JP3721678B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3721678B2
JP3721678B2 JP33513096A JP33513096A JP3721678B2 JP 3721678 B2 JP3721678 B2 JP 3721678B2 JP 33513096 A JP33513096 A JP 33513096A JP 33513096 A JP33513096 A JP 33513096A JP 3721678 B2 JP3721678 B2 JP 3721678B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
current collector
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33513096A
Other languages
Japanese (ja)
Other versions
JPH10162833A (en
Inventor
みほ 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP33513096A priority Critical patent/JP3721678B2/en
Publication of JPH10162833A publication Critical patent/JPH10162833A/en
Application granted granted Critical
Publication of JP3721678B2 publication Critical patent/JP3721678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【技術分野】
本発明は,例えばコードレス電源,電気自動車等における電源として用いられる,充電により再利用可能な,非水電解液二次電池に関する。
【0002】
【従来技術】
リチウム等を吸蔵,放出できる正極及び負極と非水電解液とからなる非水電解液二次電池は,高電圧で,高エネルギー密度を有する。そのため,近年,コードレス電源,小型携帯用電源,或いは電気自動車等における電源としての利用が期待されている。そのため,非水電解液二次電池の電解質として,電気化学的,熱的に安定な有機リチウム塩電解質の実用化が望まれている。
【0003】
【解決しようとする課題】
しかしながら,上記従来の非水電解液二次電池においては,電解質として有機リチウム塩を用いた場合には,3.5V以上の高い電圧になると,正極集電体の溶出が起こり,集電性が劣化し,電気容量が急激に低下するという問題がある。
【0004】
本発明はかかる従来の問題点に鑑み,正極集電体の集電性が高く,電気容量の劣化を抑制することができる非水電解液二次電池を提供しようとするものである。
【0005】
【課題の解決手段】
1の発明は,リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解液二次電池において,
上記正極は,正極活物質と,正極集電体とからなり,
上記正極集電体は,クマリン類を少なくとも含有する表面保護剤により被覆されていることを特徴とする非水電解液二次電池である(請求項1)
また,第2の発明として,リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解液二次電池において,
上記正極は,正極活物質と,正極集電体とからなり,
上記非水電解液は,Li(CF 3 SO 2 2 N若しくはLi(CF 3 SO 2 3 Cの少なくとも1種からなるリチウム塩,又は該リチウム塩の誘導体から選ばれる1種又は2種以上を含み,
上記正極集電体は,トリアゾール類を少なくとも含有する表面保護剤により被覆されていることを特徴とする非水電解液二次電池がある(請求項4)。
【0006】
上記両発明においては,正極集電体に上記のクマリン類又はトリアゾール類からなる複素環式化合物を含有する表面保護剤が施されている。このクマリン類又はトリアゾール類は,正極集電体と非水電解液中の電解質との反応を抑制する。そのため,正極集電体の劣化を防止でき,正極集電体の集電性を高くすることができる。また,電気容量の劣化を抑制することができる。
【0007】
即ち,トリアゾール類又はクマリン類,正極集電体の劣化をより効果的に抑制でき,優れた集電性を発揮することができる。また,電気容量の劣化を一層抑制できる。
【0008】
また,上記トリアゾール類は,1,2,4−トリアゾール,3−アミノ−1,2,4−トリアゾール,1,2,3−ベンゾトリアゾールから選ばれる1種又は2種以上であることが好ましい。
【0009】
また,上記クマリン類は,クマリン,クマリン−3−カルボン酸,4−メチルウンベリフェロン,3−アセチルクマリン,及び7−アミノ−4−(トリフルオロメチル)クマリンのグループから選ばれる1種又は2種以上であることが好ましい。これにより,正極集電体の劣化を更に抑制できる。
【0010】
また,上記非水電解液は,表面保護剤としてクマリン類を用いる場合には,LiCF3SO3,Li(CF3SO22N若しくはLi(CF3SO23Cの少なくとも1種からなるリチウム塩,又は該リチウム塩の誘導体から選ばれる1種又は2種以上を含むことが好ましい。これにより,電気化学的,熱的に安定な電解質を得ることができる。
一方,表面保護剤としてトリアゾール類を用いる場合には,非水電解液は,Li(CF 3 SO 2 2 N若しくはLi(CF 3 SO 2 3 Cの少なくとも1種からなるリチウム塩,又は該リチウム塩の誘導体から選ばれる1種又は2種以上を含むことが好ましい。これにより,電気化学的,熱的に安定な電解質を得ることができる。
【0011】
【発明の実施の形態】
実施形態例1
本発明の実施形態例に係る非水電解液二次電池について,図1を用いて説明する。
非水電解液二次電池9は,図1に示すごとく,リチウムを吸蔵,放出できる正極21と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極22と,正極21と負極22との間に設けたセパレータ3と,該セパレータに含浸させた非水電解液1と,電池容器5とを有している。
【0012】
正極21は,正極活物質211と,正極集電体212とからなる。正極集電体212は,表面保護剤210により被覆されている。表面保護剤210は,下記の「化1」に示す1,2,4−トリアゾールである。
【0013】
【化1】

Figure 0003721678
【0014】
上記表面保護剤を正極集電体の表面に被覆するに当たっては,まず,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒に1,2,4−トリアゾールを0.03mol・dm-3溶解して,前処理液を調製する。次いで,前処理液の中に,正極集電体に正極活物質をプレスしたものを浸漬する。正極活物質212としては,LiMn24 を合剤としてシート状に成形したものを用いる。上記正極集電体としては円板状のアルミニウム箔を用いる。これにより,正極活物質から表面保護剤が浸透して,正極活物質が正極集電体の表面を被覆する。
【0015】
負極22は,負極活物質221と,円板状の負極集電体222とからなる。負極活物質221としてはリチウム箔を用い,負極集電体222としては銅箔を用いる。
非水電解液1は,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒に,電解質としてのLi(CF3 SO2 2 Nを1moldm-3濃度となるように溶解したものである。
【0016】
セパレータ3は,略円板状のポリエチレン製フィルムである。電池容器5は,円筒状の正極側容器51と,円筒状の負極側容器52と,両者を電気絶縁すると共に固定するためのリング状のガスケット53とからなる。正極側容器51及び負極側容器52はステンレス鋼を,ガスケット53はポリプロピレンを用いる。
本例の非水電解液二次電池9は,コイン型非水電解液二次電池である。
【0017】
実施形態例2
本例の非水電解液二次電池は,表面保護剤として,下記の「化2」に示す3−アミノ−1,2,4−トリアゾールを用いる点が,上記実施形態例1と相違する。
上記表面保護剤を正極集電体の表面に被覆するに当たっては,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒に3−アミノ−1,2,4−トリアゾールを0.03mol・dm-3溶解して,前処理液を調製する。前処理液の中に,正極集電体に正極活物質をプレスしたものを浸漬する。これにより,正極活物質から表面保護剤が浸透して,表面保護剤が正極集電体の表面を覆う。
その他は,実施形態例1と同様である。
【0018】
【化2】
Figure 0003721678
【0019】
実施形態例3
本例の非水電解液二次電池は,表面保護剤として,下記の「化3」に示す1,2,3−ベンゾトリアゾールを用いる点が,上記実施形態例1と相違する。
上記表面保護剤を正極集電体の表面に被覆するに当たっては,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒に1,2,3−ベンゾトリアゾールを0.03mol・dm-3溶解して,前処理液を調製する。前処理液の中に,正極集電体に正極活物質をプレスしたものを浸漬する。これにより,正極活物質から表面保護剤が浸透して,表面保護剤が正極集電体の表面を覆う。
その他は,実施形態例1と同様である。
【0020】
【化3】
Figure 0003721678
【0021】
実施形態例4
本例の非水電解液二次電池は,表面保護剤として,下記の「化4」に示すクマリンを用いる点が,上記実施形態例1と相違する。
上記表面保護剤を正極集電体の表面に被覆するに当たっては,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒にクマリンを0.03mol・dm-3溶解して,前処理液を調製する。前処理液の中に,正極集電体に正極活物質をプレスしたものを浸漬する。これにより,正極活物質から表面保護剤が浸透して,表面保護剤が正極集電体の表面を覆う。
その他は,実施形態例1と同様である。
【0022】
【化4】
Figure 0003721678
【0023】
(比較例)
本例の非水電解液二次電池は,正極集電体の表面を表面保護剤により被覆していない点が,実施形態例1と相違する。
【0024】
(実験例)
上記実施例1〜4及び比較例の非水電解液二次電池について,充放電試験を行い,サイクル特性を評価した。
各非水電解質二次電池の充放電条件は,充電電流0.6mA・cm-2,充電上限電圧4.2V,充電時間8時間,放電電流0.6mA・cm-2,放電下限電圧3.5Vとした。
測定結果を表1及び図2に示した。表1には,各電池の30サイクル後の放電容量の変化を示した。図2には,実施形態例1及び比較例の電池について,初期容量を1としたときの放電容量の変化を例示した。
【0025】
【表1】
Figure 0003721678
【0026】
表1及び図2に示すように,実施形態例1〜4は,放電容量の変化が少なく,サイクル特性が優れていた。この原因は,正極集電体を予め表面保護剤により被覆しておくことにより,表面保護剤が,正極集電体と電解質の分解物との反応に対する阻害剤として作用する。そのため,正極集電体表面に見かけ上安定な不導体被膜を形成し,アルミニウムの溶出が抑制されたためであると考えられる。
【0027】
一方,比較例は,放電容量が著しく低下した。この原因は,3.5V付近で電解質であるLi(CF3 SO2 2 Nの分解が生じ,この分解物と正極集電体であるアルミニウムとが反応し,アルミニウムが溶出してしまうため,正極集電体の集電性が劣化し,電気容量の低下を引き起こしたものと考えられる。
【0028】
また,実施形態例2〜4の電池についても,上記と同様にサイクル特性を評価した(表1)。その結果,これらの電池についても,多少差はあるものの,実施形態例1と同様に高いサイクル特性が得られた。
以上より,正極集電体の表面保護剤として,1,2,4−トリアゾールが優れているとともに,3−アミノ−1,2,4−トリアゾール,1,2,3−ベンゾトリアゾール及びクマリンも有用であることがわかる。
【0029】
なお,表面保護剤の濃度は,0.03mol・dm-3で評価したが,他の濃度でも,正極集電体の表面を保護できる濃度であれば,上記各種実施形態例と同様の効果が得られると考えられる。
【0030】
また,本発明においては,表面保護剤を正極集電体の表面に被覆するに当たっては,正極集電体を正極活物質にプレスしたプレス品を,表面保護剤を溶解させた前処理液に浸漬させているが,上記プレス品の表面に上記前処理液を塗布してもよい。また,正極集電体だけを上記前処理液に浸漬してもよいし,正極集電体の表面に上記前処理液を塗布してもよい。
また,上記プレス品又は正極集電体を,表面保護剤の存在する雰囲気中に載置してもよい。
【0031】
また,正極集電体として,アルミニウム,チタン,ニッケル等を用いることができる。正極活物質として,Li・Mn複合酸化物,Li・Co複合酸化物等のリチウム化合物等を用いることができる。負極集電体として,銅等を用いることができる。負極活物質として,リチウム金属,リチウム合金,炭素質材料等を用いることができる。
【0032】
非水電解液の中の非水溶媒としては,エチレンカーボネート,プロピレンカーボネート等の環状エステル類,ジエチルカーボネート,ジメチルカーボネート,エチル・メチルカーボネートの鎖状エステル類,又は1,2−ジメトキシエタン等の鎖状エーテル類のグループから選ばれる1種又は2種以上を用いることができる。
【図面の簡単な説明】
【図1】実施形態例1の非水電解液二次電池の断面図。
【図2】実施形態例1及び比較例の非水電解液二次電池についての放電容量の変化を示す線図。
【符号の説明】
1...非水電解液,
21...正極,
210...表面保護剤,
211...正極活物質,
212...正極集電体,
22...負極,
3...セパレータ,
5...電池容器,
9...非水電解液二次電池,[0001]
【Technical field】
The present invention relates to a non-aqueous electrolyte secondary battery that can be reused by charging, for example, used as a power source in a cordless power source, an electric vehicle, or the like.
[0002]
[Prior art]
A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium and a non-aqueous electrolyte has a high voltage and a high energy density. Therefore, in recent years, it is expected to be used as a cordless power source, a small portable power source, or a power source in an electric vehicle. Therefore, the practical application of an electrochemically and thermally stable organic lithium salt electrolyte is desired as the electrolyte for non-aqueous electrolyte secondary batteries.
[0003]
[Problems to be solved]
However, in the conventional non-aqueous electrolyte secondary battery, when an organic lithium salt is used as the electrolyte, when the voltage becomes higher than 3.5 V, the elution of the positive electrode current collector occurs and the current collecting property is reduced. There is a problem that it deteriorates and the electric capacity rapidly decreases.
[0004]
In view of the conventional problems, the present invention is intended to provide a non-aqueous electrolyte secondary battery in which the current collector of the positive electrode current collector is high and the deterioration of the electric capacity can be suppressed.
[0005]
[Means for solving problems]
The first invention includes a positive electrode capable of inserting and extracting lithium, a negative electrode made of a lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, a separator provided between the positive electrode and the negative electrode, In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte impregnated in the separator and a battery container,
The positive electrode comprises a positive electrode active material and a positive electrode current collector,
The positive electrode current collector is a non-aqueous electrolyte secondary battery characterized in that it is coated with a surface protective agent containing at least coumarins (Claim 1) .
According to a second aspect of the invention, a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, and a separator provided between the positive electrode and the negative electrode A non-aqueous electrolyte secondary battery having a non-aqueous electrolyte impregnated in the separator and a battery container,
The positive electrode comprises a positive electrode active material and a positive electrode current collector,
The non-aqueous electrolyte is one or more selected from a lithium salt composed of at least one of Li (CF 3 SO 2 ) 2 N or Li (CF 3 SO 2 ) 3 C, or a derivative of the lithium salt. Including
There is a nonaqueous electrolyte secondary battery in which the positive electrode current collector is coated with a surface protective agent containing at least triazoles (claim 4).
[0006]
In both the above inventions, the positive electrode current collector is provided with a surface protective agent containing a heterocyclic compound comprising the above-mentioned coumarins or triazoles . The coumarins or triazoles suppress the reaction between the positive electrode current collector and the electrolyte in the nonaqueous electrolytic solution. Therefore, it is possible to prevent the positive electrode current collector from being deteriorated and to increase the current collecting property of the positive electrode current collector. Further, it is possible to suppress deterioration of the electric capacity.
[0007]
That is, triazoles or click Marin class can more effectively suppress the deterioration of the positive electrode current collector, it is possible to exhibit excellent current collecting property. In addition, the deterioration of electric capacity can be further suppressed.
[0008]
The upper SL triazoles, 1,2,4-triazole, 3-amino-1,2,4 Toriazo Le, one or more selected 1,2,3- benzotriazole Le whether et al Preferably there is.
[0009]
The upper SL coumarins, coumarin, coumarin-3-carboxylic acid, 4-methylumbelliferone, 3-acetyl coumarin, and 7-amino-4-one selected from the group of (trifluoromethyl) coumarin, or Two or more are preferable. Thereby, deterioration of the positive electrode current collector can be further suppressed.
[0010]
The upper KiHisui electrolyte, in the case of using coumarins as a surface protective agent, LiCF 3 SO 3, Li ( CF 3 SO 2) 2 N or Li (CF 3 SO 2) 3 C at least one It is preferable that 1 type, or 2 or more types chosen from the lithium salt which consists of, or the derivative | guide_body of this lithium salt is included. Thereby, an electrochemically and thermally stable electrolyte can be obtained.
On the other hand, when triazoles are used as the surface protective agent, the non-aqueous electrolyte is a lithium salt composed of at least one of Li (CF 3 SO 2 ) 2 N or Li (CF 3 SO 2 ) 3 C, or It is preferable to include one or more selected from lithium salt derivatives. Thereby, an electrochemically and thermally stable electrolyte can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the non-aqueous electrolyte secondary battery 9 includes a positive electrode 21 that can occlude and release lithium, a negative electrode 22 made of a lithium metal, a lithium alloy, a substance that can occlude and release lithium or a conductive material, and a positive electrode. The separator 3 provided between the anode 21 and the anode 22, the nonaqueous electrolytic solution 1 impregnated in the separator, and the battery container 5 are included.
[0012]
The positive electrode 21 includes a positive electrode active material 211 and a positive electrode current collector 212. The positive electrode current collector 212 is covered with a surface protective agent 210. The surface protective agent 210 is 1,2,4-triazole shown in “Chemical Formula 1” below.
[0013]
[Chemical 1]
Figure 0003721678
[0014]
In coating the surface protective agent on the surface of the positive electrode current collector, first, 0.03 mol · dm −3 of 1,2,4-triazole was dissolved in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane, Prepare a pretreatment solution. Next, a positive electrode current collector pressed with a positive electrode active material is immersed in the pretreatment liquid. As the positive electrode active material 212, a material formed into a sheet shape using LiMn 2 O 4 as a mixture is used. As the positive electrode current collector, a disk-shaped aluminum foil is used. Thereby, the surface protective agent penetrates from the positive electrode active material, and the positive electrode active material covers the surface of the positive electrode current collector.
[0015]
The negative electrode 22 includes a negative electrode active material 221 and a disc-shaped negative electrode current collector 222. A lithium foil is used as the negative electrode active material 221, and a copper foil is used as the negative electrode current collector 222.
The nonaqueous electrolytic solution 1 is obtained by dissolving Li (CF 3 SO 2 ) 2 N as an electrolyte in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane so as to have a concentration of 1 moldm −3 .
[0016]
The separator 3 is a substantially disc-shaped polyethylene film. The battery container 5 includes a cylindrical positive electrode side container 51, a cylindrical negative electrode side container 52, and a ring-shaped gasket 53 for electrically insulating and fixing the two. The positive electrode side container 51 and the negative electrode side container 52 use stainless steel, and the gasket 53 uses polypropylene.
The nonaqueous electrolyte secondary battery 9 of this example is a coin-type nonaqueous electrolyte secondary battery.
[0017]
Embodiment 2
The non-aqueous electrolyte secondary battery of this example is different from the first embodiment in that 3-amino-1,2,4-triazole shown in the following “Chemical Formula 2” is used as a surface protective agent.
In coating the surface protective agent on the surface of the positive electrode current collector, 0.03 mol · dm −3 of 3-amino-1,2,4-triazole was dissolved in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane. Prepare the pretreatment solution. In the pretreatment liquid, a positive electrode current collector pressed with a positive electrode active material is immersed. Thereby, the surface protective agent penetrates from the positive electrode active material, and the surface protective agent covers the surface of the positive electrode current collector.
Others are the same as in the first embodiment.
[0018]
[Chemical formula 2]
Figure 0003721678
[0019]
Embodiment 3
The nonaqueous electrolyte secondary battery of this example is different from the first embodiment in that 1,2,3-benzotriazole shown in the following “Chemical Formula 3” is used as a surface protective agent.
In coating the surface of the positive electrode current collector with the above surface protective agent, 0.03 mol · dm −3 of 1,2,3-benzotriazole was dissolved in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane. Prepare a treatment solution. In the pretreatment liquid, a positive electrode current collector pressed with a positive electrode active material is immersed. Thereby, the surface protective agent penetrates from the positive electrode active material, and the surface protective agent covers the surface of the positive electrode current collector.
Others are the same as in the first embodiment.
[0020]
[Chemical 3]
Figure 0003721678
[0021]
Embodiment 4
The nonaqueous electrolyte secondary battery of this example is different from the first embodiment in that a coumarin represented by the following “Chemical Formula 4” is used as a surface protective agent.
In coating the surface protective agent on the surface of the positive electrode current collector, 0.03 mol · dm −3 of coumarin is dissolved in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane to prepare a pretreatment liquid. In the pretreatment liquid, a positive electrode current collector pressed with a positive electrode active material is immersed. Thereby, the surface protective agent penetrates from the positive electrode active material, and the surface protective agent covers the surface of the positive electrode current collector.
Others are the same as in the first embodiment.
[0022]
[Formula 4]
Figure 0003721678
[0023]
(Comparative example)
The non-aqueous electrolyte secondary battery of this example is different from Embodiment 1 in that the surface of the positive electrode current collector is not covered with a surface protective agent.
[0024]
(Experimental example)
About the non-aqueous electrolyte secondary battery of the said Examples 1-4 and the comparative example, the charge / discharge test was done and cycling characteristics were evaluated.
The charge / discharge conditions of each non-aqueous electrolyte secondary battery are as follows: charge current 0.6 mA · cm −2 , charge upper limit voltage 4.2 V, charge time 8 hours, discharge current 0.6 mA · cm −2 , discharge lower limit voltage 3. The voltage was 5V.
The measurement results are shown in Table 1 and FIG. Table 1 shows the change in discharge capacity after 30 cycles of each battery. FIG. 2 illustrates the change in discharge capacity when the initial capacity is set to 1 for the batteries of Example 1 and the comparative example.
[0025]
[Table 1]
Figure 0003721678
[0026]
As shown in Table 1 and FIG. 2, Embodiment Examples 1 to 4 had little change in discharge capacity and excellent cycle characteristics. This is because the positive electrode current collector is previously coated with a surface protective agent, so that the surface protective agent acts as an inhibitor for the reaction between the positive electrode current collector and the decomposition product of the electrolyte. Therefore, it is considered that an apparently stable non-conductive film was formed on the surface of the positive electrode current collector, and the elution of aluminum was suppressed.
[0027]
On the other hand, the discharge capacity of the comparative example was significantly reduced. The cause is that decomposition of Li (CF 3 SO 2 ) 2 N as an electrolyte occurs near 3.5 V, and this decomposition product reacts with aluminum as a positive electrode current collector, so that aluminum is eluted. It is considered that the current collecting property of the positive electrode current collector deteriorated and the electric capacity was reduced.
[0028]
Further, the cycle characteristics of the batteries of Embodiment Examples 2 to 4 were also evaluated in the same manner as described above (Table 1). As a result, high cycle characteristics were obtained for these batteries as well as the first embodiment, although there were some differences.
As described above, 1,2,4-triazole is excellent as a surface protecting agent for the positive electrode current collector, and 3-amino-1,2,4-triazole, 1,2,3-benzotriazole and coumarin are also useful. It can be seen that it is.
[0029]
Although the concentration of the surface protective agent was evaluated at 0.03 mol · dm −3 , the same effects as those of the above-described various embodiments can be obtained at other concentrations as long as the concentration can protect the surface of the positive electrode current collector. It is thought that it is obtained.
[0030]
In the present invention, in order to coat the surface of the positive electrode current collector with the surface protective agent, a press product obtained by pressing the positive electrode current collector into the positive electrode active material is immersed in a pretreatment solution in which the surface protective agent is dissolved. However, the pretreatment liquid may be applied to the surface of the pressed product. Further, only the positive electrode current collector may be immersed in the pretreatment liquid, or the pretreatment liquid may be applied to the surface of the positive electrode current collector.
Further, the press product or the positive electrode current collector may be placed in an atmosphere in which a surface protective agent is present.
[0031]
In addition, aluminum, titanium, nickel, or the like can be used as the positive electrode current collector. As the positive electrode active material, lithium compounds such as Li / Mn composite oxide and Li / Co composite oxide can be used. Copper or the like can be used as the negative electrode current collector. As the negative electrode active material, lithium metal, lithium alloy, carbonaceous material, or the like can be used.
[0032]
Nonaqueous solvents in the nonaqueous electrolyte include cyclic esters such as ethylene carbonate and propylene carbonate, chain esters such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and chains such as 1,2-dimethoxyethane. 1 type (s) or 2 or more types selected from the group of the shape ethers can be used.
[Brief description of the drawings]
1 is a cross-sectional view of a nonaqueous electrolyte secondary battery according to Embodiment 1;
FIG. 2 is a diagram showing a change in discharge capacity for the nonaqueous electrolyte secondary batteries of Embodiment 1 and Comparative Example.
[Explanation of symbols]
1. . . Non-aqueous electrolyte,
21. . . Positive electrode,
210. . . Surface protection agent,
211. . . Cathode active material,
212. . . Positive electrode current collector,
22. . . Negative electrode,
3. . . Separator,
5. . . Battery container,
9. . . Non-aqueous electrolyte secondary battery,

Claims (5)

リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解液二次電池において,
上記正極は,正極活物質と,正極集電体とからなり,
上記正極集電体は,クマリン類を少なくとも含有する表面保護剤により被覆されていることを特徴とする非水電解液二次電池。
A positive electrode capable of inserting and extracting lithium, a negative electrode made of a lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, a separator provided between the positive electrode and the negative electrode, and the separator impregnated In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte and a battery container,
The positive electrode comprises a positive electrode active material and a positive electrode current collector,
The non-aqueous electrolyte secondary battery, wherein the positive electrode current collector is coated with a surface protective agent containing at least coumarins .
請求項において,上記クマリン類は,クマリン,クマリン−3−カルボン酸,4−メチルウンベリフェロン,3−アセチルクマリン,及び7−アミノ−4−(トリフルオロメチル)クマリンのグループから選ばれる1種又は2種以上であることを特徴とする非水電解液二次電池。2. The coumarin according to claim 1, wherein the coumarin is selected from the group consisting of coumarin, coumarin-3-carboxylic acid, 4-methylumbelliferone, 3-acetylcoumarin, and 7-amino-4- (trifluoromethyl) coumarin. A non-aqueous electrolyte secondary battery characterized by being a seed or two or more kinds. 請求項1又は2において,上記非水電解液は,LiCF3SO3,Li(CF3SO22N若しくはLi(CF3SO23Cの少なくとも1種からなるリチウム塩,又は該リチウム塩の誘導体から選ばれる1種又は2種以上を含むことを特徴とする非水電解液二次電池。According to claim 1 or 2, the non-aqueous electrolyte, LiCF 3 SO 3, Li ( CF 3 SO 2) 2 N or Li (CF 3 SO 2) 3 lithium salt consisting of at least one C or the lithium, A non-aqueous electrolyte secondary battery comprising one or more selected from salt derivatives. リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解液二次電池において,
上記正極は,正極活物質と,正極集電体とからなり,
上記非水電解液は,Li(CF 3 SO 2 2 N若しくはLi(CF 3 SO 2 3 Cの少なくとも1種からなるリチウム塩,又は該リチウム塩の誘導体から選ばれる1種又は2種以上を含み,
上記正極集電体は,トリアゾール類を少なくとも含有する表面保護剤により被覆されていることを特徴とする非水電解液二次電池。
A positive electrode capable of inserting and extracting lithium, a negative electrode made of a lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, a separator provided between the positive electrode and the negative electrode, and the separator impregnated In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte and a battery container,
The positive electrode comprises a positive electrode active material and a positive electrode current collector,
The non-aqueous electrolyte is one or more selected from a lithium salt composed of at least one of Li (CF 3 SO 2 ) 2 N or Li (CF 3 SO 2 ) 3 C, or a derivative of the lithium salt. Including
The non-aqueous electrolyte secondary battery , wherein the positive electrode current collector is coated with a surface protective agent containing at least triazoles .
請求項4において,上記トリアゾール類は,1,2,4−トリアゾール,3−アミノ−1,2,4−トリアゾール,1,2,3−ベンゾトリアゾールのグループから選ばれる1種又は2種以上であることを特徴とする非水電解液二次電池。 5. The triazole according to claim 4, wherein the triazole is one or more selected from the group of 1,2,4-triazole, 3-amino-1,2,4-triazole, 1,2,3-benzotriazole. There is a nonaqueous electrolyte secondary battery.
JP33513096A 1996-11-29 1996-11-29 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3721678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33513096A JP3721678B2 (en) 1996-11-29 1996-11-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33513096A JP3721678B2 (en) 1996-11-29 1996-11-29 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10162833A JPH10162833A (en) 1998-06-19
JP3721678B2 true JP3721678B2 (en) 2005-11-30

Family

ID=18285113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33513096A Expired - Fee Related JP3721678B2 (en) 1996-11-29 1996-11-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3721678B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590682B2 (en) * 2000-04-26 2010-12-01 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5066805B2 (en) * 2005-12-12 2012-11-07 日本電気株式会社 Electricity storage device
JP4893000B2 (en) * 2006-02-03 2012-03-07 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5168395B2 (en) 2010-09-17 2013-03-21 ダイキン工業株式会社 Conductive protective layer forming paste for current collecting laminates such as non-aqueous secondary batteries
WO2013031045A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for electrode, and electrode
JP5784819B2 (en) 2012-03-15 2015-09-24 株式会社東芝 Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
JP5715298B2 (en) * 2012-03-23 2015-05-07 株式会社東芝 Anode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery pack
CN112216869B (en) * 2020-10-13 2022-08-09 中国科学院成都有机化学有限公司 High-voltage electrolyte additive, high-voltage electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JPH10162833A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP3680454B2 (en) Nonaqueous electrolyte secondary battery
EP1012897B1 (en) Electrolyte for a rechargeable cell
EP1128453B1 (en) Secondary battery using a radical compound as active electrode material
CA2163187C (en) Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
RU2323505C1 (en) Electrode for secondary lithium battery
EP0262846B1 (en) Nonaqueous battery with special separator
Tobishima et al. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells
US6905795B2 (en) Polymer electrolyte and a lithium secondary battery having the same
JPH09139233A (en) Nonaqueous electrolyte secondary battery
JP2005142141A (en) Organic electrolyte and lithium battery using the same
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
Zheng et al. A multifunctional thiophene-based electrolyte additive for lithium metal batteries using high-voltage LiCoO2 cathode
JP3721678B2 (en) Non-aqueous electrolyte secondary battery
JP2002302649A (en) Agent forming film on electrode surface
JP3223051B2 (en) Lithium secondary battery
JP2000223154A (en) Lithium secondary battery
JP4651432B2 (en) Lithium secondary battery
JPWO2003036751A1 (en) Non-aqueous electrolyte secondary battery
JPH1167265A (en) Lithium battery
JP3475488B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
JP3094397B2 (en) Organic electrolyte secondary battery
JP2001283920A (en) Lithium secondary battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JP2002231305A (en) Electrolyte for battery, and nonaqueous electrolyte battery
JP2001143746A (en) Electrolyte for cell and non-aqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees