JPH1050344A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH1050344A
JPH1050344A JP8299547A JP29954796A JPH1050344A JP H1050344 A JPH1050344 A JP H1050344A JP 8299547 A JP8299547 A JP 8299547A JP 29954796 A JP29954796 A JP 29954796A JP H1050344 A JPH1050344 A JP H1050344A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
group
secondary battery
electrolyte secondary
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8299547A
Other languages
Japanese (ja)
Other versions
JP3680454B2 (en
Inventor
Miho Ito
みほ 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP29954796A priority Critical patent/JP3680454B2/en
Publication of JPH1050344A publication Critical patent/JPH1050344A/en
Application granted granted Critical
Publication of JP3680454B2 publication Critical patent/JP3680454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery that can be used for a long period. SOLUTION: This battery is composed of a positive pole 21, capable of absorbing and discharge lithium, a negative pole 22 made of a substance capable of absorbing and discharging a lithium metal, a lithium alloy or lithium or a conductive substance, a separator 3 provided between both poles, a non- aqueous electrolyte 1 impregnated in the separator 3, and a battery container 5. In this case, non-aqueous electrolyte contains a heteroocyclic compound, made of one or two types to be selected from a group of triazine and its derivative, 2-(2-benzo triazol)-P-cresol and its derivative or coumarine and its derivative. The negative pole 22 is preferably surface-treated with a treatment liquid containing the above heterocyclic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,例えばコードレス電源,電気自
動車等における電源として用いられる,充電により再利
用可能な,非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery which can be reused by charging, for example, used as a power source in a cordless power source, an electric vehicle and the like.

【0002】[0002]

【従来技術】リチウム等を吸蔵,放出できる正極及び負
極と非水電解液とからなる非水電解質二次電池は,高電
圧で,高エネルギー密度を有する。そのため,近年,コ
ードレス電源,小型携帯用電源,或いは電気自動車等に
おける電源としての利用が期待されている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium and the like and a non-aqueous electrolyte has a high voltage and a high energy density. Therefore, in recent years, use as a power source in a cordless power source, a small portable power source, or an electric vehicle is expected.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来の非
水電解質二次電池を,各種電源として使用するに当たっ
ては,更に,電池の高寿命化が求められる。かかる電池
寿命を支配する要因としては,充放電サイクルに伴う負
極上へのデンドライト生成,負極表面の状態に起因する
電流集中,非水電解液と負極の副反応等があげられる。
これらの要因には,負極表面の状態が大きく寄与してお
り,負極表面膜を改質する必要がある。
However, in using the above-mentioned conventional non-aqueous electrolyte secondary battery as various power sources, it is required to further extend the life of the battery. Factors governing such battery life include dendrite generation on the negative electrode during charge / discharge cycles, current concentration due to the state of the negative electrode surface, side reactions between the nonaqueous electrolyte and the negative electrode, and the like.
The state of the negative electrode surface greatly contributes to these factors, and it is necessary to modify the negative electrode surface film.

【0004】本発明はかかる従来の問題点に鑑み,長期
間使用することができる非水電解質二次電池を提供しよ
うとするものである。
The present invention has been made in view of the above problems, and has as its object to provide a non-aqueous electrolyte secondary battery that can be used for a long time.

【0005】[0005]

【課題の解決手段】請求項1の発明は,リチウムを吸
蔵,放出できる正極と,リチウム金属,リチウム合金若
しくはリチウムを吸蔵,放出できる物質又は導電性物質
からなる負極と,上記正極と負極との間に設けたセパレ
ータと,該セパレータに含浸させた非水電解液と,電池
容器とを有する非水電解質二次電池において,上記非水
電解液は,添加剤として,トリアジン及びその誘導体,
2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及び
その誘導体,又はクマリン及びその誘導体のグループか
ら選ばれる1種又は2種以上からなる複素環式化合物を
含有することを特徴とする非水電解質二次電池である。
According to the first aspect of the present invention, there is provided a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive substance, In a non-aqueous electrolyte secondary battery including a separator provided therebetween, a non-aqueous electrolyte impregnated in the separator, and a battery container, the non-aqueous electrolyte contains triazine and its derivative as additives.
A non-characteristic composition comprising a heterocyclic compound comprising one or more members selected from the group consisting of 2- (2-benzotriazole) -P-cresol and derivatives thereof, and coumarin and derivatives thereof. It is a water electrolyte secondary battery.

【0006】上記非水電解質二次電池においては,非水
電解液に上記の複素環式化合物が添加されている。その
ため,負極表面が改質され,負極表面への電流集中を防
止でき,デンドライトの成長を抑制することができる。
また,電池の内部抵抗が小さくなり,かつ電池の保存性
も向上する。従って,電池を長期間使用することができ
る。
In the above non-aqueous electrolyte secondary battery, the above heterocyclic compound is added to the non-aqueous electrolyte. For this reason, the surface of the negative electrode is modified, current concentration on the negative electrode surface can be prevented, and the growth of dendrites can be suppressed.
Further, the internal resistance of the battery is reduced, and the storage stability of the battery is improved. Therefore, the battery can be used for a long time.

【0007】上記のごとき優れた性能を発揮する理由
は,以下によるものと考えられる。即ち,上記複素環式
化合物は非共有電子対を持つ窒素原子を有する。この窒
素原子は複素環式化合物における吸着サイトとなり,負
極に吸着する。そのため,複素環式化合物と,リチウム
との相互作用性が高くなる。それ故,非水電解液と負極
との界面を改質して抵抗の低い負極表面層を形成する。
そのため,電流集中を防止し,デンドライトの生成を抑
制できるものと思われる。
The reason why the above-mentioned excellent performance is exhibited is considered to be as follows. That is, the heterocyclic compound has a nitrogen atom having an lone pair. This nitrogen atom becomes an adsorption site in the heterocyclic compound and is adsorbed on the negative electrode. Therefore, the interaction between the heterocyclic compound and lithium increases. Therefore, the interface between the nonaqueous electrolyte and the negative electrode is modified to form a negative electrode surface layer having low resistance.
Therefore, it is considered that current concentration can be prevented and dendrite generation can be suppressed.

【0008】上記非水電解液は,請求項2の発明のよう
に,上記複素環式化合物を0.01mol・dm-3
上,0.2mol・dm-3未満の割合で含有することが
好ましい。0.01mol・dm-3未満の場合,又は
0.2mol・dm-3以上の場合には,サイクル試験後
の充放電効率が低下するおそれがある(表1参照)。
[0008] The non-aqueous electrolyte, as in the invention of claim 2, the heterocyclic compound 0.01 mol · dm -3 or more, and preferably in a proportion of less than 0.2 mol · dm -3 . If it is less than 0.01 mol · dm -3, or in the case of 0.2 mol · dm -3 or more, may be reduced charge and discharge efficiency after the cycle test (see Table 1).

【0009】次に,請求項3の発明は,リチウムを吸
蔵,放出できる正極と,リチウム金属,リチウム合金若
しくはリチウムを吸蔵,放出できる物質又は導電性物質
からなる負極と,上記正極と負極との間に設けたセパレ
ータと,該セパレータに含浸させた非水電解液と,電池
容器とを有する非水電解質二次電池において,上記負極
は,添加剤として,トリアジン及びその誘導体,2−
(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその
誘導体,又はクマリン及びその誘導体のグループから選
ばれる1種又は2種以上からなる複素環式化合物を含有
する処理液により,表面処理が施されていることを特徴
とする非水電解質二次電池である。
Next, a third aspect of the present invention is directed to a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive substance, In a non-aqueous electrolyte secondary battery including a separator provided therebetween, a non-aqueous electrolytic solution impregnated in the separator, and a battery container, the negative electrode may include, as an additive, triazine and a derivative thereof,
Surface treatment is performed with a treatment solution containing one or more heterocyclic compounds selected from the group consisting of (2-benzotriazole) -P-cresol and its derivatives, or coumarin and its derivatives. A non-aqueous electrolyte secondary battery characterized in that:

【0010】請求項3の発明は,複素環式化合物を負極
の処理液に添加している点が,複素環式化合物を非水電
解液に添加している請求項1の発明と異なる。請求項3
の発明において,処理液に含まれる複素環式化合物は,
上記請求項1の発明と同様である。上記処理液による表
面処理方法としては,例えば負極を処理液に浸漬する方
法がある。
The invention of claim 3 differs from the invention of claim 1 in that the heterocyclic compound is added to the processing solution for the negative electrode, and the heterocyclic compound is added to the non-aqueous electrolyte. Claim 3
In the invention of the above, the heterocyclic compound contained in the treatment solution is
This is the same as the first aspect of the present invention. As a surface treatment method using the treatment liquid, for example, there is a method of immersing the negative electrode in the treatment liquid.

【0011】請求項3の発明においては,複素環式化合
物を含む処理液により負極の表面処理を行っているた
め,上記請求項1の発明と同様の効果を発揮することが
できる。その理由は,上記複素環式化合物が,上記と同
様に負極表面に抵抗の低い負極表面層を形成し,この負
極表面層が負極と非水電解液との反応を抑制しているも
のと思われる。
According to the third aspect of the present invention, since the surface treatment of the negative electrode is performed by using a processing solution containing a heterocyclic compound, the same effect as the first aspect of the present invention can be exhibited. The reason is considered that the heterocyclic compound forms a low-resistance negative electrode surface layer on the negative electrode surface in the same manner as described above, and this negative electrode surface layer suppresses the reaction between the negative electrode and the nonaqueous electrolyte. It is.

【0012】上記処理液は,請求項4に記載のように,
上記複素環式化合物を0.01mol・dm-3以上,
0.2mol・dm-3未満の割合で含有することが好ま
しい。その理由は,0.01mol・dm-3未満の場
合,又は0.2mol・dm-3以上の場合には,サイク
ル試験後の充放電効率が低下するおそれがあるからであ
る(表1参照)。
[0012] The treatment liquid may be, as described in claim 4,
0.01 mol · dm −3 or more of the above heterocyclic compound,
It is preferable to contain it in a proportion of less than 0.2 mol · dm −3 . The reason is that if it is less than 0.01 mol · dm −3 , or if it is 0.2 mol · dm −3 or more, the charge / discharge efficiency after the cycle test may decrease (see Table 1). .

【0013】次に,請求項1,3の発明において,上記
トリアジン及びその誘導体は,請求項5の発明のよう
に,下記の「化1」又は「化2」に示す一般式により表
される物質であり,かつ,「化1」及び「化2」におけ
るR1 ,R2 ,R3 は,水素(−H),メチル基(−C
3 ),エチル基(−C25 ),アミノ基(−N
2),ヒドロキシル基(−OH基),ビニル基(−C
H=CH2 ),2−ピリジル基(C5 NH4 ),又はフ
ェニル基(−C65 )のいずれかであることが好まし
い。これにより,非水電解質二次電池の充放電効率が一
層高くなる。「化1」及び「化2」において,R1 ,R
2 ,R3 は,互いに異種であってもよいし,同種であっ
てもよい。
Next, in the first and third aspects of the present invention, the triazine and its derivative are represented by the following general formula (1) or (2), as in the fifth aspect of the invention. R 1 , R 2 , and R 3 in “Chemical Formula 1” and “Chemical Formula 2” are hydrogen (—H), methyl group (—C
H 3 ), an ethyl group (—C 2 H 5 ), an amino group (—N
H 2 ), hydroxyl group (—OH group), vinyl group (—C
H = CH 2 ), a 2-pyridyl group (C 5 NH 4 ), or a phenyl group (—C 6 H 5 ). Thereby, the charge / discharge efficiency of the nonaqueous electrolyte secondary battery is further increased. In Chemical Formula 1 and Chemical Formula 2, R 1 , R
2 , R 3 may be different from each other or may be the same.

【0014】[0014]

【化1】 Embedded image

【0015】[0015]

【化2】 Embedded image

【0016】また,請求項1,3の発明において,上記
2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及び
その誘導体は,請求項6の発明のように,下記の「化
3」に示す一般式により表される物質であり,かつ,
「化3」におけるR4 ,R5 は,水素(−H),メチル
基(−CH3 ),エチル基(−C25 ),アミノ基
(−NH2 ),ヒドロキシル基(−OH基),ビニル基
(−CH=CH2 ),2−ピリジル基(C5 NH4 )又
はフェニル基(−C65 )のいずれかであることが好
ましい。これにより,非水電解質二次電池の充放電効率
が一層高くなる。「化3」において,R4 ,R5 は,互
いに異種であってもよいし,同種であってもよい。
In the first and third aspects of the present invention, the above-mentioned 2- (2-benzotriazole) -P-cresol and a derivative thereof are the same as those of the sixth aspect, except that A substance represented by the general formula shown in
R 4 and R 5 in Chemical Formula 3 represent hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group (—NH 2 ), hydroxyl group (—OH group). ), a vinyl group (-CH = CH 2), is preferably any one of 2-pyridyl group (C 5 NH 4) or phenyl group (-C 6 H 5). Thereby, the charge / discharge efficiency of the nonaqueous electrolyte secondary battery is further increased. In the formula 3, R 4 and R 5 may be different from each other or may be the same.

【0017】[0017]

【化3】 Embedded image

【0018】次に,請求項7の発明のように,上記クマ
リン及びその誘導体は,下記の「化4」に示す一般式に
より表される物質であり,かつ,「化4」における
6 ,R7 ,R8 は水素(−H),メチル基(−C
3 ),エチル基(−C2 5 ),アミノ基(−N
2 ),ヒドロキシル基(−OH),カルボキシル基
(−COOH),アセチル基(−COCH3 ),トリフ
ルオロメチル基(CF3 )のいずれかであることが好ま
しい。これにより,非水電解質二次電池の充放電効率が
一層高くなる。「化4」において,R6 ,R7 ,R
8 は,互いに異種であってもよいし,同種であってもよ
い。
Next, as in the invention of claim 7, the coumarin and the derivative thereof are substances represented by the following general formula shown in the following chemical formula 4, and R 6 , R 7 and R 8 are hydrogen (-H), methyl group (-C
H 3 ), an ethyl group (—C 2 H 5 ), an amino group (—N
H 2 ), a hydroxyl group (—OH), a carboxyl group (—COOH), an acetyl group (—COCH 3 ), or a trifluoromethyl group (CF 3 ). Thereby, the charge / discharge efficiency of the nonaqueous electrolyte secondary battery is further increased. In Chemical Formula 4, R 6 , R 7 , R
8 may be different from each other or the same kind.

【0019】[0019]

【化4】 Embedded image

【0020】[0020]

【発明の実施の形態】本発明の実施例に係る非水電解質
二次電池について,図1〜図15を用いて,比較例と共
に説明する。まず,各種の実施例及び比較例における非
水電解質二次電池の基本構成について,図1を用いて説
明する。非水電解質二次電池9は,図1に示すごとく,
リチウムを吸蔵,放出できる正極21と,リチウム金
属,リチウム合金若しくはリチウムを吸蔵,放出できる
物質又は導電性物質からなる負極22と,正極21と負
極22との間に設けたセパレータ3と,セパレータ3に
含浸させた非水電解液1と,電池容器5とを有してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIGS. First, a basic configuration of a nonaqueous electrolyte secondary battery in various examples and comparative examples will be described with reference to FIG. The non-aqueous electrolyte secondary battery 9 is, as shown in FIG.
A positive electrode 21 capable of inserting and extracting lithium; a negative electrode 22 made of a substance or a conductive substance capable of inserting and extracting lithium metal, a lithium alloy or lithium; a separator 3 provided between the positive electrode 21 and the negative electrode 22; And a battery container 5.

【0021】非水電解液1は,エチレンカーボネートと
ジメトキシエタンとの等容積混合溶媒に,電解質として
のLiPF6 を1mol・dm-3濃度となるように溶解
したものである。
The non-aqueous electrolytic solution 1 is obtained by dissolving LiPF 6 as an electrolyte at a concentration of 1 mol · dm −3 in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane.

【0022】正極21としては,LiMn24 を正極
活物質とする合剤をプレス成形したものを用いる。負極
22としてはリチウム箔を用い,セパレータ3としては
ポリプロピレン製のフィルムを用いる。また,正極21
及び負極22は,いずれもセパレータ3と反対側に集電
体210,220を有している。正極側集電体210は
SUS304を,負極側集電体220はニッケルエキス
パンドメタルを用いる。
As the positive electrode 21, a material obtained by press-forming a mixture using LiMn 2 O 4 as a positive electrode active material is used. A lithium foil is used as the negative electrode 22 and a polypropylene film is used as the separator 3. The positive electrode 21
Each of the negative electrodes 22 has current collectors 210 and 220 on the side opposite to the separator 3. The positive electrode side current collector 210 uses SUS304, and the negative electrode side current collector 220 uses nickel expanded metal.

【0023】電池容器5は,正極側容器51と,負極側
容器52と,両者を電気絶縁すると共に固定するための
ガスケット53とからなる。正極側容器51及び負極側
容器52はステンレス鋼を,ガスケット53はポリプロ
ピレンを用いる。本例の非水電解質二次電池9は,コイ
ン型非水電解質二次電池である。以下,実施例1〜1
4,比較例C1〜C4について,個別に説明する。
The battery container 5 includes a positive electrode side container 51, a negative electrode side container 52, and a gasket 53 for electrically insulating and fixing the both. The positive container 51 and the negative container 52 are made of stainless steel, and the gasket 53 is made of polypropylene. The non-aqueous electrolyte secondary battery 9 of this embodiment is a coin-type non-aqueous electrolyte secondary battery. Hereinafter, Examples 1 to 1
4, Comparative Examples C1 to C4 will be individually described.

【0024】(実施例1)本例の非水電解質二次電池
は,上記基本構成の非水電解液に,更に,複素環式化合
物としての1,3,5−トリアジンを溶解した非水電解
液を用いている。即ち,本例における非水電解液は,電
解質を溶解した混合溶媒に,更に,1,3,5−トリア
ジン(図2)を0.01mol・dm-3濃度となるよう
溶解したものである。その他は,上記基本構成と同様で
ある。
(Example 1) A non-aqueous electrolyte secondary battery of this example is obtained by dissolving 1,3,5-triazine as a heterocyclic compound in the non-aqueous electrolyte having the above-mentioned basic structure. Liquid is used. That is, the non-aqueous electrolyte in this example is a solution in which 1,3,5-triazine (FIG. 2) is further dissolved in a mixed solvent in which the electrolyte is dissolved to a concentration of 0.01 mol · dm −3 . Others are the same as the above basic configuration.

【0025】(実施例2)本例の非水電解質二次電池
は,上記基本構成の非水電解液に,更に1,3,5−ト
リアジン(図2)を0.05mol・dm-3濃度となる
よう溶解している他は,上記基本構成と同様である。
(Example 2) In the nonaqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) was further added to the nonaqueous electrolyte having the above basic constitution at a concentration of 0.05 mol · dm −3. It is the same as the above basic configuration except that it is dissolved so that

【0026】(比較例C1)本例の非水電解質二次電池
は,上記基本構成の非水電解液そのものを非水電解液と
して用いている。
(Comparative Example C1) In the nonaqueous electrolyte secondary battery of this example, the nonaqueous electrolyte itself having the above-described basic structure is used as the nonaqueous electrolyte.

【0027】(比較例C2)本例の非水電解質二次電池
は,上記基本構成の非水電解液に,更に1,3,5−ト
リアジン(図2)を0.005mol・dm-3濃度とな
るよう溶解している他は,上記基本構成と同様である。
(Comparative Example C2) In the nonaqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) was further added to the nonaqueous electrolytic solution having the above-mentioned basic structure at a concentration of 0.005 mol · dm −3. It is the same as the above basic configuration except that it is dissolved so that

【0028】(実施例3)本例の非水電解質二次電池
は,上記基本構成の非水電解液に,更に1,3,5−ト
リアジン(図2)を0.1mol・dm-3濃度となるよ
うに溶解している他は,上記基本構成と同様である。
(Example 3) In the nonaqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) was further added to the nonaqueous electrolyte having the above basic constitution at a concentration of 0.1 mol · dm −3. It is the same as the above basic configuration except that it is dissolved so as to be as follows.

【0029】(比較例C3)本例の非水電解質二次電池
は,上記基本構成の非水電解液に,更に1,3,5−ト
リアジン(図2)を0.2mol・dm-3濃度となるよ
う溶解している他は,上記基本構成と同様である。
(Comparative Example C3) In the nonaqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) was further added to the nonaqueous electrolyte having the above-mentioned basic structure at a concentration of 0.2 mol · dm −3. It is the same as the above basic configuration except that it is dissolved so that

【0030】(比較例C4)本例の非水電解質二次電池
は,エチレンカ−ボネ−トとジメチルカ−ボネ−トの等
容積混合溶媒に電解質を溶解した非水電解液を用いてい
る。即ち,本例における非水電解液は,エチレンカ−ボ
ネ−トとジメチルカ−ボネ−トとの等容積混合溶媒に,
電解質としてのLiPF6 を1mol・dm-3濃度とな
るように溶解したものである。その他は,上記基本構成
と同様である。
(Comparative Example C4) The non-aqueous electrolyte secondary battery of this example uses a non-aqueous electrolyte obtained by dissolving an electrolyte in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate. That is, the non-aqueous electrolyte in this example is prepared by mixing an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
LiPF 6 as an electrolyte is dissolved to a concentration of 1 mol · dm −3 . Others are the same as the above basic configuration.

【0031】(実施例4)本例の非水電解質二次電池
は,比較例C4の混合溶媒及び電解質に,更に,1,
3,5−トリアジン(図2)を0.05mol・dm-3
濃度となるよう溶解した非水電解液を用いている。その
他は,上記基本構成と同様である。
Embodiment 4 The non-aqueous electrolyte secondary battery of this embodiment is different from the mixed solvent and the electrolyte of Comparative Example C4 in that 1,
0.05 mol · dm −3 of 3,5-triazine (FIG. 2)
A non-aqueous electrolyte dissolved in a concentration is used. Others are the same as the above basic configuration.

【0032】(実施例5)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての2−(2−ベンゾトリアゾ−ル)−P−クレゾ
−ル(図3)を0.05mol・dm-3濃度となるよう
溶解している他は,上記基本構成と同様である。
Embodiment 5 The non-aqueous electrolyte secondary battery of this embodiment is different from the above-described non-aqueous electrolyte of the basic constitution in that 2- (2-benzotriazole) -P-cresol as a heterocyclic compound is further added. The configuration is the same as that of the above basic configuration except that the metal (FIG. 3) is dissolved to a concentration of 0.05 mol · dm −3 .

【0033】(実施例6)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に複素環式化合物と
しての2,4,6−トリアミノ−1,3,5−トリアジ
ン(図4)を0.05mol・dm-3濃度となるよう溶
解している他は,上記基本構成と同様である。
Embodiment 6 The non-aqueous electrolyte secondary battery of this embodiment is obtained by adding a 2,4,6-triamino-1,3,5-triazine as a heterocyclic compound to the non-aqueous electrolyte having the above basic structure. It is the same as the above basic configuration except that (FIG. 4) is dissolved to a concentration of 0.05 mol · dm −3 .

【0034】(実施例7)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,1,3,5−ト
リアジン(図2)を0.05mol・dm-3濃度,2,
4,6−トリアミノ−1,3,5−トリアジン(図4)
を0.05mol・dm-3濃度となるよう溶解している
他は,上記基本構成と同様である。
(Example 7) The nonaqueous electrolyte secondary battery of this example is obtained by further adding 1,3,5-triazine (FIG. 2) to the above nonaqueous electrolyte having a basic concentration of 0.05 mol · dm -3. , 2,
4,6-triamino-1,3,5-triazine (FIG. 4)
Is dissolved in a concentration of 0.05 mol · dm −3 , except that the above-mentioned basic structure is used.

【0035】(実施例8)本例の非水電解質二次電池
は,1,3,5−トリアジン(図2)を含む処理液で表
面処理を施した負極を用いている。即ち,本例における
負極は,以下の処理液にリチウム金属を浸漬することに
より得たものである。処理液は,エチレンカーボネート
とジメトキシエタンとの等容積混合溶媒に,LiPF6
を1mol・dm-3濃度となるように溶解し,更に,
1,3,5−トリアジン(図2)を0.05mol・d
-3濃度となるよう溶解したものである。その他は,上
記基本構成と同様である。
(Embodiment 8) The nonaqueous electrolyte secondary battery of this embodiment uses a negative electrode surface-treated with a treatment solution containing 1,3,5-triazine (FIG. 2). That is, the negative electrode in this example was obtained by immersing lithium metal in the following treatment liquid. The treatment solution was prepared by mixing LiPF 6 in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane.
Was dissolved to a concentration of 1 mol · dm -3 ,
0.05 mol · d of 1,3,5-triazine (FIG. 2)
It was dissolved to a concentration of m -3 . Others are the same as the above basic configuration.

【0036】(実施例9)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての2,4−ジアミノ−6−ヒドロキシ−1,3,
5−トリアジン(図5)を0.05mol・dm-3濃度
となるように溶解している他は,上記基本構成と同様で
ある。
Embodiment 9 The non-aqueous electrolyte secondary battery of this embodiment is different from the above-structured non-aqueous electrolyte in that 2,4-diamino-6-hydroxy-1,3,3 as a heterocyclic compound is further added.
This is the same as the above basic configuration except that 5-triazine (FIG. 5) is dissolved to a concentration of 0.05 mol · dm −3 .

【0037】(実施例10)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての2,4−ジアミノ−6−メチル−1,3,5−
トリアジン(図6)を0.05mol・dm-3濃度とな
るように溶解している他は,上記基本構成と同様であ
る。
Embodiment 10 The non-aqueous electrolyte secondary battery of this embodiment is different from the above-described non-aqueous electrolyte of the basic constitution in that 2,4-diamino-6-methyl-1,3,3 as a heterocyclic compound is further added. 5-
It is the same as the above basic configuration except that the triazine (FIG. 6) is dissolved to a concentration of 0.05 mol · dm −3 .

【0038】(実施例11)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての2−N−ジエチルメラミン(図7)を0.05
mol・dm-3濃度となるように溶解している他は,上
記基本構成と同様である。
(Example 11) In the nonaqueous electrolyte secondary battery of this example, 2-N-diethylmelamine (FIG. 7) as a heterocyclic compound was further added to the nonaqueous electrolyte having the above-mentioned basic structure by 0.05.
It is the same as the above basic configuration except that it is dissolved so as to have a mol · dm −3 concentration.

【0039】(実施例12)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての2−ビニル−4,6−ジアミノ−1,3,5−
トリアジン(図8)を0.05mol・dm-3濃度とな
るように溶解している他は,上記基本構成と同様であ
る。
Embodiment 12 The non-aqueous electrolyte secondary battery of this embodiment is different from the above-structured non-aqueous electrolyte in that 2-vinyl-4,6-diamino-1,3,3 as a heterocyclic compound is further added. 5-
This is the same as the above basic configuration except that the triazine (FIG. 8) is dissolved to a concentration of 0.05 mol · dm −3 .

【0040】(実施例13)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての3−アミノ−5,6−ジメチル−1,2,4−
トリアジン(図9)を0.05mol・dm-3濃度とな
るように溶解している他は,上記基本構成と同様であ
る。
(Example 13) The nonaqueous electrolyte secondary battery of this example is different from the nonaqueous electrolyte of the above basic constitution in that 3-amino-5,6-dimethyl-1,2,2,3 as a heterocyclic compound is further added. 4-
This is the same as the above basic configuration except that triazine (FIG. 9) is dissolved to a concentration of 0.05 mol · dm −3 .

【0041】(実施例14)本例の非水電解質二次電池
は,上記基本構成の非水電解液に更に,複素環式化合物
としての5,6−ジフェニル−3−(2−ピリジル)−
1,2,4−トリアジン(図10)を0.05mol・
dm-3濃度となるように溶解している他は,上記基本構
成と同様である。
(Example 14) The nonaqueous electrolyte secondary battery of this example is obtained by adding 5,6-diphenyl-3- (2-pyridyl)-as a heterocyclic compound to the nonaqueous electrolyte having the above basic structure.
0.05 mol · of 1,2,4-triazine (FIG. 10)
It is the same as the above basic configuration except that it is dissolved to a dm −3 concentration.

【0042】(実施例15)本例の非水電解質二次電池
は,上記基本構成の処理液に更に,複素環式化合物とし
てのクマリン(図11)を0.05mol・dm-3溶解
したものを用いた他は,比較例1と同様の非水電解質二
次電池を作製した。
(Example 15) The nonaqueous electrolyte secondary battery of this example is obtained by further dissolving 0.05 mol · dm -3 of coumarin (FIG. 11) as a heterocyclic compound in the treatment liquid having the above-mentioned basic structure. A non-aqueous electrolyte secondary battery similar to that of Comparative Example 1 was prepared, except that was used.

【0043】(実施例16)本例の非水電解質二次電池
は,上記基本構成の処理液に更に,複素環式化合物とし
てのクマリン−3−カルボン酸(図12)を0.05m
ol・dm-3溶解したものを用いた他は,比較例1と同
様の非水電解質二次電池を作製した。
(Example 16) In the nonaqueous electrolyte secondary battery of this example, a coumarin-3-carboxylic acid (FIG. 12) as a heterocyclic compound was further added to the treating solution having the above-mentioned basic structure in an amount of 0.05 m.
A non-aqueous electrolyte secondary battery similar to that of Comparative Example 1 was prepared, except that ol · dm −3 was used.

【0044】(実施例17)本例の非水電解質二次電池
は,上記基本構成の処理液に更に,複素環式化合物とし
ての3−アセチルクマリン(図13)を0.05mol
・dm-3溶解したものを用いた他は,比較例1と同様の
非水電解質二次電池を作製した。
(Example 17) In the nonaqueous electrolyte secondary battery of this example, 0.05 mol of 3-acetylcoumarin (FIG. 13) as a heterocyclic compound was further added to the treatment liquid having the above-mentioned basic structure.
A non-aqueous electrolyte secondary battery similar to that of Comparative Example 1 was prepared, except that dm −3 was used.

【0045】(実施例18)本例の非水電解質二次電池
は,上記基本構成の処理液に更に,複素環式化合物とし
ての4−メチルウンベリフェロン(図14)を0.05
mol・dm-3溶解したものを他は,比較例1と同様の
非水電解質二次電池を作製した。
(Embodiment 18) The nonaqueous electrolyte secondary battery of this embodiment is obtained by further adding 0.05 mol of 4-methylumbelliferone (FIG. 14) as a heterocyclic compound to the treatment solution having the above-mentioned basic structure.
A non-aqueous electrolyte secondary battery similar to that of Comparative Example 1 was prepared except that it was dissolved in mol · dm −3 .

【0046】(実施例19)本例の非水電解質二次電池
は,上記基本構成の処理液に更に,複素環式化合物とし
ての7−アミノ−4−(トリフルオロメチル)クマリン
(図15)を0.05mol・dm-3溶解したものを用
いた他は,比較例1と同様の非水電解質二次電池を作製
した。
(Example 19) The nonaqueous electrolyte secondary battery of this example is obtained by adding 7-amino-4- (trifluoromethyl) coumarin (FIG. 15) as a heterocyclic compound to the treatment solution having the above basic structure. Was prepared in the same manner as in Comparative Example 1, except that a solution prepared by dissolving 0.05 mol · dm −3 was used.

【0047】(実施例20)本例の非水電解質二次電池
は,1,3,5−トリアジンの代わりに,0.05mo
l・dm-3のクマリン(図11)を含む処理液で表面処
理を施した負極を用いている。その他は,上記実施例8
と同様である。
(Example 20) A nonaqueous electrolyte secondary battery of this example uses 0.05 mol of molybdenum instead of 1,3,5-triazine.
A negative electrode surface-treated with a treatment liquid containing l · dm −3 coumarin (FIG. 11) is used. Other than the above, Example 8
Is the same as

【0048】(実験例1)上記実施例1〜20及び比較
例C1〜C4の電池について充放電試験を行い,サイク
ル特性を評価した。充放電条件は,充電電流密度0.5
mA/cm2 ,充電上限電圧4.1V,充電時間5時
間,放電電流密度2.0mA/cm2 ,放電下限電圧
2.0Vとした。各電池の20サイクル後の充放電効率
を表1,2に示した。
(Experimental Example 1) The batteries of Examples 1 to 20 and Comparative Examples C1 to C4 were subjected to a charge / discharge test to evaluate the cycle characteristics. The charge / discharge condition is a charge current density of 0.5
mA / cm 2 , charge upper limit voltage 4.1 V, charge time 5 hours, discharge current density 2.0 mA / cm 2 , discharge lower limit voltage 2.0 V. Tables 1 and 2 show the charge / discharge efficiency of each battery after 20 cycles.

【0049】次に,上記非水電解質二次電池の充放電効
率の測定結果について表1を用いて説明する。まず,
1,3,5−トリアジンの濃度が0.01,0.05,
0.1mol・dm-3である実施例1〜3では,1,
3,5−トリアジン無添加の比較例C1に対して,電池
の充放電効率が向上した。これは,1,3,5−トリア
ジンの添加により,負極表面が改質され,電流集中を防
止し,デンドライトの成長が抑制されているためと考え
られる。
Next, the measurement results of the charging / discharging efficiency of the non-aqueous electrolyte secondary battery will be described with reference to Table 1. First,
When the concentration of 1,3,5-triazine is 0.01,0.05,
In Examples 1 to 3, which are 0.1 mol · dm −3 ,
The charging and discharging efficiency of the battery was improved as compared with Comparative Example C1 in which 3,5-triazine was not added. This is considered to be because the addition of 1,3,5-triazine modified the surface of the negative electrode, prevented current concentration, and suppressed the growth of dendrite.

【0050】一方,比較例C2,C3の電池は,比較例
C1に対して充放電効率の向上はみられなかった。これ
は,比較例C2では,1,3,5−トリアジンの濃度が
0.005mol・dm-3と少ないために,負極の表面
改質による効果が現れなかったものと考えられる。
On the other hand, the batteries of Comparative Examples C2 and C3 did not show improvement in charge / discharge efficiency as compared with Comparative Example C1. This is considered to be because the effect of the surface modification of the negative electrode did not appear in Comparative Example C2 because the concentration of 1,3,5-triazine was as low as 0.005 mol · dm −3 .

【0051】また,比較例C3では,1,3,5−トリ
アジンの濃度が0.2molと過剰なためにトリアジン
の副反応が発生してしまい,却って充放電効率が低くな
ったものと考えられる。以上のことから,0.01mo
l・dm-3以上,0.2mol・dm-3未満の割合で
1,3,5−トリアジンを非水電解液に添加するのが最
適といえる。
In Comparative Example C3, since the concentration of 1,3,5-triazine was excessively large at 0.2 mol, a side reaction of triazine occurred, and the charge / discharge efficiency was rather lowered. . From the above, 0.01mo
It can be said that it is optimal to add 1,3,5-triazine to the non-aqueous electrolyte at a ratio of at least l · dm −3 and less than 0.2 mol · dm −3 .

【0052】また,溶媒の異なる非水電解液を用いた実
施例4でも,実施例1と同等の効果が現れた。さらに,
別の複素環式化合物を用いた場合(実施例5〜7,9〜
14)にも,実施例1と同等の効果があった。また,
1,3,5−トリアジンを含む処理液を用いて負極表面
を処理した実施例8の電池でも,実施例1と同等の効果
が現れた。これは,初期の負極の表面状態がサイクル性
に大きく影響を及ぼしているためであると考えられる。
これらのことから,非水電解液又は負極表面処理用の処
理液に,上記トリアジン,2−(2−ベンゾトリアゾ−
ル)−P−クレゾ−ルを添加することにより,非水電解
質二次電池の充放電効率が向上することがわかる。
In Example 4 using a non-aqueous electrolyte having a different solvent, the same effect as in Example 1 was obtained. further,
When another heterocyclic compound is used (Examples 5 to 7, 9 to
14) has the same effect as that of the first embodiment. Also,
In the battery of Example 8 in which the negative electrode surface was treated with the treatment liquid containing 1,3,5-triazine, the same effect as in Example 1 was exhibited. It is considered that this is because the initial surface state of the negative electrode greatly affects the cyclability.
For these reasons, the above-mentioned triazine, 2- (2-benzotriazo-) was added to the non-aqueous electrolyte or the processing solution for negative electrode surface treatment.
1) It can be seen that the addition of -P-cresol improves the charge / discharge efficiency of the nonaqueous electrolyte secondary battery.

【0053】(実験例2)上記実施例15〜20及び比
較例C1の電池について充放電試験を行い,サイクル特
性を評価した。充放電条件は,充電電流密度0.5mA
・cm-2,充電上限電圧4.1V,充電時間5時間,放
電電流密度2.0mA・cm-2,放電下限電圧2.0V
とした。20サイクル後の充放電効率を表3に示した。
(Experimental Example 2) The batteries of Examples 15 to 20 and Comparative Example C1 were subjected to a charge / discharge test to evaluate the cycle characteristics. The charge and discharge conditions are as follows: charge current density 0.5 mA
· Cm -2 , charge upper limit voltage 4.1V, charge time 5 hours, discharge current density 2.0mA · cm -2 , discharge lower limit voltage 2.0V
And Table 3 shows the charge / discharge efficiency after 20 cycles.

【0054】次に,上記電池の充放電試験の結果を説明
する。表3より,クマリンおよびその誘導体を電解液に
添加することにより,充放電効率が大幅に向上すること
がわかる。この効果のメカニズムは,トリアジンなどと
同様に,クマリンが負極表面に吸着し,電解質と負極の
界面を制御できるために,Liと電解質との副反応が抑
制され,デンドライトの成長が防止され,結果として充
放電効率が向上すると考えられる。
Next, the results of the charge / discharge test of the battery will be described. Table 3 shows that the addition of coumarin and its derivatives to the electrolytic solution significantly improves the charge / discharge efficiency. The mechanism of this effect is similar to that of triazine and the like, because coumarin is adsorbed on the negative electrode surface and the interface between the electrolyte and the negative electrode can be controlled. It is considered that the charging / discharging efficiency is improved.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】なお,本発明において,正極としては上記
LiMn24 の他に,Li・Mn複素酸化物又はLi
・Co複素酸化物等のLi化合物等を用いることができ
る。負極としては,上記リチウム箔の他に,Li金属,
Li合金,炭素質材料等を用いることができる。
In the present invention, in addition to the above-mentioned LiMn 2 O 4 , a Li · Mn complex oxide or Li
A Li compound such as a Co complex oxide can be used. As the negative electrode, in addition to the above lithium foil, Li metal,
Li alloy, carbonaceous material, or the like can be used.

【0059】また,電解質としては,上記LiPF6
他に,LiBF4 ,LiAsF6 ,LiN(CF3 SO
22 ,LiCF3 SO3 等を用いることができる。非
水溶媒としては,環状エステル類(エチレンカ−ボネ−
ト,プロピレンカ−ボネ−ト等),鎖状エステル類(ジ
エチルカ−ボネ−ト等),鎖状エ−テル(1,2−ジメ
トキシエタン等)のグループから1種の溶媒又は2種以
上の溶媒を用いることができる。
As the electrolyte, in addition to the above-mentioned LiPF 6 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO
2 ) 2 , LiCF 3 SO 3 or the like can be used. Non-aqueous solvents include cyclic esters (ethylene carbonate
Propylene carbonate, etc.), a chain ester (such as diethyl carbonate), and a chain ether (such as 1,2-dimethoxyethane). Solvents can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜20及び比較例C1〜C4の非水電
解質二次電池の断面図。
FIG. 1 is a sectional view of a nonaqueous electrolyte secondary battery of Examples 1 to 20 and Comparative Examples C1 to C4.

【図2】実施例における,1,3,5−トリアジンの化
学構造式の説明図。
FIG. 2 is an explanatory diagram of a chemical structural formula of 1,3,5-triazine in Examples.

【図3】実施例における,2−(2−ベンゾトリアゾ−
ル)−P−クレゾ−ルの化学構造式の説明図。
FIG. 3 shows 2- (2-benzotriazo-
FIG. 1 is an explanatory diagram of a chemical structural formula of -P-cresol.

【図4】実施例における,2,4,6−トリアミノ−
1,3,5−トリアジンの化学構造式の説明図。
FIG. 4 shows 2,4,6-triamino-
FIG. 4 is an explanatory diagram of a chemical structural formula of 1,3,5-triazine.

【図5】実施例における,2,4−ジアミノ−6−ヒド
ロキシ−1,3,5−トリアジンの化学構造式の説明
図。
FIG. 5 is an explanatory diagram of a chemical structural formula of 2,4-diamino-6-hydroxy-1,3,5-triazine in Examples.

【図6】実施例における,2,4−ジアミノ−6−メチ
ル−1,3,5−トリアジンの化学構造式の説明図。
FIG. 6 is an explanatory diagram of a chemical structural formula of 2,4-diamino-6-methyl-1,3,5-triazine in Examples.

【図7】実施例における,2−N−ジエチルメラミンの
化学構造式の説明図。
FIG. 7 is an explanatory diagram of a chemical structural formula of 2-N-diethylmelamine in Examples.

【図8】実施例における,2−ビニル−4,6−ジアミ
ノ−1,3,5−トリアジンの化学構造式の説明図。
FIG. 8 is an explanatory view of a chemical structural formula of 2-vinyl-4,6-diamino-1,3,5-triazine in Examples.

【図9】実施例における,3−アミノ−5,6−ジメチ
ル−1,2,4−トリアジンの化学構造式の説明図。
FIG. 9 is an explanatory diagram of a chemical structural formula of 3-amino-5,6-dimethyl-1,2,4-triazine in Examples.

【図10】実施例における,5,6−ジフェニル−3−
(2−ピリジル)−1,2,4−トリアジンの化学構造
式の説明図。
FIG. 10 shows 5,6-diphenyl-3-
Explanatory drawing of the chemical structural formula of (2-pyridyl) -1,2,4-triazine.

【図11】実施例における,クマリンの化学構造式の説
明図。
FIG. 11 is an explanatory diagram of a chemical structural formula of coumarin in Examples.

【図12】実施例における,クマリン−3−カルボン酸
の化学構造式の説明図。
FIG. 12 is an explanatory diagram of a chemical structural formula of coumarin-3-carboxylic acid in an example.

【図13】実施例における,3−アセチルクマリンの化
学構造式の説明図。
FIG. 13 is an explanatory diagram of a chemical structural formula of 3-acetylcoumarin in Examples.

【図14】実施例における,4−メチルウンベリフェロ
ンの化学構造式の説明図。
FIG. 14 is an explanatory diagram of a chemical structural formula of 4-methylumbelliferone in Examples.

【図15】実施例における,7−アミノ−4−(トリフ
ルオロメチル)クマリンの化学構造式の説明図。
FIG. 15 is an explanatory diagram of a chemical structural formula of 7-amino-4- (trifluoromethyl) coumarin in Examples.

【符号の説明】[Explanation of symbols]

1...非水電解液, 21...正極, 22...負極, 3...セパレータ, 5...電池容器, 9...非水電解質二次電池, 1. . . Non-aqueous electrolyte, 21. . . Positive electrode, 22. . . Negative electrode, 3. . . 4. separator, . . 8. battery container, . . Non-aqueous electrolyte secondary battery,

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵,放出できる正極と,リ
チウム金属,リチウム合金若しくはリチウムを吸蔵,放
出できる物質又は導電性物質からなる負極と,上記正極
と負極との間に設けたセパレータと,該セパレータに含
浸させた非水電解液と,電池容器とを有する非水電解質
二次電池において,上記非水電解液は,添加剤として,
トリアジン及びその誘導体,2−(2−ベンゾトリアゾ
−ル)−P−クレゾ−ル及びその誘導体,又はクマリン
及びその誘導体のグループから選ばれる1種又は2種以
上からなる複素環式化合物を含有することを特徴とする
非水電解質二次電池。
A positive electrode capable of occluding and releasing lithium, a negative electrode made of a substance or a conductive material capable of occluding and releasing lithium metal, a lithium alloy or lithium; a separator provided between the positive electrode and the negative electrode; In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte impregnated in a separator and a battery container, the non-aqueous electrolyte is
Triazine and its derivatives, 2- (2-benzotriazole) -P-cresol and its derivatives, or coumarin and its derivatives containing one or more heterocyclic compounds selected from the group of its derivatives. Non-aqueous electrolyte secondary battery characterized by the following.
【請求項2】 請求項1において,上記非水電解液は,
上記複素環式化合物を0.01mol・dm-3以上,
0.2mol・dm-3未満の割合で含有することを特徴
とする非水電解質二次電池。
2. The non-aqueous electrolyte according to claim 1,
0.01 mol · dm −3 or more of the above heterocyclic compound,
A non-aqueous electrolyte secondary battery characterized by containing less than 0.2 mol · dm −3 .
【請求項3】 リチウムを吸蔵,放出できる正極と,リ
チウム金属,リチウム合金若しくはリチウムを吸蔵,放
出できる物質又は導電性物質からなる負極と,上記正極
と負極との間に設けたセパレータと,該セパレータに含
浸させた非水電解液と,電池容器とを有する非水電解質
二次電池において,上記負極は,添加剤として,トリア
ジン及びその誘導体,2−(2−ベンゾトリアゾ−ル)
−P−クレゾ−ル及びその誘導体,又はクマリン及びそ
の誘導体のグループから選ばれる1種又は2種以上から
なる複素環式化合物を含有する処理液により,表面処理
が施されていることを特徴とする非水電解質二次電池。
3. A positive electrode capable of occluding and releasing lithium, a negative electrode made of a substance or a conductive material capable of occluding and releasing lithium metal, a lithium alloy or lithium, a separator provided between the positive electrode and the negative electrode, In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte solution impregnated in a separator and a battery container, the above-mentioned negative electrode comprises, as an additive, triazine and its derivative, 2- (2-benzotriazole).
Surface treatment with a treatment solution containing one or more heterocyclic compounds selected from the group consisting of P-cresol and its derivatives, or coumarin and its derivatives. Non-aqueous electrolyte secondary battery.
【請求項4】 請求項3において,上記処理液は,上記
複素環式化合物を0.01mol・dm-3以上,0.2
mol・dm-3未満の割合で含有することを特徴とする
非水電解質二次電池。
4. The processing solution according to claim 3, wherein the processing solution contains the heterocyclic compound in an amount of 0.01 mol · dm −3 or more,
A non-aqueous electrolyte secondary battery, characterized in that the non-aqueous electrolyte secondary battery is contained at a rate of less than mol · dm −3 .
【請求項5】 請求項1〜4のいずれか一項において,
上記トリアジン及びその誘導体は,下記の「化1」又は
「化2」に示す一般式により表される物質であり,か
つ,「化1」及び「化2」におけるR1 ,R2 ,R3
は,水素(−H),メチル基(−CH3 ),エチル基
(−C25 ),アミノ基(−NH2 ),ヒドロキシル
基(−OH基),ビニル基(−CH=CH2 ),2−ピ
リジル基(C5NH4 )又はフェニル基(−C65
のいずれかであることを特徴とする非水電解質二次電
池。 【化1】 【化2】
5. The method according to claim 1, wherein:
The above triazines and derivatives thereof are substances represented by the following general formula shown in “Chemical formula 1” or “Chemical formula 2”, and R 1 , R 2 , R 3 in “Chemical formula 1” and “Chemical formula 2”
Is hydrogen (-H), methyl group (-CH 3), ethyl group (-C 2 H 5), amino group (-NH 2), hydroxyl group (-OH group), a vinyl group (-CH = CH 2 ), 2-pyridyl group (C 5 NH 4) or phenyl group (-C 6 H 5)
A non-aqueous electrolyte secondary battery characterized in that: Embedded image Embedded image
【請求項6】 請求項1〜5のいずれか一項において,
上記2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル
及びその誘導体は,下記の「化3」に示す一般式により
表される物質であり,かつ,「化3」におけるR4 ,R
5 は,水素(−H),メチル基(−CH3 ),エチル基
(−C25 ),アミノ基(−NH2 ),ヒドロキシル
基(−OH基),ビニル基(−CH=CH2 ),2−ピ
リジル基(C5 NH4 ),又はフェニル基(−C6
5 )のいずれかであることを特徴とする非水電解質二次
電池。 【化3】
6. The method according to claim 1, wherein:
The above-mentioned 2- (2-benzotriazole) -P-cresol and derivatives thereof are substances represented by the following general formula (Chemical Formula 3), and R 4 , R
5 is hydrogen (-H), methyl group (-CH 3), ethyl group (-C 2 H 5), amino group (-NH 2), hydroxyl group (-OH group), a vinyl group (-CH = CH 2), 2-pyridyl group (C 5 NH 4), or a phenyl group (-C 6 H
5 ) A non-aqueous electrolyte secondary battery according to any one of the above. Embedded image
【請求項7】 請求項1〜4のいずれか一項において,
上記クマリン及びその誘導体は,下記の「化4」に示す
一般式により表される物質であり,かつ,「化4」にお
けるR6 ,R7 ,R8 は水素(−H),メチル基(−C
3 ),エチル基(−C2 5 ),アミノ基(−N
2 ),ヒドロキシル基(−OH),カルボキシル基
(−COOH),アセチル基(−COCH3 ),トリフ
ルオロメチル基(CF3 )のいずれかであることを特徴
とする非水電解質二次電池。 【化4】
7. The method according to claim 1, wherein:
The coumarin and its derivatives are substances represented by the following general formula shown in the following chemical formula 4, and R 6 , R 7 and R 8 in the chemical formula 4 are hydrogen (-H), methyl group ( -C
H 3 ), an ethyl group (—C 2 H 5 ), an amino group (—N
H 2), hydroxyl (-OH), an carboxyl group (-COOH), a acetyl group (-COCH 3), a non-aqueous electrolyte secondary battery which is characterized in that either a trifluoromethyl group (CF 3) . Embedded image
JP29954796A 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3680454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29954796A JP3680454B2 (en) 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-157635 1996-05-28
JP15763596 1996-05-28
JP29954796A JP3680454B2 (en) 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1050344A true JPH1050344A (en) 1998-02-20
JP3680454B2 JP3680454B2 (en) 2005-08-10

Family

ID=26485017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29954796A Expired - Fee Related JP3680454B2 (en) 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3680454B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110442A (en) * 1999-10-13 2001-04-20 Matsushita Electric Ind Co Ltd Nonaqueous electrochemical device
JP2001357877A (en) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary battery with nonaqueous electrolyte
JP2002305022A (en) * 2001-04-04 2002-10-18 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolytic solution for secondary battery
WO2003007416A1 (en) * 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
WO2003054997A1 (en) * 2001-12-12 2003-07-03 Nec Corporation Electrolytic solution for secondary battery and secondary battery containing the same
KR100458666B1 (en) * 2001-10-03 2004-12-03 닛뽕덴끼 가부시끼가이샤 Electrode and battery using same
EP1657775A1 (en) * 2004-11-03 2006-05-17 Samsung SDI Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
JP2006318761A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery
KR100658742B1 (en) 2004-10-28 2006-12-15 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
US7238453B2 (en) 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts
US7255965B2 (en) 2005-04-25 2007-08-14 Ferro Corporation Non-aqueous electrolytic solution
US7682754B2 (en) 2005-05-26 2010-03-23 Novolyte Technologies, Inc. Nonaqueous electrolytic solution for electrochemical cells
US7727669B2 (en) 2005-05-26 2010-06-01 Novolyte Technologies Inc. Triazine compounds for removing acids and water from nonaqueous electrolytes for electrochemical cells
US8273484B2 (en) 2005-05-26 2012-09-25 Novolyte Technologies, Inc. Nitrogen silylated compounds as additives in non-aqueous solutions for electrochemical cells
JP2013016488A (en) * 2011-07-01 2013-01-24 Lg Chem Ltd Nonaqueous electrolyte and lithium secondary battery using the same
US8785056B2 (en) 2011-01-27 2014-07-22 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
WO2019105768A1 (en) * 2017-11-29 2019-06-06 Gs Yuasa International Ltd. Non-aqueous electrolyte, non-aqueous electrolyte energy storage device and method for producing the same
CN112216869A (en) * 2020-10-13 2021-01-12 中国科学院成都有机化学有限公司 High-voltage electrolyte additive, high-voltage electrolyte and lithium ion battery
US10991980B2 (en) 2016-11-15 2021-04-27 Murata Manufacturing Co., Ltd. Electrolytic solution for secondary battery, secondary battery, battery pack, electrically-driven vehicle, electric power storage system, electrically-driven tool, and electronic device
CN113767502A (en) * 2019-11-18 2021-12-07 株式会社Lg新能源 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JP2022534525A (en) * 2019-11-18 2022-08-01 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
WO2023014079A1 (en) * 2021-08-06 2023-02-09 주식회사 엘지에너지솔루션 Non-aqueous electrolyte comprising additive for non-aqueous electrolyte, and lithium secondary battery comprising same
WO2023014174A1 (en) * 2021-08-06 2023-02-09 주식회사 엘지에너지솔루션 Non-aqueous electrolyte containing additive for non-aqueous electrolyte and lithium secondary battery comprising same
WO2023101360A1 (en) * 2021-12-01 2023-06-08 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
KR102560748B1 (en) * 2022-02-08 2023-07-28 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising the same
WO2024029890A1 (en) * 2022-08-01 2024-02-08 주식회사 엘지에너지솔루션 Non-aqueous electrolyte, and lithium secondary battery comprising same
WO2024071830A1 (en) * 2022-09-30 2024-04-04 주식회사 엘지에너지솔루션 Nonaqueous electrolyte and lithium secondary battery comprising same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024520516A (en) * 2021-10-05 2024-05-24 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
CA3219953A1 (en) * 2021-11-12 2023-05-19 Lg Energy Solution, Ltd. Non-aqueous electrolyte including additive for non-aqueous electrolyte, and lithium secondary battery including the non-aqueous electrolyte
KR20240045912A (en) * 2022-09-30 2024-04-08 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising the same
WO2024122996A1 (en) * 2022-12-09 2024-06-13 주식회사 엘지에너지솔루션 Lithium secondary battery

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110442A (en) * 1999-10-13 2001-04-20 Matsushita Electric Ind Co Ltd Nonaqueous electrochemical device
US6630272B1 (en) 1999-10-13 2003-10-07 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical device
JP2001357877A (en) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary battery with nonaqueous electrolyte
JP2002305022A (en) * 2001-04-04 2002-10-18 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolytic solution for secondary battery
WO2003007416A1 (en) * 2001-07-10 2003-01-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte and secondary cell using the same
US6942948B2 (en) 2001-07-10 2005-09-13 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and secondary battery employing the same
KR100458666B1 (en) * 2001-10-03 2004-12-03 닛뽕덴끼 가부시끼가이샤 Electrode and battery using same
WO2003054997A1 (en) * 2001-12-12 2003-07-03 Nec Corporation Electrolytic solution for secondary battery and secondary battery containing the same
US7312000B2 (en) 2001-12-12 2007-12-25 Nec Corporation Electrolytic solution for secondary battery and secondary battery containing the same
KR100658742B1 (en) 2004-10-28 2006-12-15 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
EP1657775A1 (en) * 2004-11-03 2006-05-17 Samsung SDI Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
US7438993B2 (en) 2004-11-03 2008-10-21 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
US7238453B2 (en) 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts
US7255965B2 (en) 2005-04-25 2007-08-14 Ferro Corporation Non-aqueous electrolytic solution
JP2006318761A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery
US8808404B2 (en) 2005-05-26 2014-08-19 Basf Corporation Method for making electrochemical cells
US8273484B2 (en) 2005-05-26 2012-09-25 Novolyte Technologies, Inc. Nitrogen silylated compounds as additives in non-aqueous solutions for electrochemical cells
US7682754B2 (en) 2005-05-26 2010-03-23 Novolyte Technologies, Inc. Nonaqueous electrolytic solution for electrochemical cells
US7727669B2 (en) 2005-05-26 2010-06-01 Novolyte Technologies Inc. Triazine compounds for removing acids and water from nonaqueous electrolytes for electrochemical cells
US8785056B2 (en) 2011-01-27 2014-07-22 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2013016488A (en) * 2011-07-01 2013-01-24 Lg Chem Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2015122322A (en) * 2011-07-01 2015-07-02 エルジー・ケム・リミテッド Nonaqueous electrolyte and lithium secondary battery comprising the same
US9728805B2 (en) 2011-07-01 2017-08-08 Lg Chem, Ltd. Nonaqueous electrolyte and lithium secondary battery using the same
US10991980B2 (en) 2016-11-15 2021-04-27 Murata Manufacturing Co., Ltd. Electrolytic solution for secondary battery, secondary battery, battery pack, electrically-driven vehicle, electric power storage system, electrically-driven tool, and electronic device
US11710853B2 (en) 2017-11-29 2023-07-25 Gs Yuasa International Ltd. Nonaqueous electrolyte, nonaqueous electrolyte energy storage device, and method for producing nonaqueous electrolyte energy storage device
WO2019105768A1 (en) * 2017-11-29 2019-06-06 Gs Yuasa International Ltd. Non-aqueous electrolyte, non-aqueous electrolyte energy storage device and method for producing the same
EP3951990A4 (en) * 2019-11-18 2023-07-12 LG Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
CN113767502A (en) * 2019-11-18 2021-12-07 株式会社Lg新能源 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JP2022534525A (en) * 2019-11-18 2022-08-01 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN113767502B (en) * 2019-11-18 2024-05-28 株式会社Lg新能源 Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
CN112216869B (en) * 2020-10-13 2022-08-09 中国科学院成都有机化学有限公司 High-voltage electrolyte additive, high-voltage electrolyte and lithium ion battery
CN112216869A (en) * 2020-10-13 2021-01-12 中国科学院成都有机化学有限公司 High-voltage electrolyte additive, high-voltage electrolyte and lithium ion battery
WO2023014079A1 (en) * 2021-08-06 2023-02-09 주식회사 엘지에너지솔루션 Non-aqueous electrolyte comprising additive for non-aqueous electrolyte, and lithium secondary battery comprising same
KR20230022133A (en) * 2021-08-06 2023-02-14 주식회사 엘지에너지솔루션 Non-aqueous electrolyte comprising additives for non-aqueous electrolyte, and lithium secondary battery comprising the same
US11862764B2 (en) 2021-08-06 2024-01-02 Lg Energy Solution, Ltd. Non-aqueous electrolyte comprising additive for non-aqueous electrolyte, and lithium secondary battery comprising the same
WO2023014174A1 (en) * 2021-08-06 2023-02-09 주식회사 엘지에너지솔루션 Non-aqueous electrolyte containing additive for non-aqueous electrolyte and lithium secondary battery comprising same
WO2023101360A1 (en) * 2021-12-01 2023-06-08 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
KR102560748B1 (en) * 2022-02-08 2023-07-28 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising the same
KR20230120114A (en) * 2022-02-08 2023-08-16 주식회사 엘지에너지솔루션 Lithium secondary battery
WO2023153813A1 (en) * 2022-02-08 2023-08-17 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising same
WO2024029890A1 (en) * 2022-08-01 2024-02-08 주식회사 엘지에너지솔루션 Non-aqueous electrolyte, and lithium secondary battery comprising same
WO2024071830A1 (en) * 2022-09-30 2024-04-04 주식회사 엘지에너지솔루션 Nonaqueous electrolyte and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP3680454B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP3680454B2 (en) Nonaqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
CN1428012A (en) Nonaqueous electrolyte lithium secondary cell
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP2008071559A (en) Lithium-ion secondary battery
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
CN101164190A (en) Functional electrolyte additives and electrochemical device comprising the same
JPH09139233A (en) Nonaqueous electrolyte secondary battery
JP2002110225A (en) Non-acqueous electrolyte lithium secondary battery
JP4020528B2 (en) Non-aqueous electrolyte secondary battery
JP2000106211A (en) Electrolytic solution for lithium secondary battery and lithium battery using the solution
JPS6286673A (en) Electrolyte for lithium secondary battery
JPH1186901A (en) Nonaqueous electrolyte for secondary battery and secondary battery using it
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000228216A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2002324550A (en) Non-aqueous electrolyte secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JPWO2003036751A1 (en) Non-aqueous electrolyte secondary battery
JP3721678B2 (en) Non-aqueous electrolyte secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JP2001266939A (en) Non-aqueous electrolytic solution for lithium ion secondary battery
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2002231305A (en) Electrolyte for battery, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees