JPH10510659A - 擾乱が減ぜられたフラッシュ・メモリ・システム及びその方法 - Google Patents

擾乱が減ぜられたフラッシュ・メモリ・システム及びその方法

Info

Publication number
JPH10510659A
JPH10510659A JP9507846A JP50784697A JPH10510659A JP H10510659 A JPH10510659 A JP H10510659A JP 9507846 A JP9507846 A JP 9507846A JP 50784697 A JP50784697 A JP 50784697A JP H10510659 A JPH10510659 A JP H10510659A
Authority
JP
Japan
Prior art keywords
read
cells
array
cell
memory system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9507846A
Other languages
English (en)
Other versions
JP3548830B2 (ja
Inventor
ルーパーバー、フランキー・エフ
Original Assignee
マイクロン・クォンタム・デバイセズ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン・クォンタム・デバイセズ・インコーポレイテッド filed Critical マイクロン・クォンタム・デバイセズ・インコーポレイテッド
Publication of JPH10510659A publication Critical patent/JPH10510659A/ja
Application granted granted Critical
Publication of JP3548830B2 publication Critical patent/JP3548830B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits

Landscapes

  • Read Only Memory (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

(57)【要約】 読取り動作中に消去セルが擾乱される傾向を低減したフラッシュ・メモリ・システムが開示されている。フラッシュ・メモリ・セルのアレイ(26)は、多重的な行及び列の形態に配列され、アレイ内の行の各々に配置されたセルの全ては共通ワード線(WLN)に接続された制御ゲート(22)を有し、且つ1列内のセルの全ては共通ビット線(BLN)に接続されたドレイン(16)を有する。制御回路(28,30,32,34,36)は、メモリ動作を実行するために用いられ、プログラム入力アドレスに基づきアレイ・セルをプログラムするためのプログラム回路と、読取り入力アドレスに基づきアレイ・セルを読取るための読取り回路とを含んでいる。読取り回路は、読取り入力アドレスによって決定されたアレイ(26)における複数のワード線(WLN)の内の選択された1つに読取り電圧を印加すべく機能する。擾乱制限手段(30)は、読取り回路がワード線の内の選択された1つに読取り電圧を印加する期間を制限するために用いられる。

Description

【発明の詳細な説明】 擾乱が減ぜられたフラッシュ・メモリ・システム及びその方法 発明の背景 1.発明の分野 本発明は、フラッシュ・メモリ・システムに関し、特に、消去されたフラッシ ュ・セルを擾乱する傾向を低減したことによって改善されたデータ保存を為すメ モリ・システムに関する。 2.背景技術 フラッシュ・メモリ・システムは、不揮発性データ記憶容量及び比較的大きな 容量を提供すべく開発されてきた。これらメモリ・システムの記憶容量をいっそ う増大する試みとして、個々のメモリ・セルのサイズが著しく低減されてきた。 以下に説明するように、このセル・サイズに関する低減は、そのセルのデータ保 存に関する減少が伴われ、その理由としては、読取り動作を含む様々なメモリ動 作の間、セルのプログラムされた状態を擾乱する傾向又は乱す傾向が増大するか らである。 添付図面で参照されるように、図1Aはプログラム動作を実行するために電圧 が印加された状態の例示的な従来のフラッシュ・メモリ・セル10を示す。この 例示的なセル10はP型基板12内に形成されている。N+ソース領域14及び N+ドレイン領域16もまた基板内に形成されている。これらソース及びドレイ ンの領域12及び14は隔てられて、中間チャネル領域12aを画成している。 フローティング・ゲート18がチャネル領域12aの上方に配置されて、該チ ャネル領域から薄い(100オングストローム)ゲート酸化物だけ隔てられてい る。このフローティング・ゲート18はドープされたポリシリコンから形成され 、容量結合を除いて他のセル要素から電気的に絶縁されている。ポリシリコン制 御ゲート22がこのフローティング・ゲート18の土方に配置され、共重合誘電 体24によってフローティング・ゲートと18から分離されている。 セル10の状態は、フローティング・ゲート18に電荷を付加したり、該フロ ーティング・ゲートから電荷を除去することによって変更される。この電荷の差 によって、セル10の閾電圧が変更されて、以下説明されるようにセル10の状 態が読取り動作で確かめられる。セル10が消去状態であれば、一般的には相対 的に小さな負の電荷がフローティング・ゲート上にある。セル10がプログラム 状態であれば、一般的には相対的に大きな負の電荷がフローティング・ゲート上 にある。 図1Aに示されるセル10はプログラミング動作用に構成されている。正の電 圧(一般的には+6ボルト)がドレイン16に印加され、ソースは接地されてい る。大きな正の電圧(一般的には+12ボルト)が制御ゲート22に印加される 。これらの状態は電界を作り出すこととなり、それによって電子がソース領域1 4からドレイン領域16へ加速される。更に、電界が制御ゲート22に作用され た前記正電圧によっても作り出されることとなる。ソースからドレインへ移動す る電子の幾らかは充分なエネルギーを有することとなって、ゲート酸化物20を 通過してフローティング・ゲートに集まる。このメカニズムは、しばしば、ホッ トエレクトロン注入(hot electron injection)と呼称される。フローテイング・ ゲート18へ転送される電荷量はまさに時間に依存する。一般的なプログラミン グ動作は、図1Aの状態が、例えば10ミリ秒程度が可能な相対的に長い持続時 間、存在することを要求する。比較として、典型的な読取り動作は、一般的に、 百ナノ秒未満を費やすことになる。 図1Cは、フラッシュ・セルを読取るための例示的な状態を示す。ソース領域 14は接地されており、ドレイン領域は小さな正の電圧(一般的には、+1から +2ボルト)に接続されている。正の電圧(一般的には、+5.5ボルト)が制 御ゲート22に印加される。フローティング・ゲート18上に存在する電子はセ ルの閾電圧を変更する、即ちセルに1マイクロアンペアの電流を導通するように なすべく印加されなければならない制御ゲート対ソース電圧を変更することとな る。プログラムされていないセルは一般的には+3ボルトの相対的に低い閾電圧 を有することとなり、プログラム済みセルは+5から+6ボルトのプログラム済 み閾電圧を一般的には有することとなる。 セル10がプログラムされていると仮定すると、+5.5ボルトのゲート-ソ ース電圧は前記プログラム済み閾電圧に接近しているので、ほんの僅かな電流し か流れない。セル電流が無いことは、セルがプログラムされていることを示し、 それによってセルの状態を示す。プログラム済みセルは、共通した慣習で、論理 「0」を示す。もしセルが消去済み状態であれば、+5.5ボルトのゲート-ソ ース電圧は+3ボルトの消去済み閾電圧を越えることとなる。従って、そのセル は電流を導通し、それによって該セルが消去済みセルであることを示す。共通し た慣習によって、消去済みセルは論理「1」で表現する。 図1Cに示されていないが、読取り動作中、セル電流は電圧に変換されて、セ ンス増幅器によって基準電圧と比較される。従って、センス増幅器の出力は、セ ルが消去済み(論理「1」)であることを示す一方の状態となった、セルがプロ グラム済み(論理「0」)であることを示す他方の状態又は条件となる。 図1Bはフラッシュ・セル10を消去するための状態を示す。大きな正の電圧 、一般的には+10ボルトがソース領域14に印加され、ドレイン領域16は浮 動状態に為される。更に、制御ゲート22は接地される。殆どのフラッシュ・メ モリにおいて、複数セルの全て或いは大きなブロックが同時に消去される。従っ てこれらセルの全ては共通して+10ボルトに接続されたそれぞれのソース、接 地されたそれぞれの制御ゲート22、並びに全て浮動状態と為されたそれぞれの ドレイン領域を有する。これらの状態はソース領域14とフローティング・ゲー ト18との間に生成される強力な電界を生み出す。この電界はフローティング・ ゲート18上に存在する電子をその薄いゲート酸化物20を通過させてソース領 域へ向かわせる。電子を転送するこのメカニズムは、ファウラー-ノルトハイム のトンネル効果(Fowler-Nordheim tunneling)と呼称される。電子の除去は、セ ルにプログラム済みセルから消去済みセルへの変化を生じさせる。 消去動作において、フローティング・ゲート18からあまりにも多くの電子を 除去して、正味の正電荷を残存させることがあり得る。これは、ゲート-ソース 電圧がゼロとなってすらセル電流を流す点まで閾電圧を低減する傾向がある。こ の「過消去」状態は好ましいものではなく、セルが読取り状態ではないときです らセルが電流を導通することとなる。この電流は、セルが実際に読取られている 際 の電流の流れをマスクする傾向があって、適切なメモリ動作を妨害する。 多くの消去動作は可能性のある過消去状態を修正するためのサブ動作を含む。 1つのそうしたサブ動作は、しばしば、「ヒール(heal)又は治療」サイクルと呼 称される。以下に説明するように、このヒール・サイクルは過消去を修正し、複 数のセルが消去動作の後により均一となるようにそれらのセルの消去閾電圧の分 布を低減する機能との双方の機能がある。 ヒール・サイクル中、セル全てのソース領域14は接地されており、ドレイン 領域16は全て浮動状態である。更に、制御ゲートは全て+12ボルト等の大き な正の電圧に接続されている。これらの状態によって、ソース領域14とフロー ティング・ゲート18との間には電界が形成されることとなる。この電界の強さ は、フローティング・ゲート18の電圧の関数となり、その電圧は低い閾電圧を 有する過消去されているセルを含むセルにとってはより大きなものである。この 電界は電子をソース領域14からフローティング・ゲート18へ転送させること となって、セルの消去済み閾電圧を増大する。最低の閾電圧を有するセルは、最 大量に増大され、より高い閾電圧を有するものはさほどの影響を受けない。ヒー ル・サイクルは制御されて、セルの全ての消去済み閾電圧が、+3ボルト等の何 等かの公称値に近づくようになる。 一般のフラッシュ・メモリ・システムは、理想的には、プログラム済み状態を 際限なく維持する。実際上、多くのメモリ・システムは、10年から100年の 範囲の期間、データを保持するように指定されている。データ損失の主要原因は 、電子がフローティングゲート18から経時的にゆっくりと除去されることであ る。セル形態が漸次小さくなるにつれて、フローティング・ゲートに関連された 容量は非常に小さくなり、一般にはフェムト・ファラッド(10-15ファラッド )程度となっている。従って、ほんの僅かな数の電子の除去が閾電圧において大 きな変化を生ずることとなる。 また留意されるべきことは、例え1つのセルの状態がそのフローティング・ゲ ート上の電荷変化によって変動しなくとも、そのメモリの性能はもはや使用不能 となる程度までに劣化していることがある。例えば、消去済み電圧とプログラム 済み電圧とが相互に接近すれば、読取り誤りのマージンが低減する。更に、メモ リ動作、特に読取り動作の実行に要求される時間はセル電流の大きさに依存する 。もし、セルの消去済み閾電圧が例えばフローティング・ゲート18上の電子の 利得によって増大されたならば、セルは読取り動作において充分な電流を導通す ることができて、セルの状態が正しく読み取られることになる。しかしながら、 増大された閾電圧はセル電流の大きさを低減するものであり、その電流が、メモ リ仕様内(一般的には百ナノ秒程度)で読取り動作を実行すべく充分高速にアレ イ・ビット線の電圧状態をシフトできない点まで低減することとなる。 長期間にわたってデータを保持するフラッシュ・メモリの能力に影響する2つ の主要なメカニズムがある。一方のメカニズムは、しばしば、「読取り擾乱(rea d disturb)」と呼称され、他方がしばしば「ワード線擾乱(word line disturb) 」と呼称される。読取り擾乱はセル10が読取られている状態の際に生ずる。図 1Cで参照できるように、読取り動作はドレイン領域16に印加された正電圧( +1から+2ボルト)によってソース領域14とドレイン領域16との間に電界 を作り出す。ドレイン及びソースの領域間を移動する非常に少数の電子は、制御 ゲート22の正電圧によって、フローティング・ゲート18まで引き上げられる 程に充分なエネルギーを有することになる。従って、セルは読取り動作において ドレイン16に隣接する領域内へのホットエレクトロン注入によってほんの僅か にプログラムされる。これは、読取り動作実行に要求される時間が従来のプログ ラム動作実行に要求される時間よりも相当に短くとも真実である。ドレインとソ ースとの間の電界の強さはチャネル12aの長さに逆比例し、そうしたチャネル 長はセル形態がより小さくなればより小さくなる。従ってこの読取り擾乱現象は 、セルのサイズが低減されるとより顕著となる。 ワード線擾乱は、大きな正電圧がセル10の制御ゲート22に印加されており 、セルの制御ゲートにアレイのワード線に接続されているような様々な状態で生 ずる。例えば、上述のヒール・サイクルにおいては、ソース領域14が接地され ており、制御ゲートが+12ボルトに接続されている。これらの条件によって、 ファウラー-ノルトハイムのトンネル効果によって、少数の電子がソース領域1 4からフローティング・ゲート18へ転送されることになる。 読取り及びワード線擾乱の現象はほんの少量の電子の転送となるが、記憶に留 めるべきことは、単一のプログラミング動作の間に数10万の読取り動作があり 得ることである。更に、小形態のセルにおけるフローティング・ゲートに関連さ れる容量は非常に小さいので、たった数千の電子の転送によっての電荷の変化が 1ボルトのフローティング・ゲートに関するポテンシャル変化を生ずる。 本発明は、読取り及びワード線擾乱の上述した影響に改善された耐性を有する フラッシュ・メモリ・システムに向けられている。これの達成には、セル形態を 変更する必要性がなく、プログラミング動作、読取り動作、並びに消去動作を実 行するための基本メカニズムを変更することなしである。本発明のこうした長所 及びその他の長所は、以下の図面を伴う発明の詳細な説明を読むことによって当 業者には明かとなろう。 発明の概要 読取り動作中に消去済みセルが擾乱させられる傾向が低減されたフラッシュ・ メモリ・システムが開示されている。本システムは、多数の行及び列に配列され たフラッシュ・メモリ・セルのアレイを含む。アレイにおける各行内に配置され た複数セルの全ては、共通ワード線に接続されている制御ゲートを有し、1列内 の複数セルの全ては共通ビット線に接続されているドレインを有する。 本メモリ・システムは各種のメモリ動作を実行するための制御手段を含み、該 制御手段が、プログラム入力アドレスに基づきアレイの複数セルをプログラムす るためのプログラム手段と、読取り入力アドレスに基づきアレイの複数セルを読 取るための読取り手段とを含む。読取り手段は、読取り入力アドレスによって決 定されたようなアレイにおけるワード線の内の選択された1つに読取り電圧を印 加する機能がある。 更にまた、本メモリ・システムは、読取り手段がワード線の選択された1つに 読取り電圧を印加する期間を制限するための擾乱制限手段を含む。一実施例にお いて、前記擾乱手段はメモリ・システムのアドレス遷移検出回路を利用して、読 取り電圧が選択されたワード線に印加されている間の期間を制限する。 図面の簡単な説明 図1A乃至図1Cは、プログラム動作、消去動作、並びに読取り動作をそれぞ れ実行するために構成された従来のフラッシュ・メモリ・セルを示す。 図2は、図1A乃至図1Cに示されたような個々別々のセルを含むフラッシュ ・セル・アレイである。 図3は、本発明に従ったメモリ・システムのブロック図である。 図4は、図3のメモリ・システムのアドレス・バッファ回路の概略図である。 図5は、図3のメモリ・システムにおけるデータ・ラッチ回路を含むデータ出 力路の概略図である。 図6は、図3のメモリ・システムにおけるXデコーダの概略図である。 図7は、図3のメモリ・システムの動作を示すタイミング図である。 発明の詳細な説明 再度、図面を参照すれば、図3は本メモリ・システムの例示的な実施例のブロ ック図である。本システムは、複数のフラッシュ・メモリ・セルから成るアレイ 26を含む。このアレイの詳細は図2で見ることができる。アレイは、図1乃至 図1Cに開示されたように複数行及び複数列に配列された複数のセル10を含む 。本実施例においては、合計でセル10による512の行と512×8列とがあ る。1つの列内における複数セルの全ては、共通ビット線BLNに接続されたそ れらのドレイン領域16を有し、1つの行内における複数セルの全ては、共通ワ ード線WLNに接続されたそれらの制御ゲート22を有する。これらセルにおけ るソース領域14の全ては一体的に共通ソース線SL(不図示)に接続されるか 、或いは複数セルから成る大きなブロックが、それらが一体的に共通ソース線S L(不図示)に接続されたそれらソース領域を有している。このソース線SLは 回路共通に接続されるか、或いは他のポテンシャル(電位)に接続されて、消去 動作等を実行する。 メモリ・システムは合計18のアドレス(A0−A17)を受取り、セル・ア レイから8個のビット・ワードの1つを選択する。これらのアドレスはアドレス 遷移検出器28に結合される。よく知られているように、アドレス遷移検出器回 路の主要な機能は、アドレス遷移を感知して、いつ入力されたアドレスの全てが 安定化してメモリ読取り動作が実行され得るようになるかを決定することである 。更に、この検出器は、アドレス遷移が最初に検出された際に、予想されるメモ リ読取り動作のために前もって様々なメモリ要素を調整するように機能すること が できる。適切なアドレス遷移検出器回路が、1995年7月25日に出願されて 、「ADDRESS TRANSITION DETECTION(ATD)CIRCUIT」と題された米国出願連 番第08/506,168号に開示されている。ここで、この米国出願を引用す ることによって、その内容を本願に合体させる。 より詳細に説明されるように、検出器回路28は18個のアドレス入力に関し て遷移が先ず検出された際に高(ハイ・レベル)になる出力信号ATDを生成す る。信号ATDは、最終アドレス遷移が検出されるまで高のままであり、それに よって入力されたアドレスの全てはそれらの最終状態にあることを示し、セル・ アレイ26の適切なワードがアドレスされ得る。ひとたび、ワードがアドレス指 定されると、メモリ読取り動作が完了し得る。信号ATDは、最後のアドレス遷 移の後の追加期間、高を維持することとなって、その指定されたメモリ動作が行 われ得る。読取り動作中、信号ATDは、追加の150ナノ秒、高を維持するこ とによってその選択されたワードが読取られ得る。 18個のアドレスの内の9個、即ち、アドレスA0−A7はXデコーダ回路3 0へ送られ、残りの9個(A8−A17)はYデコーダ回路32へ送られる。X デコーダ回路30は、それら9個の入力されたアドレスをデコード(複号化)し て、セル・アレイ26における512のワード線WL0−WLNの内の1つを選 択すべく機能する。その選択されたワード線は、読取られるべき或いはプログラ ムされるべき8ビット・ワードを含む。メモリ読取り動作中、Xデコーダ回路3 0は、図1Cによって示されたように、+5.5ボルトをその選択されたワード 線WLNに印加すべく機能する。プログラム動作中、回路30は、図1Aによっ て示されたように、その選択されたワード線WLNに+12ボルトを印加すべく 機能する。 Yデコーダ32はその受取った9個のアドレス・ビツトを用いて、選択ゲート 回路34によってそのアドレス・ビットによって指示された8個の前記ビット・ ワードの内の1つを選択する。ブロック36によって表わされた8個のセンス増 幅器が用いられて、読取り動作及び他のメモリ検証動作を実行する。もし読取り 動作が行われようとすれば、選択ゲート回路34は8個のビット線BLNを8つ のセンス増幅器36のそれぞれの入力に接続する。更に、ビット線BLNに印加 される+1から+2ボルト(図1C)の範囲の大きさを有した電圧を発生するそ の回路が、その選択されたビット線BLNに接続される。 8個のセンス増幅器の出力は、読取り中である8個のセルの状態を示す。これ らの出力はデータ出力バッファ38へ提供され、次いでこのメモリ・システムの データ入出力端子D0−D7へ送られる。出力バッファ38は、低(アクティ ラミング動作中、高となり、それによってバッファの出力が高インピーダンス状 態へ付勢されて、それでプログラム動作中にデータ入力と干渉することがない。 メモリのプログラム動作中、プログラムされるべき8個のデータ・ビットがデ ータI/O(入出力)端子に提供され、入力バッファ40へ送られる。この時、 データ出力バッファ38の出力は高インピーダンス状態に切換えられる。次いで 、プログラムされるべきデータは、入力データ・ラッチ42へ供給され、プログ ラム動作中、そこで保持される。Xデコーダ回路30は、+12ボルトの大きな プログラミング電圧を図1Aに関して先に留意したように選択されたワード線W LNに印加すべく機能する。更に、Yデコーダ32は中間的なレベルの電圧、典 型的には+6ボルトを、入力データに基づいてプログラムされようとしているそ の選択された8個のビット線BLNにそれぞれに結合すべく機能する。 従来のメモリ・システムにおいて、メモリ回路は、任意のメモリ動作を実行す るために、関連されるプロセッサ等の外部ソースによってイネーブルと為されな 号はメモリ動作の最初にアクティブ(低)と為され、メモリ動作が完了するまで てでアクティブ(低)として強制できるようにすべく関連されたプロセッサをプ ログラムし得るか、或いはユーザは、その信号をメモリが使用状態にあるときに のみアクティブと為せるようにそうしたプロセッサをプログラムし得る。 されようが、ワード線WLNの1つに正電圧を印加すべく典型的には機能する。 回路によって印加された+5.5ボルトを有することとなる。よって、選択され されたそれらの制御ゲート22を有することとなる。更に、少なくとも選択され た行内におけるセルに接続されたソース線は、全て回路共通に接続されることと なる。更に、選択ゲート回路は小さな正電圧(+1から+2ボルト)を選択され たワードの8個のビット線BLNに接続することとなる。残りの或いは非選択の ビット線BLNは浮動のままである。 Xデコーダ及びYデコーダによって選択された従来のメモリ・システムにおけ る8個のセル10に関しては、それらセルが先に述べた読取り擾乱現象に晒され ることとなる。ソース領域とドレイン領域との間の電界が、注入によって正のフ ローティング・ゲートへ転送されることになる少数の電子を作り出す。こうした 状態が長く存在すればするほど、擾乱の大きさはより大きくなる。これは消去さ れるセルをソフト・プログラムする傾向がある。これらソフト・プログラミング 状態(読取り状態)は、より小さな電界による正規のプログラミング条件とは異 なり、複数桁の大きさのより小さなプログラミング電流を生成する。しかしなが ら、より取り状態は、想像されるように、プログラム条件より相当に長い期間に わたって存在できるので(数年対数マイクロ秒)、擾乱が生じ得る。 従来のメモリ・システムの選択ワード線における残りのセル10に関しては、 それらのセルもまたそれらの制御ゲートに接続された+5.5ボルトを有する。 これらの非選択セルに接続されたビット線BLNは回路共通に接続されることと なる。従って、選択行におけるこれらの非選択セルは、ワード線擾乱として先に 言及したところのものに晒されることとなる。これによって、電子はファウラー -ノルトハイムのトンネル効果によって、これらセルのフローティング・ゲート へソース側から転送させられる。これら非選択セルに印加された電圧は先に記載 したヒール・サイクルで使用されたものよりも小さくなるが、何等かのワード線 擾乱は生ずることとなる。また、この擾乱の効果は累積的であって、これらの状 態がより長く存続すればするほど、擾乱の大きさはより大きくなる。 擾乱がある。図4は、アドレス遷移検出回路の典型的な部分である従来のアドレ ス・バッファ回路43を示す。各メモリ・システム・アドレスは関連されたバッ ファ回路43を有する。バッファ回路は、反転入力段を形成すべく、Nチャネル ・トランジスタ48に直列接続された一対のPチャネル・トランジスタ44及び 46を含む。トランジスタ46及び48は、共通に接続されてこの回路43の入 力を形成するそれらのゲートと、相互に接続されて入力段の出力を形成するそれ らのドレインとを有する。 回路43の入力段の出力は、反転段52に結合されて、バッファされたアドレ スが段52の出力に提供される。アドレス・バッファ回路は、通常、非アクティ よってディスネーブルと為されるように設計されている。トランジスタ44は電 源電圧VCCと入力段トランジスタ46との間に接続されている。トランジスタ 力段の両トランジスタ46及び48はオフである。インバータ段52の入力は実 効的に開回路となり、望ましくない状態であるが、インバータ段入力と回路共通 との間に接続されたトランジスタ50の存在の場合である。トランジスタ50の タ段52の入力は低状態へ付勢されることなって、アドレス・バッファ回路43 の出力は高となる。この「アドレス」は、メモリ・システムが実行されている様 式に応じて、セル・アレイの第1の行或いは最終の行の何れかに対応する。従っ て、従来のメモリ・システムにおいてチップ・イネーブル信号が非アクティブで あるとき、従来のXデコーダは正の読取り電圧を最後のアレイ行或いは第1のア レイ行のワード線に印加する。これらの行におけるセルは、メモリ・システムが 数年にわたって非アクティブであり得るので、土述の擾乱状態を被る。 図6は、本発明のXデコーダ回路30の多くの細部を示す。Xデコーダ回路3 0の主要な機能は、プログラム動作及び読取り動作中に、9個の入力アドレスA 0乃至A8をデコード(複号化)することと、プログラム動作或いは読取り動作 を実行するために適切な電圧を印加することによってそのデコードに基づく51 2本のワード線WLNの内の1本を選択することである。図6の線図は、例示的 なデコード回路を示し、9個のアドレス入力が全て論理「1」であるときを検出 するためのNANDゲート54と、インバータ60によって反転されているアド レス・ビットA0を除く9個のアドレス・ビットの全てが論理「1」であるとき を検出するNANDゲートと、9個のアドレス・ビットの全てが論理「0」であ るときを検出するNANDゲート58とを含む。後者のデコードは、9個のアド レスA0乃至A8の全てを、9個のインバータ62,64,66等々を用いて反 転することによって達成される。 この例示的なNANDゲート54,56,58の出力は、それぞれ、インバー タ回路68,70,72によって反転される。読取り動作が実行されようとする とき、+5.5ボルトと等しい正電圧が選択されたワード線WLNに印加されて おり、非選択ワード線が接地される。プログラミング動作において、Xデコーダ 回路30は+12ボルトの大きな正電圧を選択されたワード線に印加する。これ は、Xデコーダ30用に電源電圧をそれらの電圧(+5.5ボルト及び+12ボ ルト)にすることによって達成可能である。代替的には、インバータ68,70 ,72が、同一結果を達成すべく、レベル・シフタとして実施され得る。 例示的なゲート54,56,58を含む、Xデコーダ回路30における9個の デコードNANDゲートの各々は、ORゲート73によってアドレス遷移検出器 28の出力信号ATDをも受取る。ORゲート73に対する第2の入力は、メモ リ・システムがプログラム動作を実行している際にアクティブ(高)であり、そ れ以外の動作、即ち読取り動作等の動作を実行中には非アクティブである信号P GMを受取る。信号ATDが非アクティブ(低)である際、ワード線WLNお何 れもが選択されず、即ち、ワード線WL0乃至WLNの全てがXデコーダ30に よってそれらに印加されているゼロボルトを有する。信号ATDがアクティブで ある際、読取り電圧が9個のアドレス・ビットに基づき選択されたワード線WL Nに接続される。信号PGMがアクティブである際、プログラム電圧が、信号A TDとは独立して、その選択されたワード線に印加される。 先に説明したように、信号ATDは、遷移が任意のアドレス端子土で検出され るとアクティブになって、最後のアドレス遷移の後、150ナノ秒の間、アクテ ィブのままである。この150ナノ秒の期間は、メモリ読取り動作を実行するた めに充分な時間以上の時間をメモリ・システムに提供すべく選択される。この1 50ナノ秒の期間の最後に、全てのワード線が非アクティブとなり、それによっ て、セルが読取り或いはワード線擾乱の何れかを被る時間量を著しく最少化して きに信号ATDが生成されるように実施される。こうして、アドレス端子上に遷 になる。 信号ATDはYデコーダ回路にも接続されて、当該信号ATDが非アクティブ であるとき、どのビット線BLNも読取り動作中に+1ボルトから+2ボルトに 接続されないようになっている。これは、以下に説明するように、セルの消去状 態を擾乱する傾向を更に低減することとなる。 読取り動作において、従来のメモリ・システムは、典型的には、その読取り動 作で使用されるセンス増幅器の出力をメモリ・データ出力バッファに結合する。 でいる。しかしながら、本発明の信号ATDは読取り動作においてひとたび非ア クティブになると、選択されたワード線に印加された読取り電圧は除去される。 これは任意のセルが、該セルの実際の状態にかかわらず、任意の電流を導通する ことを防止する。それ故にセンス増幅器は、セルの全てがプログラム状態にある ことを示す無効出力を提供する。図5は、読取り動作中の無効データの出力を回 避するデータ読取り路における回路の概略図である。 センス増幅器74は、図3のメモリ・システムで使用されている8個のセンス 増幅器36の1つ表わす。これら増幅器の各々の出力は、ラッチ回路76によっ てデータ出力バッファ回路38の段78に接続され、該ラッチ回路76が図3の メモリ・システムにおけるセンス増幅器セクション36の一部を形成している。 以下に説明されるように、信号ATDはアクティブ(高)であるとき、センス増 幅器74の出力はバッファ回路78に接続され、そして信号ATDが非アクティ ブであるとき、センス増幅器74はそのバッファ回路から接続解除され、該バッ ファ回路にはATDが非アクティブになる寸前のセンス増幅器74の状態を示す レベルが提供されている。 ラッチ回路76は、センス増幅器74の出力とインバータ回路82の入力との 間に接続されたパス・トランジスタ80を含む。インバータ回路82の出力は第 2のインバータ回路84の入力に接続され、該インバータ回路84の出力が出力 バッファ段78の入力に接続されている。インバータ84の出力は、Nチャネル ・トランジスタ86及びPチャネル・トランジスタ88を含む一対の並列接続さ れたトランジスタによってインバータ回路82の入力に帰還(フィードバック) されてもいる。トランジスタ86のゲートは信号ATDを受取り、トランジスタ 88のゲートはインバータ90によっての反転信号ATDを受取る。 動作中、信号ATDがアクティブであるとき、トランジスタ80は導通状態で あり、トランジスタ86及び88はオフである。従って、センス増幅器74の出 力はトランジスタ80とインバータ82及び84とによって出力バッファ78の 入力に接続される。信号ATDが非アクティブであるとき、インバータ82の入 力はインバータ84の出力と共にセンス増幅器出力と同一となる。トランジスタ 80はオフされ、それによって、ラッチ回路76の入力はセンス増幅器74の出 力から絶縁する。トランジスタ86及び88の双方は導通状態となって、インバ ータ84の出力がインバータ82の入力に印加されることとなる。従って、信号 ATDが非アクティブになる寸前におけるセンス増幅器74の出力は、該信号A TDの非アクティブ化後にラッチ回路内に保持されることとなる。読取り電圧が ワード線WLNから除去されたときのセンス増幅器の出力における如何なる変化 も、アレイ26から読取られたデータ及び出力バッファに提供されたデータに対 して影響を何等及ぼさない。 図7は本メモリ・システムの動作を図示するタイミング線図である。読取り動 作が実行されようとしていると仮定すると、関連されたプロセッサはチップ・イ メモリから読取られるワードのための18個のアドレスをも提供する。アドレス 遷移検出回路28はこれらアドレスの内の1つ或いはそれ以上をが状態を変化し たことを感知し、信号ATDをアクティブに為す。これらアドレスの全てがある 時刻T1で安定する。内部タイミング回路が信号ATDを、時刻T1後、追加的 に150ナノ秒の間アクティブのまま維持させる。 また時刻T1に、Xデコーダ30は入力アドレスの8個のビットをデコード( 複号化)して、図7のタイミング線図のアクティブなワード線選択信号によって 示されるように、ワード線WLNの内の1つを選択する。+5.5ボルトの読取 り電圧がXデコーダ30によってその選択されたワード線WLNに印加され、セ ンス増幅器ユニット36によって生成された約+1から+2ボルトの電圧が、Y デコーダ32に提供されたアドレスによって決定されたような8個のビット線B LNの各々に接続される。更にYデコーダ32は+1から+2ボルトを読取られ るワードの8個のビット線BLNに結合させる。 8個のセンス増幅器は、それぞれ、時刻T3で有効出力を提供する。これらの 出力はデータ出力バッファ回路78へ送られると共に、メモリ・システムのデー タ入出力端子へ送られる。出力されたデータは時刻T4で有効である。信号AT Dは、先に記したように、時刻T1後の150ナノ秒の間、アクティブのまま維 持されている。時刻T5で、信号ATDは非アクティブになる。これはXデコー ダ30のデコード・ゲート54,56,58の全てをディスネーブルと為して、 アレイのワード線は、選択されたワード線を含めて全て接地されることになる。 更にYデコーダ32は前記+1から+2ボルトを選択されたビット線BLNにも はや結合しなくなる。 接地されたワード線及び非選択のビット線は、アレイ26におけるセルの全て を時刻T5でオフと為して、センス増幅器出力は時刻T6でもはや有効でなくな る。しかしながら、時刻T5後直ちに且つセンス増幅器出力が無効となっている 時刻T6に先行して、信号ATDはラッチ回路76(図5)のトランジスタ80 をオフに為し、それによって、該ラッチ回路をセンス増幅器出力から絶縁する。 更にトランジスタ86及び88はオンとなり、それによって、センス増幅器出力 が無効となる寸前にセンス増幅器をラッチする。こうしてラッチ回路76は有効 出力データをデータ出力バッファ回路78へ提供する。データは、関連されたプ 効のまま継続する。 以上から判明されることは、読取り動作中、読取り電圧がアレイ26に印加さ れる時間はその読取り動作を実際に実行すべくメモリに要求される時間に制限さ 持しようとしても真である。従って、アレイのセルが被る擾乱の量は最小限まで 低減される。 こうして、新規のメモリ・システムが開示された。このメモリ・システムの一 実施例を幾分詳細に説明したが、理解して頂きたいことは、添付の請求の範囲に よって規定されたような本発明の精神及び範囲から逸脱することなく、当業者に よってある程度の変更を行うことが可能であることである。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(KE,LS,MW,SD,S Z,UG),UA(AM,AZ,BY,KG,KZ,MD ,RU,TJ,TM),AL,AM,AT,AU,AZ ,BB,BG,BR,BY,CA,CH,CN,CU, CZ,DE,DK,EE,ES,FI,GB,GE,H U,IL,IS,JP,KE,KG,KP,KR,KZ ,LK,LR,LS,LT,LU,LV,MD,MG, MK,MN,MW,MX,NO,NZ,PL,PT,R O,RU,SD,SE,SG,SI,SK,TJ,TM ,TR,TT,UA,UG,UZ,VN

Claims (1)

  1. 【特許請求の範囲】 1. フラッシュ・メモリ・システムであって、 多数の行及び列の形態に配列されたフラッシュ・メモリ・セルから成るアレイ であり、各行内に配置されたセルの全ては共通ワード線に接続された制御ゲート を有し、且つ、1列内のセルの全ては共通ビット線に接続されたドレインを有し て成るアレイと、 複数のメモリ動作を実行するための制御手段であり、 (1)プログラム入力アドレスに基づき、前記アレイのセルをプログラムする ためのプログラム手段と、 (2)読取り入力アドレスに基づき、前記アレイのセルを読取るための読取り 手段であり、前記読取り入力アドレスによって決定された前記アレイのワード線 の内の選択された1つに読取り電圧を印加するように機能する読取り手段とを含 むことから成る制御手段と、 前記読取り手段が前記ワード線の内の選択された1つに前記読取り電圧を印加 する期間を制限する擾乱制限手段と、 を備えるフラッシュ・メモリ・システム。 2. 前記読取り手段が、読取られているセルを流れる電流を示す出力を提 供するセンス増幅器を含み、前記擾乱手段が、前記期間の最後に先行して前記セ ンス増幅器出力を示すデータを記憶するためのデータ記憶手段を含む、請求項1 に記載のフラッシュ・メモリ・システム。
JP50784697A 1995-08-01 1996-07-29 擾乱が減ぜられたフラッシュ・メモリ・システム及びその方法 Expired - Fee Related JP3548830B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/509,876 US5617350A (en) 1995-08-01 1995-08-01 Flash memory system having reduced disturb and method
US08/509,876 1995-08-01
PCT/US1996/012444 WO1997005623A1 (en) 1995-08-01 1996-07-29 Flash memory system having reduced disturb and method

Publications (2)

Publication Number Publication Date
JPH10510659A true JPH10510659A (ja) 1998-10-13
JP3548830B2 JP3548830B2 (ja) 2004-07-28

Family

ID=24028450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50784697A Expired - Fee Related JP3548830B2 (ja) 1995-08-01 1996-07-29 擾乱が減ぜられたフラッシュ・メモリ・システム及びその方法

Country Status (8)

Country Link
US (1) US5617350A (ja)
EP (1) EP0842514B1 (ja)
JP (1) JP3548830B2 (ja)
KR (1) KR100308745B1 (ja)
AT (1) ATE251329T1 (ja)
AU (1) AU6604796A (ja)
DE (1) DE69630228T2 (ja)
WO (1) WO1997005623A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970022A (en) * 1997-03-21 1999-10-19 Winbond Electronics Corporation Semiconductor memory device with reduced read disturbance
US5825715A (en) * 1997-05-13 1998-10-20 Cypress Semiconductor Corp. Method and apparatus for preventing write operations in a memory device
DE19742176C1 (de) * 1997-09-24 1999-04-08 Siemens Ag Verfahren zur Verwendung beim Einsatz von EEPROMs als Programmspeicher
US6493270B2 (en) 1999-07-01 2002-12-10 Micron Technology, Inc. Leakage detection in programming algorithm for a flash memory device
US6108241A (en) 1999-07-01 2000-08-22 Micron Technology, Inc. Leakage detection in flash memory cell
TW559814B (en) * 2001-05-31 2003-11-01 Semiconductor Energy Lab Nonvolatile memory and method of driving the same
US6597609B2 (en) 2001-08-30 2003-07-22 Micron Technology, Inc. Non-volatile memory with test rows for disturb detection
EP1359591B1 (en) * 2002-04-30 2006-07-05 STMicroelectronics S.r.l. Method for reducing spurious erasing during programming of a nonvolatile nrom
KR100546134B1 (ko) * 2004-03-31 2006-01-24 주식회사 하이닉스반도체 입출력을 멀티플렉스 하는 메모리 장치
US7804714B1 (en) * 2007-02-21 2010-09-28 National Semiconductor Corporation System and method for providing an EPROM with different gate oxide thicknesses
IT1394027B1 (it) 2009-05-11 2012-05-25 Mg 2 Srl Macchina per il riempimento di capsule con prodotti farmaceutici
US10593397B1 (en) * 2018-12-07 2020-03-17 Arm Limited MRAM read and write methods using an incubation delay interval
US10783957B1 (en) 2019-03-20 2020-09-22 Arm Limited Read and logic operation methods for voltage-divider bit-cell memory devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317535A (en) * 1992-06-19 1994-05-31 Intel Corporation Gate/source disturb protection for sixteen-bit flash EEPROM memory arrays
US5434815A (en) * 1994-01-19 1995-07-18 Atmel Corporation Stress reduction for non-volatile memory cell

Also Published As

Publication number Publication date
EP0842514A1 (en) 1998-05-20
DE69630228D1 (de) 2003-11-06
DE69630228T2 (de) 2004-06-24
KR19990036007A (ko) 1999-05-25
ATE251329T1 (de) 2003-10-15
KR100308745B1 (ko) 2001-11-02
EP0842514A4 (en) 1999-09-08
WO1997005623A1 (en) 1997-02-13
JP3548830B2 (ja) 2004-07-28
US5617350A (en) 1997-04-01
AU6604796A (en) 1997-02-26
EP0842514B1 (en) 2003-10-01

Similar Documents

Publication Publication Date Title
US6813187B2 (en) Bit line setup and discharge circuit for programming non-volatile memory
US6717857B2 (en) Non-volatile semiconductor memory device with cache function and program, read, and page copy-back operations thereof
JP2537264B2 (ja) 半導体記憶装置
US20020181279A1 (en) Nonvolatile semiconductor memory device including correction of erratic memory cell data
US20090238006A1 (en) Adjusting programming or erase voltage pulses in response to the number of programming or erase failures
US9129682B2 (en) Semiconductor memory device and method of operating the same
US7120054B2 (en) Preconditioning global bitlines
US5579262A (en) Program verify and erase verify control circuit for EPROM/flash
US10409506B2 (en) Sense flags in a memory device
JP3548830B2 (ja) 擾乱が減ぜられたフラッシュ・メモリ・システム及びその方法
US20020054506A1 (en) Nonvolatile semiconductor memory device and data writing method therefor
US7551490B2 (en) Flash memory device and method of reading data from flash memory device
EP1054408A2 (en) Semiconductor storage device
US6178118B1 (en) Electrically programmable semiconductor device with multi-level wordline voltages for programming multi-level threshold voltages
JPH065085A (ja) 不揮発性半導体記憶装置
JP4012144B2 (ja) 半導体記憶装置
KR20010092073A (ko) 낸드형 플래시 메모리 장치의 검증 읽기 방법
US5708609A (en) Semiconductor memory device with dataline undershoot detection and reduced read access time
JP2004158052A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees