JPH1049244A - Reference current and voltage circuit and differential amplification device - Google Patents

Reference current and voltage circuit and differential amplification device

Info

Publication number
JPH1049244A
JPH1049244A JP8198817A JP19881796A JPH1049244A JP H1049244 A JPH1049244 A JP H1049244A JP 8198817 A JP8198817 A JP 8198817A JP 19881796 A JP19881796 A JP 19881796A JP H1049244 A JPH1049244 A JP H1049244A
Authority
JP
Japan
Prior art keywords
mos
fet
current
voltage
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8198817A
Other languages
Japanese (ja)
Other versions
JP3348600B2 (en
Inventor
Satoshi Ide
聡 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19881796A priority Critical patent/JP3348600B2/en
Publication of JPH1049244A publication Critical patent/JPH1049244A/en
Application granted granted Critical
Publication of JP3348600B2 publication Critical patent/JP3348600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an amplification device which has variation in amplification gain suppressed as to an amplification device which uses a MOS-FET. SOLUTION: The device has a 1st MOS-FET and a 2nd MOS-FET which has nearly the same characteristics with the said FET and also has a reference resistance connected to its source or drain, the sources of those MOS-FETs or reference resistances connected to the source of the 1st MOS-FET and the source of the 2nd MOS-FET are connected in common, and the ratio of currents flowing to those MOS-FETs is held at a previously set value. Further, a control means is provided which controls the composite current of currents flowing to those MOS-FETs so that a potential which is nearly equal to the difference voltage between the gate-source voltage of the 1st MOS-FET and the gate-source voltage of the 2nd MOS-FET is applied across the reference voltages; and the controlled composite current is used as a reference current and a voltage developed at the source-side terminal of the MOS-FETs connected in common is used as a reference voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属−酸化膜−半
導体−電界効果トランジスタ(MOS-FET)を用いた増幅器
の増幅利得安定化の為に使用する、基準電流・電圧回路
及び差動増幅装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference current / voltage circuit and a differential amplifier used for stabilizing the amplification gain of an amplifier using a metal-oxide-semiconductor-field-effect transistor (MOS-FET). It concerns the device.

【0002】近年、低消費電力化の観点から、低い電源
電圧で動作する電子回路が望まれている。ディジタル回
路の低電圧化は進んでいるが、それに合わせてアナログ
回路も同じ電源電圧で動作させることが必要である。
[0002] In recent years, from the viewpoint of reducing power consumption, an electronic circuit operating at a low power supply voltage has been desired. Although the voltage of digital circuits has been reduced, analog circuits must be operated at the same power supply voltage.

【0003】しかし、アナログ回路用として広く用いら
れてきたバイポーラ・トランジスタ回路は、本質的にバ
ンドギャップ電圧以上のベース・エミッタ間電圧(例え
ば、0.7 〜0.8V位) 、コレクタ・エミッタ間電圧が必要
である為、低い電源電圧では出力振幅がとれず、直流バ
イアス条件が合わない等の問題が生ずる。
However, bipolar transistor circuits that have been widely used for analog circuits essentially require a base-emitter voltage (for example, about 0.7 to 0.8 V) or more and a collector-emitter voltage higher than the bandgap voltage. Therefore, there arises a problem that the output amplitude cannot be obtained at a low power supply voltage and the DC bias condition is not satisfied.

【0004】これに対して、MOS-FET を使用した回路で
はドレイン・ソース間電圧は小さくてもよく( 例えば、
0.5V位) 、必要なゲート・ソース間電圧のしきい値は制
御可能なパラメータである為( チャネルの不純物濃度の
変化に対応してしきい値が変化する) 、バイポーラ・ト
ランジスタよりも低い電圧で動作が可能である。また、
ディジタル回路との集積化の点からも有利である。
On the other hand, in a circuit using a MOS-FET, the drain-source voltage may be small (for example,
Since the required threshold voltage of the gate-source voltage is a controllable parameter (the threshold value changes according to the change in the impurity concentration of the channel), the voltage is lower than that of the bipolar transistor. Operation is possible. Also,
This is also advantageous in terms of integration with digital circuits.

【0005】しかし、従来のMOS-FET を使用した回路で
は、温度や製造プロセスの変動による増幅利得の変動を
制御する制御回路がなく、増幅利得変動が大きいと云う
問題を生じていた。そこで、増幅利得変動の低減を図る
ことが必要である。
However, in a circuit using a conventional MOS-FET, there is no control circuit for controlling the fluctuation of the amplification gain due to the fluctuation of the temperature or the manufacturing process, and there has been a problem that the fluctuation of the amplification gain is large. Therefore, it is necessary to reduce fluctuations in amplification gain.

【0006】[0006]

【従来の技術】図10は従来例の要部構成図である。図
中、61は定電流源, 62は定電流源として働くNch MOS-FE
T, 63 は差動増幅回路の定電流源として働くNch MOS-FE
T, 64aと64b は差動対を構成するNch MOS FET, 65a, 65
b は負荷抵抗である。また、定電流源62, 63でカレント
ミラー回路を構成している。
2. Description of the Related Art FIG. 10 is a block diagram of a main part of a conventional example. In the figure, 61 is a constant current source, 62 is an Nch MOS-FE that works as a constant current source
T and 63 are Nch MOS-FE that works as a constant current source of the differential amplifier circuit
T, 64a and 64b are Nch MOS FETs forming a differential pair, 65a, 65
b is the load resistance. The constant current sources 62 and 63 constitute a current mirror circuit.

【0007】なお、図10の信号の流れは下記の様であ
る。定電流源61からの定電流I0がNch MOS-FET(以下、MO
S-FET と省略する)62 に流れると、これに対応してMOS-
FET 63にI1=(M0/M1)I0の電流が流れる。
The signal flow in FIG. 10 is as follows. The constant current I 0 from the constant current source 61 is Nch MOS-FET (hereinafter referred to as MO
(Omitted as S-FET.)
A current of I 1 = (M 0 / M 1 ) I 0 flows through the FET 63.

【0008】これにより、MOS-FET 64a, 64bのゲートに
印加した電圧V1,V2 の差電圧(V1-V2) の増幅利得倍の電
圧が、MOS-FET 64a, 64bのドレイン間に得られる。ここ
で、1991.9.10 に培風館が発行した、R.R.グレイ/ R.G.
メイヤー共著、永田譲監訳の「超LSI のためのアナログ
集積回路設計技術 (下巻) 」の282 頁の(12.9)にソース
結合ペア回路の伝達コンダクタンス Gm を求める式が下
記の様に示してある。
As a result, the voltage of the amplification gain times the difference voltage (V 1 -V 2 ) between the voltages V 1 and V 2 applied to the gates of the MOS-FETs 64a and 64b is applied between the drains of the MOS-FETs 64a and 64b. Is obtained. Here, RR Gray / RG issued by Baifukan on 1991.9.10
An expression for calculating the transfer conductance G m of a source-coupled pair circuit is shown in (12.9) on page 282 of `` Analog Integrated Circuit Design Technology for Super LSIs (2nd volume) '' translated by Mayer and translated by Joe Nagata. .

【0009】 Gm = (ISS)(μn ・C OX・W / L ) 1/2 一方、上記文献 (上巻) の59頁の(1.169) と(1.174) に
は Coxox/tox k´= μn ・ (εox/tox ) が示してあり、更に、利得係数β = k´W / L を導入す
ると、上記伝達コンダクタンス Gm の中の( μn ・ COX
・ W/L )の部分は、これらの式を用いてβとなる。
G m = (I SS ) (μ n · C OX · W / L) 1/2 On the other hand, (1.169) and (1.174) on page 59 of the above-mentioned reference (the first volume) show that C ox = ε ox / t ox k ′ = μ n · (ε ox / t ox ) is shown, and when the gain coefficient β = k′W / L is introduced, (μ n · C OX in the above-described transfer conductance G m
・ W / L) is β using these equations.

【0010】従って、MOS-FET 64a,64b の小信号増幅利
得G は近似的に G =Gm ×R= R×( β×I )1/2 (1) で表される。
Therefore, the small signal amplification gain G of the MOS-FETs 64a and 64b is approximately represented by G = Gm × R = R × (β × I) 1/2 (1).

【0011】但し、R は負荷抵抗値、I は定電流源の電
流値で Gm 中の ISSと同じ、βはMOS-FET のトランジス
タ利得係数である。ここで、(1) 式中の負荷抵抗値R や
利得係数βは製造プロセスの条件や、温度等の環境条件
によって変動するので、これらの要因によって増幅利得
が大きく変化する。
[0011] Here, R is the load resistance, I is the same as I SS in G m at a current value of the constant current source, beta is a transistor gain factor of MOS-FET. Here, since the load resistance value R and the gain coefficient β in the equation (1) fluctuate depending on the conditions of the manufacturing process and environmental conditions such as temperature, the amplification gain largely changes due to these factors.

【0012】[0012]

【発明が解決しようとする課題】上記の様に、MOS-FET
の利得係数βは、製造プロセス毎に異なり、また温度が
高くなると大幅に低下することが知られている。
As described above, the MOS-FET
It is known that the gain coefficient β differs for each manufacturing process and greatly decreases as the temperature increases.

【0013】更に、負荷抵抗は低コスト化・広帯域化の
為にLSI チップ内に集積することが多いが、抵抗値R は
不純物濃度のバラツキ、寸法精度のバラツキなどによ
り、製造プロセス毎に異なり、精度は悪い。
Further, load resistors are often integrated in an LSI chip for cost reduction and broadband, but the resistance value R differs depending on the manufacturing process due to variations in impurity concentration and dimensional accuracy. Accuracy is poor.

【0014】例えば、抵抗値の変動が30 %程度、MOS-FE
T の利得係数の変動が30 %程度あるとすると、小信号増
幅利得は50% 程度、変動することになる。この様に、様
々な条件の変動によって小信号増幅利得G が大きく変化
する。
For example, when the fluctuation of the resistance value is about 30%, the MOS-FE
Assuming that the gain coefficient of T fluctuates by about 30%, the small signal amplification gain fluctuates by about 50%. As described above, the small signal amplification gain G greatly changes due to changes in various conditions.

【0015】一方、バイポーラ・トランジスタを用いた
増幅回路でも、同様に利得の変動は起きるが、利得安定
化の為にバンドギャップ・リファレンス(BGR) 回路を用
いることが従来から知られていた。
On the other hand, in an amplifying circuit using a bipolar transistor, the gain also varies, but it has been conventionally known to use a bandgap reference (BGR) circuit for stabilizing the gain.

【0016】しかし、これは増幅回路の抵抗及びバイポ
ーラ・トランジスタとそれぞれほぼ同じ特性を持つ、抵
抗とpn接合ダイオードを用いて利得の補償を行うもので
あり、pn接合の特性を用いないMOS-FET 回路には適用す
ることができない。
However, this uses a resistor and a pn junction diode, which have almost the same characteristics as the resistance and the bipolar transistor of the amplifier circuit, to compensate for the gain, and uses a MOS-FET that does not use the characteristics of the pn junction. It cannot be applied to circuits.

【0017】この様に、従来のMOS-FET 増幅回路では環
境条件の変動や作成プロセス条件の変動に対して利得を
安定化することが困難であった。本発明は、MOS-FET 増
幅回路の素子とほぼ同じ特性を持つ抵抗と、MOS-FET と
を用いて、利得係数の変動を抑圧する様に電流値を変え
ることにより、MOS-FET増幅回路の増幅利得変動の低減
を図ることを目的とする。
As described above, in the conventional MOS-FET amplifier circuit, it has been difficult to stabilize the gain with respect to fluctuations in environmental conditions and fluctuations in manufacturing process conditions. The present invention uses a resistor having substantially the same characteristics as the elements of the MOS-FET amplifier circuit and the MOS-FET to change the current value so as to suppress the fluctuation of the gain coefficient, thereby obtaining the MOS-FET amplifier circuit. An object is to reduce amplification gain fluctuation.

【0018】[0018]

【課題を解決するための手段】図1は第1、第3の本発
明の原理説明図で、(a) は第1の本発明の原理説明図、
(b)は第3の本発明の原理説明図である。
FIG. 1 is a diagram illustrating the principle of the first and third embodiments of the present invention. FIG. 1A is a diagram illustrating the principle of the first embodiment of the present invention.
(B) is an explanatory view of the principle of the third invention.

【0019】先ず、 第1のMOS-FET と、該第1のMOS-
FET とほぼ同じ特性を具備し、ソースとドレインのう
ち、何れか一方に基準抵抗が接続された第2のMOS-FET
を有し、第1のMOS-FET と第2のMOS-FET のソース同
士、または、該第1のMOS-FET のソースと第2のMOS-FE
T のソースに接続した基準抵抗を共通接続する。
First, a first MOS-FET and the first MOS-FET
A second MOS-FET with almost the same characteristics as a FET, with a reference resistor connected to either the source or the drain
And the sources of the first MOS-FET and the second MOS-FET, or the source of the first MOS-FET and the second MOS-FE
Connect the reference resistor connected to the source of T in common.

【0020】また、該第1のMOS-FET と該第2のMOS-FE
T に流れる電流比率が予め設定された値を保ち、且つ、
該第1のMOS-FET のゲート・ソース間電圧と該第2のMO
S-FET のゲート・ソース間電圧の差電圧とほぼ同じ電位
が、該基準抵抗の両端に印加する様に第1,第2のMOS-
FET を流れる電流を合わせた合成電流を制御する制御手
段を設ける。
Also, the first MOS-FET and the second MOS-FE
The current ratio flowing through T keeps a preset value, and
The gate-source voltage of the first MOS-FET and the second MO
The first and second MOS-FETs are applied so that a potential substantially equal to the difference voltage between the gate and source of the S-FET is applied to both ends of the reference resistor.
Provide control means to control the combined current that combines the current flowing through the FET.

【0021】そして、制御した合成電流を基準電流とし
て、及び上記共通接続とした第1のMOF-FET と第2のMO
S-FET のソース側端子に現れる電圧を基準電圧として使
用する構成にした。
Then, the controlled combined current is used as a reference current, and the first MOF-FET and the second
The voltage that appears at the source terminal of the S-FET is used as the reference voltage.

【0022】請求項2の発明は、ソースが共通の定電流
源に接続された上記第1,第2のMOF-FET のうち、第1
のMOS-FET のドレインが直接に、第2のMOS-FET のドレ
インが上記基準抵抗を介してそれぞれ接続された差動入
力端子を有し、該差動入力端子間の電位がほぼ等しくな
る様に上記定電源の合成電流の値を制御する差動増幅器
と、電源と接地面のうち、何れか一方と該差動入力端子
間にそれぞれ接続され、第1,第2のMOS-FET に流れる
電流比率を決定する第1,第2の抵抗を設ける。
According to a second aspect of the present invention, in the first and second MOF-FETs, the sources of which are connected to a common constant current source,
The MOS-FET has a differential input terminal connected directly to the drain of the second MOS-FET and the drain of the second MOS-FET connected via the reference resistor, so that the potentials between the differential input terminals are substantially equal. A differential amplifier for controlling the value of the combined current of the constant power supply, and a power supply and a ground plane, which are respectively connected between the differential input terminals and flow through the first and second MOS-FETs. First and second resistors for determining a current ratio are provided.

【0023】そして、制御した合成電流を基準電流とし
て、及び電源、或いは接地面と上記共通ソース側端子と
の両端に現れる電圧を基準電圧として使用する構成にし
た。請求項3の発明は、上記第1のMOF-FET のドレイン
をゲートに、第2のMOS-FET のゲートを第1のMOS-FET
のゲートに、あるいは、第1のMOS-FET のゲートを第2
のMOS-FET のゲートに、第2のMOS-FET のドレインをゲ
ートにそれぞれ接続する。
The controlled combined current is used as a reference current, and a voltage appearing at both ends of the power source or the ground plane and the common source side terminal is used as a reference voltage. According to a third aspect of the present invention, the drain of the first MOF-FET is used as a gate, and the gate of the second MOS-FET is used as a first MOS-FET.
Or the gate of the first MOS-FET to the second
And the drain of the second MOS-FET is connected to the gate.

【0024】また、第1のMOS-FET のソースと第2のMO
S-FET のソースに接続した基準抵抗を共に共通の定電流
源に、第1のMOS-FET と第2のMOS-FET のドレインをカ
レントミラー回路にそれぞれ接続する。
The source of the first MOS-FET and the second MO
The reference resistor connected to the source of the S-FET is connected to a common constant current source, and the drains of the first and second MOS-FETs are connected to a current mirror circuit.

【0025】そして、カレントミラー回路で、第1のMO
S-FET と該第2のMOS-FET に流れる電流比率が予め設定
された値を保つ様に制御を行い、制御した合成電流を基
準電流として使用する構成にした。
Then, in the current mirror circuit, the first MO
Control is performed so that the ratio of current flowing through the S-FET and the second MOS-FET maintains a preset value, and the controlled combined current is used as a reference current.

【0026】請求項4の本発明は、MOS-FET を用いた差
動増幅装置において、請求項1〜3記載の第1、第2の
MOS-FET 及び基準抵抗とほぼ等しい特性変動要因を持つ
のMOS-FET 及び抵抗をそれぞれ差動対及び負荷抵抗とし
て用いる。
According to a fourth aspect of the present invention, there is provided a differential amplifier using a MOS-FET.
A MOS-FET and a resistor having a characteristic variation factor substantially equal to the MOS-FET and the reference resistance are used as a differential pair and a load resistance, respectively.

【0027】また、上記基準電流・電圧回路の電流、ま
たはカレントミラー回路を用いて基準電流・電圧回路の
電流とほぼ等しい電流を、差動増幅回路の電流源とする
構成にした。
The current of the reference current / voltage circuit or the current substantially equal to the current of the reference current / voltage circuit using a current mirror circuit is used as a current source of the differential amplifier circuit.

【0028】請求項5の本発明は、請求項4記載のカレ
ントミラー回路を、カスコード接続して構成した。請求
項6の本発明は、請求項4、5記載の基準電流・電圧回
路と差動増幅回路を、同一LSI チップ上に集積する構成
にした。
According to a fifth aspect of the present invention, the current mirror circuit according to the fourth aspect is configured by cascode connection. According to a sixth aspect of the present invention, the reference current / voltage circuit and the differential amplifier circuit according to the fourth and fifth aspects are integrated on the same LSI chip.

【0029】次に、図1を参照して本発明の原理を説明
するが、図1(a) 中の第1のMOS-FET のゲート・ドレイ
ン間と、図1(b) の第1,第2のMOS-FET のゲート・ド
レイン間を接続する場合があるが、この場合は図示して
いない。また、図1(b) の原理は(a)の原理とほぼ同一
の為に(a) のみの原理説明を行う。
Next, the principle of the present invention will be described with reference to FIG. 1; however, between the gate and the drain of the first MOS-FET in FIG. The gate and drain of the second MOS-FET may be connected, but this case is not shown. Further, since the principle of FIG. 1B is substantially the same as the principle of FIG. 1A, only the principle of FIG.

【0030】さて、第1のMOS-FET の利得係数はβであ
り、第2のMOS-FET の利得係数は、例えば、ゲート幅を
N 倍にして第1のMOS-FET の利得係数のN 倍の Nβとな
っている。なお、N は正数である。
The gain coefficient of the first MOS-FET is β, and the gain coefficient of the second MOS-FET is, for example, the gate width.
When N times, the gain becomes Nβ which is N times the gain coefficient of the first MOS-FET. N is a positive number.

【0031】一方、上記参考文献上巻61頁の(1.175) に
示す ID = (k´/2) (W /L) ( VGS− Vt )2 と、上記のβ = k´W / L を利用して第1のMOS-FET 、
第2のMOS-FET を流れる電流I1, I2を求めると、近似的
に下記の式で表される。即ち、 I1 =(β/2) ・(VGS1 − Vt )2 (2) I2 =( Nβ/2) ・(VGS2 − Vt )2 (3) 但し、 VGS1 ,V GS2 :第1,2 のMOS-FET のMOS-FET のゲ
ート・ソース間電圧 Vt : MOS-FETのしきい値電圧 ここで、第1、2のMOS-FET の両端に印加される電圧が
等しくなる様に制御を行うと、 VGS1 ,VGS2 の電位差が
基準抵抗R1の両端にかかるので、以下の関係が成り立
つ。
On the other hand, I D = (k ′ / 2) (W / L) (V GS −V t ) 2 shown in (1.175) of the first volume of the above-mentioned reference, and β = k′W / L Using the first MOS-FET,
When the currents I 1 and I 2 flowing through the second MOS-FET are obtained, they are approximately expressed by the following equations. That is, I 1 = (β / 2) ・ (V GS1 − V t ) 2 (2) I 2 = (Nβ / 2) ・ (V GS2 − V t ) 2 (3) where V GS1 , V GS2 : first and second MOS-FET of the MOS-FET of the gate-source voltage V t: where the threshold voltage of the MOS-FET, a voltage equal to be applied across the first and second MOS-FET When control is performed such, the potential difference V GS1, V GS2 is applied across the reference resistor R 1, the following relationship holds.

【0032】 R1 × IS = VGS1 − VGS2 (4) = (2・I1 / β)1/2−(2・I2 /Nβ)1/2 なお、簡単の為に I1 = M ×I2 とすると、電流は以下
の式で表される。
[0032] R 1 × I S = V GS1 - V GS2 (4) = (2 · I 1 / β) 1/2 - (2 · I 2 / Nβ) 1/2 It should be noted that, for the sake of simplicity I 1 = If M × I 2 , the current is represented by the following equation.

【0033】I2 = 2・ A2 / (R1)2β (5) 但し、 A= M1/2 −(1/ N1/2) この様に、電流 I2 は基準抵抗値R1の2乗に反比例し、
利得係数βに反比例する様な基準電流が得られる。
I 2 = 2 · A 2 / (R 1 ) 2 β (5) where A = M 1/2 − (1 / N 1/2 ) Thus, the current I 2 is equal to the reference resistance R 1 Inversely proportional to the square of
A reference current that is inversely proportional to the gain coefficient β is obtained.

【0034】ここで、増幅器の抵抗及びMOS-FET の特性
が充分揃っており、特性の相対的変動量がほぼ等しいと
仮定する。増幅器の抵抗値R 及び利得係数βが、それぞ
れ上記 R1,βの P倍, Q 倍に等しい時、基準電流 I2
値を増幅器の電流として用い、電流値 I2 を小信号利得
の式 (1)に代入すると、 G= P・R1・Q1/2・β1/2 ・ 21/2・A ・(1 / R1)・ 1/(β)1/2 = P・Q1/2・21/2・A = 一定 (6) となって、小信号利得G が基準抵抗値R1や利得係数値β
に依存しない特性が得られる。
Here, it is assumed that the resistance of the amplifier and the characteristics of the MOS-FET are sufficiently uniform and that the relative variations of the characteristics are substantially equal. When the resistance value R and the gain coefficient β of the amplifier are equal to the P times and the Q times of the above R 1 and β, respectively, the value of the reference current I 2 is used as the amplifier current, and the current value I 2 is calculated by the following equation. Substituting into (1), G = P ・ R 1・ Q 1/2・ β 1/2・ 2 1/2・ A ・ (1 / R 1 ) ・ 1 / (β) 1/2 = P ・ Q 1/2・ 2 1/2・ A = constant (6), and the small signal gain G becomes the reference resistance value R 1 and the gain coefficient value β
Characteristics that do not depend on.

【0035】また、第1のMOS-FET の両端に生じる電
圧、即ち VGS1 の値は上記の (2)式から下記の式とな
る。 VGS1 = (2・M1/2・A1/2 )/ ( R1・β) + VT (7) さて、(7) 式のβは温度が高くなると値が小さくなるの
で、第1項は温度が高くなると値が高くなる。また、 V
T は温度が高くなると値が小さくなる。
The voltage generated at both ends of the first MOS-FET, that is, the value of V GS1 is given by the following equation from the above equation (2). V GS1 = (2 · M 1/2 · A 1/2 ) / (R 1 · β) + V T (7) Since β in equation (7) decreases as the temperature increases, the first The term increases in value as the temperature increases. Also, V
The value of T decreases as the temperature increases.

【0036】従って、第1項の係数を適切に設定すれ
ば、電圧の温度依存性を殆どなくす等、温度依存性を設
計することのできる基準電圧として用いることもでき
る。但し、この場合、(7) 式で基準抵抗値R1の精度依存
性は除去することはできないので、基準抵抗は精度が高
いことが必要である。
Accordingly, if the coefficient of the first term is appropriately set, the coefficient can be used as a reference voltage for which the temperature dependency can be designed such that the temperature dependency of the voltage is almost eliminated. However, in this case, (7) because it is impossible to precision-dependent reference resistance value R 1 is removed by formula, the reference resistance is required to have a high accuracy.

【0037】この様に本発明によれば、差動増幅回路の
電流値として、基準抵抗値や利得係数の変動を打ち消す
様に制御した基準電流を用いることで、差動増幅回路の
利得の変動を小さく抑えることができる。
As described above, according to the present invention, by using the reference current controlled so as to cancel the fluctuation of the reference resistance value and the gain coefficient as the current value of the differential amplifier circuit, the fluctuation of the gain of the differential amplifier circuit is obtained. Can be kept small.

【0038】[0038]

【発明の実施の形態】図2は第1、第4の本発明の実施
例の要部構成図、図3は図2に示す実施例のシミュレー
ション説明図(その1)で、(a) は基準抵抗値を変化し
た時の電源電圧:電流値、(b) は温度を変化した時の電
源電圧:電流値の説明図、図4は図2に示す実施例のシ
ミュレーション説明図(その2)で、(c) は温度を変化
した時の周波数:差動増幅回路の利得の説明図、(d) は
温度を変化した時の周波数:差動増幅回路の利得の説明
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a diagram showing the essential parts of the first and fourth embodiments of the present invention, and FIG. 3 is an explanatory diagram (part 1) of a simulation of the embodiment shown in FIG. Power supply voltage: current value when the reference resistance value is changed, (b) is an explanatory diagram of the power supply voltage: current value when the temperature is changed, and FIG. 4 is a simulation explanatory diagram (part 2) of the embodiment shown in FIG. (C) is an explanatory diagram of the frequency when the temperature is changed: the gain of the differential amplifier circuit, and (d) is an explanatory diagram of the frequency when the temperature is changed: the gain of the differential amplifier circuit.

【0039】図5は第1、第5の本発明の実施例の要部
構成図、図6は第2、第4の本発明の実施例の要部構成
図、図7は図6に示す実施例のシミュレーション説明図
で、(a) は温度を変化した時の電源電圧:X点の電圧
値、(b) は温度を変化した時の電源電圧:MOS-FET 33に
流れる電流値の説明図である。
FIG. 5 is a view showing a main part of the first and fifth embodiments of the present invention, FIG. 6 is a view showing a main part of the second and fourth embodiments of the present invention, and FIG. 7 is shown in FIG. 7A is a diagram illustrating a simulation of the embodiment, in which FIG. 7A is a power supply voltage when the temperature is changed: the voltage value at the point X, and FIG. FIG.

【0040】図8は第3、第4の本発明の実施例の要部
構成図で、図9は図8に示す実施例のシミュレーション
説明図で、(a) は温度を変化した時の電源電圧:MOS-FE
T 43に流れる電流値、(b) は温度を変化した時の電源電
圧:MOS-FET 43に流れる電流値の説明図である。
FIGS. 8A and 8B are diagrams showing the main parts of the third and fourth embodiments of the present invention. FIGS. 9A and 9B are explanatory diagrams of the simulation of the embodiment shown in FIG. 8, and FIG. Voltage: MOS-FE
FIG. 4B is a diagram illustrating a current value flowing through a T-43, and FIG.

【0041】なお、全図を通じて同一符号は同一対象物
を示す。また、従来例で詳細説明した部分については概
略説明し、本発明の部分について詳細説明する。
The same reference numerals indicate the same objects throughout the drawings. In addition, portions that have been described in detail in the conventional example will be briefly described, and portions of the present invention will be described in detail.

【0042】以下、図2〜図9の説明を行う。先ず、図
2〜図4を用いて、第1、第4の本発明の説明を行う。
図2は利得補償用バイアス回路を付加した差動増幅回路
を示す。
Hereinafter, FIGS. 2 to 9 will be described. First, the first and fourth embodiments of the present invention will be described with reference to FIGS.
FIG. 2 shows a differential amplifier circuit to which a bias circuit for gain compensation is added.

【0043】図中、10, 11は基準となるNch MOS-FET, 1
7 は基準抵抗、12はオペアンプ、16a, 16bは基準となる
MOS-FET に一定比率の電流を供給する抵抗、13は定電流
源として働くNch MOS-FET, 14 は差動増幅回路の定電流
源として働くNch MOS-FET, 15a, 15b は差動対のNch MO
S-FET, 18a, 18b は負荷抵抗である。
In the figure, reference numerals 10 and 11 denote Nch MOS-FETs serving as a reference, 1
7 is reference resistance, 12 is operational amplifier, 16a, 16b is reference
A resistor that supplies a constant current to the MOS-FET, 13 is an Nch MOS-FET that works as a constant current source, 14 is an Nch MOS-FET that works as a constant current source of the differential amplifier circuit, 15a and 15b are differential pair Nch MO
S-FETs 18a and 18b are load resistors.

【0044】さて、Nch MOS-FET 11は、例えば、ゲート
幅をN 倍とすることで、Nch MOS-FET 10に比べて利得係
数をN 倍にしてある。また、Nch MOS-FET 10で第1のMO
S-FET を、Nch MOS-FET 11と基準抵抗17で第2のMOS-FE
T を構成する。定電流源13,14でカレントミラー回路を
構成する。
The Nch MOS-FET 11 has a gain factor N times that of the Nch MOS-FET 10 by, for example, setting the gate width to N times. In addition, the first MO with Nch MOS-FET 10
The S-FET is connected to the second MOS-FE with Nch MOS-FET 11 and reference resistor 17.
Construct T. The constant current sources 13 and 14 form a current mirror circuit.

【0045】オペアンプ12は、差動入力の電位がほぼ等
しくなる様にMOS-FET 13のゲート電位を調節し、電流を
変化させる。また、抵抗16a, 16bの両端にかかる電圧は
ほぼ等しい為、基準MOS-FET 11, 10に流れる電流は抵抗
16a, 16bの抵抗比で決定される。
The operational amplifier 12 adjusts the gate potential of the MOS-FET 13 so that the potentials of the differential inputs become substantially equal, and changes the current. Since the voltages applied to both ends of the resistors 16a and 16b are almost equal, the current flowing through the reference MOS-FETs 11 and 10 is
It is determined by the resistance ratio of 16a, 16b.

【0046】従って、前述の原理式により、第1のMOS-
FET,第2のMOS-FET に流れる電流の値は基準抵抗17の抵
抗値の2乗に反比例し、Nch MOS-FET 30, 31の利得係数
に反比例する特性を持つ。
Accordingly, the first MOS-
The value of the current flowing through the FET and the second MOS-FET has a characteristic that is inversely proportional to the square of the resistance value of the reference resistor 17 and inversely proportional to the gain coefficient of the Nch MOS-FETs 30 and 31.

【0047】MOS-FET 13の電流は、第1のMOS-FET,第2
のMOS-FET に流れる電流の和であり、それぞれの回路の
電流と同じ様な特性を持つ。また、差動増幅回路の定電
流源14に流れる電流も、カレントミラー回路によりMOS-
FET 35とほぼ同様な特性を持つ。
The current of the MOS-FET 13 is divided into the first MOS-FET and the second
This is the sum of the currents flowing through the MOS-FETs, and has the same characteristics as the currents of the respective circuits. Also, the current flowing to the constant current source 14 of the differential amplifier circuit is
It has almost the same characteristics as FET 35.

【0048】従って、基準抵抗17と抵抗18a, 18bの特性
変動が相対的に等しい抵抗を用い、且つ、Nch MOS-FET
10, 11とNch MOS-FET 15a, 15bの特性変動が相対的に等
しいMOS-FET を用いれば、差動増幅回路の小信号利得は
一定に保たれる。
Therefore, the reference resistor 17 and the resistors 18a and 18b use resistors whose characteristic fluctuations are relatively equal, and the Nch MOS-FET
If the MOS-FETs whose characteristic fluctuations are relatively equal between the Nch MOS-FETs 15a and 15b and the Nch MOS-FETs 15a and 15b are used, the small signal gain of the differential amplifier circuit is kept constant.

【0049】この様に、本発明によれば、増幅利得は抵
抗やNch MOS-FET の変動によらず一定となり、増幅器の
設計を容易にすることができる。一般に、集積回路にお
いて、同一LSI チップ内の抵抗、MOS-FET 等の素子は同
一の製造プロセスを経ている為、プロセス条件の変動は
ほぼ同じであり、また、距離的にも近接している為、温
度等の環境条件の変動もほぼ同じである。
As described above, according to the present invention, the amplification gain becomes constant irrespective of the fluctuation of the resistance and the Nch MOS-FET, and the design of the amplifier can be facilitated. Generally, in an integrated circuit, since the elements such as resistors and MOS-FETs in the same LSI chip go through the same manufacturing process, the fluctuations in the process conditions are almost the same and the distances are close. The fluctuation of environmental conditions such as temperature and temperature is almost the same.

【0050】従って、利得係数値βや抵抗値R 等の素子
パラメータの変動の相対的比率は、チップ内でほぼ同じ
と見なされ、抵抗や MOS-FETの特性が揃っていると云う
条件は問題なく満たすことができる。
Therefore, it is considered that the relative ratios of the fluctuations of the element parameters such as the gain coefficient value β and the resistance value R are considered to be substantially the same in the chip, and the condition that the characteristics of the resistance and the MOS-FET are uniform is a problem. Can be fulfilled without.

【0051】これにより、集積回路に本発明を用いるこ
とは非常に有効である。図3は図2に示す実施例のシミ
ュレーション結果(その1)を示し、(a) は基準抵抗値
が標準値に対して±30% 変動した時の電源電圧:直流電
流特性、(b) は周囲温度が−50〜+100 ℃まで変動した
時の電源電圧:直流電流特性を示す図であるが、縦軸は
Nch MOS-FET 13に流れる電流である。
Thus, the use of the present invention for an integrated circuit is very effective. FIG. 3 shows a simulation result (part 1) of the embodiment shown in FIG. 2, wherein (a) is a power supply voltage: DC current characteristic when the reference resistance value fluctuates ± 30% from the standard value, and (b) is a graph. FIG. 4 is a diagram showing a power supply voltage: DC current characteristic when the ambient temperature fluctuates from −50 to + 100 ° C.
This is a current flowing through the Nch MOS-FET 13.

【0052】また、図4は図2に示す実施例のシミュレ
ーション結果(その2)を示し、(c) は基準抵抗値が標
準値に対して±30% 変動した時の周波数:差動増幅回路
の利得特性、(d) は周囲温度が−50度〜+100 ℃まで変
動した時の周波数:差動増幅回路の利得特性を示す図で
ある。
FIG. 4 shows a simulation result (part 2) of the embodiment shown in FIG. 2. FIG. 4 (c) shows the frequency when the reference resistance value fluctuates ± 30% from the standard value: the differential amplifier circuit. FIG. 9D is a diagram showing the frequency characteristic when the ambient temperature fluctuates from −50 ° C. to + 100 ° C .: the gain characteristic of the differential amplifier circuit.

【0053】図3、図4に示す様に、シミュレーション
の結果、抵抗及び温度による利得係数の変動によって、
抵抗や利得係数の変動をキャンセルする様に電流が変化
し、結果として小信号利得のバラツキが非常に小さく抑
えられていることが判る。
As shown in FIGS. 3 and 4, as a result of the simulation, the variation of the gain coefficient due to the resistance and temperature causes
It can be seen that the current changes so as to cancel the change in the resistance and the gain coefficient, and as a result, the variation in the small signal gain is suppressed to a very small value.

【0054】図5を用いて第1、第5の本発明の実施例
を説明する。図に示す様に、定電流源としてカスコード
接続した回路を示す。図中、20, 21は基準となるNch MO
S-FET, 27 は基準抵抗, 22はオペアンプ, 26a, 26bは抵
抗, 23a, 23bは定電流源として働くNch MOS-FET, 24a,
24b は差動増幅回路の定電流源として働くNch MOS-FET,
25a, 25b は差動対を構成するNch MOS-FET 28a, 28bは
負荷抵抗である。
The first and fifth embodiments of the present invention will be described with reference to FIG. As shown in the figure, a circuit connected in cascode as a constant current source is shown. In the figure, 20 and 21 are the reference Nch MOs.
S-FET, 27 is a reference resistor, 22 is an operational amplifier, 26a and 26b are resistors, 23a and 23b are Nch MOS-FETs acting as constant current sources, 24a,
24b is an Nch MOS-FET that works as a constant current source for the differential amplifier,
25a and 25b are Nch MOS-FETs 28a and 28b forming a differential pair, and are load resistors.

【0055】定電流源として働くNch MOS-FET 23a, 23b
と24a, 24bはカレントミラー回路を構成する。ここで、
MOS-FET の電流はドレイン・ソース間電圧 VDSに依存す
る為、MOS-FET のゲート・ソース間電圧 VGSが同じでも
VDSが異なると電流が異なると云う問題がある。
Nch MOS-FETs 23a and 23b functioning as constant current sources
And 24a, 24b constitute a current mirror circuit. here,
Since the current of the MOS-FET depends on the drain-source voltage V DS , even if the gate-source voltage V GS of the MOS-FET is the same,
There is a problem that the current is different if the V DS is different.

【0056】そこで、図5に示す様に、定電流源として
働くNch MOS-FET をカスコード接続すれば、より大きな
電源電圧が必要になるものの、電流の VDS依存性が小さ
くなり、定電流源23a, 23bと24a, 24bの電流値をより近
い値にすることができる。
Therefore, as shown in FIG. 5, if an Nch MOS-FET serving as a constant current source is connected in cascode, a larger power supply voltage is required, but the V DS dependence of the current is reduced, and the constant current source is reduced. The current values of 23a, 23b and 24a, 24b can be made closer.

【0057】図6を用いて第2、第4の本発明の実施例
を説明する。図2、図5に示す本発明の実施例はNch MO
S-FET を使用していたが、Pch MOS-FET を用いても同様
に構成できる。図6はPch MOS-FET を用いた回路を示
す。図6中、30, 31は基準となるPch MOS-FET, 37 は基
準抵抗, 32はオペアンプ, 36a, 36bは抵抗, 33は定電流
源として働くPch MOS-FET, 34 は差動増幅回路の定電流
源として働くPch MOS-FET, 35a,35bは差動対を構成する
Pch MOS-FET, 38a, 38b は負荷抵抗である。
The second and fourth embodiments of the present invention will be described with reference to FIG. The embodiment of the present invention shown in FIGS.
Although an S-FET was used, a similar configuration can be made using a Pch MOS-FET. FIG. 6 shows a circuit using a Pch MOS-FET. In FIG. 6, reference numerals 30 and 31 denote reference Pch MOS-FETs, reference numeral 37 denotes a reference resistor, reference numeral 32 denotes an operational amplifier, reference numerals 36a and 36b represent resistors, reference numeral 33 denotes a Pch MOS-FET serving as a constant current source, and reference numeral 34 denotes a differential amplifier circuit. Pch MOS-FETs acting as constant current sources, 35a and 35b constitute a differential pair
Pch MOS-FETs, 38a and 38b are load resistors.

【0058】Pch MOS-FET 31は、例えば、ゲート幅をN
倍にしてPch MOS-FET 30に比べて利得係数をN 倍にして
ある。Pch MOS-FET 30で第1のMOS-FET を、Pch MOS-FE
T 31と抵抗37で第2のMOS-FET をそれぞれ構成する。定
電流源33, 34でカレントミラー回路を構成する。
The Pch MOS-FET 31 has, for example, a gate width of N
The gain coefficient is N times larger than that of the Pch MOS-FET 30. The first MOS-FET is replaced with the Pch MOS-FE
The second MOS-FET is constituted by T31 and the resistor 37, respectively. The constant current sources 33 and 34 form a current mirror circuit.

【0059】また、本実施例では、第1のMOS-FET ,第
2のMOS-FET の電位はアースを基準として決まり、基準
電圧として利用しやすい。基準電圧としては、例えば、
図6中の×点の電圧を用いる。×点の電圧は上記(7) 式
の電圧に抵抗36b の電圧効果が加わるが、これは(7) 式
の第1項の係数が異なるだけで定性的傾向は同様である
ので、この電圧降下分も含めた設計を行えばよい。
Further, in this embodiment, the potentials of the first MOS-FET and the second MOS-FET are determined with reference to the ground, and can be easily used as a reference voltage. As the reference voltage, for example,
The voltage at the point x in FIG. 6 is used. The voltage at the point x is obtained by adding the voltage effect of the resistor 36b to the voltage of the above equation (7), but the qualitative tendency is the same except that the coefficient of the first term of the equation (7) is different. What is necessary is just to design including minutes.

【0060】図7は図6に示す実施例のシミュレーショ
ン結果を示す。図7(a) は温度が−50〜100 ℃まで変化
した時の直流電圧特性、図7(b) は温度が−50〜+100
℃まで変化した時の直流電流特性である。なお、図7の
横軸は電源電圧、縦軸は(a)が×点の電圧、(b) がPch M
OS-FET 33に流れる電流である。
FIG. 7 shows a simulation result of the embodiment shown in FIG. FIG. 7A shows a DC voltage characteristic when the temperature changes from −50 to 100 ° C., and FIG. 7B shows a temperature between −50 and + 100 ° C.
This is a DC current characteristic when the temperature changes to ° C. In FIG. 7, the horizontal axis is the power supply voltage, the vertical axis is (a) the voltage at the x point, and (b) is the Pch M
This is the current flowing through the OS-FET 33.

【0061】シミュレーションの結果によると、電源電
圧が2V 以上の場合、×点の電圧は電源変動や温度変動
によらず安定な電圧となっており、基準電圧として有効
であることが分かる。
According to the simulation results, when the power supply voltage is 2 V or more, the voltage at the point x is stable regardless of power supply fluctuations and temperature fluctuations, and is effective as a reference voltage.

【0062】図8を用いて第3、第4の本発明の実施例
を説明する。図8において、40, 41は基準となるNch MO
S-FET, 46 は基準抵抗, 42a,42b はカレントミラー回路
を構成するPch MOS-FET, 43 は定電流源として働くNch
MOS-FET, 44 は差動増幅回路の定電流源として働くNch
MOS-FET, 45a, 45b は差動対を構成するNch MOS-FET, 4
7a, 47b は負荷抵抗である。
Third and fourth embodiments of the present invention will be described with reference to FIG. In FIG. 8, reference numerals 40 and 41 are reference Nch MOs.
S-FET, 46 is a reference resistor, 42a and 42b are Pch MOS-FETs that constitute a current mirror circuit, 43 is an Nch that works as a constant current source
MOS-FET, 44 is Nch which works as a constant current source of the differential amplifier circuit
MOS-FETs, 45a and 45b are Nch MOS-FETs forming a differential pair, 4
7a and 47b are load resistances.

【0063】また、Nch MOS-FET 41は、例えば、ゲート
幅をN 倍にして、Nch MOS-FET 40に比べて利得係数をN
倍にする。そして、Nch MOS-FET 40は第1のMOS-FET
を、Nch MOS-FET 41と抵抗46で第2のMOS-FET を、定電
流源43, 44でカレントミラー回路をそれぞれ構成する。
The Nch MOS-FET 41 has, for example, a gate width N times larger and a gain coefficient N
Double it. And the Nch MOS-FET 40 is the first MOS-FET
The N-channel MOS-FET 41 and the resistor 46 constitute a second MOS-FET, and the constant current sources 43 and 44 constitute a current mirror circuit.

【0064】そして、第1のMOS-FET ,第2のMOS-FET
の電流値はカレントミラー回路42a,42bにより一定比率
に制御され、且つ、Nch MOS-FET 40とNch MOS-FET 41の
ゲート電位は同じであるのて、Nch MOS-FET 40とNch MO
S-FET 41の VGSの電位差が抵抗46に印加する。
Then, the first MOS-FET and the second MOS-FET
Is controlled at a fixed ratio by the current mirror circuits 42a and 42b, and since the gate potentials of the Nch MOS-FET 40 and the Nch MOS-FET 41 are the same, the Nch MOS-FET 40 and the Nch
The potential difference of V GS of the S-FET 41 is applied to the resistor 46.

【0065】この為、上記(5) 式により、電流値は抵抗
46の抵抗値の2乗に反比例し、NchMOS-FET 41の利得係
数に反比例する。図9は図8に示す実施例のシミュレー
ション結果を示す。図9(a) 抵抗値が±30% 変動した時
の直流電流特性、(b) は温度が−50〜+100 ℃まで変化
した時の直流電流特性である。また、図9の横軸は電源
電圧、縦軸はMOS-FET 43に流れる電流である。
Therefore, according to the above equation (5), the current value
It is inversely proportional to the square of the resistance value of 46, and inversely proportional to the gain coefficient of the NchMOS-FET 41. FIG. 9 shows a simulation result of the embodiment shown in FIG. FIG. 9 (a) shows the DC current characteristics when the resistance value fluctuates ± 30%, and FIG. 9 (b) shows the DC current characteristics when the temperature changes from −50 to + 100 ° C. The horizontal axis in FIG. 9 is the power supply voltage, and the vertical axis is the current flowing through the MOS-FET 43.

【0066】シミュレーションの結果、抵抗及び温度に
よる利得係数の変動によって、電流が抵抗や利得係数の
変動を補償する様に変化することが分かる。図8に示す
実施例は、図2、図5、図6に示す実施例に比べると、
オペアンプが省略されているので回路構成が簡単になっ
ている。
As a result of the simulation, it is found that the current changes so as to compensate for the change in the resistance and the gain coefficient due to the change in the gain coefficient due to the resistance and the temperature. The embodiment shown in FIG. 8 is different from the embodiment shown in FIG. 2, FIG. 5, and FIG.
Since the operational amplifier is omitted, the circuit configuration is simplified.

【0067】しかし、図3と図9の比較から判る様に、
図8に示す実施例の方が傾きを持っている点で電源電圧
変動に若干弱くなっているが、回路規模が小さい点で有
利である。
However, as can be seen from the comparison between FIG. 3 and FIG.
The embodiment shown in FIG. 8 is slightly susceptible to power supply voltage fluctuation in that it has a slope, but is advantageous in that the circuit scale is small.

【0068】[0068]

【発明の効果】以上詳細に説明した様に本発明によれ
ば、MOS-FET を用いた増幅装置の増幅利得変動を補正す
る基準電流・基準電圧回路の提供が行えると云う効果が
ある。
As described above in detail, according to the present invention, there is an effect that a reference current / reference voltage circuit for correcting an amplification gain fluctuation of an amplifier using a MOS-FET can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は第1、第3の本発明の原理説明図で、
(a) は第1の本発明の原理説明図、(b)は第3の本発
明の原理説明図である。
FIG. 1 is a diagram for explaining the principle of the first and third aspects of the present invention,
(a) is an explanatory view of the principle of the first present invention, and (b) is an explanatory view of the principle of the third present invention.

【図2】第1、第4の本発明の実施例の要部構成図であ
る。
FIG. 2 is a main part configuration diagram of a first and a fourth embodiment of the present invention;

【図3】図2に示す実施例のシミュレーション説明図
(その1)で、(a) は基準抵抗値を変化した時の電源電
圧:電流値、(b) は温度を変化した時の電源電圧:電流
値の説明図である。
FIGS. 3A and 3B are explanatory diagrams (part 1) of the simulation of the embodiment shown in FIG. 2, in which (a) is a power supply voltage when the reference resistance value is changed: current value, and (b) is a power supply voltage when the temperature is changed. : It is explanatory drawing of a current value.

【図4】図2に示す実施例のシミュレーション説明図
(その2)で、(c) は温度を変化した時の周波数:差動
増幅回路の利得、(d) は温度を変化した時の周波数:差
動増幅回路の利得の説明図である。
FIG. 4 is an explanatory diagram (part 2) of the simulation of the embodiment shown in FIG. 2, where (c) is the frequency when the temperature is changed: the gain of the differential amplifier circuit, and (d) is the frequency when the temperature is changed. : Is an explanatory diagram of the gain of the differential amplifier circuit.

【図5】第1、第5の本発明の実施例の要部構成図であ
る。
FIG. 5 is a main part configuration diagram of the first and fifth embodiments of the present invention.

【図6】第2、第4の本発明の実施例の要部構成図であ
る。
FIG. 6 is a main part configuration diagram of a second and a fourth embodiment of the present invention.

【図7】図6に示す実施例のシミュレーション説明図
で、(a) は温度を変化した時の電源電圧:X点の電圧
値、(b) は温度を変化した時の電源電圧:MOS-FET 33に
流れる電流値の説明図である。
7A and 7B are explanatory diagrams of the simulation of the embodiment shown in FIG. 6, wherein FIG. 7A is a power supply voltage when the temperature is changed: the voltage value at the point X, and FIG. 7B is a power supply voltage when the temperature is changed: MOS- FIG. 4 is an explanatory diagram of a current value flowing through the FET 33.

【図8】第3、第4の本発明の実施例の要部構成図であ
る。
FIG. 8 is a main part configuration diagram of a third and a fourth embodiment of the present invention.

【図9】図8に示す実施例のシミュレーション説明図
で、(a) は温度を変化した時の電源電圧:MOS-FET 43に
流れる電流値、(b) は温度を変化した時の電源電圧:MO
S-FET 43に流れる電流値の説明図である。
9A and 9B are explanatory diagrams of the simulation of the embodiment shown in FIG. 8, wherein FIG. 9A is a power supply voltage when the temperature is changed: a current value flowing through the MOS-FET 43, and FIG. 9B is a power supply voltage when the temperature is changed. : MO
4 is an explanatory diagram of a current value flowing through an S-FET 43. FIG.

【図10】従来例の要部構成図である。FIG. 10 is a configuration diagram of a main part of a conventional example.

【符号の説明】[Explanation of symbols]

10,11 基準となるNch MOS-FET 17 基準抵抗 12 オペアンプ 16a,16b 抵抗 13,14 定電流源 15a,15b 差動対 18a,18b 負荷抵抗 20,21 基準となるNch MOS-FET 27 基準抵抗 22 オペアンプ 26a,26b 抵抗 23a,23b 定電流源 25a,25b 差動対 28a,28b 負荷抵抗 10, 11 Reference Nch MOS-FET 17 Reference resistance 12 Operational amplifier 16a, 16b Resistance 13, 14 Constant current source 15a, 15b Differential pair 18a, 18b Load resistance 20, 21 Reference Nch MOS-FET 27 Reference resistance 22 Operational amplifier 26a, 26b Resistance 23a, 23b Constant current source 25a, 25b Differential pair 28a, 28b Load resistance

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1のMOS−FETと、該第1のMO
S−FETとほぼ同じ特性を具備し、ソースとドレイン
のうち、何れか一方に基準抵抗が接続された第2のMO
S−FETを有し、 第1のMOS−FETと第2のMOS−FETのソース
同士、または、該第1のMOS−FETのソースと第2
のMOS−FETのソースに接続した基準抵抗を共通接
続すると共に、該第1のMOS−FETと該第2のMO
S−FETに流れる電流比率が予め設定された値を保
ち、且つ、該第1のMOS−FETのゲート・ソース間
電圧と該第2のMOS−FETのゲート・ソース間電圧
の差電圧とほぼ同じ電位が、該基準抵抗の両端に印加す
る様に第1、第2のMOS−FETを流れる電流を合わ
せた合成電流を制御する制御手段を設け、 制御した合成電流を基準電流として、及び上記共通接続
とした第1のMOS−FETと第2のMOS−FETの
ソース側端子に現れる電圧を基準電圧として使用する構
成にしたことを特徴とする基準電流・電圧回路。
A first MOS-FET and said first MOS-FET;
A second MO having substantially the same characteristics as the S-FET and having a reference resistor connected to one of the source and the drain.
An S-FET, and the sources of the first MOS-FET and the second MOS-FET or the source of the first MOS-FET and the second
, The reference resistor connected to the source of the first MOS-FET and the second MOS-FET are connected in common.
The current ratio flowing through the S-FET maintains a preset value, and is substantially equal to the difference voltage between the gate-source voltage of the first MOS-FET and the gate-source voltage of the second MOS-FET. Control means for controlling a combined current obtained by combining currents flowing through the first and second MOS-FETs so that the same potential is applied to both ends of the reference resistor; A reference current / voltage circuit, wherein a voltage appearing at a source side terminal of a first MOS-FET and a second MOS-FET connected in common is used as a reference voltage.
【請求項2】 ソースが共通の定電流源に接続された上
記第1、第2のMOS−FETのうち、第1のMOS−
FETのドレインが直接に、第2のMOS−FETのド
レインが上記基準抵抗を介してそれぞれ接続された差動
入力端子を有し、該差動入力端子間の電位がほぼ等しく
なる様に上記定電源の合成電流の値を制御する差動増幅
器と、 電源と接地面のうち、何れか一方と該差動入力端子間に
それぞれ接続され、第1、第2のMOS−FETに流れ
る電流比率を決定する第1、第2の抵抗を具備し、 制御した合成電流を基準電流として、及び電源、あるい
は接地面と上記共通ソース側端子との両端に現れる電圧
を基準電圧として使用する構成にしたことを特徴とする
請求項1の基準電流・電圧回路。
2. The first MOS-FET of the first and second MOS-FETs whose sources are connected to a common constant current source.
The drain of the FET has a differential input terminal directly connected to the drain of the second MOS-FET via the reference resistor, and the above-mentioned constant value is set so that the potentials between the differential input terminals become substantially equal. A differential amplifier for controlling the value of the combined current of the power supply; and a current ratio connected between one of the power supply and the ground plane and the differential input terminal and flowing through the first and second MOS-FETs. A configuration in which first and second resistors to be determined are provided, and a controlled combined current is used as a reference current, and a voltage appearing at both ends of a power supply or a ground plane and the common source side terminal is used as a reference voltage. The reference current / voltage circuit according to claim 1, wherein:
【請求項3】 上記第1のMOS−FETのドレインを
ゲートに、第2のMOS−FETのゲートを第1のMO
S−FETのゲートに、あるいは、第1のMOS−FE
Tのゲートを第2のMOS−FETのゲートに、第2の
MOS−FETのドレインをゲートにそれぞれ接続する
と共に、 第1のMOS−FETのソースと第2のMOS−FET
のソースに接続した基準抵抗を共に共通の定電流源に、
第1のMOS−FETと第2のMOS−FETのドレイ
ンをカレントミラー回路にそれぞれ接続し、 該カレントミラー回路で、第1のMOS−FETと該第
2のMOS−FETに流れる電流比率が予め設定された
値を保つ様に制御を行い、制御した合成電流を基準電流
として使用する構成にしたことを特徴とする請求項1の
基準電流回路。
3. The first MOS-FET has a drain as a gate and a second MOS-FET has a gate as a first MOS.
The gate of the S-FET or the first MOS-FE
The gate of T is connected to the gate of the second MOSFET, the drain of the second MOSFET is connected to the gate, and the source of the first MOSFET and the second MOSFET are connected.
The reference resistance connected to the source of
The drains of the first MOS-FET and the second MOS-FET are respectively connected to a current mirror circuit. In the current mirror circuit, a current ratio flowing through the first MOS-FET and the second MOS-FET is determined in advance. 2. The reference current circuit according to claim 1, wherein control is performed so as to maintain a set value, and the controlled combined current is used as a reference current.
【請求項4】 MOS−FETを用いた差動増幅装置に
おいて、 請求項1〜3記載の第1、第2のMOS−FET及び基
準抵抗とほぼ等しい特性変動要因を持つのMOS−FE
T及び抵抗をそれぞれ差動対及び負荷抵抗として用いる
と共に、 上記基準電流・電圧回路の電流、またはカレントミラー
回路を用いて基準電流・電圧回路の電流とほぼ等しい電
流を、差動増幅回路の電流源とする構成にしたことを特
徴とする差動増幅装置。
4. A differential amplifying device using a MOS-FET, wherein the first and second MOS-FETs according to claim 1 and a MOS-FE having a characteristic variation factor substantially equal to the reference resistance.
T and the resistor are used as a differential pair and a load resistor, respectively, and the current of the reference current / voltage circuit or the current substantially equal to the current of the reference current / voltage circuit using the current mirror circuit is used as the current of the differential amplifier circuit A differential amplifying device characterized by having a configuration as a source.
【請求項5】 請求項4記載のカレントミラー回路を、
カスコード接続して構成したことを特徴とする差動増幅
装置。
5. The current mirror circuit according to claim 4,
A differential amplifying device comprising a cascode connection.
【請求項6】 請求項4、5記載の基準電流・電圧回路
と差動増幅回路を、同一LSI チップ上に集積したことを
特徴とする差動増幅装置。
6. A differential amplifier, wherein the reference current / voltage circuit and the differential amplifier according to claim 4 are integrated on the same LSI chip.
JP19881796A 1996-07-29 1996-07-29 Differential amplifier Expired - Fee Related JP3348600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19881796A JP3348600B2 (en) 1996-07-29 1996-07-29 Differential amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19881796A JP3348600B2 (en) 1996-07-29 1996-07-29 Differential amplifier

Publications (2)

Publication Number Publication Date
JPH1049244A true JPH1049244A (en) 1998-02-20
JP3348600B2 JP3348600B2 (en) 2002-11-20

Family

ID=16397411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19881796A Expired - Fee Related JP3348600B2 (en) 1996-07-29 1996-07-29 Differential amplifier

Country Status (1)

Country Link
JP (1) JP3348600B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030082848A (en) * 2002-04-18 2003-10-23 실리콤텍(주) Variable gain amplifying circuit
JP2005253091A (en) * 2004-03-05 2005-09-15 Samsung Electronics Co Ltd Amplifier circuit
JP2007184688A (en) * 2006-01-04 2007-07-19 Fujitsu Ltd Bias circuit
JP2007202049A (en) * 2006-01-30 2007-08-09 Asahi Kasei Electronics Co Ltd Amplification factor variable amplifier
JP2008015925A (en) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd Reference voltage generation circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030082848A (en) * 2002-04-18 2003-10-23 실리콤텍(주) Variable gain amplifying circuit
JP2005253091A (en) * 2004-03-05 2005-09-15 Samsung Electronics Co Ltd Amplifier circuit
JP2007184688A (en) * 2006-01-04 2007-07-19 Fujitsu Ltd Bias circuit
JP2007202049A (en) * 2006-01-30 2007-08-09 Asahi Kasei Electronics Co Ltd Amplification factor variable amplifier
JP4585461B2 (en) * 2006-01-30 2010-11-24 旭化成エレクトロニクス株式会社 Variable gain amplifier
JP2008015925A (en) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd Reference voltage generation circuit

Also Published As

Publication number Publication date
JP3348600B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
US7746168B2 (en) Bias circuit
US7253597B2 (en) Curvature corrected bandgap reference circuit and method
JP3519361B2 (en) Bandgap reference circuit
US20090160557A1 (en) Self-biased cascode current mirror
US5835994A (en) Cascode current mirror with increased output voltage swing
KR100275177B1 (en) Low-voltage differential amplifier
US7633334B1 (en) Bandgap voltage reference circuit working under wide supply range
US5777518A (en) Method of biasing mosfet amplifiers for constant transconductance
US5793194A (en) Bias circuit having process variation compensation and power supply variation compensation
US6066944A (en) High speed current mirror circuit and method
JP3534375B2 (en) Electronic circuits including differential circuits
US8067975B2 (en) MOS resistor with second or higher order compensation
JP2005018783A (en) Current source for generating constant reference current
JP3348600B2 (en) Differential amplifier
KR100499858B1 (en) Variable gain amplifier
JP3531129B2 (en) Power supply circuit
US5006815A (en) Linear-gain amplifier arrangement
JP2765319B2 (en) Constant voltage circuit
US6798279B2 (en) Integrated circuit arrangement with a cascoded current source and an adjusting circuit for adjusting the operating point of the cascoded current source
JPH06216662A (en) Phase compensation circuit for amplifier
JP3580409B2 (en) Offset adjustment circuit
JP2005080090A (en) Output voltage control circuit of differential amplifier circuit and voltage detector
JPH0257721B2 (en)
US7583148B2 (en) Transconductance control circuit, method of controlling transconductance, and a power amplifier
JP2927803B2 (en) Constant voltage generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees