high voltage MOS transistor. Here, FIG. 22 is a plan view, FIG. 23A is a cross-sectional view along broken line I-Γ in FIG. 22, FIG. 23B is a cross-sectional view along broken line II— 破 線 Γ in FIG. 22, and FIG. 23C is a broken line in FIG. III—A cross-sectional view along ΠΓ, and FIG. 23D is a cross-sectional view along the broken line IV—IV ′ in FIG.
[0004] この MOSトランジスタでは、半導体基板 100上に素子分離構造、ここではフィール ド酸化膜 102が LOCOS法により形成されて矩形状の素子領域 103が画定される。 ここで、半導体基板 100の表層において、素子領域 103を含むようにゥエル 101が形 成されている。  In this MOS transistor, an element isolation structure, here, a field oxide film 102 is formed on a semiconductor substrate 100 by a LOCOS method to define a rectangular element region 103. Here, in the surface layer of the semiconductor substrate 100, the well 101 is formed so as to include the element region 103.
[0005] 更に、素子領域 103を横切るように、帯状のゲート電極 105が素子領域 103上でゲ ート絶縁膜 104を介してパターン形成され、ゲート電極 105の両側面にはサイドゥォ ール絶縁膜 111が形成されており、ゲート電極 105の両側における素子領域 103の 表層には、不純物が低濃度に導入されてなる一対の LDD領域 106が形成され、 LD D領域 106と各々重畳するように、これらよりも高濃度に不純物が導入されてなるソー ス領域 107及びドレイン領域 108が形成されている。  Further, a strip-like gate electrode 105 is patterned on the element region 103 through the gate insulating film 104 so as to cross the element region 103, and side insulating films are formed on both sides of the gate electrode 105. 111 is formed, and on the surface layer of the element region 103 on both sides of the gate electrode 105, a pair of LDD regions 106 into which impurities are introduced at a low concentration are formed, and overlap with the LD D regions 106, respectively. A source region 107 and a drain region 108 into which impurities are introduced at a higher concentration than these are formed.
[0006] また、半導体基板 100のフィールド酸化膜 102の直下には、フィールド酸化膜 102 を介して隣接する半導体素子との間で不純物領域間の電荷流出を防止するため、ソ ース領域 107及びドレイン領域 108と反対導電型の不純物が導入されてなるチヤネ ルストップ領域 109が形成されている。 [0006] Further, immediately below the field oxide film 102 of the semiconductor substrate 100, the source region 107 and the source region 107 are formed in order to prevent charge outflow between the impurity regions with the adjacent semiconductor element through the field oxide film 102. A channel in which an impurity having a conductivity type opposite to that of the drain region 108 is introduced. A stop region 109 is formed.
[0007] ここで、ドレイン領域 108は、当該 MOSトランジスタの高耐圧を確保するため、 LD[0007] Here, the drain region 108 is provided with an LD in order to ensure a high breakdown voltage of the MOS transistor.
D領域 106の端部から所定距離だけオフセットされるように形成されている。このオフ セットに伴レ、、チャネルストップ領域 109も LDD領域 106の端部から所定距離だけ離 間させ、高耐圧を確保している。 It is formed so as to be offset from the end of the D region 106 by a predetermined distance. As a result of this offset, the channel stop region 109 is also separated from the end of the LDD region 106 by a predetermined distance to ensure a high breakdown voltage.
[0008] 特許文献 1 :特開平 6— 216380号公報 Patent Document 1: Japanese Patent Laid-Open No. 6-216380
特許文献 2:特開 2004— 207499号公報  Patent Document 2: JP 2004-207499 A
発明の開示  Disclosure of the invention
[0009] 従来の高耐圧の MOSトランジスタにおいて、チャネルストップ領域 109を形成する 場合、図 22に示すように、素子領域 103を当該素子領域 103よりも広ぐその端部か ら一定距離離れたところまでレジストマスク 110で覆った状態で、半導体基板 100に イオン注入する。従って、図 23A及び図 23Dに示すように、ゲート電極 105下におけ る素子領域 103の端部とレジストマスク 110 (チャネルストップ領域 109の形成後に除 去される)の端部との間の領域 103a下では、フィールド酸化膜 102を介した半導体 基板 100にはゥエル 101のみが存在する状態となる。  In the case of forming a channel stop region 109 in a conventional high voltage MOS transistor, as shown in FIG. 22, the element region 103 is spaced apart from its end that is wider than the element region 103 by a certain distance. Then, the semiconductor substrate 100 is ion-implanted with the resist mask 110 covered. Therefore, as shown in FIGS. 23A and 23D, the region between the end of the element region 103 under the gate electrode 105 and the end of the resist mask 110 (removed after the channel stop region 109 is formed). Under 103a, the semiconductor substrate 100 through the field oxide film 102 is in a state where only the well 101 exists.
[0010] この場合、電子の通路となる部分では不純物濃度の低い状態であるため、当該 M OSトランジスタに高電圧を印加することにより耐圧の劣化を招く。この耐圧劣化に起 因して、図 24に示すように、ドレイン電圧に対するドレイン電流特性においていわゆ るハンプが発生し、 MOSトランジスタの閾値電圧が本来要求される値に比べて低下 するという問題が生じる。  [0010] In this case, since the impurity concentration is low in the portion serving as the electron path, application of a high voltage to the MOS transistor causes deterioration of the breakdown voltage. As a result of this breakdown voltage degradation, as shown in FIG. 24, a so-called hump occurs in the drain current characteristics with respect to the drain voltage, and the threshold voltage of the MOS transistor is lower than the originally required value. Arise.
[0011] この問題に対処すベぐ特許文献 1 , 2に示すように、図 22における素子領域 103 の領域 103aに相当する部位に、ゥエルよりも不純物濃度が高い不純物領域を形成 するための対策が提案されている。  [0011] As shown in Patent Documents 1 and 2, which should deal with this problem, measures are taken to form an impurity region having an impurity concentration higher than that of the well in the region corresponding to the region 103a of the element region 103 in FIG. Has been proposed.
[0012] 特許文献 1では、素子領域において、ソース/ドレイン領域を囲むようにこれらと反 対導電型の不純物を導入してなる矩形リング状の不純物領域を設ける MOSトランジ スタの構成が開示されている。しかしながらこの技術では、ゲート電極のゲート幅に相 当する部分とチャネルストップ領域とが重なるため、トランジスタ特性の劣化を来すこ とになる。 [0013] 特許文献 2では、チャネルストップ領域を形成するときのレジストマスクを、図 22に おける素子領域 103の領域 103aに相当する部分を露出するように凹状に形成する 。このレジストマスクを用いて不純物を導入することにより、領域 103aに相当する部 分の素子分離構造下にもチャネルストップ領域を形成することができる。 [0012] Patent Document 1 discloses a MOS transistor configuration in which a rectangular ring-shaped impurity region is formed in an element region so as to surround a source / drain region by introducing an impurity of an opposite conductivity type to the source / drain region. Yes. However, with this technology, the portion corresponding to the gate width of the gate electrode overlaps with the channel stop region, which results in deterioration of transistor characteristics. In Patent Document 2, the resist mask for forming the channel stop region is formed in a concave shape so as to expose a portion corresponding to the region 103a of the element region 103 in FIG. By introducing impurities using this resist mask, a channel stop region can be formed under the element isolation structure corresponding to the region 103a.
[0014] 特許文献 2の技術によれば、図 24に示したハンプについては改善される。しかしな がら、素子分離構造の形成後にチャネルストップ領域を形成するためのイオン注入を 行う場合には、素子分離構造を透過し、その底部付近に不純物濃度のピークが位置 するように高い加速エネルギーで注入する必要がある。結果として、ゲート電極のゲ ート幅に相当する部分の下部に不純物濃度の高い領域が形成されてしまう。この高 不純物濃度の領域の存在により、トランジスタ特性に変動を来すことになる。当該領 域の形成形態は製造ばらつきにより不安定であり、トランジスタ特性の変動を制御す ることができないとレ、う問題がある。  [0014] According to the technique of Patent Document 2, the hump shown in FIG. 24 is improved. However, when ion implantation for forming a channel stop region is performed after the element isolation structure is formed, the element isolation structure is transmitted with a high acceleration energy so that the impurity concentration peak is located near the bottom. Need to be injected. As a result, a region having a high impurity concentration is formed below the portion corresponding to the gate width of the gate electrode. The presence of this high impurity concentration region causes a change in transistor characteristics. The formation form of the region is unstable due to manufacturing variations, and there is a problem that the variation in transistor characteristics cannot be controlled.
[0015] この場合、安定したトランジスタ特性を得るためには、素子分離構造の形成法を LO COS法に限定し、フィールド酸化膜を形成する際の耐酸化膜のパターンがあり、且 つフィールド酸化を行う前にチャネルストップ領域を形成する必要があった。  In this case, in order to obtain stable transistor characteristics, the element isolation structure forming method is limited to the LO COS method, and there is an oxidation resistant film pattern when forming the field oxide film. It was necessary to form a channel stop region before performing.
[0016] このように、高耐圧の MOSトランジスタを実現するための従来の技術では、トランジ スタ特性に変動劣化を制御抑制することが困難であり、素子分離構造の選択及びそ の形成工程の位置を限定しなければならないという問題がある。  As described above, in the conventional technique for realizing a high breakdown voltage MOS transistor, it is difficult to control and suppress fluctuation deterioration in the transistor characteristics, and the selection of the element isolation structure and the position of the formation process are difficult. There is a problem that must be limited.
[0017] 本発明は、上記の問題に鑑みてなされたものであり、素子分離構造の形成方法及 びその工程位置に依らずにトランジスタ特性の変動劣化を抑止し、比較的簡易且つ 確実に高耐圧を実現する信頼性の高い半導体装置及びその製造方法を提供するこ とを目的とする。  [0017] The present invention has been made in view of the above-described problems, and suppresses deterioration in transistor characteristics regardless of the method of forming an element isolation structure and the position of the process, and relatively easily and reliably achieves a high breakdown voltage. An object of the present invention is to provide a highly reliable semiconductor device that achieves the above and a manufacturing method thereof.
[0018] 本発明の半導体装置は、半導体基板表面の素子分離領域に形成されて、当該半 導体基板上で素子領域を画定する素子分離構造と、前記素子領域を横切るように形 成されたゲート電極と、前記ゲート電極の両側における前記素子領域に不純物が導 入されてなる一対の導電領域とを含み、前記各導電領域は、それぞれ低濃度領域と 当該低濃度領域よりも不純物濃度の高い高不純物領域とが重畳されてなり、前記各 導電領域の少なくとも一方は、前記高不純物領域が前記低濃度領域内で当該低濃 度領域の端部からオフセットされた状態に形成されており、前記素子分離構造は、前 記素子領域が前記ゲート電極下の部分においてゲート長よりも狭幅で外方へ向かつ て突出する突出部を有するように、前記ゲート電極下の部分で凹形状に形成され、 前記突出部の表層に、前記導電領域とは反対導電型の不純物が導入されてなる表 層導電領域が形成されてレ、る。 [0018] A semiconductor device of the present invention includes an element isolation structure that is formed in an element isolation region on the surface of a semiconductor substrate and demarcates the element region on the semiconductor substrate, and a gate that is formed across the element region. An electrode and a pair of conductive regions in which impurities are introduced into the element region on both sides of the gate electrode, and each of the conductive regions includes a low concentration region and a high impurity concentration higher than the low concentration region, respectively. An impurity region is overlapped, and at least one of the conductive regions includes the high impurity region in the low concentration region and the low concentration region. The element isolation structure is formed so that the element region protrudes outward with a width narrower than the gate length at a portion below the gate electrode. A surface conductive region formed by introducing an impurity of a conductivity type opposite to the conductive region is formed in a surface layer of the projecting portion. RU
[0019] 本発明の半導体装置の製造方法は、半導体基板表面の素子分離領域に、当該半 導体基板上で素子領域を画定する素子分離構造を形成する工程と、前記素子領域 を横切るようにゲート電極を形成する工程と、前記ゲート電極の両側における前記素 子領域に不純物を導入し、一対の導電領域を形成する工程とを含み、前記各導電 領域を、それぞれ低濃度領域と当該低濃度領域よりも不純物濃度の高い高不純物 領域とが重畳されてなり、前記各導電領域の少なくとも一方は、前記高不純物領域 が前記低濃度領域内で当該低濃度領域の端部力 オフセットされた状態に形成し、 前記素子分離構造を、前記素子領域が前記ゲート電極下の部分においてゲート長 よりも狭幅で外方へ向かって突出する突出部を有するように、前記ゲート電極下の部 分で凹形状に形成し、前記突出部の表層に、前記導電領域とは反対導電型の不純 物を導入して表層導電領域を形成する。  [0019] A method for manufacturing a semiconductor device according to the present invention includes a step of forming an element isolation structure for defining an element region on the semiconductor substrate in an element isolation region on the surface of the semiconductor substrate, and a gate so as to cross the element region. Forming a pair of conductive regions by introducing impurities into the element regions on both sides of the gate electrode, and each of the conductive regions is divided into a low concentration region and a low concentration region, respectively. And a high impurity region having a higher impurity concentration is superimposed, and at least one of the conductive regions is formed in a state where the high impurity region is offset in the low concentration region by an end force of the low concentration region. And the element isolation structure has a portion below the gate electrode such that the element region has a protruding portion that is narrower than the gate length and protrudes outward in the portion below the gate electrode. The surface conductive region is formed by introducing an impurity of a conductivity type opposite to the conductive region into the surface layer of the protruding portion.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、第 1の実施形態による高耐圧の MOSトランジスタの構成を示す概略平 面図である。  FIG. 1 is a schematic plan view showing a configuration of a high breakdown voltage MOS transistor according to a first embodiment.
[図 2A]図 2Aは、図 1の破線 Ι— Γに沿った概略断面図である。  [FIG. 2A] FIG. 2A is a schematic cross-sectional view taken along broken line Ι-Γ in FIG.
[図 2B]図 2Bは、図 1の破線 ΙΙ— ΙΓに沿った概略断面図である。  [FIG. 2B] FIG. 2B is a schematic cross-sectional view taken along broken lines ΙΙ—ΙΓ in FIG.
[図 2C]図 2Cは、図 1の破線 ΠΙ_ΠΓに沿った概略断面図である。  [FIG. 2C] FIG. 2C is a schematic cross-sectional view along the broken line ΠΙ_ΠΓ in FIG.
[図 2D]図 2Dは、図 1の破線 IV—IV'に沿った概略断面図である。  FIG. 2D is a schematic cross-sectional view taken along broken line IV-IV ′ in FIG.
[図 2Ε]図 2Εは、図 1の破線 V—V'に沿った概略断面図である。  [Fig. 2Ε] Fig. 2Ε is a schematic cross-sectional view along the broken line VV 'in Fig. 1.
[図 3Α]図 3Αは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。  [FIG. 3B] FIG. 3B is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
[図 3Β]図 3Βは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示す 概略断面図である。 園 3C]図 3Cは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 [FIG. 3B] FIG. 3B is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment. 3C] FIG. 3C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
園 3D]図 3Dは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 3D] FIG. 3D is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
園 4A]図 4Aは、第 1の実施形態による高耐圧の M〇Sトランジスタの製造方法を示 す概略断面図である。 4A] FIG. 4A is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the first embodiment.
[図 4B]図 4Bは、第 1の実施形態による高耐圧の M〇Sトランジスタの製造方法を示す 概略断面図である。  [FIG. 4B] FIG. 4B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the first embodiment.
園 4C]図 4Cは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 4C] FIG. 4C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
園 5A]図 5Aは、第 1の実施形態による高耐圧の M〇Sトランジスタの製造方法を示 す概略断面図である。 5A] FIG. 5A is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the first embodiment.
園 5B-1]図 5B— 1は、第 1の実施形態による高耐圧の MOSトランジスタの製造方法 を示す概略断面図である。 5B-1] FIG. 5B-1 is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
園 5B-2]図 5B— 2は、第 1の実施形態による高耐圧の MOSトランジスタの製造方法 を示す概略断面図である。 5B-2] FIG. 5B-2 is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
園 6A]図 6Aは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 6A] FIG. 6A is a schematic cross-sectional view showing a method of manufacturing the high voltage MOS transistor according to the first embodiment.
[図 6B]図 6Bは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示す 概略断面図である。  FIG. 6B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the first embodiment.
園 6C]図 6Cは、第 1の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 6C] FIG. 6C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the first embodiment.
園 7]図 7は、第 2の実施形態による高耐圧の MOSトランジスタの構成を示す概略平 面図である。 7] FIG. 7 is a schematic plan view showing the configuration of the high voltage MOS transistor according to the second embodiment.
[図 8A]図 8Aは、図 7の破線 Ι— Γに沿った概略断面図である。  [FIG. 8A] FIG. 8A is a schematic cross-sectional view taken along broken line Ι-Γ in FIG.
[図 8B]図 8Bは、図 7の破線 ΙΙ— ΙΓに沿った概略断面図である。 [FIG. 8B] FIG. 8B is a schematic cross-sectional view taken along broken lines ΙΙ—ΙΓ in FIG.
[図 8C]図 8Cは、図 7の破線 ΠΙ_ΠΓに沿った概略断面図である。 [FIG. 8C] FIG. 8C is a schematic cross-sectional view taken along the broken line ΠΙ_ΠΓ in FIG.
[図 8D]図 8Dは、図 7の破線 IV—IV'に沿った概略断面図である。 園 9A]図 9Aは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 FIG. 8D is a schematic sectional view taken along broken line IV-IV ′ in FIG. 9A] FIG. 9A is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the second embodiment.
[図 9B]図 9Bは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を示す 概略断面図である。  FIG. 9B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the second embodiment.
園 9C]図 9Cは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を示 す概略断面図である。 9C] FIG. 9C is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the second embodiment.
園 10A]図 10Aは、第 2の実施形態による高耐圧の M〇Sトランジスタの製造方法を 示す概略断面図である。 10A] FIG. 10A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the second embodiment.
園 10B- 1]図 10B— 1は、第 2の実施形態による高耐圧の MOSトランジスタの製造方 法を示す概略断面図である。 10B-1] FIG. 10B-1 is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the second embodiment.
園 10B- 2]図 10B— 2は、第 2の実施形態による高耐圧の MOSトランジスタの製造方 法を示す概略断面図である。 10B-2] FIG. 10B-2 is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the second embodiment.
園 11A]図 11Aは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 11A] FIG. 11A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the second embodiment.
[図 11B]図 11Bは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。  FIG. 11B is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the second embodiment.
園 11C]図 11Cは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 11C] FIG. 11C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the second embodiment.
園 12A]図 12Aは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 12A] FIG. 12A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the second embodiment.
園 12B]図 12Bは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 12B] FIG. 12B is a schematic cross-sectional view showing a method for manufacturing the high voltage MOS transistor according to the second embodiment.
園 12C]図 12Cは、第 2の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 12C] FIG. 12C is a schematic cross-sectional view showing the method for manufacturing the high voltage MOS transistor according to the second embodiment.
園 13]図 13は、第 3の実施形態による高耐圧の MOSトランジスタの構成を示す概略 平面図である。 13] FIG. 13 is a schematic plan view showing the configuration of a high voltage MOS transistor according to the third embodiment.
[図 14A]図 14Aは、図 13の破線 Ι— Γに沿った概略断面図である。  FIG. 14A is a schematic cross-sectional view taken along broken line 破 線 -Γ in FIG.
[図 14B]図 14Bは、図 13の破線 ΙΙ— ΙΓに沿った概略断面図である。 [図 14C]図 14Cは、図 13の破線 III— ΠΓに沿った概略断面図である。 [FIG. 14B] FIG. 14B is a schematic cross-sectional view taken along broken lines ΙΙ—ΙΓ in FIG. FIG. 14C is a schematic cross-sectional view along broken line III—ΠΓ in FIG.
[図 14D]図 14Dは、図 13の破線 IV— IV'に沿った概略断面図である。  FIG. 14D is a schematic sectional view taken along broken line IV-IV ′ in FIG.
[図 14E]図 14Eは、図 13の破線 V— V'に沿った概略断面図である。  FIG. 14E is a schematic cross-sectional view along the broken line VV ′ of FIG.
園 15A]図 15Aは、第 3の実施形態による高耐圧の M〇Sトランジスタの製造方法を 示す概略断面図である。 15A] FIG. 15A is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
園 15B]図 15Bは、第 3の実施形態による高耐圧の M〇Sトランジスタの製造方法を 示す概略断面図である。 15B] FIG. 15B is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
園 15C]図 15Cは、第 3の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 15C] FIG. 15C is a schematic cross-sectional view showing the method of manufacturing the high voltage MOS transistor according to the third embodiment.
園 15D]図 15Dは、第 3の実施形態による高耐圧の MOSトランジスタの製造方法を 示す概略断面図である。 15D] FIG. 15D is a schematic cross-sectional view showing the method of manufacturing the high breakdown voltage MOS transistor according to the third embodiment.
園 16A- 1]図 16A—1は、第 3の実施形態による高耐圧の M〇Sトランジスタの製造方 法を示す概略断面図である。 16A-1] FIG. 16A-1 is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
園 16A-2]図 16A— 2は、第 3の実施形態による高耐圧の MOSトランジスタの製造方 法を示す概略断面図である。 16A-2] FIG. 16A-2 is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
園 16B-1]図 16B— 1は、第 3の実施形態による高耐圧の MOSトランジスタの製造方 法を示す概略断面図である。 16B-1] FIG. 16B-1 is a schematic cross-sectional view showing a method of manufacturing a high voltage MOS transistor according to the third embodiment.
園 16B-2]図 16B— 2は、第 3の実施形態による高耐圧の MOSトランジスタの製造方 法を示す概略断面図である。 16B-2] FIG. 16B-2 is a schematic cross-sectional view showing a method for manufacturing a high voltage MOS transistor according to the third embodiment.
園 17]図 17は、第 4の実施形態による高耐圧の MOSトランジスタの構成を示す概略 平面図である。 17] FIG. 17 is a schematic plan view showing the configuration of a high voltage MOS transistor according to the fourth embodiment.
[図 18A]図 18Aは、図 17の破線 Ι— Γに沿った概略断面図である。  [FIG. 18A] FIG. 18A is a schematic cross-sectional view along broken line Ι-Γ in FIG.
[図 18B]図 18Bは、図 17の破線 ΙΙ— ΙΓに沿った概略断面図である。  [FIG. 18B] FIG. 18B is a schematic sectional view taken along broken lines 破 線 —ΙΙΓ in FIG.
[図 18C]図 18Cは、図 17の破線 ΠΙ_ΠΓに沿った概略断面図である。  FIG. 18C is a schematic cross-sectional view along the broken line ΠΙ_ 破 線 Γ in FIG.
[図 18D]図 18Dは、図 17の破線 IV—IV'に沿った概略断面図である。  FIG. 18D is a schematic cross-sectional view taken along broken line IV-IV ′ in FIG.
園 19]図 19は、第 4の実施形態による高耐圧の MOSトランジスタの構成における他 の例を示す概略平面図である。 19] FIG. 19 is a schematic plan view showing another example of the structure of the high voltage MOS transistor according to the fourth embodiment.
[図 20]図 20は、第 5の実施形態による高耐圧の MOSトランジスタの構成を示す概略 平面図である。 FIG. 20 is a schematic diagram showing a configuration of a high voltage MOS transistor according to the fifth embodiment. It is a top view.
[図 21A]図 21Aは、図 20の破線 I Γに沿った概略断面図である。  FIG. 21A is a schematic cross-sectional view along broken line I Γ in FIG.
[図 21B]図 21Bは、図 20の破線 II— ΙΓに沿った概略断面図である。  FIG. 21B is a schematic cross-sectional view along broken line II— 破 線 Γ in FIG.
[図 22]図 22は、従来の実施形態による高耐圧の MOSトランジスタの構成を示す概 略平面図である。  FIG. 22 is a schematic plan view showing a configuration of a high voltage MOS transistor according to a conventional embodiment.
[図 23A]図 23Aは、図 22の破線 Ι Γに沿った概略断面図である。  [FIG. 23A] FIG. 23A is a schematic cross-sectional view along the broken line ΙΓ in FIG.
[図 23B]図 23Bは、図 22の破線 ΙΙ— ΙΓに沿った概略断面図である。  FIG. 23B is a schematic cross-sectional view taken along broken lines ΙΙ— 破 線 Γ in FIG.
[図 23C]図 23Cは、図 22の破線 ΙΠ ΙΙΓに沿った概略断面図である。  FIG. 23C is a schematic cross-sectional view taken along broken lines 破 線 ΙΙΓ in FIG.
[図 23D]図 23Dは、図 22の破線 IV—IV'に沿った概略断面図である。  FIG. 23D is a schematic sectional view taken along broken line IV-IV ′ in FIG.
[図 24]図 24は、ゲート電極とドレイン電流との関係を示す特性図である。  FIG. 24 is a characteristic diagram showing the relationship between the gate electrode and the drain current.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 一本発明の基本骨子  [0021] Basic outline of the present invention
本発明者は、素子分離構造の形成方法及びその工程位置に依らずにトランジスタ 特性の変動劣化を抑止すべく鋭意検討を重ねた結果、以下の主要構成に想到した 。即ち、素子分離構造を、素子領域がゲート電極下の部分においてゲート長よりも狭 幅で外方へ向かって突出する突出部を有するように、ゲート電極下の部分で凹形状 に形成する。そして、突出部の表層に、例えばソース/ドレイン領域となる導電領域 と反対導電型の不純物を導入して表層導電領域を形成する。  The inventor of the present invention has contrived the following main configuration as a result of intensive studies to suppress the deterioration of transistor characteristics regardless of the method of forming the element isolation structure and the process position. That is, the element isolation structure is formed in a concave shape in the portion under the gate electrode so that the element region has a protruding portion that is narrower than the gate length and protrudes outward in the portion under the gate electrode. Then, for example, an impurity having a conductivity type opposite to that of the conductive region to be the source / drain region is introduced into the surface layer of the protruding portion to form the surface conductive region.
[0022] 本発明では、素子領域におけるゲート電極下の部分について、少なくとも突出部に 表層導電領域を形成することにより、十分な閾値電圧を確保することができる。その 一方で、突出部はゲート長よりも幅狭に形成されているため、素子領域の一部ではあ るが活性領域としては機能しなレ、。そのため、素子分離構造下にチャネルストップ領 域を形成し、このチャネルストップ領域の端部が素子分離構造の端部から突き出たと しても、ゲート電極のゲート幅に相当する部分の下部にはチャネルストップ領域は存 することなく(チャネルストップ領域の端部がゲート幅に相当する部分に達することなく )、ゲート電極のゲート幅に相当する部分とチャネルストップ領域の端部とは離間した 状態で保たれる。従って、トランジスタ特性の変動劣化が抑止され、安定した十分なト ランジスタ特'性を得ることができる。 [0023] 本発明を適用した具体的な緒実施形態 In the present invention, a sufficient threshold voltage can be ensured by forming a surface conductive region at least in the protruding portion of the element region below the gate electrode. On the other hand, the protrusion is formed narrower than the gate length, so it does not function as an active region although it is part of the device region. Therefore, even if a channel stop region is formed under the element isolation structure and the end of the channel stop region protrudes from the end of the element isolation structure, a channel stop region is formed below the portion corresponding to the gate width of the gate electrode. There is no stop region (the end of the channel stop region does not reach the portion corresponding to the gate width), and the portion corresponding to the gate width of the gate electrode and the end of the channel stop region are kept apart. Be drunk. Therefore, fluctuation deterioration of the transistor characteristics is suppressed, and stable and sufficient transistor characteristics can be obtained. [0023] Specific embodiments to which the present invention is applied
以下、本発明を高耐圧の MOSトランジスタ、ここでは N型の MOSトランジスタに適 用した適用した具体的な緒実施形態にっレ、て、図面を参照しながら詳細に説明する  Hereinafter, the present invention will be described in detail with reference to the drawings, in accordance with a specific embodiment in which the present invention is applied to a high breakdown voltage MOS transistor, here an N-type MOS transistor.
[0024] [第 1の実施形態] [0024] [First embodiment]
(MOSトランジスタの構成)  (Configuration of MOS transistor)
図 1及び図 2A〜図 2Eは、第 1の実施形態による高耐圧の MOSトランジスタの構成 を示す概略図である。ここで、図 1が平面図であり、図 2Aが図 1の破線 Ι Γに沿った 断面図、図 2Bが図 1の破線 ΙΙ— ΙΓに沿った断面図、図 2Cが図 1の破線 ΙΙΙ— ΙΙΓに 沿った断面図、図 2Dが図 1の破線 IV—IV'に沿った断面図、図 2Eが図 1の破線 V 1 and 2A to 2E are schematic diagrams showing the configuration of the high-breakdown-voltage MOS transistor according to the first embodiment. Here, FIG. 1 is a plan view, FIG. 2A is a cross-sectional view along broken line ΓΓ in FIG. 1, FIG. 2B is a cross-sectional view along broken line 破 線 — 破 線 Γ in FIG. 1, and FIG. 2C is a broken line in FIG. — Cross-sectional view along ΙΙΓ, Figure 2D is a cross-sectional view along IV-IV 'in Figure 1, and Figure 2E is a broken line V in Figure 1.
-Vに沿った断面図である。 It is sectional drawing along -V.
[0025] この MOSトランジスタでは、シリコン半導体基板 1上に素子分離構造、ここでは STI  [0025] In this MOS transistor, an element isolation structure, here STI, is formed on a silicon semiconductor substrate 1.
(Shallow  (Shallow
Trench Isolation)法による STI素子分離構造 7が形成され、半導体基板 1上で素子 領域 10が画定される。ここで、半導体基板 1の表層において、素子領域 10を含むよ うにゥエル 21が形成されてレ、る。  An STI element isolation structure 7 is formed by the Trench Isolation method, and an element region 10 is defined on the semiconductor substrate 1. Here, on the surface layer of the semiconductor substrate 1, the well 21 is formed so as to include the element region 10.
[0026] 更に、素子領域 10を横切るように、帯状のゲート電極 16が素子領域 10上でゲート 絶縁膜 14を介してパターン形成され、ゲート電極 16の両側面にはサイドウォール絶 縁膜 18が形成されており、ゲート電極 16の両側における素子領域 10の表層には、 不純物が低濃度に導入されてなる一対の LDD領域 19が形成され、 LDD領域 19と 各々重畳するように、これらよりも高濃度に不純物が導入されてなるソース領域 24及 びドレイン領域 25が形成されてレ、る。  Further, a strip-shaped gate electrode 16 is patterned on the element region 10 via the gate insulating film 14 so as to cross the element region 10, and sidewall insulating films 18 are formed on both side surfaces of the gate electrode 16. In the surface layer of the element region 10 on both sides of the gate electrode 16, a pair of LDD regions 19 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 19, respectively. A source region 24 and a drain region 25 into which impurities are introduced at a high concentration are formed.
[0027] また、半導体基板 1の STI素子分離構造 7の直下には、 STI素子分離構造 7を介し て隣接する M〇Sトランジスタ等との間で不純物領域間の電荷流出を防止するため、 ソース領域 24及びドレイン領域 25と反対導電型の不純物が導入されてなるチャネル ストップ領域 23が形成されている。  [0027] Further, immediately below the STI element isolation structure 7 of the semiconductor substrate 1, in order to prevent the outflow of charges between impurity regions between the STI element isolation structure 7 and the adjacent M0S transistor, etc. A channel stop region 23 is formed in which an impurity having a conductivity type opposite to that of the region 24 and the drain region 25 is introduced.
[0028] ここで、ドレイン領域 25は、当該 M〇Sトランジスタの高耐圧を確保するため、 LDD 領域 19の端部から所定距離だけオフセットされるように形成されてレ、る。このオフセッ トに伴い、チャネルストップ領域 23も LDD領域 19の端部から所定距離だけ離間させHere, the drain region 25 is formed and offset so as to be offset from the end of the LDD region 19 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. This offset As a result, the channel stop region 23 is also separated from the end of the LDD region 19 by a predetermined distance.
、高耐圧を確保している。 High breakdown voltage is ensured.
[0029] 本実施形態において、 STI素子分離構造 7は、素子領域 10がゲート電極 16下の 部分において外方へ向かって突出する一対の突出部 10aを有するように、ゲート電 極 16下の部分で凹形状に形成されている。 [0029] In the present embodiment, the STI element isolation structure 7 has a portion under the gate electrode 16 such that the element region 10 has a pair of protrusions 10a protruding outward in the portion under the gate electrode 16. It is formed in a concave shape.
[0030] 突出部 10aは、その幅 Wが、ゲート電極 16のゲート長 Gよりも狭幅で且つ所期の [0030] The protrusion 10a has a width W narrower than the gate length G of the gate electrode 16 and the expected width.
L  L
形状に形成できる寸法以上 (即ち、使用するプロセスのテクノロジーで許容できる最 小寸法 (例えば 0. 18 z m)以上)とされている。また、その長さ Lが、少なくとも素子領 域 10と後述するチャネルストップ領域 23を形成するためのレジストマスク 11との距離 d以上であり、素子領域 10の形成用のパターンとゲート電極 16の形成用のパターン との位置合わせ精度を満たすように余裕を見込んだ寸法、例えば 0. 以上とさ れている。  It must be larger than the size that can be formed into the shape (ie, more than the smallest dimension that can be tolerated by the process technology used (eg, 0.18 z m)). Further, the length L is at least the distance d between the element region 10 and a resist mask 11 for forming a channel stop region 23 described later, and the pattern for forming the element region 10 and the formation of the gate electrode 16 are formed. The dimension is set to allow for a margin, for example, 0 or more so as to satisfy the alignment accuracy with the pattern for use.
[0031] そして、突出部 10aの表層に、例えばソース領域 24及びドレイン領域 25と反対導 電型の不純物を導入して表層導電領域が形成されている。本実施形態では、この表 層導電領域として、ゲート電極 16下における突出部 10aを含むシリコン素子領域 10 の表層にチャネルドーズ領域 22が形成されている。  [0031] Then, for example, an impurity having a conductivity type opposite to that of the source region 24 and the drain region 25 is introduced into the surface layer of the protruding portion 10a to form a surface conductive region. In this embodiment, a channel dose region 22 is formed in the surface layer of the silicon element region 10 including the protruding portion 10a under the gate electrode 16 as the surface layer conductive region.
[0032] 本実施形態では、ゲート電極 16下におけるゥエル 21内にチャネルドーズ領域 22を 形成することにより、十分な閾値電圧を確保することができる。その一方で、図 1に示 すように、突出部 10aはゲート長よりも幅狭に形成されているため、素子領域 10の一 部ではあるが活性領域としては機能しなレ、。そのため、図 2Dに示すように、 STI素子 分離構造 7下に形成されたチャネルストップ領域 23について、このチャネルストップ 領域 23の端部が STI素子分離構造 7の端部から突き出たとしても、ゲート電極 16の ゲート幅 G に相当する部分の下部にはチャネルストップ領域 23は存することなく(チ  In the present embodiment, a sufficient threshold voltage can be secured by forming the channel dose region 22 in the well 21 below the gate electrode 16. On the other hand, as shown in FIG. 1, since the protruding portion 10a is formed narrower than the gate length, it does not function as an active region although it is a part of the element region 10. Therefore, as shown in FIG. 2D, even if the end of the channel stop region 23 protrudes from the end of the STI element isolation structure 7 for the channel stop region 23 formed under the STI element isolation structure 7, the gate electrode The channel stop region 23 does not exist under the portion corresponding to the gate width G of 16 (the
W  W
ャネルストップ領域 23の端部がゲート幅 G に相当する部分に達することなく)、グー  The end of the channel stop region 23 does not reach the part corresponding to the gate width G),
W  W
ト電極 16のゲート幅 G に相当する部分とチャネルストップ領域 23の端部とは離間し  The portion corresponding to the gate width G of the gate electrode 16 is separated from the end of the channel stop region 23.
W  W
た状態で保たれる。従って、この M〇Sトランジスタによれば、トランジスタ特性の変動 劣化が抑止され、安定した十分なトランジスタ特性を得ることができる。  It is kept in the state. Therefore, according to this MOS transistor, fluctuation and deterioration of transistor characteristics are suppressed, and stable and sufficient transistor characteristics can be obtained.
[0033] (MOSトランジスタの製造方法) 図 3A〜図 6Cは、本実施形態による高耐圧の MOSトランジスタの製造方法を工程 順に示す概略断面図である。ここで、図 3A〜図 6Cのうち、図 5B— 2を除く各図が図 1の破線 II— ΙΓに沿った断面図、図 5B— 2が図 1の破線 IV— IV'に沿った断面図に 対応する。 [0033] (Manufacturing method of MOS transistor) 3A to 6C are schematic cross-sectional views showing the method of manufacturing the high voltage MOS transistor according to this embodiment in the order of steps. Here, among FIGS. 3A to 6C, each figure except for FIG. 5B-2 is a cross-sectional view taken along the broken line II—ΙΓ in FIG. 1, and FIG. 5B-2 is a cross section taken along the broken line IV—IV ′ in FIG. Corresponds to the figure.
[0034] 先ず、図 3Aに示すように、シリコン半導体基板 1上に絶縁膜 2を介して耐酸化材料 膜 3を形成する。  First, as shown in FIG. 3A, an oxidation resistant material film 3 is formed on a silicon semiconductor substrate 1 with an insulating film 2 interposed therebetween.
詳細には、半導体基板 1の表面に熱酸化法により膜厚 30nm程度の絶縁膜 2を形 成した後、耐酸化材料、例えば窒化シリコンを CVD法により堆積し、膜厚 lOOnm程 度の耐酸化材料膜 3を形成する。  Specifically, an insulating film 2 having a thickness of about 30 nm is formed on the surface of the semiconductor substrate 1 by a thermal oxidation method, and then an oxidation resistant material, for example, silicon nitride is deposited by the CVD method, and the oxidation resistance of a thickness of about lOO nm is deposited. A material film 3 is formed.
[0035] 続いて、図 3Bに示すように、素子分離領域に分離溝 4を形成する。  Subsequently, as shown in FIG. 3B, an isolation groove 4 is formed in the element isolation region.
詳細には、先ず、耐酸化材料膜 3及び絶縁膜 2を、半導体基板 1の素子領域 10と なる部分を覆って素子分離領域が露出するように、リソグラフィー及びドライエツチン グによりパターユングする。  Specifically, first, the oxidation-resistant material film 3 and the insulating film 2 are patterned by lithography and dry etching so that the element isolation region is exposed so as to cover a portion to be the element region 10 of the semiconductor substrate 1.
[0036] そして、パターユングされた耐酸化材料膜 3及び絶縁膜 2又は上記のパターニング で使用した不図示のレジストをマスクとして、半導体基板 1を深さ 200nm〜500nm 程度にドライエッチングし、半導体基板 1の素子分離領域に分離溝 4を形成する。こ こで、分離溝 4は、図 1のように平面視した場合、素子領域 10がゲート電極 16の形成 部位下において外方へ向かって突出する一対の突出部 10aを有するように、ゲート 電極 16の形成部位下で凹形状に形成される。  [0036] Then, using the patterned oxidation resistant material film 3 and insulating film 2 or the resist (not shown) used in the above patterning as a mask, the semiconductor substrate 1 is dry-etched to a depth of about 200 nm to 500 nm to obtain a semiconductor substrate An isolation groove 4 is formed in the element isolation region 1. Here, the separation groove 4 has a gate electrode so that the element region 10 has a pair of projecting portions 10a projecting outward under the formation portion of the gate electrode 16 when viewed in plan as shown in FIG. It is formed in a concave shape under 16 formation sites.
[0037] 続いて、図 3Cに示すように、分離溝 4の内壁に絶縁膜 5を形成した後、全面に絶縁 物 6を堆積する。  Subsequently, as shown in FIG. 3C, after the insulating film 5 is formed on the inner wall of the separation groove 4, the insulator 6 is deposited on the entire surface.
詳細には、先ず、分離溝 4の内壁面をウエット酸化し、膜厚 20nm程度の絶縁膜 5を 形成する。  Specifically, first, the inner wall surface of the separation groove 4 is wet-oxidized to form the insulating film 5 having a thickness of about 20 nm.
そして、分離溝 4を坦め込む厚みに、半導体基板 1の全面に絶縁物 6、ここではシリ コン酸化膜を膜厚 300nm〜800nm程度に CVD法により堆積する。  Then, an insulator 6, here a silicon oxide film, is deposited to a thickness of about 300 nm to 800 nm by the CVD method on the entire surface of the semiconductor substrate 1 so as to receive the separation groove 4.
[0038] 続いて、図 3Dに示すように、 STI素子分離構造 7を形成する。 Subsequently, as shown in FIG. 3D, the STI element isolation structure 7 is formed.
詳細には、耐酸化材料膜 3を研磨ストッパーとして用いて、絶縁物 6を CMP (Chemi cal Mechanical Polishing)法により研磨して平坦ィ匕する。そして、残存した耐酸化材料膜 3及び絶縁膜 2を除去することにより、分離溝 4を絶縁物 6で充填する STI素子分離 構造 7を形成する。この STI素子分離構造 7により、半導体基板 1上で素子領域 10が 画定される。ここで、 STI素子分離構造 7は、図 1のように平面視した場合、素子領域 10がゲート電極 16の形成部位下において外方へ向かって突出する一対の突出部 1 0aを有するように、ゲート電極 16の形成部位下で凹形状に形成される。その後、熱 酸化法により半導体基板 1上に再び絶縁膜 2を形成する。 Specifically, using the oxidation-resistant material film 3 as a polishing stopper, the insulator 6 is CMP (Chemi cal Polishing and flattening by a mechanical polishing method. Then, the remaining oxidation-resistant material film 3 and insulating film 2 are removed, thereby forming the STI element isolation structure 7 that fills the isolation groove 4 with the insulator 6. This STI element isolation structure 7 defines an element region 10 on the semiconductor substrate 1. Here, when viewed in plan as shown in FIG. 1, the STI element isolation structure 7 has a pair of protrusions 10a that protrude outwardly under the formation region of the gate electrode 16, It is formed in a concave shape under the formation site of the gate electrode 16. Thereafter, the insulating film 2 is formed again on the semiconductor substrate 1 by thermal oxidation.
[0039] 続いて、図 4Aに示すように、半導体基板 1にゥエルを形成するための不純物を導 入する。 Subsequently, as shown in FIG. 4A, impurities for forming wells are introduced into the semiconductor substrate 1.
詳細には、先ず、半導体基板 1上の素子領域 10及びその周辺の STI素子分離構 造 7の一部を露出させるように、レジストマスク 8を形成する。そして、レジストマスク 8を 用いて、レジストマスク 8から露出する部分の下部に相当する半導体基板 1内に、 P型 不純物、ここではホウ素(B+)をイオン注入する。イオン注入の条件としては、加速ェ ネノレギーを 200keV〜500keV、ドーズ量を 1 X 1010/cm2〜l X 1013/cm2とする 。このイオン注入により、 P型不純物領域 9が形成される。レジストマスク 8は、灰化処 理等により除去される。 Specifically, first, a resist mask 8 is formed so as to expose a part of the element region 10 on the semiconductor substrate 1 and the surrounding STI element isolation structure 7. Then, using the resist mask 8, a P-type impurity, here boron (B + ), is ion-implanted into the semiconductor substrate 1 corresponding to the lower portion of the portion exposed from the resist mask 8. As ion implantation conditions, the acceleration energy is 200 keV to 500 keV, and the dose is 1 × 10 10 / cm 2 to 1 × 10 13 / cm 2 . By this ion implantation, a P-type impurity region 9 is formed. The resist mask 8 is removed by ashing or the like.
[0040] 続いて、図 4Bに示すように、半導体基板 1にチャネルストップ領域を形成するため の不純物を導入する。  Subsequently, as shown in FIG. 4B, impurities for forming a channel stop region are introduced into the semiconductor substrate 1.
詳細には、先ず、素子領域 10の全面、及び STI素子分離構造 7上で素子領域 10 と所定距離だけ離間して当該素子領域 10を囲むように、レジストマスク 11を形成する 。このレジストマスク 11により、 STI素子分離構造 7上でリング状の部分が露出するこ とになる。そして、レジストマスク 11を用いて、レジストマスク 11から露出する部分の下 部に相当する半導体基板 1内に、 P型不純物、ここではホウ素(B+)をイオン注入する 。イオン注入の条件としては、カロ速エネノレギーを 70keV〜180keV、ドーズ量を 1 X 1010/cm2〜l X 1014/cm2とする。このイオン注入により、レジストマスク 11の開口 部分で STI素子分離構造 7の直下の部分に P型不純物領域 12が形成される。レジス トマスク 11は、灰化処理等により除去される。 Specifically, first, a resist mask 11 is formed so as to surround the element region 10 by being separated from the element region 10 by a predetermined distance on the entire surface of the element region 10 and on the STI element isolation structure 7. The resist mask 11 exposes a ring-shaped portion on the STI element isolation structure 7. Then, using the resist mask 11, a P-type impurity, here, boron (B + ) is ion-implanted into the semiconductor substrate 1 corresponding to the lower portion of the portion exposed from the resist mask 11. As ion implantation conditions, the calo-speed energy energy is 70 keV to 180 keV, and the dose is 1 × 10 10 / cm 2 to 1 × 10 14 / cm 2 . By this ion implantation, a P-type impurity region 12 is formed in a portion immediately below the STI element isolation structure 7 in the opening portion of the resist mask 11. The resist mask 11 is removed by ashing or the like.
[0041] 続いて、図 4Cに示すように、半導体基板 1にチャネルドーズ領域を形成するための 不純物を導入する。 [0041] Subsequently, as shown in FIG. 4C, a channel dose region for forming a semiconductor substrate 1 is formed. Impurities are introduced.
詳細には、先ず、素子領域 10のゲート電極 16の形成部位を露出させるように、レ ジストマスク 26を形成する。そして、レジストマスク 26を用いて、レジストマスク 26から 露出する部分の下部に相当する半導体基板 1の表層(ここでは表面近傍)に、 P型不 純物、ここではホウ素(B+)をイオン注入する。イオン注入の条件としては、加速エネ ノレギーを 10keV〜50keV、ドーズ量を 1 X 1010/cm2〜l X 1013/cm2とする。この イオン注入により、 P型不純物領域 13が形成される。レジストマスク 26は、灰化処理 等により除去される。 In detail, first, a resist mask 26 is formed so as to expose the formation site of the gate electrode 16 in the element region 10. Then, using the resist mask 26, a P-type impurity, here boron (B + ), is ion-implanted into the surface layer (here near the surface) of the semiconductor substrate 1 corresponding to the lower part of the portion exposed from the resist mask 26. To do. As ion implantation conditions, the acceleration energy is 10 keV to 50 keV, and the dose is 1 × 10 10 / cm 2 to 1 × 10 13 / cm 2 . By this ion implantation, a P-type impurity region 13 is formed. The resist mask 26 is removed by ashing or the like.
[0042] 続いて、図 5Aに示すように、ァニーノレ処理によりウエノレ 21、チャネルドーズ領域 22 及びチャネルストップ領域 23を形成した後、ゲート絶縁膜 14及びゲート電極材料膜 15を形成する。  Subsequently, as shown in FIG. 5A, after forming the wafer 21, the channel dose region 22 and the channel stop region 23 by annealing, the gate insulating film 14 and the gate electrode material film 15 are formed.
詳細には、先ず、例えば 1100°C〜1200°Cで 0. 5時間〜 9時間程度のァニール 処理を実行し、半導体基板 1内にイオン注入された P型不純物領域 9, 12, 13を活 性化する。このァニール処理により、ウエノレ 21、チャネルドーズ領域 22及びチャネル ストップ領域 23を形成する。  Specifically, for example, annealing is performed at 1100 ° C. to 1200 ° C. for about 0.5 to 9 hours to activate the P-type impurity regions 9, 12 and 13 implanted into the semiconductor substrate 1. To become sexual. By this annealing process, the well 21, the channel dose region 22 and the channel stop region 23 are formed.
[0043] そして、絶縁膜 2をウエット処理等により除去した後、熱酸化により素子領域 10にゲ ート絶縁膜 14を膜厚 20nm程度に形成する。その後、 CVD法により全面にゲート電 極材料膜 15、ここでは多結晶シリコン膜を膜厚 300nm程度に堆積する。  Then, after the insulating film 2 is removed by wet processing or the like, the gate insulating film 14 is formed in the element region 10 to a film thickness of about 20 nm by thermal oxidation. Thereafter, a gate electrode material film 15, here a polycrystalline silicon film, is deposited to a thickness of about 300 nm by CVD.
[0044] 続いて、図 5B— 1及び図 5B— 2に示すように、ゲート電極 16をパターン形成する。  Subsequently, as shown in FIGS. 5B-1 and 5B-2, the gate electrode 16 is patterned.
詳細には、ゲート電極材料膜 15をリソグラフィー及びドライエッチングにより電極形 状にパターエングし、ゲート電極 16を形成する。ここで、ゲート電極 16は、下部にチ ャネルドーズ領域 22が存し、素子領域の突出部 10aを下部に含むようにパターン形 成される。  Specifically, the gate electrode material film 15 is patterned into an electrode shape by lithography and dry etching to form the gate electrode 16. Here, the gate electrode 16 is formed in a pattern so that the channel dose region 22 exists in the lower portion and the protruding portion 10a of the element region is included in the lower portion.
[0045] 続いて、図 6Aに示すように、一対の LDD領域となる不純物を導入する。  Subsequently, as shown in FIG. 6A, impurities that become a pair of LDD regions are introduced.
詳細には、素子領域 10及び STI素子分離構造 7の一部を露出させるレジストマスク 27を形成し、このレジストマスク 27を用いて、素子領域 10におけるゲート電極 16の 両側の部分に N型不純物、ここではリン(P+)をイオン注入する。イオン注入の条件と しては、カロ速エネノレギーを 70keV〜150keV、ドーズ量を 1 X 10"/( 1112〜1 X 1013 /cm2とする。このイオン注入により、 N型不純物領域 17が形成される。レジストマス ク 27は灰化処理等により除去される。 Specifically, a resist mask 27 that exposes part of the element region 10 and the STI element isolation structure 7 is formed, and the resist mask 27 is used to form N-type impurities on both sides of the gate electrode 16 in the element region 10. Here, phosphorus (P + ) is ion-implanted. The conditions for the ion implantation are as follows: Caro-speed energy energy is 70 keV to 150 keV, and dose is 1 X 10 "/ (111 2 to 1 X 10 13 / cm 2 By this ion implantation, an N-type impurity region 17 is formed. The resist mask 27 is removed by ashing or the like.
[0046] 続いて、図 6Bに示すように、ァニール処理により一対の LDD領域 19を形成した後 、ゲート電極 16の両側面にサイドウォール絶縁膜 18を形成する。  Subsequently, as shown in FIG. 6B, after forming a pair of LDD regions 19 by annealing, sidewall insulating films 18 are formed on both side surfaces of the gate electrode 16.
詳細には、必要に応じて、先ず、例えば 900°C〜: 1000°Cで 10秒〜 20秒程度のァ ニール処理を実行し、 N型不純物領域 17のリンを活性化する。このァニール処理に より、一対の LDD領域 19を形成する。  In detail, if necessary, first, annealing is performed at 900 ° C. to 1000 ° C. for about 10 seconds to 20 seconds to activate phosphorus in the N-type impurity region 17. A pair of LDD regions 19 is formed by this annealing process.
[0047] そして、ゲート電極 16を覆うように全面に絶縁物、ここではシリコン酸化膜 (不図示) を CVD法により膜厚 500nm程度に堆積する。そして、このシリコン酸化膜の全面を 異方性ドライエッチング(エッチバック)し、ゲート電極 16の両側面のみにシリコン酸化 膜を残存させ、サイドウォール絶縁膜 18を形成する。  Then, an insulator, here a silicon oxide film (not shown) is deposited on the entire surface so as to cover the gate electrode 16 by a CVD method to a film thickness of about 500 nm. Then, the entire surface of the silicon oxide film is subjected to anisotropic dry etching (etchback), and the silicon oxide film is left only on both side surfaces of the gate electrode 16 to form a sidewall insulating film 18.
[0048] 続いて、図 6Cに示すように、ソース領域 24及びドレイン領域 25を形成する。  Subsequently, as shown in FIG. 6C, the source region 24 and the drain region 25 are formed.
詳細には、先ず、ゲート電極 16の一方側(ソース形成領域)における素子領域 10 の表面のみを露出させるレジストマスク(不図示)を形成し、このレジストマスクを用い て N型不純物、ここでは砒素(As + )をイオン注入する。イオン注入の条件としては、 L DD領域 19よりも高不純物濃度で LDD領域 19と重畳されるように、加速エネルギー を 70keV〜120keV、ドーズ量を 1 X 1015/cm2〜l X 1016/cm2とする。 Specifically, first, a resist mask (not shown) that exposes only the surface of the element region 10 on one side (source formation region) of the gate electrode 16 is formed, and an N-type impurity, here arsenic, is formed using this resist mask. (As + ) ions are implanted. The ion implantation conditions are such that the acceleration energy is 70 keV to 120 keV and the dose is 1 X 10 15 / cm 2 to l X 10 16 / so that it is superimposed on the LDD region 19 at a higher impurity concentration than the L DD region 19. cm 2
[0049] 次に、レジストマスクを灰化処理等により除去した後、ゲート電極 16の他方方側(ド レイン形成領域)における素子領域 10の表面のみを露出させるレジストマスク(不図 示)を形成し、このレジストマスクを用いて N型不純物、ここでは砒素(As+)をイオン 注入する。イオン注入の条件としては、 LDD領域 19よりも高不純物濃度で LDD領 域 19と重畳されるように、カロ速エネノレギーを 70keV〜120keV、ドーズ量を 1 X 1015 / cm〜1 X 10 /cmとする。 [0049] Next, after removing the resist mask by ashing or the like, a resist mask (not shown) that exposes only the surface of the element region 10 on the other side (drain formation region) of the gate electrode 16 is formed. Using this resist mask, N-type impurities, here arsenic (As + ) are ion-implanted. The ion implantation conditions are such that the calo-velocity energy is 70 keV to 120 keV and the dose is 1 X 10 15 / cm to 1 X 10 / cm so that it is superimposed on the LDD region 19 at a higher impurity concentration than the LDD region 19. And
[0050] 上記のイオン注入の後、例えば 900°C〜1000°Cで 10秒〜 20秒程度のァニール 処理を実行し、イオン注入されたリンを活性化する。このァニール処理により、ソース 領域 24及びドレイン領域 25をそれぞれ形成する。ここで、ドレイン領域 25は、当該 MOSトランジスタの高耐圧を確保するため、 LDD領域 19の端部から所定距離だけ オフセットされるように形成される。 [0051] しかる後、層間絶縁膜やコンタクト孔、ゲート電極 16、ソース領域 24及びドレイン領 域 25と接続される各配線等(共に不図示)を順次形成し、本実施形態による高耐圧 の N型 MOSトランジスタを完成させる。 [0050] After the above ion implantation, for example, annealing treatment is performed at 900 ° C to 1000 ° C for about 10 seconds to 20 seconds to activate the ion-implanted phosphorus. By this annealing process, a source region 24 and a drain region 25 are formed. Here, the drain region 25 is formed to be offset from the end of the LDD region 19 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. [0051] After that, interlayer insulation films, contact holes, gate electrodes 16, source regions 24, drain regions 25, wirings connected to the drain region 25, etc. (both not shown) are sequentially formed. Type MOS transistor is completed.
[0052] 以上説明したように、本実施形態によれば、トランジスタ特性の変動劣化を抑止し、 比較的簡易且つ確実に高耐圧を実現する信頼性の高い M〇Sトランジスタを提供す ること力 Sできる。 [0052] As described above, according to the present embodiment, it is possible to provide a highly reliable MOS transistor that suppresses deterioration of transistor characteristics and relatively easily and reliably realizes a high breakdown voltage. S can.
[0053] [第 2の実施形態] [Second Embodiment]
(MOSトランジスタの構成)  (Configuration of MOS transistor)
図 7及び図 8A〜図 8Dは、第 2の実施形態による高耐圧の MOSトランジスタの構 成を示す概略図である。ここで、図 7が平面図であり、図 8Aが図 7の破線 Ι— Γに沿つ た断面図、図 8Bが図 7の破線 ΙΙ— ΙΓに沿った断面図、図 8Cが図 7の破線 ΙΠ— ΙΙ に沿った断面図、図 8Dが図 7の破線 IV— IV'に沿った断面図である。  7 and 8A to 8D are schematic views showing the configuration of the high voltage MOS transistor according to the second embodiment. Here, FIG. 7 is a plan view, FIG. 8A is a sectional view taken along the broken line Ι-Γ in FIG. 7, FIG. 8B is a sectional view taken along the broken line ΙΙ—ΙΓ in FIG. 7, and FIG. FIG. 8D is a cross-sectional view taken along the broken line IV-IV ′ of FIG.
[0054] この MOSトランジスタでは、シリコン半導体基板 31上に素子分離構造、ここでは L OCOS (LOCal Oxidation of Silicon)法によるフィールド酸化膜 39が形成され、半導 体基板 31上で素子領域 30が画定される。ここで、半導体基板 31の表層において、 素子領域 30を含むようにゥエル 41が形成されてレ、る。  In this MOS transistor, an element isolation structure, here, a field oxide film 39 by a L OCOS (LOCal Oxidation of Silicon) method is formed on a silicon semiconductor substrate 31, and an element region 30 is defined on the semiconductor substrate 31. Is done. Here, on the surface layer of the semiconductor substrate 31, the well 41 is formed so as to include the element region 30.
[0055] 更に、素子領域 30を横切るように、帯状のゲート電極 47が素子領域 30上でゲート 絶縁膜 45を介してパターン形成され、ゲート電極 47の両側面にはサイドウォール絶 縁膜 52が形成されており、ゲート電極 47の両側における素子領域 30の表層には、 不純物が低濃度に導入されてなる一対の LDD領域 51が形成され、 LDD領域 51と 各々重畳するように、これらよりも高濃度に不純物が導入されてなるソース領域 53及 びドレイン領域 54が形成されてレ、る。  Further, a strip-shaped gate electrode 47 is patterned on the element region 30 through the gate insulating film 45 so as to cross the element region 30, and sidewall insulating films 52 are formed on both side surfaces of the gate electrode 47. In the surface layer of the element region 30 on both sides of the gate electrode 47, a pair of LDD regions 51 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 51, respectively. A source region 53 and a drain region 54 into which impurities are introduced at a high concentration are formed.
[0056] また、半導体基板 31のフィールド酸化膜 39の直下には、フィールド酸化膜 39を介 して隣接する M〇Sトランジスタ等との間で不純物領域間の電荷流出を防止するため 、ソース領域 53及びドレイン領域 54と反対導電型の不純物が導入されてなるチヤネ ルストップ領域 42が形成されてレ、る。  Further, immediately below the field oxide film 39 of the semiconductor substrate 31, a source region is formed in order to prevent charge outflow between the impurity regions with the adjacent MOS transistor via the field oxide film 39. A channel stop region 42 into which impurities of the opposite conductivity type to 53 and drain region 54 are introduced is formed.
[0057] ここで、ドレイン領域 54は、当該 M〇Sトランジスタの高耐圧を確保するため、 LDD 領域 51の端部から所定距離だけオフセットされるように形成されている。このオフセッ トに伴い、チャネルストップ領域 42も LDD領域 51の端部から所定距離だけ離間させHere, the drain region 54 is formed so as to be offset from the end of the LDD region 51 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. This offset As a result, the channel stop region 42 is also separated from the end of the LDD region 51 by a predetermined distance.
、高耐圧を確保している。 High breakdown voltage is ensured.
[0058] 本実施形態において、フィールド酸化膜 39は、素子領域 30がゲート電極 47下の 部分において外方へ向かって突出する一対の突出部 30aを有するように、ゲート電 極 47下の部分で凹形状に形成されている。 In the present embodiment, the field oxide film 39 is formed at a portion below the gate electrode 47 so that the element region 30 has a pair of protruding portions 30a protruding outward at the portion below the gate electrode 47. It is formed in a concave shape.
[0059] 突出部 30aは、その幅 Wが、ゲート電極 47のゲート長 Gよりも狭幅で且つ所期の [0059] The protrusion 30a has a width W that is narrower than the gate length G of the gate electrode 47 and is expected.
L  L
形状に形成できる寸法以上 (即ち、使用するプロセスのテクノロジーで許容できる最 小寸法 (例えば 0. 18 z m)以上)とされている。また、その長さ Lが、少なくとも素子領 域 30と後述するチャネルストップ領域 42を形成するためのレジストマスク 36との距離 d以上であり、素子領域 30の形成用のパターンとゲート電極 47の形成用のパターン との位置合わせ精度を満たすように余裕を見込んだ寸法、例えば 0. 以上とさ れている。  It must be larger than the size that can be formed into the shape (ie, more than the smallest dimension that can be tolerated by the process technology used (eg, 0.18 z m)). Further, the length L is at least a distance d between the element region 30 and a resist mask 36 for forming a channel stop region 42 described later, and the pattern for forming the element region 30 and the formation of the gate electrode 47 are formed. The dimension is set to allow for a margin, for example, 0 or more so as to satisfy the alignment accuracy with the pattern for use.
[0060] そして、突出部 30aの表層に、例えばソース領域 53及びドレイン領域 54と反対導 電型の不純物を導入して表層導電領域が形成されている。本実施形態では、この表 層導電領域として、ゲート電極 47下における突出部 30aを含むシリコン素子領域 30 の表層にチャネルドーズ領域 48が形成されてレ、る。  [0060] Then, for example, an impurity having a conductivity type opposite to that of the source region 53 and the drain region 54 is introduced into the surface layer of the protrusion 30a to form a surface conductive region. In the present embodiment, a channel dose region 48 is formed in the surface layer of the silicon element region 30 including the protruding portion 30a under the gate electrode 47 as the surface conductive region.
[0061] 本実施形態では、ゲート電極 47下におけるゥヱル 41内にチャネルドーズ領域 48を 形成することにより、十分な閾値電圧を確保することができる。その一方で、図 7に示 すように、突出部 30aはゲート長よりも幅狭に形成されているため、素子領域 30の一 部ではあるが活性領域としては機能しなレ、。そのため、図 8Dに示すように、フィール ド酸化膜 39下に形成されたチャネルストップ領域 42について、このチャネルストップ 領域 42の端部がフィールド酸化膜 39の端部から突き出たとしても、ゲート電極 47の ゲート幅 G に相当する部分の下部にはチャネルストップ領域 42は存することなく(チ  In the present embodiment, a sufficient threshold voltage can be secured by forming the channel dose region 48 in the wall 41 under the gate electrode 47. On the other hand, as shown in FIG. 7, the projecting portion 30a is formed narrower than the gate length, so it does not function as an active region although it is a part of the device region 30. Therefore, as shown in FIG. 8D, for the channel stop region 42 formed under the field oxide film 39, even if the end of the channel stop region 42 protrudes from the end of the field oxide film 39, the gate electrode 47 The channel stop region 42 does not exist under the portion corresponding to the gate width G of
W  W
ャネルストップ領域 42の端部がゲート幅 G に相当する部分に達することなく)、グー  Without the end of the channel stop region 42 reaching the part corresponding to the gate width G),
W  W
ト電極 47のゲート幅 G に相当する部分とチャネルストップ領域 42の端部とは離間し  The portion of the gate electrode 47 corresponding to the gate width G is separated from the end of the channel stop region 42.
W  W
た状態で保たれる。従って、この M〇Sトランジスタによれば、トランジスタ特性の変動 劣化が抑止され、安定した十分なトランジスタ特性を得ることができる。  It is kept in the state. Therefore, according to this MOS transistor, fluctuation and deterioration of transistor characteristics are suppressed, and stable and sufficient transistor characteristics can be obtained.
[0062] (MOSトランジスタの製造方法) 図 9A〜図 12Cは、本実施形態による高耐圧の MOSトランジスタの製造方法をェ 程順に示す概略断面図である。ここで、図 9A〜図 12Cのうち、図 10B— 2を除く各 図が図 7の破線 II— ΙΓに沿った断面図、図 10B— 2が図 7の破線 IV— IV'に沿った 断面図に対応する。 [0062] (Manufacturing method of MOS transistor) FIG. 9A to FIG. 12C are schematic cross-sectional views showing the manufacturing method of the high voltage MOS transistor according to the present embodiment in the order of steps. Here, among FIGS. 9A to 12C, each figure except for FIG. 10B-2 is a sectional view taken along broken line II——Γ in FIG. 7, and FIG. 10B-2 is a sectional view taken along broken line IV—IV ′ in FIG. Corresponds to the figure.
[0063] 先ず、図 9Aに示すように、シリコン半導体基板 31上に絶縁膜 32を介して耐酸化材 料膜 33を形成する。  First, as shown in FIG. 9A, an oxidation resistant material film 33 is formed on a silicon semiconductor substrate 31 via an insulating film 32.
詳細には、半導体基板 31の表面に熱酸化法により膜厚 30nm程度の絶縁膜 32を 形成した後、耐酸化材料、例えば窒化シリコンを CVD法により堆積し、膜厚 lOOnm 程度の耐酸化材料膜 33を形成する。  Specifically, an insulating film 32 having a thickness of about 30 nm is formed on the surface of the semiconductor substrate 31 by a thermal oxidation method, and then an oxidation-resistant material, for example, silicon nitride is deposited by the CVD method to form an oxidation-resistant material film having a thickness of about lOOnm. 33 is formed.
[0064] 続いて、図 9Bに示すように、半導体基板 31にゥエルを形成するための不純物を導 入する。 Subsequently, as shown in FIG. 9B, impurities for forming wells are introduced into the semiconductor substrate 31.
詳細には、先ず、耐酸化材料膜 33を、半導体基板 31の素子領域 30となる部分を 覆うように、リソグラフィー及びドライエッチングによりパターニングする。  Specifically, first, the oxidation-resistant material film 33 is patterned by lithography and dry etching so as to cover a portion to be the element region 30 of the semiconductor substrate 31.
[0065] 次に、半導体基板 31上の素子領域 30及びその周辺のフィールド酸化膜 39が形成 される領域の一部を露出させるように、レジストマスク 34を形成する。そして、レジスト マスク 34を用いて、耐酸化材料膜 33及び絶縁膜 32を透過して、レジストマスク 34か ら露出する部分の下部に相当する半導体基板 1内に達するように、 P型不純物、ここ ではホウ素(B+)をイオン注入する。イオン注入の条件としては、加速エネルギーを 2 00keV〜500keV、ドーズ量を 1 X 1010/cm2〜l X 1013/cm2とする。このイオン 注入により、 P型不純物領域 35が形成される。レジストマスク 34は、灰化処理等によ り除去される。 Next, a resist mask 34 is formed so as to expose part of the region where the element region 30 on the semiconductor substrate 31 and the peripheral field oxide film 39 are formed. Then, using the resist mask 34, a P-type impurity, here, passes through the oxidation-resistant material film 33 and the insulating film 32 and reaches the semiconductor substrate 1 corresponding to the lower part of the portion exposed from the resist mask 34. Then, boron (B + ) is ion-implanted. As ion implantation conditions, the acceleration energy is set to 200 keV to 500 keV, and the dose is set to 1 × 10 10 / cm 2 to 1 × 10 13 / cm 2 . By this ion implantation, a P-type impurity region 35 is formed. The resist mask 34 is removed by ashing or the like.
[0066] 続いて、図 9Cに示すように、半導体基板 31にチャネルストップ領域を形成するた めの不純物を導入する。  Subsequently, as shown in FIG. 9C, impurities for forming a channel stop region are introduced into the semiconductor substrate 31.
詳細には、先ず、耐酸化材料膜 33、及びフィールド酸化膜 39の形成部位上で耐 酸化材料膜 33と所定距離だけ離間して当該耐酸化材料膜 33を囲むように、レジスト マスク 36を形成する。このレジストマスク 36により、フィールド酸化膜 39の形成部位 上でリング状の部分が露出することになる。そして、レジストマスク 36を用いて、レジス トマスク 36から露出する部分の下部に相当する半導体基板 31内に、 P型不純物、こ こではホウ素(B+)をイオン注入する。イオン注入の条件としては、加速エネルギーを 70keV〜180keV、ドーズ量を 1 X 1010/cm2〜l X 10"/cm2とする。このイオン 注入により、レジストマスク 36の開口部分に整合して P型不純物領域 37が形成される 。レジストマスク 36は、灰化処理等により除去される。 Specifically, first, a resist mask 36 is formed on the formation site of the oxidation resistant material film 33 and the field oxide film 39 so as to surround the oxidation resistant material film 33 by being separated from the oxidation resistant material film 33 by a predetermined distance. To do. The resist mask 36 exposes a ring-shaped portion on the site where the field oxide film 39 is formed. Then, using the resist mask 36, P-type impurities, this are introduced into the semiconductor substrate 31 corresponding to the lower part of the portion exposed from the resist mask 36. Here, boron (B + ) ions are implanted. As ion implantation conditions, acceleration energy is set to 70 keV to 180 keV, and a dose amount is set to 1 X 10 10 / cm 2 to l X 10 "/ cm 2. By this ion implantation, alignment with the opening of the resist mask 36 is performed. A P-type impurity region 37 is formed, and the resist mask 36 is removed by ashing or the like.
[0067] 続いて、図 10Aに示すように、ァニール処理によりゥエル 41及びチャネルドーズ領 域 42を形成する。 [0067] Subsequently, as shown in FIG. 10A, a well 41 and a channel dose region 42 are formed by annealing.
詳細には、例えば 1000〜1200°Cで 0. 5〜9時間程度のァニール処理を実行し、 半導体基板 31内にイオン注入された P型不純物領域 35, 37を活性化する。このァ ニール処理により、ゥヱル 41及びチャネルストップ領域 42を形成する。  More specifically, for example, annealing is performed at 1000 to 1200 ° C. for about 0.5 to 9 hours to activate the P-type impurity regions 35 and 37 implanted into the semiconductor substrate 31. A wall 41 and a channel stop region 42 are formed by this annealing process.
[0068] 続いて、図 10B— 1及び図 10B— 2に示すように、素子分離領域にフィールド酸化 膜 39を形成する。 Subsequently, as shown in FIGS. 10B-1 and 10B-2, a field oxide film 39 is formed in the element isolation region.
詳細には、耐酸化材料膜 33をマスクとして用レ、、絶縁膜 32及び半導体基板 31を フィールド酸化し、素子分離領域にフィールド酸化膜 39を形成する。このフィーノレド 酸化膜 39により、半導体基板 31上で素子領域 30が画定される。ここで、フィーノレド 酸化膜 39は、図 7のように平面視した場合、素子領域 30がゲート電極 47の形成部 位下において外方へ向かって突出する一対の突出部 30aを有するように、ゲート電 極 47の形成部位下で凹形状に形成される。そして、耐酸化材料膜 33及びその下に 残存する絶縁膜 32をウエット処理等により除去した後、熱酸化法により半導体基板 3 1上に絶縁膜 38を形成する。  Specifically, using the oxidation-resistant material film 33 as a mask, the insulating film 32 and the semiconductor substrate 31 are field oxidized to form a field oxide film 39 in the element isolation region. The device region 30 is defined on the semiconductor substrate 31 by the finered oxide film 39. Here, the finered oxide film 39 has a gate shape so that the element region 30 has a pair of projecting portions 30a projecting outward under the formation position of the gate electrode 47 when viewed in plan as shown in FIG. The electrode 47 is formed in a concave shape under the formation site. Then, after removing the oxidation resistant material film 33 and the insulating film 32 remaining thereunder by wet processing or the like, an insulating film 38 is formed on the semiconductor substrate 31 by a thermal oxidation method.
[0069] 続いて、図 11Aに示すように、半導体基板 31にチャネルドーズ領域を形成するた めの不純物を導入する。 Subsequently, as shown in FIG. 11A, impurities for forming a channel dose region are introduced into the semiconductor substrate 31.
詳細には、先ず、素子領域 30のゲート電極 47の形成部位を露出させるように、レ ジストマスク 43を形成する。そして、レジストマスク 43を用いて、レジストマスク 43から 露出する部分の下部に相当する半導体基板 31の表層(ここでは表面近傍)に、 P型 不純物、ここではホウ素(B+)をイオン注入する。イオン注入の条件としては、加速ェ ネノレギーを 10keV〜50keV、ドーズ量を 1 X 1010/cm2〜l X 1013/cm2とする。こ のイオン注入により、 P型不純物領域 44が形成される。レジストマスク 43は、灰化処 理等により除去される。 [0070] 続いて、図 11Bに示すように、ゲート絶縁膜 45及びゲート電極材料膜 46を形成す る。 In detail, first, a resist mask 43 is formed so as to expose the formation site of the gate electrode 47 in the element region 30. Then, using the resist mask 43, a P-type impurity, here boron (B + ), is ion-implanted into the surface layer (here, near the surface) of the semiconductor substrate 31 corresponding to the lower portion of the portion exposed from the resist mask 43. As ion implantation conditions, the acceleration energy is 10 keV to 50 keV, and the dose is 1 × 10 10 / cm 2 to 1 × 10 13 / cm 2 . By this ion implantation, a P-type impurity region 44 is formed. The resist mask 43 is removed by ashing or the like. Subsequently, as shown in FIG. 11B, a gate insulating film 45 and a gate electrode material film 46 are formed.
詳細には、絶縁膜 38をウエット処理等により除去した後、熱酸化により素子領域 30 にゲート絶縁膜 45を膜厚 20nm程度に形成する。また,ゲート絶縁膜形成時のァニ ール処理によりチャネルドーズ領域 48を形成する。その後、 CVD法により全面にゲ ート電極材料膜 46、ここでは多結晶シリコン膜を膜厚 300nm程度に堆積する。  Specifically, after the insulating film 38 is removed by wet processing or the like, the gate insulating film 45 is formed in the element region 30 to a thickness of about 20 nm by thermal oxidation. In addition, the channel dose region 48 is formed by the annealing process when forming the gate insulating film. Thereafter, a gate electrode material film 46, here a polycrystalline silicon film, is deposited to a thickness of about 300 nm by CVD.
[0071] また、例えば 900。C〜: 1100。Cで 10分〜 60分程度のゲートのァニール処理により 、半導体基板 31内にイオン注入された P型不純物領域 44を活性化する。このァニー ル処理により、チャネルドーズ領域 48を形成する。  [0071] Also, for example, 900. C ~: 1100. The P-type impurity region 44 ion-implanted in the semiconductor substrate 31 is activated by annealing the gate for about 10 to 60 minutes with C. A channel dose region 48 is formed by this annealing process.
[0072] 続いて、図 11Cに示すように、ゲート電極 47をパターン形成する。詳細には、ゲート 電極材料膜 46をリソグラフィー及びドライエッチングにより電極形状にパターニングし 、ゲート電極 47を形成する。ここで、ゲート電極 47は、下部にチャネルドーズ領域 48 が存し、素子領域の突出部 30aを下部に含むようにパターン形成される。  Subsequently, as shown in FIG. 11C, the gate electrode 47 is patterned. Specifically, the gate electrode material film 46 is patterned into an electrode shape by lithography and dry etching to form the gate electrode 47. Here, the gate electrode 47 has a channel dose region 48 in the lower portion and is patterned so as to include the protruding portion 30a of the element region in the lower portion.
[0073] 続いて、図 12Aに示すように、一対の LDD領域となる不純物を導入する。  Subsequently, as shown in FIG. 12A, impurities to be a pair of LDD regions are introduced.
詳細には、素子領域 30及びフィールド酸化膜 39の一部を露出させるレジストマスク 50を形成し、このレジストマスク 50を用いて、素子領域 30におけるゲート電極 47の 両側の部分に N型不純物、ここではリン(P+)をイオン注入する。イオン注入の条件と しては、カロ速エネルギーを 70keV〜: 150keV、ドーズ量を 1 X ΙΟ^/οπ^ Ι X 1013 /cm2とする。このイオン注入により、 N型不純物領域 49が形成される。レジストマス ク 50は灰化処理等により除去される。 Specifically, a resist mask 50 that exposes part of the element region 30 and the field oxide film 39 is formed, and the resist mask 50 is used to form an N-type impurity on both sides of the gate electrode 47 in the element region 30. Then, phosphorus (P + ) is ion-implanted. As ion implantation conditions, the energy of the calo-velocity is 70 keV to 150 keV, and the dose is 1 X ΙΟ ^ / οπ ^ Ι X 10 13 / cm 2 . By this ion implantation, an N-type impurity region 49 is formed. The resist mask 50 is removed by ashing or the like.
[0074] 続いて、図 12Bに示すように、ァニール処理により一対の LDD領域 51を形成した 後、ゲート電極 47の両側面にサイドウォール絶縁膜 52を形成する。  Subsequently, as shown in FIG. 12B, after forming a pair of LDD regions 51 by annealing, side wall insulating films 52 are formed on both side surfaces of the gate electrode 47.
詳細には、先ず、必要に応じて、例えば 900°C〜: 1000°Cで 10秒〜 20秒程度のァ ニール処理を実行し、 N型不純物領域 49のリンを活性化する。このァニール処理に より、一対の LDD領域 51を形成する。  More specifically, first, annealing is performed at 900 ° C. to 1000 ° C. for about 10 seconds to 20 seconds, for example, to activate phosphorus in the N-type impurity region 49 as necessary. By this annealing process, a pair of LDD regions 51 are formed.
[0075] そして、ゲート電極 47を覆うように全面に絶縁物、ここではシリコン酸化膜 (不図示) を CVD法により膜厚 500nm程度に堆積する。そして、このシリコン酸化膜の全面を 異方性ドライエッチング(エッチバック)し、ゲート電極 47の両側面のみにシリコン酸化 膜を残存させ、サイドウォール絶縁膜 52を形成する。 Then, an insulator, here a silicon oxide film (not shown) is deposited on the entire surface so as to cover the gate electrode 47 by a CVD method to a thickness of about 500 nm. Then, the entire surface of the silicon oxide film is subjected to anisotropic dry etching (etchback), and silicon oxide is formed only on both sides of the gate electrode 47. A sidewall insulating film 52 is formed by leaving the film.
[0076] 続いて、図 12Cに示すように、ソース領域 53及びドレイン領域 54を形成する。  Subsequently, as shown in FIG. 12C, a source region 53 and a drain region 54 are formed.
詳細には、先ず、ゲート電極 47の一方側(ソース形成領域)における素子領域 30 の表面のみを露出させるレジストマスク(不図示)を形成し、このレジストマスクを用い て N型不純物、ここでは砒素 (As + )をイオン注入する。イオン注入の条件としては、 L DD領域 51よりも高不純物濃度で LDD領域 51と重畳されるように、加速エネルギー を 70keV〜120keV、ドーズ量を 1 X 1015/cm2〜l X 1016/cm2とする。 Specifically, first, a resist mask (not shown) that exposes only the surface of the element region 30 on one side (source formation region) of the gate electrode 47 is formed, and this resist mask is used to form an N-type impurity, here arsenic. (As + ) ions are implanted. The ion implantation conditions are such that the acceleration energy is 70 keV to 120 keV and the dose is 1 X 10 15 / cm 2 to l X 10 16 / so that it is superimposed on the LDD region 51 at a higher impurity concentration than the L DD region 51. cm 2
[0077] 次に、レジストマスクを灰化処理等により除去した後、ゲート電極 47の他方方側(ド レイン形成領域)における素子領域 30の表面のみを露出させるレジストマスク(不図 示)を形成し、このレジストマスクを用いて N型不純物、ここでは砒素 (As + )をイオン 注入する。イオン注入の条件としては、 LDD領域 51よりも高不純物濃度で LDD領 域 51と重畳されるように、カロ速エネノレギーを 70keV〜120keV、ドーズ量を 1 X 1015
Figure imgf000022_0001
Next, after removing the resist mask by ashing or the like, a resist mask (not shown) that exposes only the surface of the element region 30 on the other side of the gate electrode 47 (drain formation region) is formed. Using this resist mask, N-type impurities, here arsenic (As + ), are ion-implanted. The ion implantation conditions are such that the calo-velocity energy is 70 keV to 120 keV and the dose is 1 X 10 15 so that it is superimposed on the LDD region 51 at a higher impurity concentration than the LDD region 51.
Figure imgf000022_0001
[0078] 上記のイオン注入の後、例えば 900°C〜1000°Cで 10秒〜 20秒程度のァニール 処理を実行し、イオン注入されたリンを活性化する。このァニール処理により、ソース 領域 53及びドレイン領域 54をそれぞれ形成する。ここで、ドレイン領域 54は、当該 MOSトランジスタの高耐圧を確保するため、 LDD領域 51の端部から所定距離だけ オフセットされるように形成される。  [0078] After the above ion implantation, for example, annealing treatment is performed at 900 ° C to 1000 ° C for about 10 seconds to 20 seconds to activate the ion-implanted phosphorus. By this annealing process, a source region 53 and a drain region 54 are formed. Here, the drain region 54 is formed to be offset from the end of the LDD region 51 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor.
[0079] しかる後、層間絶縁膜やコンタクト孔、ゲート電極 47、ソース領域 53及びドレイン領 域 54と接続される各配線等(共に不図示)を順次形成し、本実施形態による高耐圧 の N型 MOSトランジスタを完成させる。  [0079] After that, interlayer insulation films, contact holes, gate electrodes 47, wirings connected to the source region 53 and the drain region 54 (both not shown) are sequentially formed, and the high breakdown voltage N according to the present embodiment is formed. Completed type MOS transistor.
[0080] 以上説明したように、本実施形態によれば、トランジスタ特性の変動劣化を抑止し、 比較的簡易且つ確実に高耐圧を実現する信頼性の高い M〇Sトランジスタを提供す ること力 Sできる。  [0080] As described above, according to the present embodiment, it is possible to provide a highly reliable MOS transistor that suppresses fluctuation deterioration of transistor characteristics and realizes a high breakdown voltage relatively easily and reliably. S can.
[0081] [第 3の実施形態]  [0081] Third Embodiment
(MOSトランジスタの構成)  (Configuration of MOS transistor)
図 13及び図 14A〜図 14Eは、第 3の実施形態による高耐圧の M〇Sトランジスタの 構成を示す概略図である。なお、第 2の実施形態で説明した M〇Sトランジスタの構 成部材等に対応するものについては同符号を付す。ここで、図 13が平面図であり、 図 14Aが図 13の破線 Ι— Γに沿った断面図、図 14Bが図 13の破線 ΙΙ— ΙΓに沿った 断面図、図 14Cが図 13の破線 III— ΠΓに沿った断面図、図 14Dが図 13の破線 IV -IVに沿った断面図、図 14Dが図 13の破線 V_V'に沿った断面図である。 FIG. 13 and FIGS. 14A to 14E are schematic diagrams showing the configuration of a high-breakdown-voltage MOS transistor according to the third embodiment. Note that the structure of the MOO transistor described in the second embodiment is used. The components corresponding to the component members are denoted by the same reference numerals. Here, FIG. 13 is a plan view, FIG. 14A is a cross-sectional view taken along the broken line Ι-Γ in FIG. 13, FIG. 14B is a cross-sectional view taken along the broken line ΙΙ-ΙΓ in FIG. FIG. 14D is a cross-sectional view taken along the broken line IV-IV in FIG. 13, and FIG. 14D is a cross-sectional view taken along the broken line V_V ′ in FIG.
[0082] この MOSトランジスタでは、シリコン半導体基板 31上に素子分離構造、ここでは L OCOS (LOCal Oxidation of Silicon)法によるフィールド酸化膜 39が形成され、半導 体基板 31上で素子領域 30が画定される。ここで、半導体基板 31の表層において、 素子領域 30を含むようにゥヱル 41が形成されてレ、る。  In this MOS transistor, an element isolation structure, here, a field oxide film 39 by a L OCOS (LOCal Oxidation of Silicon) method is formed on a silicon semiconductor substrate 31, and an element region 30 is defined on the semiconductor substrate 31. Is done. Here, a wall 41 is formed on the surface layer of the semiconductor substrate 31 so as to include the element region 30.
[0083] 更に、素子領域 30を横切るように、帯状のゲート電極 47が素子領域 30上でゲート 絶縁膜 45を介してパターン形成され、ゲート電極 47の両側面にはサイドウォール絶 縁膜 52が形成されており、ゲート電極 47の両側における素子領域 30の表層には、 不純物が低濃度に導入されてなる一対の LDD領域 51が形成され、 LDD領域 51と 各々重畳するように、これらよりも高濃度に不純物が導入されてなるソース領域 53及 びドレイン領域 54が形成されてレ、る。  Further, a strip-shaped gate electrode 47 is patterned on the element region 30 through the gate insulating film 45 so as to cross the element region 30, and sidewall insulating films 52 are formed on both side surfaces of the gate electrode 47. In the surface layer of the element region 30 on both sides of the gate electrode 47, a pair of LDD regions 51 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 51, respectively. A source region 53 and a drain region 54 into which impurities are introduced at a high concentration are formed.
[0084] また、半導体基板 31のフィールド酸化膜 39の直下には、フィールド酸化膜 39を介 して隣接する MOSトランジスタ等との間で不純物領域間の電荷流出を防止するため 、ソース領域 53及びドレイン領域 54と反対導電型の不純物が導入されてなるチヤネ ルストップ領域 62が形成されている。  [0084] Further, immediately below the field oxide film 39 of the semiconductor substrate 31, in order to prevent charge outflow between the impurity regions with the adjacent MOS transistor or the like via the field oxide film 39, the source region 53 and A channel stop region 62 is formed in which impurities having a conductivity type opposite to that of the drain region 54 are introduced.
[0085] ここで、ドレイン領域 54は、当該 MOSトランジスタの高耐圧を確保するため、 LDD 領域 51の端部から所定距離だけオフセットされるように形成されている。このオフセッ トに伴い、チャネルストップ領域 62も LDD領域 51の端部から所定距離だけ離間させ 、高耐圧を確保している。  Here, the drain region 54 is formed so as to be offset by a predetermined distance from the end of the LDD region 51 in order to ensure a high breakdown voltage of the MOS transistor. With this offset, the channel stop region 62 is also separated from the end of the LDD region 51 by a predetermined distance to ensure a high breakdown voltage.
[0086] 本実施形態において、フィールド酸化膜 39は、素子領域 30がゲート電極 47下の 部分において外方へ向かって突出する一対の突出部 30aを有するように、ゲート電 極 47下の部分で凹形状に形成されている。  In the present embodiment, the field oxide film 39 is formed at a portion below the gate electrode 47 so that the element region 30 has a pair of protruding portions 30a protruding outward at the portion below the gate electrode 47. It is formed in a concave shape.
[0087] 突出部 30aは、その幅 Wが、ゲート電極 47のゲート長 Gよりも狭幅で且つ所期の  The protrusion 30 a has a width W that is narrower than the gate length G of the gate electrode 47 and is
L  L
形状に形成できる寸法以上 (即ち、使用するプロセスのテクノロジーで許容できる最 小寸法 (例えば 0. 18 z m)以上)とされている。また、その長さ Lが、少なくとも素子領 域 30と後述するチャネルストップ領域 42を形成するためのレジストマスク 36との距離 d以上であり、素子領域 30の形成用のパターンとゲート電極 47の形成用のパターン との位置合わせ精度を満たすように余裕を見込んだ寸法、例えば 0. 6 μ ΐη以上とさ れている。 It must be larger than the size that can be formed into the shape (ie, more than the smallest dimension that can be tolerated by the process technology used (eg, 0.18 zm)). The length L is at least the element area. The distance between the region 30 and a resist mask 36 for forming a channel stop region 42 described later is at least d, and the alignment accuracy between the pattern for forming the element region 30 and the pattern for forming the gate electrode 47 is satisfied. For example, the dimension is set to be more than 0.6 μΐη.
[0088] そして、突出部 30aの表層に、例えばソース領域 53及びドレイン領域 54と反対導 電型の不純物を導入して表層導電領域が形成されている。本実施形態では、この表 層導電領域として、ゲート電極 47下における突出部 30aを含むシリコン素子領域 30 の表層にチャネルドーズ領域 48が形成されてレ、る。  [0088] Then, for example, an impurity having a conductivity type opposite to that of the source region 53 and the drain region 54 is introduced into the surface layer of the protrusion 30a to form a surface conductive region. In the present embodiment, a channel dose region 48 is formed in the surface layer of the silicon element region 30 including the protruding portion 30a under the gate electrode 47 as the surface conductive region.
[0089] 本実施形態では、ゲート電極 47下におけるゥヱル 41内にチャネルドーズ領域 48を 形成することにより、十分な閾値電圧を確保することができる。その一方で、図 13に 示すように、突出部 30aはゲート長よりも幅狭に形成されているため、素子領域 30の 一部ではあるが活性領域としては機能しなレ、。本実施形態では、図 14Dに示すよう に、チャネルストップ領域 62は、フィールド酸化膜 39下では、当該チャネルストップ 領域 62の端部 62aがフィールド酸化膜 39の端部から突き出るように形成される。しか しながらこの場合、ゲート電極 47のゲート幅 G に相当する部分の下部にはチャネル In this embodiment, by forming the channel dose region 48 in the wall 41 under the gate electrode 47, a sufficient threshold voltage can be ensured. On the other hand, as shown in FIG. 13, the protrusion 30a is formed to be narrower than the gate length, so it does not function as an active region although it is a part of the element region 30. In this embodiment, as shown in FIG. 14D, the channel stop region 62 is formed below the field oxide film 39 so that the end 62a of the channel stop region 62 protrudes from the end of the field oxide film 39. However, in this case, there is a channel below the portion of the gate electrode 47 corresponding to the gate width G.
W  W
ストップ領域 62は存することなく(チャネルストップ領域 62の端部 62aがゲート幅 G w に相当する部分に達することなく)、ゲート電極 47のゲート幅 G に相当する部分とチ  The stop region 62 does not exist (the end 62a of the channel stop region 62 does not reach the portion corresponding to the gate width G w), and the portion corresponding to the gate width G of the gate electrode 47
W  W
ャネルストップ領域 62の端部とは離間した状態で保たれる。従って、この MOSトラン ジスタによれば、トランジスタ特性の変動劣化が抑止され、安定した十分なトランジス タ特性を得ることができる。  It is kept away from the end of the channel stop region 62. Therefore, according to this MOS transistor, fluctuation deterioration of transistor characteristics is suppressed, and stable and sufficient transistor characteristics can be obtained.
[0090] (MOSトランジスタの製造方法)  [0090] (Manufacturing method of MOS transistor)
図 15A〜図 16B— 2は、本実施形態による高耐圧の M〇Sトランジスタの製造方法 を工程順に示す概略断面図である。ここで、図 15A〜図 16B— 2のうち、図 16A—2 及び図 16B— 2を除く各図が図 13の破線 ΙΙ— ΙΓに沿った断面図、図 16A— 2及び 図 16B— 2が図 13の破線 IV _ IV 'に沿った断面図に対応する。  FIG. 15A to FIG. 16B-2 are schematic cross-sectional views showing the method of manufacturing the high voltage MOS transistor according to this embodiment in the order of steps. Here, among FIGS. 15A to 16B-2, each figure except FIGS. 16A-2 and 16B-2 is a cross-sectional view taken along the broken line ΙΙ—ΙΓ in FIG. 13, and FIGS. 16A-2 and 16B-2 are This corresponds to the cross-sectional view along the broken line IV_IV ′ in FIG.
[0091] 先ず、図 15Aに示すように、シリコン半導体基板 31上に絶縁膜 32を介して耐酸化 材料膜 33を形成する。  First, as shown in FIG. 15A, an oxidation resistant material film 33 is formed on a silicon semiconductor substrate 31 via an insulating film 32.
詳細には、半導体基板 31の表面に熱酸化法により膜厚 30nm程度の絶縁膜 32を 形成した後、耐酸化材料、例えば窒化シリコンを CVD法により堆積し、膜厚 lOOnm 程度の耐酸化材料膜 33を形成する。 Specifically, an insulating film 32 having a thickness of about 30 nm is formed on the surface of the semiconductor substrate 31 by a thermal oxidation method. After the formation, an oxidation resistant material, for example, silicon nitride is deposited by a CVD method to form an oxidation resistant material film 33 having a thickness of about lOOnm.
[0092] 続いて、図 15Bに示すように、耐酸化材料膜 33を素子領域の形状にパターユング する。 Subsequently, as shown in FIG. 15B, the oxidation-resistant material film 33 is patterned into the shape of the element region.
詳細には、耐酸化材料膜 33を、半導体基板 31の素子領域 30となる部分を覆うよう に、リソグラフィー及びドライエッチングによりパターニングする。  Specifically, the oxidation-resistant material film 33 is patterned by lithography and dry etching so as to cover a portion that becomes the element region 30 of the semiconductor substrate 31.
[0093] 続いて、図 15Bに示すように、素子分離領域にフィールド酸化膜 39を形成する。  Subsequently, as shown in FIG. 15B, a field oxide film 39 is formed in the element isolation region.
詳細には、耐酸化材料膜 33をマスクとして用レ、、絶縁膜 32及び半導体基板 31を フィールド酸化し、素子分離領域にフィールド酸化膜 39を形成する。このフィーノレド 酸化膜 39により、半導体基板 31上で素子領域 30が画定される。ここで、フィールド 酸化膜 39は、図 13のように平面視した場合、素子領域 30がゲート電極 47の形成部 位下において外方へ向かって突出する一対の突出部 30aを有するように、ゲート電 極 47の形成部位下で凹形状に形成される。そして、耐酸化材料膜 33及びその下に 残存する絶縁膜 32をウエット処理等により除去した後、熱酸化法により半導体基板 3 1上に絶縁膜 38を形成する。  Specifically, using the oxidation-resistant material film 33 as a mask, the insulating film 32 and the semiconductor substrate 31 are field oxidized to form a field oxide film 39 in the element isolation region. The device region 30 is defined on the semiconductor substrate 31 by the finered oxide film 39. Here, the field oxide film 39 has a gate shape so that the element region 30 has a pair of projecting portions 30a projecting outward under the formation position of the gate electrode 47 when viewed in plan as shown in FIG. The electrode 47 is formed in a concave shape under the formation site. Then, after removing the oxidation resistant material film 33 and the insulating film 32 remaining thereunder by wet processing or the like, an insulating film 38 is formed on the semiconductor substrate 31 by a thermal oxidation method.
[0094] 続いて、図 15Dに示すように、半導体基板 31にゥエルを形成するための不純物を 導入する。  Subsequently, as shown in FIG. 15D, impurities for forming wells are introduced into the semiconductor substrate 31.
詳細には、先ず、半導体基板 31上の素子領域 30及びその周辺のフィールド酸化 膜 39の一部を露出させるように、レジストマスク 34を形成する。そして、レジストマスク 34を用いて、レジストマスク 34の開口部に存在するフィールド酸化膜 39を透過して、 レジストマスク 34から露出する部分の下部に相当する半導体基板 1内に達するように 、 P型不純物、ここではホウ素(B+)をイオン注入する。イオン注入の条件としては、加 速エネノレギーを 200keV〜500keV、ドーズ量を 1 X 1010/cm2〜l X 1013/cm2と する。このイオン注入により、 P型不純物領域 35が形成される。レジストマスク 34は、 灰化処理等により除去される。 Specifically, first, a resist mask 34 is formed so as to expose a part of the element region 30 on the semiconductor substrate 31 and the field oxide film 39 in the vicinity thereof. Then, the resist mask 34 is used to transmit the field oxide film 39 present in the opening of the resist mask 34 and reach the semiconductor substrate 1 corresponding to the lower portion of the portion exposed from the resist mask 34. Impurities, here boron (B + ) are ion-implanted. As ion implantation conditions, the acceleration energy is 200 keV to 500 keV, and the dose is 1 × 10 10 / cm 2 to 1 × 10 13 / cm 2 . By this ion implantation, a P-type impurity region 35 is formed. The resist mask 34 is removed by ashing or the like.
[0095] 続いて、図 16A_ 1,図 16A—2に示すように、半導体基板 31にチャネルストップ 領域を形成するための不純物を導入する。 Subsequently, as shown in FIG. 16A_1 and FIG. 16A-2, impurities for forming a channel stop region are introduced into the semiconductor substrate 31.
詳細には、先ず、フィールド酸化膜 39上で素子領域 30と所定距離だけ離間して当 該素子領域突き出し部 30aを除く素子領域 30を囲むように、レジストマスク 36を形成 する。このレジストマスク 36により、フィールド酸化膜 39上でリング状の部分が露出す ることになる。そして、レジストマスク 36を用いて、レジストマスク 36から露出する部分 でフィールド酸化膜 39の直下に相当する半導体基板 31内に、 P型不純物、ここでは ホウ素(B+)をイオン注入する。イオン注入の条件としては、加速エネルギーを 100k eV〜240keV、ドーズ量を 1 X 1010Zcm2〜l X 10M/cm2とする。このイオン注入 により、レジストマスク 36の開口部分に整合してフィールド酸化膜 39の直下に P型不 純物領域 61が形成される。 Specifically, first, the device region 30 is separated from the element region 30 by a predetermined distance on the field oxide film 39. A resist mask 36 is formed so as to surround the element region 30 excluding the element region protruding portion 30a. The resist mask 36 exposes a ring-shaped portion on the field oxide film 39. Then, using the resist mask 36, a P-type impurity, here boron (B + ), is ion-implanted into the semiconductor substrate 31 corresponding to the portion directly exposed to the field oxide film 39 in the portion exposed from the resist mask 36. As ion implantation conditions, the acceleration energy is set to 100 keV to 240 keV, and the dose is set to 1 × 10 10 Zcm 2 to 1 × 10 M / cm 2 . By this ion implantation, a P-type impurity region 61 is formed immediately below the field oxide film 39 in alignment with the opening of the resist mask 36.
[0096] ここで、図 16A—2に示すように、レジストマスク 36の開口から、素子領域 30の端部 力 絶縁膜 38を介して)露出しており、当該端部にイオン注入された B+が P型不純物 領域 61の他の部分よりも深く導入される。レジストマスク 36は、灰化処理等により除 去される。 Here, as shown in FIG. 16A-2, B is exposed from the opening of the resist mask 36 through the end force insulating film 38 of the element region 30 and is ion-implanted into the end portion. + Is introduced deeper than the other part of the P-type impurity region 61. The resist mask 36 is removed by ashing or the like.
[0097] 続いて、図 16B— 1 ,図 16B— 2に示すように、半導体基板 31にチャネルドーズ領 域を形成するための不純物を導入する。  Subsequently, as shown in FIG. 16B-1 and FIG. 16B-2, an impurity for forming a channel dose region is introduced into the semiconductor substrate 31.
詳細には、先ず、素子領域 30を露出させるように、レジストマスク 43を形成する。そ して、レジストマスク 43を用いて、レジストマスク 43から露出する部分の下部に相当す る半導体基板 31の表層(ここでは表面近傍)に、 P型不純物、ここではホウ素(B+)を イオン注入する。イオン注入の条件としては、加速エネルギーを 10keV〜50keV、ド 一ズ量を 1 X 10lc>/cm2〜l X 1013/cm2とする。このイオン注入により、 P型不純物 領域 44が形成される。レジストマスク 43は、灰化処理等により除去される。 Specifically, first, a resist mask 43 is formed so that the element region 30 is exposed. Then, using the resist mask 43, a P-type impurity, here boron (B + ), is ionized on the surface layer (here near the surface) of the semiconductor substrate 31 corresponding to the lower part of the portion exposed from the resist mask 43. inject. As ion implantation conditions, the acceleration energy is 10 keV to 50 keV, and the dose is 1 × 10 lc> / cm 2 to l × 10 13 / cm 2 . By this ion implantation, a P-type impurity region 44 is formed. The resist mask 43 is removed by ashing or the like.
[0098] しかる後、第 2の実施形態と同様に、ァニール処理によるゥヱル 41、チャネルストツ プ領域 62、及びチャネルドーズ領域 48の形成や、ゲート絶縁膜 45及びゲート電極 4 7、一対の LDD領域 51、サイドウォール絶縁膜 52、ソース領域 53及びドレイン領域 54の形成等の諸工程を経て、本実施形態による高耐圧の N型 M〇Sトランジスタを 完成させる。  Thereafter, similarly to the second embodiment, the formation of the wall 41, the channel stop region 62, and the channel dose region 48 by annealing, the gate insulating film 45, the gate electrode 47, and a pair of LDD regions. 51. Through the various processes such as the formation of the sidewall insulating film 52, the source region 53, and the drain region 54, the high breakdown voltage N-type MOS transistor according to the present embodiment is completed.
[0099] 以上説明したように、本実施形態によれば、トランジスタ特性の変動劣化を抑止し、 比較的簡易且つ確実に高耐圧を実現する信頼性の高い M〇Sトランジスタを提供す ること力 Sできる。 また、第 2及び第 3の実施形態によれば、フィールド酸化膜 39の形成工程位置に 依ることなぐ上記の緒効果を奏することが可能となる。 [0099] As described above, according to the present embodiment, it is possible to provide a highly reliable MOS transistor that suppresses fluctuation deterioration of transistor characteristics and realizes a high breakdown voltage relatively easily and reliably. S can. Further, according to the second and third embodiments, it is possible to achieve the above-mentioned effect without depending on the position where the field oxide film 39 is formed.
[0100] [第 4の実施形態]  [0100] [Fourth Embodiment]
本実施形態では、第 2の実施形態とほぼ同様の構成であり、ほぼ同様の製造方法 により作製されるものであるが、チャネルストップ領域の形態が若干異なる点で相違 する。本実施形態は、言わば第 2の実施形態の変形例である。  This embodiment has substantially the same configuration as that of the second embodiment and is manufactured by substantially the same manufacturing method, but is different in that the form of the channel stop region is slightly different. This embodiment is a modification of the second embodiment.
[0101] 図 17及び図 18A〜図 18Dは、第 4の実施形態による高耐圧の MOSトランジスタの 構成を示す概略図である。ここで、図 17が平面図であり、図 18Aが図 17の破線 I— I 'に沿った断面図、図 18Bが図 17の破線 ΙΙ— ΙΓに沿った断面図、図 18Cが図 17の 破線 ΙΙΙ— ΙΙΓに沿った断面図、図 18Dが図 17の破線 IV— IV'に沿った断面図であ る。  FIGS. 17 and 18A to 18D are schematic views showing the configuration of a high voltage MOS transistor according to the fourth embodiment. Here, FIG. 17 is a plan view, FIG. 18A is a cross-sectional view taken along the broken line I—I ′ in FIG. 17, FIG. 18B is a cross-sectional view taken along the broken line ΙΙ—ΙΓ in FIG. FIG. 18D is a cross-sectional view taken along the broken line IV—IV ′ of FIG. 17.
[0102] この MOSトランジスタでは、シリコン半導体基板 31上に素子分離構造、ここでは L OCOS (LOCal Oxidation of Silicon)法によるフィールド酸化膜 39が形成され、半導 体基板 31上で素子領域 30が画定される。ここで、半導体基板 31の表層において、 素子領域 30を含むようにゥエル 41が形成されてレ、る。  [0102] In this MOS transistor, an element isolation structure, here a field oxide film 39 formed by the LOCOS (LOCal Oxidation of Silicon) method is formed on a silicon semiconductor substrate 31, and an element region 30 is defined on the semiconductor substrate 31. Is done. Here, on the surface layer of the semiconductor substrate 31, the well 41 is formed so as to include the element region 30.
[0103] 更に、素子領域 30を横切るように、帯状のゲート電極 47が素子領域 30上でゲート 絶縁膜 45を介してパターン形成され、ゲート電極 47の両側面にはサイドウォール絶 縁膜 52が形成されており、ゲート電極 47の両側における素子領域 30の表層には、 不純物が低濃度に導入されてなる一対の LDD領域 51が形成され、 LDD領域 51と 各々重畳するように、これらよりも高濃度に不純物が導入されてなるソース領域 53及 びドレイン領域 54が形成されてレ、る。  Further, a strip-shaped gate electrode 47 is patterned on the element region 30 via the gate insulating film 45 so as to cross the element region 30, and sidewall insulating films 52 are formed on both side surfaces of the gate electrode 47. In the surface layer of the element region 30 on both sides of the gate electrode 47, a pair of LDD regions 51 into which impurities are introduced at a low concentration are formed, so that they overlap with the LDD regions 51, respectively. A source region 53 and a drain region 54 into which impurities are introduced at a high concentration are formed.
[0104] また、半導体基板 31のフィールド酸化膜 39の直下には、フィールド酸化膜 39を介 して隣接する M〇Sトランジスタ等との間で不純物領域間の電荷流出を防止するため 、ソース領域 53及びドレイン領域 54と反対導電型の不純物が導入されてなるチヤネ ノレストップ領域 71が形成されている。  In addition, immediately below the field oxide film 39 of the semiconductor substrate 31, a source region is formed in order to prevent charge outflow between the impurity regions with the adjacent MOS transistor through the field oxide film 39. A channelless top region 71 is formed in which impurities having the conductivity type opposite to that of the drain region 54 and the drain region 54 are introduced.
[0105] ここで、ドレイン領域 54は、当該 M〇Sトランジスタの高耐圧を確保するため、 LDD 領域 51の端部から所定距離だけオフセットされるように形成されている。このオフセッ トに伴い、チャネルストップ領域 71も LDD領域 51の端部から所定距離だけ離間させ 、高耐圧を確保している。 Here, the drain region 54 is formed so as to be offset from the end of the LDD region 51 by a predetermined distance in order to ensure the high breakdown voltage of the MOS transistor. With this offset, the channel stop region 71 is also separated from the end of the LDD region 51 by a predetermined distance. High breakdown voltage is ensured.
[0106] 本実施形態では、チャネルストップ領域 71は、図 17のほぼ右半分(ドレイン領域 54 側)については、第 2の実施形態の図 7と同様にレジストマスク 36の形成位置を除くフ ィールド酸化膜 39の部分の直下に形成される。一方、図 17のほぼ左半分 (ソース領 域 53側)については、フィールド酸化膜 39のほぼ全体の直下に亘り形成される。従 つてこの場合、図 18Aに示すように、フィールド酸化膜 39における突出部 30aを囲む 部分のソース領域 53側のみに、チャネルストップ領域 71の一部が形成される構成と なる。即ち本実施形態では、第 2の実施形態と同様に、フィールド酸化膜 39を形成 する前に、チャネルストップ領域 71を形成する。この場合、チャネルストップ領域 71 の形成時には、素子領域 30の形成領域に整合するように耐酸化材料膜 33がパター ユングされてレ、るため、チャネルストップのイオン注入時に耐酸化材料膜 33がマスク となって素子領域 30の形成領域内への不純物の浸入が阻止される。なお、図 17の ほぼ右半分(ドレイン領域 54側)については、ドレイン領域 54により確実に高耐圧を 確保するため、レジストマスク 36を形成することが好適である。  In this embodiment, the channel stop region 71 has a field on the almost right half (on the drain region 54 side) of FIG. 17 except for the formation position of the resist mask 36 as in FIG. 7 of the second embodiment. An oxide film 39 is formed immediately below. On the other hand, almost the left half (source region 53 side) of FIG. 17 is formed directly under the entire field oxide film 39. Therefore, in this case, as shown in FIG. 18A, a part of the channel stop region 71 is formed only on the source region 53 side of the portion surrounding the protruding portion 30a in the field oxide film 39. That is, in this embodiment, the channel stop region 71 is formed before the field oxide film 39 is formed, as in the second embodiment. In this case, when the channel stop region 71 is formed, the oxidation-resistant material film 33 is patterned so as to be aligned with the formation region of the element region 30, so that the oxidation-resistant material film 33 is masked during channel stop ion implantation. Thus, the intrusion of impurities into the formation region of the element region 30 is prevented. Note that it is preferable to form a resist mask 36 on the almost right half (on the drain region 54 side) of FIG.
[0107] なお、第 3の実施形態と同様に、フィールド酸化膜 39を形成した後に、チャネルスト ップ領域を形成する場合には、チャネルストップ領域 71の形成時には素子領域 30の 形成領域に耐酸化材料膜 33が存しない。従ってこの場合には、図 19に示すように、 図 17のほぼ右半分(ドレイン領域 54側)の素子領域 30上を含むように、レジストマス ク 72を形成し、チャネルストップのイオン注入を行うことを要する。  As in the third embodiment, in the case where the channel stop region is formed after the field oxide film 39 is formed, when the channel stop region 71 is formed, the element region 30 is formed in an acid resistant region. Chemical film 33 does not exist. Accordingly, in this case, as shown in FIG. 19, a resist mask 72 is formed so as to include the element region 30 in the almost right half (drain region 54 side) of FIG. 17, and channel stop ion implantation is performed. It takes a thing.
[0108] 本実施形態において、フィーノレド酸ィ匕膜 39は、素子領域 30がゲート電極 47下の 部分において外方へ向かって突出する一対の突出部 30aを有するように、ゲート電 極 47下の部分で凹形状に形成されている。  [0108] In this embodiment, the finered acid oxide film 39 is provided under the gate electrode 47 so that the element region 30 has a pair of protruding portions 30a protruding outward at the portion under the gate electrode 47. The part is formed in a concave shape.
[0109] 突出部 30aは、その幅 Wが、ゲート電極 47のゲート長 Gよりも狭幅で且つ所期の  [0109] The protrusion 30a has a width W narrower than the gate length G of the gate electrode 47 and is
L  L
形状に形成できる寸法以上 (即ち、使用するプロセスのテクノロジーで許容できる最 小寸法 (例えば 0. 18 z m)以上)とされている。また、その長さ Lが、少なくとも素子領 域 30と後述するチャネルストップ領域 71を形成するためのレジストマスク 36との距離 d以上であり、素子領域 30の形成用のパターンとゲート電極 47の形成用のパターン との位置合わせ精度を満たすように余裕を見込んだ寸法、例えば 0. 以上とさ れている。 It must be larger than the size that can be formed into the shape (ie, more than the smallest dimension that can be tolerated by the process technology used (eg, 0.18 zm)). The length L is at least a distance d between the element region 30 and a resist mask 36 for forming a channel stop region 71 described later, and the pattern for forming the element region 30 and the formation of the gate electrode 47 are formed. Dimension with allowance, for example, 0. It is.
[0110] そして、突出部 30aの表層に、例えばソース領域 53及びドレイン領域 54と反対導 電型の不純物を導入して表層導電領域が形成されている。本実施形態では、この表 層導電領域として、ゲート電極 47下における突出部 30aを含むシリコン素子領域 30 の表層にチャネルドーズ領域 48が形成されてレ、る。  [0110] Then, for example, an impurity having a conductivity type opposite to that of the source region 53 and the drain region 54 is introduced into the surface layer of the protrusion 30a to form a surface conductive region. In the present embodiment, a channel dose region 48 is formed in the surface layer of the silicon element region 30 including the protruding portion 30a under the gate electrode 47 as the surface conductive region.
[0111] 本実施形態では、ゲート電極 47下におけるゥヱル 41内にチャネルドーズ領域 48を 形成することにより、十分な閾値電圧を確保することができる。その一方で、図 7に示 すように、突出部 30aはゲート長よりも幅狭に形成されているため、素子領域 30の一 部ではあるが活性領域としては機能しなレ、。そのため、図 8Dに示すように、フィール ド酸化膜 39下に形成されたチャネルストップ領域 71について、このチャネルストップ 領域 71の端部がフィールド酸化膜 39の端部から突き出たとしても、ゲート電極 47の ゲート幅 G に相当する部分の下部にはチャネルストップ領域 71は存することなく(チ  In this embodiment, by forming the channel dose region 48 in the wall 41 under the gate electrode 47, a sufficient threshold voltage can be ensured. On the other hand, as shown in FIG. 7, the projecting portion 30a is formed narrower than the gate length, so it does not function as an active region although it is a part of the device region 30. Therefore, as shown in FIG. 8D, for the channel stop region 71 formed under the field oxide film 39, even if the end of this channel stop region 71 protrudes from the end of the field oxide film 39, the gate electrode 47 The channel stop region 71 does not exist under the part corresponding to the gate width G of
W  W
ャネルストップ領域 72の端部がゲート幅 G に相当する部分に達することなく)、ゲー  The end of the channel stop region 72 does not reach the portion corresponding to the gate width G)
W  W
ト電極 47のゲート幅 G に相当する部分とチャネルストップ領域 71の端部とは離間し  The portion corresponding to the gate width G of the gate electrode 47 and the end of the channel stop region 71 are separated from each other.
W  W
た状態で保たれる。従って、この MOSトランジスタによれば、トランジスタ特性の変動 劣化が抑止され、安定した十分なトランジスタ特性を得ることができる。  It is kept in the state. Therefore, according to this MOS transistor, it is possible to suppress fluctuation and deterioration of transistor characteristics and to obtain stable and sufficient transistor characteristics.
[0112] 以上説明したように、本実施形態によれば、トランジスタ特性の変動劣化を抑止し、 比較的簡易且つ確実に高耐圧を実現する信頼性の高い MOSトランジスタを提供す ること力 Sできる。 [0112] As described above, according to the present embodiment, it is possible to provide a highly reliable MOS transistor that suppresses fluctuation deterioration of transistor characteristics and relatively easily and reliably realizes a high breakdown voltage. .
[0113] [第 5の実施形態] [0113] [Fifth Embodiment]
本実施形態では、第 1の実施形態とほぼ同様の構成であり、ほぼ同様の製造方法 により作製されるものであるが、ソース領域もドレイン領域と同様にオフセット構造に 形成されている点で相違する。本実施形態は、言わば第 1の実施形態の変形例であ る。  This embodiment has substantially the same configuration as that of the first embodiment and is manufactured by substantially the same manufacturing method, but differs in that the source region is also formed in an offset structure like the drain region. To do. This embodiment is a modification of the first embodiment.
[0114] 図 20及び図 21A,図 21Bは、第 5の実施形態による高耐圧の M〇Sトランジスタの 構成を示す概略図である。ここで、図 20が平面図であり、図 21Aが図 20の破線 I— I ,に沿った断面図、図 21Bが図 20の破線 ΙΙ— ΙΓに沿った断面図である。  FIG. 20, FIG. 21A, and FIG. 21B are schematic diagrams showing the configuration of the high-breakdown-voltage MSO transistor according to the fifth embodiment. Here, FIG. 20 is a plan view, FIG. 21A is a cross-sectional view taken along broken line II in FIG. 20, and FIG. 21B is a cross-sectional view taken along broken line ΙΙ- 破 線 Γ in FIG.
[0115] この MOSトランジスタでは、シリコン半導体基板 1上に素子分離構造、ここでは STI (Shallow [0115] In this MOS transistor, an element isolation structure, here STI, is formed on the silicon semiconductor substrate 1. (Shallow
Trench Isolation)法による STI素子分離構造 7が形成され、半導体基板 1上で素子 領域 10が画定される。ここで、半導体基板 1の表層において、素子領域 10を含むよ うにゥヱル 21が形成されてレ、る。  An STI element isolation structure 7 is formed by the Trench Isolation method, and an element region 10 is defined on the semiconductor substrate 1. Here, a wall 21 is formed on the surface layer of the semiconductor substrate 1 so as to include the element region 10.
[0116] 更に、素子領域 10を横切るように、帯状のゲート電極 16が素子領域 10上でゲート 絶縁膜 14を介してパターン形成されており、ゲート電極 16の両側における素子領域 10の表層には、不純物が低濃度に導入されてなる一対の LDD領域 19が形成され、 LDD領域 19と各々重畳するように、これらよりも高濃度に不純物が導入されてなるソ ース/ドレイン領域 25が形成されてレ、る。  Further, a strip-shaped gate electrode 16 is patterned on the element region 10 via the gate insulating film 14 so as to cross the element region 10, and the surface layer of the element region 10 on both sides of the gate electrode 16 is formed on the surface layer. Then, a pair of LDD regions 19 formed by introducing impurities at a low concentration is formed, and source / drain regions 25 formed by introducing impurities at a higher concentration than these are formed so as to overlap with the LDD regions 19 respectively. It has been done.
[0117] また、半導体基板 1の STI素子分離構造 7の直下には、 STI素子分離構造 7を介し て隣接する M〇Sトランジスタ等との間で不純物領域間の電荷流出を防止するため、 ソース Zドレイン領域 25と反対導電型の不純物が導入されてなるチャネルストップ領 域 23が形成されている。  [0117] Also, immediately below the STI element isolation structure 7 of the semiconductor substrate 1, in order to prevent charge outflow between impurity regions between the STI element isolation structure 7 and the adjacent MO transistor, etc. A channel stop region 23 is formed in which an impurity having a conductivity type opposite to that of the Z drain region 25 is introduced.
[0118] ここで、ソース/ドレイン領域 25は、当該 MOSトランジスタの高耐圧を確保するた め、 LDD領域 19の端部から所定距離だけオフセットされるように形成されている。こ のオフセットに伴い、チャネルストップ領域 23も LDD領域 19の端部から所定距離だ け離間させ、高耐圧を確保している。  Here, the source / drain region 25 is formed to be offset from the end of the LDD region 19 by a predetermined distance in order to ensure a high breakdown voltage of the MOS transistor. Along with this offset, the channel stop region 23 is also separated from the end of the LDD region 19 by a predetermined distance to ensure a high breakdown voltage.
[0119] 本実施形態において、 STI素子分離構造 7は、素子領域 10がゲート電極 16下の 部分において外方へ向かって突出する一対の突出部 10aを有するように、ゲート電 極 16下の部分で凹形状に形成されている。  [0119] In the present embodiment, the STI element isolation structure 7 has a portion below the gate electrode 16 such that the element region 10 has a pair of protruding portions 10a protruding outward at the portion below the gate electrode 16. It is formed in a concave shape.
[0120] 突出部 10aは、その幅 Wが、ゲート電極 16のゲート長 Gよりも狭幅で且つ所期の  [0120] The protrusion 10a has a width W narrower than the gate length G of the gate electrode 16 and the desired width.
L  L
形状に形成できる寸法以上 (即ち、使用するプロセスのテクノロジーで許容できる最 小寸法 (例えば 0. 18 z m)以上)とされている。また、その長さ Lが、少なくとも素子領 域 10と後述するチャネルストップ領域 23を形成するためのレジストマスク 11との距離 d以上であり、素子領域 10の形成用のパターンとゲート電極 16の形成用のパターン との位置合わせ精度を満たすように余裕を見込んだ寸法、例えば 0. 以上とさ れている。  It must be larger than the size that can be formed into the shape (ie, more than the smallest dimension that can be tolerated by the process technology used (eg, 0.18 z m)). Further, the length L is at least the distance d between the element region 10 and a resist mask 11 for forming a channel stop region 23 described later, and the pattern for forming the element region 10 and the formation of the gate electrode 16 are formed. The dimension is set to allow for a margin, for example, 0 or more so as to satisfy the alignment accuracy with the pattern for use.
[0121] そして、突出部 10aの表層に、例えばソース領域及びドレイン領域 25と反対導電型 の不純物を導入して表層導電領域が形成されている。本実施形態では、この表層導 電領域として、ゲート電極 16下における突出部 10aを含むシリコン素子領域 10の表 層にチャネルドーズ領域 22が形成されてレ、る。 [0121] And, on the surface layer of the protrusion 10a, for example, the conductivity type opposite to that of the source region and the drain region 25 The surface conductive region is formed by introducing the impurity. In this embodiment, a channel dose region 22 is formed on the surface layer of the silicon element region 10 including the protruding portion 10a under the gate electrode 16 as the surface conductive region.
[0122] 本実施形態では、ゲート電極 16下におけるゥヱル 21内にチャネルドーズ領域 22を 形成することにより、十分な閾値電圧を確保することができる。その一方で、図 20に 示すように、突出部 10aはゲート長よりも幅狭に形成されているため、素子領域 10の 一部ではあるが活性領域としては機能しない。そのため、 STI素子分離構造 7下に形 成されたチャネルストップ領域 23について、このチャネルストップ領域 23の端部が S TI素子分離構造 7の端部から突き出たとしても、ゲート電極 16のゲート幅 G に相当 In the present embodiment, a sufficient threshold voltage can be secured by forming the channel dose region 22 in the wall 21 under the gate electrode 16. On the other hand, as shown in FIG. 20, since the protruding portion 10a is formed narrower than the gate length, it does not function as an active region although it is a part of the element region 10. Therefore, for the channel stop region 23 formed under the STI element isolation structure 7, even if the end of this channel stop region 23 protrudes from the end of the STI element isolation structure 7, the gate width G of the gate electrode 16 Equivalent to
W  W
する部分の下部にはチャネルストップ領域 23は存することなく(チャネルストップ領域 23の端部がゲート幅 G に相当する部分に達することなく)、ゲート電極 16のゲート幅  The channel stop region 23 does not exist in the lower part of the region where the gate electrode 16 does not exist (the end of the channel stop region 23 does not reach the portion corresponding to the gate width G).
W  W
G に相当する部分とチャネルストップ領域 23の端部とは離間した状態で保たれる。  The portion corresponding to G and the end of the channel stop region 23 are kept apart.
W  W
従って、この MOSトランジスタによれば、トランジスタ特性の変動劣化が抑止され、安 定した十分なトランジスタ特性を得ることができる。  Therefore, according to this MOS transistor, the transistor characteristics are prevented from being deteriorated and stable and sufficient transistor characteristics can be obtained.
[0123] 以上説明したように、本実施形態によれば、トランジスタ特性の変動劣化を抑止し、 比較的簡易且つ確実に高耐圧を実現する信頼性の高い MOSトランジスタを提供す ること力 Sできる。 産業上の利用可能性 [0123] As described above, according to the present embodiment, it is possible to provide a highly reliable MOS transistor that suppresses fluctuation deterioration of transistor characteristics and relatively easily and reliably realizes a high breakdown voltage. . Industrial applicability
[0124] 本発明によれば、素子分離構造の形成方法及びその工程位置に依らずにトランジ スタ特性の変動劣化を抑止し、比較的簡易且つ確実に高耐圧を実現する信頼性の 高レ、半導体装置を提供することができる。 [0124] According to the present invention, the reliability of the transistor isolation structure can be suppressed relatively easily and reliably with high reliability, regardless of the element isolation structure forming method and its process position. A semiconductor device can be provided.

Claims

請求の範囲 The scope of the claims
[1] 半導体基板表面の素子分離領域に形成されて、当該半導体基板上で素子領域を 画定する素子分離構造と、  [1] An element isolation structure formed in an element isolation region on the surface of the semiconductor substrate and defining the element region on the semiconductor substrate;
前記素子領域を横切るように形成されたゲート電極と、  A gate electrode formed across the element region;
前記ゲート電極の両側における前記素子領域に不純物が導入されてなる一対の 導電領域と  A pair of conductive regions in which impurities are introduced into the element regions on both sides of the gate electrode;
を含み、  Including
前記各導電領域は、それぞれ低濃度領域と当該低濃度領域よりも不純物濃度の 高い高不純物領域とが重畳されてなり、前記各導電領域の少なくとも一方は、前記 高不純物領域が前記低濃度領域内で当該低濃度領域の端部からオフセットされた 状態に形成されており、  Each of the conductive regions is formed by overlapping a low concentration region and a high impurity region having an impurity concentration higher than that of the low concentration region, and at least one of the conductive regions includes the high impurity region in the low concentration region. Is formed in a state offset from the end of the low concentration region,
前記素子分離構造は、前記素子領域が前記ゲート電極下の部分においてゲート 長よりも狭幅で外方へ向かって突出する突出部を有するように、前記ゲート電極下の 部分で凹形状に形成され、前記突出部の表層に、前記導電領域とは反対導電型の 不純物が導入されてなる表層導電領域が形成されていることを特徴とする半導体装 置。  The element isolation structure is formed in a concave shape in a portion under the gate electrode so that the element region has a protrusion that protrudes outward with a width narrower than the gate length in the portion under the gate electrode. The semiconductor device is characterized in that a surface layer conductive region formed by introducing an impurity of a conductivity type opposite to the conductive region is formed in the surface layer of the protruding portion.
[2] 前記半導体基板の表層における少なくとも前記素子領域を包含する部分に、前記 導電領域とは反対導電型の不純物が前記表層導電領域よりも低濃度に導入されて なることを特徴とする請求項 1に記載の半導体装置。  [2] The impurity of a conductivity type opposite to that of the conductive region is introduced at a lower concentration in the surface layer of the semiconductor substrate including at least the element region than in the surface conductive region. The semiconductor device according to 1.
[3] 前記表層導電領域は、前記素子領域の前記ゲート電極下の部分に形成されてな るチャネルドーズ領域であることを特徴とする請求項 2に記載の半導体装置。  3. The semiconductor device according to claim 2, wherein the surface layer conductive region is a channel dose region formed in a portion of the element region under the gate electrode.
[4] 前記半導体基板の前記素子分離領域下に、前記導電領域とは反対導電型の不純 物が導入されてなるチャネルストップ領域を更に含み、  [4] It further includes a channel stop region in which an impurity having a conductivity type opposite to that of the conductive region is introduced under the element isolation region of the semiconductor substrate,
前記チャネルストップ領域の端部が、前記ゲート電極のゲート幅として機能する部 分の端部から離間していることを特徴とする請求項 1に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein an end portion of the channel stop region is separated from an end portion of a portion functioning as a gate width of the gate electrode.
[5] 前記突出部は、少なくとも前記チャネルストップ領域に到達する長さを有することを 特徴とする請求項 4に記載の半導体装置。  5. The semiconductor device according to claim 4, wherein the protrusion has a length that reaches at least the channel stop region.
[6] 前記突出部下において、前記チャネルストップ領域が前記素子分離構造の端部の 一部を覆うように形成されていることを特徴とする請求項 5に記載の半導体装置。 [6] Under the protrusion, the channel stop region is formed at an end of the element isolation structure. 6. The semiconductor device according to claim 5, wherein the semiconductor device is formed so as to cover a part.
[7] 前記素子分離構造の前記突出部を囲む部分の他方の前記各導電領域側のみに、 前記チャネルストップ領域の一部が形成されていることを特徴とする請求項 4に記載 の半導体装置。 7. The semiconductor device according to claim 4, wherein a part of the channel stop region is formed only on the other conductive region side of the portion surrounding the protruding portion of the element isolation structure. .
[8] 前記各導電領域の双方が、前記高不純物領域が前記低濃度領域内で当該低濃 度領域の端部からオフセットされた状態に形成されていることを特徴とする請求項 1 に記載の半導体装置。  [8] The conductive region according to claim 1, wherein both of the conductive regions are formed in a state where the high impurity region is offset from an end of the low concentration region in the low concentration region. Semiconductor device.
[9] 半導体基板表面の素子分離領域に、当該半導体基板上で素子領域を画定する素 子分離構造を形成する工程と、  [9] forming an element isolation structure for defining an element region on the semiconductor substrate in the element isolation region on the surface of the semiconductor substrate;
前記素子領域を横切るようにゲート電極を形成する工程と、  Forming a gate electrode across the element region;
前記ゲート電極の両側における前記素子領域に不純物を導入し、一対の導電領 域を形成する工程と  Introducing impurities into the element region on both sides of the gate electrode to form a pair of conductive regions;
を含み、  Including
前記各導電領域を、それぞれ低濃度領域と当該低濃度領域よりも不純物濃度の高 い高不純物領域とが重畳されてなり、前記各導電領域の少なくとも一方は、前記高 不純物領域が前記低濃度領域内で当該低濃度領域の端部からオフセットされた状 態に形成し、  Each of the conductive regions is formed by overlapping a low concentration region and a high impurity region having a higher impurity concentration than the low concentration region, and at least one of the conductive regions includes the high impurity region in the low concentration region. In a state that is offset from the end of the low concentration region,
前記素子分離構造を、前記素子領域が前記ゲート電極下の部分においてゲート長 よりも狭幅で外方へ向かって突出する突出部を有するように、前記ゲート電極下の部 分で凹形状に形成し、前記突出部の表層に、前記導電領域とは反対導電型の不純 物を導入して表層導電領域を形成することを特徴とする半導体装置の製造方法。  The element isolation structure is formed in a concave shape in a portion under the gate electrode so that the element region has a protruding portion that is narrower than the gate length and protrudes outward in the portion under the gate electrode. Then, a surface conductive region is formed by introducing an impurity of a conductivity type opposite to the conductive region into the surface layer of the protruding portion.
[10] 前記半導体基板の表層における少なくとも前記素子領域を包含する部分に、前記 導電領域とは反対導電型の不純物が前記表層導電領域よりも低濃度に導入されて なることを特徴とする請求項 9に記載の半導体装置の製造方法。  10. The semiconductor substrate according to claim 10, wherein an impurity of a conductivity type opposite to the conductive region is introduced at a lower concentration than the surface conductive region into a portion including at least the element region in the surface layer of the semiconductor substrate. 10. A method for manufacturing a semiconductor device according to 9.
[11] 前記表層導電領域は、前記素子領域の前記ゲート電極下の部分に形成されてな るチャネルドーズ領域であることを特徴とする請求項 10に記載の半導体装置の製造 方法。  11. The method for manufacturing a semiconductor device according to claim 10, wherein the surface conductive region is a channel dose region formed in a portion of the element region under the gate electrode.
[12] 前記半導体基板の前記素子分離領域下に、前記導電領域とは反対導電型の不純 物を導入してチャネルストップ領域を形成する工程を更に含み、 [12] An impurity of a conductivity type opposite to the conductive region under the element isolation region of the semiconductor substrate Further comprising introducing an object to form a channel stop region;
前記チャネルストップ領域を、その端部が前記ゲート電極のゲート幅として機能する 部分の端部から離間するように形成することを特徴とする請求項 9に記載の半導体装 置の製造方法。  10. The method for manufacturing a semiconductor device according to claim 9, wherein the channel stop region is formed such that an end portion thereof is separated from an end portion of a portion functioning as a gate width of the gate electrode.
[13] 前記突出部は、少なくとも前記チャネルストップ領域に到達する長さを有することを 特徴とする請求項 12に記載の半導体装置の製造方法。  13. The method for manufacturing a semiconductor device according to claim 12, wherein the protrusion has a length that reaches at least the channel stop region.
[14] 前記突出部下において、前記チャネルストップ領域を前記素子分離構造の端部の 一部を覆うように形成することを特徴とする請求項 13に記載の半導体装置の製造方 法。 14. The method for manufacturing a semiconductor device according to claim 13, wherein the channel stop region is formed so as to cover a part of the end portion of the element isolation structure under the protruding portion.
[15] 前記素子分離構造の前記突出部を囲む部分の他方の前記各導電領域側のみの 下部に、前記チャネルストップ領域の一部を形成することを特徴とする請求項 12に記 載の半導体装置の製造方法。  15. The semiconductor according to claim 12, wherein a part of the channel stop region is formed below only the other conductive region side of the portion surrounding the protruding portion of the element isolation structure. Device manufacturing method.
[16] 前記各導電領域の双方を、前記高不純物領域が前記低濃度領域内で当該低濃 度領域の端部からオフセットされた状態に形成することを特徴とする請求項 9に記載 の半導体装置の製造方法。 16. The semiconductor according to claim 9, wherein both of the conductive regions are formed in a state where the high impurity region is offset from an end portion of the low concentration region in the low concentration region. Device manufacturing method.
PCT/JP2006/305596 2006-03-20 2006-03-20 Semiconductor device and its fabrication process WO2007108104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305596 WO2007108104A1 (en) 2006-03-20 2006-03-20 Semiconductor device and its fabrication process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305596 WO2007108104A1 (en) 2006-03-20 2006-03-20 Semiconductor device and its fabrication process

Publications (1)

Publication Number Publication Date
WO2007108104A1 true WO2007108104A1 (en) 2007-09-27

Family

ID=38522144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305596 WO2007108104A1 (en) 2006-03-20 2006-03-20 Semiconductor device and its fabrication process

Country Status (1)

Country Link
WO (1) WO2007108104A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250671A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Semiconductor device
JPH0215672A (en) * 1988-07-04 1990-01-19 Sony Corp Semiconductor device
JPH1070272A (en) * 1996-06-29 1998-03-10 Hyundai Electron Ind Co Ltd Semiconductor device and fabrication thereof
JP2001217414A (en) * 2000-01-31 2001-08-10 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250671A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Semiconductor device
JPH0215672A (en) * 1988-07-04 1990-01-19 Sony Corp Semiconductor device
JPH1070272A (en) * 1996-06-29 1998-03-10 Hyundai Electron Ind Co Ltd Semiconductor device and fabrication thereof
JP2001217414A (en) * 2000-01-31 2001-08-10 Matsushita Electric Ind Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP4811895B2 (en) Semiconductor device and manufacturing method thereof
US6509615B2 (en) Semiconductor device having dynamic threshold transistors and element isolation region and fabrication method thereof
KR100713680B1 (en) Semiconductor device and fabricating method of the same
US6548874B1 (en) Higher voltage transistors for sub micron CMOS processes
KR100974697B1 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method of lateral double diffused metal oxide semiconductor device
KR100655679B1 (en) Method for fabricating semiconductor device
US20050045983A1 (en) Semiconductor device and method for manufacturing the same
US7851317B2 (en) Method for fabricating high voltage drift in semiconductor device
JP2004241755A (en) Semiconductor device
US8049283B2 (en) Semiconductor device with deep trench structure
US7986008B2 (en) SOI semiconductor components and methods for their fabrication
JPWO2003021685A1 (en) Semiconductor device and manufacturing method thereof
US20090280613A1 (en) Method of manufacturing semiconductor device
JP2003197765A (en) Semiconductor device and its manufacturing method
KR101762080B1 (en) Semiconductor device
JP6280747B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US7897464B2 (en) Method of manufacturing semiconductor device
KR100424603B1 (en) Method of manufacturing semiconductor device
JP2007027622A (en) Semiconductor device and its manufacturing method
JP4787709B2 (en) Semiconductor device and manufacturing method of semiconductor device
US6762468B2 (en) Semiconductor device and method of manufacturing the same
US20140175553A1 (en) Mos semiconductor device and method of manufacturing the same
KR20090073410A (en) Method of manufacturing a transistor and the transistor
US20170263770A1 (en) Semiconductor device and manufacturing method of the same
US7919822B2 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06729564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP