JPH1045427A - Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same - Google Patents

Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same

Info

Publication number
JPH1045427A
JPH1045427A JP19860996A JP19860996A JPH1045427A JP H1045427 A JPH1045427 A JP H1045427A JP 19860996 A JP19860996 A JP 19860996A JP 19860996 A JP19860996 A JP 19860996A JP H1045427 A JPH1045427 A JP H1045427A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
coating
film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19860996A
Other languages
Japanese (ja)
Inventor
Kenji Kato
賢二 加藤
Takehiko Sakurada
毅彦 桜田
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19860996A priority Critical patent/JPH1045427A/en
Publication of JPH1045427A publication Critical patent/JPH1045427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating liquid for forming a dark color transparent conductive film for easily manufacturing a film which lowers transmittance without scattering the visible light of a CRT screen, has the better electrical conductivity than heretofore and has an effect in shielding a low-frequency electric field at a low cost by using a coating method and the dark color transparent conductive film formed by using this liquid. SOLUTION: This coating liquid for forming the dark color transparent conductive film is prepd. by dispersing ruthenium oxide particulates as conductive particulates into a polar solvent and coating these ruthenium oxide particulates with coating layers of silver in part or the whole of the particle surfaces and the grain size thereof is <=50nm. The polar solvent in the constitution described above further contains the partial hydrolyzed polymer of alkyl silicate. The dark color transparent conductive film is obtd. by coating a base material with the coating liquid for forming the dark color transparent conductive film and further coating the film described above with a soln. of the partial hydrolyzed polymer of alkyl silicate, then baking the coating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、OA機器のディス
プレイ、テレビジョンのブラウン管などの陰極線管の前
面ガラスに電界シールド効果を付与するための暗色系透
明導電膜形成用塗布液、及びこれを用いた暗色系透明導
電膜に関し、より詳しくは、従来よりも優れた導電性を
有して低周波電界の遮蔽に適切な膜形成のための、導電
性微粒子としてルテニウム酸化物微粒子を極性溶媒中に
分散させてなる暗色系透明導電膜形成用塗布液、及びこ
れを用いた暗色系透明導電膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating liquid for forming a dark-colored transparent conductive film for imparting an electric field shielding effect to a front glass of a cathode ray tube such as a display of an OA apparatus and a cathode ray tube of a television, and the like. For the dark transparent conductive film, more specifically, ruthenium oxide fine particles were used as conductive fine particles in a polar solvent to form a film having better conductivity than before and suitable for shielding low-frequency electric fields. The present invention relates to a dispersion liquid for forming a dark-colored transparent conductive film and a dark-colored transparent conductive film using the same.

【0002】[0002]

【従来の技術】近年事務機器の電子化により多くのOA
機器が導入され、ディスプレーと向き合って終日作業を
行うという環境は珍しくなくない。代表的なOA機器で
あるコンピュータは、表示画面が見やすく視覚疲労を感
じさせないこと、その表面の帯電によるホコリの付着や
電撃ショックがないことが要求されている。これに加え
て最近では、陰極線管(CRT)から発生する低周波電
磁波の人体に対する悪影響が懸念されるため、電磁波が
外部に漏洩しないものが望まれている。
2. Description of the Related Art In recent years, many OA have been developed due to the digitization of office equipment.
It is not uncommon for devices to be installed and faced with displays to work all day. A computer, which is a typical OA device, is required to have a display screen that is easy to see and does not cause visual fatigue, and that the surface of the computer is free from dust and electric shock. In addition, recently, there is a concern that a low-frequency electromagnetic wave generated from a cathode ray tube (CRT) may have an adverse effect on a human body. Therefore, it is desired that the electromagnetic wave does not leak to the outside.

【0003】CRTでは偏向コイルやフライバックトラ
ンスから電磁波が発生する。ディスプレーの大型化に伴
い、益々大きな電磁波が周囲に洩れ易くなる傾向にあ
る。電磁波は磁界と電界とからなるが、磁界の漏洩はC
RTの偏向コイルの形状を変える等の工夫で大部分が防
止できる。一方、電磁波の電界の漏洩は、CRT前面ガ
ラスの表面に、導電性を有する透明被膜を形成すること
によって防止できる(電界シールド効果)。これは、従
来より帯電防止のために取られてきた対策と原理的には
同じであるが、漏洩電界防止のために必要とする導電性
被膜の導電性は、帯電防止のための導電性被膜の導電性
よりもはるかに高い値が求められる。具体的には、帯電
防止には表面抵抗値が108Ω/□程度で十分であると
されるが、漏洩電界防止には表面抵抗値が少なくとも1
6Ω/□以下、好ましくは102〜103Ω/□台の低
抵抗が必要である。
In a CRT, electromagnetic waves are generated from a deflection coil and a flyback transformer. As the size of the display increases, more and more electromagnetic waves tend to leak to the surroundings. An electromagnetic wave is composed of a magnetic field and an electric field.
Most can be prevented by changing the shape of the RT deflection coil. On the other hand, the leakage of the electric field of the electromagnetic wave can be prevented by forming a conductive transparent film on the surface of the CRT front glass (electric field shielding effect). This is the same in principle as the countermeasure that has been conventionally taken for antistatic, but the conductivity of the conductive film required for preventing the leakage electric field is the same as the conductive film for preventing antistatic. A value much higher than the conductivity is required. Specifically, it is considered that a surface resistance of about 10 8 Ω / □ is sufficient for antistatic, but at least one surface resistance is required for preventing leakage electric field.
0 6 Ω / □ or less, preferably required 10 2 ~10 3 Ω / □ pedestal low resistance.

【0004】この要求に対応するため、従来よりいくつ
かの提案がなされている。そのひとつに、真空蒸着、C
VD、スパッタ法などでCRT前面ガラスの表面に、酸
化錫や酸化インジウムなどの導電性酸化物被膜を形成す
る方法がある。この方法による膜は、酸化錫や酸化イン
ジウムの単一組成の連続膜で構成されるため、導電性酸
化物固有の導電性がそのまま現れて、電界シールド効果
に十分な低抵抗値が得られる。また膜厚を十分薄くかつ
均一に制御でき、CRTの解像度を損なうことなく反射
防止の処理ができる。
[0004] In order to meet this demand, several proposals have been made conventionally. One of them is vacuum deposition, C
There is a method of forming a conductive oxide film such as tin oxide or indium oxide on the surface of a CRT front glass by VD, sputtering, or the like. Since the film formed by this method is composed of a continuous film having a single composition of tin oxide or indium oxide, the conductivity inherent in the conductive oxide appears as it is, and a sufficiently low resistance value for the electric field shielding effect can be obtained. Further, the film thickness can be controlled to be sufficiently thin and uniform, and antireflection processing can be performed without impairing the resolution of the CRT.

【0005】しかしながら、この方法では各CRT毎に
雰囲気を制御して処理しなければならず、また被膜形成
に多大のコストがかかり、実用的なCRTの製造には不
都合であり、特殊用途のCRTを除いては不適切であ
る。このため、より安価で迅速に行える膜形成方法が望
まれていた。
However, in this method, it is necessary to control the atmosphere for each CRT and to perform the treatment, and it requires a great deal of cost to form a film, which is inconvenient for manufacturing a practical CRT. It is inappropriate except for. For this reason, a less expensive and faster film forming method has been desired.

【0006】低コストで低表面抵抗値を実現するものと
して、極微細なインジウム錫酸化物(ITO)粉末をア
ルキルシリケートの結合材と共にN−メチル−2−ピロ
リドンを主成分とする極性溶媒中に分散させた電界シー
ルド用処理液が提案されている(特願平4−30711
05号公報)。この処理液をCRT前面ガラスに塗布・
乾燥後、200℃以下の温度で焼成することにより、膜
厚に応じて103〜105Ω/□の表面抵抗値が得られ
る。このインクの塗布によれば、真空蒸着やスパッタ法
などの他の暗色系透明導電膜形成方法に比べて遥かに簡
便であって製造コストも低く、CRTの電界シールドへ
の対応としては有利な方法である。但し、得られる表面
抵抗値には低減できる限界があり、望ましいとされる1
2〜103Ω/□台とするには今ひとつ困難であった。
To realize a low surface resistance value at low cost, ultrafine indium tin oxide (ITO) powder is mixed with an alkyl silicate binder in a polar solvent containing N-methyl-2-pyrrolidone as a main component. A dispersed treatment solution for electric field shielding has been proposed (Japanese Patent Application No. 4-30711).
No. 05). This treatment liquid is applied to the front glass of the CRT.
After drying, by firing at a temperature of 200 ° C. or less, a surface resistance value of 10 3 to 10 5 Ω / □ is obtained depending on the film thickness. According to the application of the ink, the method is much simpler and the manufacturing cost is lower than other methods of forming a dark-colored transparent conductive film such as a vacuum evaporation method and a sputtering method, and is an advantageous method for coping with a CRT electric field shield. It is. However, the obtained surface resistance has a limit that can be reduced.
0 and 2 ~10 3 Ω / □ die was good enough difficult.

【0007】一方、CRTに用いられる透明導電膜は、
画面の透明性や解像度を損なうものであってはならず、
また、透過率もある程度制御できるものが好ましい。す
なわち、像コントラストの向上のために、CRT前面ガ
ラスの透過率は程々のレベルに制限されるが、画面の位
置によってガラス厚みが異なるため透過率が不均一にな
るため、表面形成膜で透過率を1〜2割程度調整できる
ことが望まれる。この場合、均一に画面を暗くできるこ
とは勿論であるが、解像度を落とさずに光線透過率を落
とすには、表面形成膜による拡散散乱光が極力少なく、
膜材質自体による光吸収で透過率を落とすことが望まし
い。しかしながら上記のITOを用いた場合は、可視光
透過性を本質的に有するITO粉を用いているので、輝
度が調整できる暗色系透明導電膜の低透過性を実現する
ものではない。
On the other hand, a transparent conductive film used for a CRT is
The transparency and resolution of the screen must not be impaired,
Further, it is preferable that the transmittance can be controlled to some extent. That is, in order to improve the image contrast, the transmittance of the front glass of the CRT is limited to a moderate level. However, since the thickness of the glass varies depending on the position of the screen, the transmittance becomes non-uniform. Is desired to be able to be adjusted by about 10 to 20%. In this case, of course, it is possible to uniformly darken the screen, but in order to reduce the light transmittance without lowering the resolution, diffuse scattered light by the surface forming film is as small as possible.
It is desirable to lower the transmittance by light absorption by the film material itself. However, when the above-mentioned ITO is used, since the ITO powder essentially having the visible light transmittance is used, the low transmittance of the dark-colored transparent conductive film whose luminance can be adjusted is not realized.

【0008】このように、ITO微粒子が分散した膜で
は膜導電性、可視光透過率制御性いずれも十分でなかっ
た。
[0008] As described above, the film in which the ITO fine particles are dispersed was not sufficient in both the film conductivity and the visible light transmittance controllability.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明の目的
は、CRT画面の可視光を散乱せずに透過率を低減する
機能をもち、従来よりも優れた導電性を有することによ
り人体に影響を及ぼす可能性のある低周波電界の遮蔽に
十分な効果がある膜を、塗布法を用いて簡便かつ低コス
トに作製するための暗色系透明導電膜形成用塗布液、及
びこれを用いた暗色系透明導電膜を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a function of reducing the transmittance without scattering visible light on a CRT screen, and to have an effect on the human body by having a conductivity superior to that of the conventional art. A coating solution for forming a dark-colored transparent conductive film for easily and inexpensively producing a film having a sufficient effect for shielding a low-frequency electric field that may be exerted, and a dark-colored coating solution using the same. It is to provide a transparent conductive film.

【0010】[0010]

【課題を解決するための手段】上記課題を達成するため
の本発明の暗色系透明導電膜形成用塗布液は、導電性微
粒子としてルテニウム酸化物微粒子が極性溶媒中に分散
され、該ルテニウム酸化物微粒子は粒子表面の一部又は
全部が銀の皮膜層で被覆され、かつ、その粒径が50n
m以下であることを特徴とする。
In order to achieve the above-mentioned object, a coating liquid for forming a dark-colored transparent conductive film according to the present invention comprises fine particles of ruthenium oxide as conductive fine particles dispersed in a polar solvent. The fine particles are partially or entirely covered with a silver coating layer and have a particle size of 50 n.
m or less.

【0011】また、本発明の他の暗色系透明導電膜形成
用塗布液は、導電性微粒子としてルテニウム酸化物微粒
子が極性溶媒中に分散され、該ルテニウム酸化物微粒子
は粒子表面の一部又は全部が銀の皮膜層で被覆され、か
つ、その粒径が50nm以下であり、該極性溶媒はアル
キルシリケート部分加水分解重合物を含有することを特
徴とする。
In another coating liquid for forming a dark-colored transparent conductive film according to the present invention, ruthenium oxide fine particles are dispersed in a polar solvent as conductive fine particles, and the ruthenium oxide fine particles are partially or wholly part of the particle surface. Is coated with a silver film layer and has a particle size of 50 nm or less, and the polar solvent contains an alkyl silicate partially hydrolyzed polymer.

【0012】また、本発明の暗色系透明導電膜は、上記
いずれかの暗色系透明導電膜形成用塗布液を基材にコー
トして得たものである。
Further, the dark-colored transparent conductive film of the present invention is obtained by coating a substrate with any one of the above-mentioned dark-colored transparent conductive film forming coating solutions.

【0013】また、本発明の他の暗色系透明導電膜は、
上記いずれかの暗色系透明導電膜形成用塗布液を基材に
コートし、その上にアルキルシリケート部分加水分解重
合物の溶液をコートした後焼成して得たものである。
Further, another dark transparent conductive film of the present invention comprises:
It is obtained by coating a base material with any one of the above-mentioned coating solutions for forming a dark-colored transparent conductive film, coating a solution of the alkyl silicate partially hydrolyzed polymer thereon, and then firing.

【0014】[0014]

【発明の実施の形態】本発明に用いる導電性微粒子は、
ルテニウム酸化物微粒子を主成分とし、その粒子表面の
一部又は全部が銀の皮膜層で被覆され、かつ、その粒径
は50nm以下とする。ルテニウム酸化物としては、二
酸化ルテニウム(RuO2)、ルテニウム酸ビスマス
(Bi2Ru27)、ルテニウム酸鉛(Pb2Ru
26.5)、ルテニウム酸ストロンチウム(SrRu
3)などが含まれるものとし、またこれらに限定され
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive fine particles used in the present invention are:
Ruthenium oxide fine particles are the main component, and a part or the whole of the particle surface is covered with a silver coating layer, and the particle size is 50 nm or less. As ruthenium oxides, ruthenium dioxide (RuO 2 ), bismuth ruthenate (Bi 2 Ru 2 O 7 ), lead ruthenate (Pb 2 Ru)
2 O 6.5 ), strontium ruthenate (SrRu
O 3 ) and the like, and are not limited to these.

【0015】これらルテニウム酸化物の比抵抗は10-4
〜10-5Ω・cmのオーダーであり、また銀の比抵抗は
10-6Ω・cmのオーダーであるので、銀を被覆したル
テニウム酸化物の比抵抗は明らかに錫添加酸化インジウ
ム(ITO)、アンチモン添加酸化錫(ATO)、アル
ミニウム添加酸化亜鉛(AZO)などの透明導電酸化物
に比べて2桁〜3桁低い値をもつ。このため銀を被覆し
たルテニウム酸化物による導電性微粒子は、膜内で相互
に接触した導電パスを形成し、ITO微粒子を用いた膜
等に比べてさらに低い抵抗値を実現する。
The specific resistance of these ruthenium oxides is 10 -4.
~10 -5 Ω · cm on the order of, and because the specific resistance of the silver is in the order of 10 -6 Ω · cm, the specific resistance of the ruthenium oxide silver was coated obviously indium tin oxide (ITO) , And two to three orders of magnitude lower than transparent conductive oxides such as antimony-added tin oxide (ATO) and aluminum-added zinc oxide (AZO). Therefore, the conductive fine particles made of silver-coated ruthenium oxide form conductive paths in contact with each other in the film, and realize a lower resistance value than a film or the like using ITO fine particles.

【0016】上記銀を被覆したルテニウム酸化物による
導電性微粒子が塗布液中に0.1重量%以上含まれると
高導電性の効果が生じる。導電性微粒子の含有量が増加
するに伴って形成される導電層の厚みも増加して表面抵
抗値は下がるが、塗布液中に10重量%を超えると平滑
な界面をもった膜形成が困難になると同時に、塗布液中
の導電粒子の分散安定性が低下して無視できない沈殿を
生ずるようになって好ましくない。102〜103Ω/□
台の表面抵抗値を得るには、通常の塗布条件で成膜した
場合には7重量%程度以下の含有量で十分である。
When the conductive fine particles of the silver-coated ruthenium oxide are contained in the coating solution in an amount of 0.1% by weight or more, the effect of high conductivity is obtained. As the content of the conductive fine particles increases, the thickness of the conductive layer formed also increases and the surface resistance decreases, but when the content exceeds 10% by weight in the coating solution, it is difficult to form a film having a smooth interface. At the same time, the dispersion stability of the conductive particles in the coating liquid is lowered, and a non-negligible precipitation is generated, which is not preferable. 10 2 to 10 3 Ω / □
In order to obtain a surface resistance value of the base, a content of about 7% by weight or less is sufficient when a film is formed under ordinary coating conditions.

【0017】この導電性微粒子は、微粒子の粒径が大き
すぎたり、凝集が強い場合には形成された膜に曇りが生
じ、CRT画面の解像度が低下して好ましくない。透明
膜の曇りは散乱透過光量の全透過光量に対する百分率で
定義されるヘイズの値で表現されるが、CRT画面の解
像度を損なわないためには通常ヘイズを5%以下に抑え
る必要がある。
When the conductive fine particles have too large a particle size or strong agglomeration, the formed film becomes cloudy and the resolution of the CRT screen is undesirably reduced. The haze of the transparent film is represented by a haze value defined as a percentage of the amount of scattered transmitted light with respect to the total transmitted light amount. In general, it is necessary to suppress the haze to 5% or less so as not to impair the resolution of the CRT screen.

【0018】ヘイズは膜厚にほぼ比例するが、様々の粒
径の微粒子を用いて検討した結果、導電性微粒子の粒径
は小さいほど好ましく、膜厚0.1μm程度でヘイズを
5%以下に抑えるためには導電性微粒子の平均粒径を約
50nm以下にすることが重要であることが明らかとな
った。平均粒径が50nm以下では、入射可視光の散乱
モードはほとんどがいわゆるRayleigh散乱又は
Mie散乱のモードとなり、物体の形状による散乱は極
めて少なくなる。逆に平均粒径50nm以上の粒子を用
いた場合、粒子自体の散乱や、膜表面の粗さの増加によ
る散乱が大きくなり、ヘイズが容易に5%を越えるよう
になる。
Although the haze is almost proportional to the film thickness, as a result of examination using fine particles having various particle sizes, it is preferable that the particle size of the conductive fine particles is smaller, and when the film thickness is about 0.1 μm, the haze is 5% or less. It has been clarified that it is important to keep the average particle diameter of the conductive fine particles to about 50 nm or less in order to suppress them. When the average particle diameter is 50 nm or less, most of the scattering modes of the incident visible light are so-called Rayleigh scattering or Mie scattering modes, and scattering due to the shape of the object is extremely reduced. Conversely, when particles having an average particle size of 50 nm or more are used, scattering of the particles themselves or scattering due to an increase in the roughness of the film surface increases, and the haze easily exceeds 5%.

【0019】本発明の塗布液を用いた膜の厚みは、0.
05〜0.6μm程度が好ましい。0.6μm以下が好
ましい理由は、ヘイズを5%以内に押さえるためであ
る。0.05μm以上が好ましい理由は、インク法によ
ってこれ未満の均一膜を得るのは困難だからである。
The thickness of the film using the coating solution of the present invention is 0.1.
The thickness is preferably about 0.05 to 0.6 μm. The reason why the thickness is preferably 0.6 μm or less is to suppress the haze within 5%. The reason why the thickness is preferably 0.05 μm or more is that it is difficult to obtain a uniform film of less than 0.05 μm by the ink method.

【0020】本発明の塗布液は、平均粒径50nm以下
の導電性微粒子を分散用極性溶媒中に高分散し、これに
希釈用極性溶媒を混合することにより製造することがで
きる。これは、例えば、銀を被覆した平均粒径50nm
以下のルテニウム酸化物微粒子を作製し、これを分散さ
せるための極性溶媒中に高分散し、更にこれに希釈用極
性溶媒を混合することにより得ることができる。
The coating liquid of the present invention can be produced by highly dispersing conductive fine particles having an average particle diameter of 50 nm or less in a polar solvent for dispersion, and mixing this with a polar solvent for dilution. This means that, for example, a silver-coated average particle size of 50 nm
The following ruthenium oxide microparticles can be obtained by preparing them, dispersing them in a polar solvent for high dispersion, and further mixing this with a diluting polar solvent.

【0021】銀を被覆したルテニウム酸化物微粒子の作
製には種々の方法があり、例えばCVD法、イオンプレ
ーティング法、熱プラズマ法でも可能であるが、簡便に
は銀鏡反応を利用した無電解メッキ法を用いることがで
きる。
There are various methods for producing ruthenium oxide fine particles coated with silver, for example, a CVD method, an ion plating method, and a thermal plasma method. Method can be used.

【0022】分散処理工程においては、導電性微粒子を
分散用極性溶媒中に混合し、凝集粒子が大部分一次粒子
になるまで強力な分散機を用いて解膠し、一次粒子の単
分散状態を得ることが好ましい。分散機としてはボール
ミル、アトライター、サンドミルなどを用いることがで
きる。
In the dispersion treatment step, the conductive fine particles are mixed in a polar solvent for dispersion, and pulverized using a powerful disperser until the aggregated particles become mostly primary particles. It is preferable to obtain. As the disperser, a ball mill, an attritor, a sand mill, or the like can be used.

【0023】分散用極性溶媒としては、焼成温度以下の
適当な沸点をもち、導電性微粒子を効率よく分散し得る
ものがよく、例えば、水、N−メチル−2−ピロリドン
(NMP)、エタノール、4−ヒドロキシ4−メチル−
2−ペンタノン(ジアセトンアルコール)、イソプロピ
ルアルコール、N,N−ジメチルホルムアミド(DM
F)、ジメチルアセトアミド、メチルセロソルブ、アセ
トン、テトラヒドロキシフランなどを挙げることができ
る。この際分散性を高める目的で、分散剤としてシラン
系、チタネート系、ジルコネート系、アルミネート系な
どのカップリング剤、ポリカルボン酸系、リン酸エステ
ル系、シリコーン系などの界面活性剤などを少量添加し
てもよい。本発明においては導電性に影響を及ぼすもの
でなければよく、また0〜1重量%の少量の添加であれ
ば問題はない。
As the polar solvent for dispersion, one having an appropriate boiling point not higher than the firing temperature and capable of efficiently dispersing the conductive fine particles is preferable. For example, water, N-methyl-2-pyrrolidone (NMP), ethanol, 4-hydroxy-4-methyl-
2-pentanone (diacetone alcohol), isopropyl alcohol, N, N-dimethylformamide (DM
F), dimethylacetamide, methyl cellosolve, acetone, tetrahydroxyfuran and the like. At this time, in order to enhance dispersibility, a small amount of a dispersing agent such as a silane-based, titanate-based, zirconate-based, aluminate-based coupling agent, a polycarboxylic acid-based, phosphate-based, or silicone-based surfactant is used. It may be added. In the present invention, there is no problem as long as it does not affect the conductivity, and there is no problem if a small amount of 0 to 1% by weight is added.

【0024】希釈用極性溶媒としては、分散用溶媒及び
分散剤と相溶性で、焼成温度以下の沸点をもつような溶
媒から選択される。希釈用極性溶媒は成膜時、特に塗布
時にムラなく平滑な膜が得られるよう、基板への塗り性
を向上させることを目的として用いられ、当業者は公知
の技術により容易に適当な溶媒を選択することができ
る。
The diluting polar solvent is selected from solvents which are compatible with the dispersing solvent and the dispersant and have a boiling point below the calcination temperature. The polar solvent for dilution is used for the purpose of improving coatability on a substrate at the time of film formation, in particular, to obtain a smooth film without unevenness at the time of coating, and those skilled in the art can easily prepare an appropriate solvent by a known technique. You can choose.

【0025】アルキルシリケート部分加水分解重合物は
導電性微粒子をガラス表面上に結合固定するためのもの
であって、このようなアルキルシリケート部分加水分解
重合物としては、例えばオルトアルキルシリケートを加
水分解してある程度脱水縮重合を進行させた形のものな
どが使用される。オルトアルキルシリケートとしては、
例えばオルトメチルシリケートSi(OCH34、オル
トエチルシリケートSi(OC25)オルトプロピルシ
リケートSi(OC374、オルトブチルシリケート
Si(OC494などを使用することができ、また2
種以上のアルキル基を同一分子内に有するオルトアルキ
ルシリケートでも良い。また2種以上のアルキルオルト
シリケートを混合して使用しても差し支えない。
The partially hydrolyzed alkyl silicate polymer is used to bond and fix the conductive fine particles on the glass surface. Examples of such partially hydrolyzed alkyl silicate polymer include hydrolyzing orthoalkyl silicate. For example, those in which dehydration condensation polymerization has progressed to some extent are used. As orthoalkyl silicate,
For example, ortho-methyl silicate Si (OCH 3 ) 4 , ortho-ethyl silicate Si (OC 2 H 5 ), ortho-propyl silicate Si (OC 3 H 7 ) 4 , ortho-butyl silicate Si (OC 4 H 9 ) 4 and the like can be used. Yes, 2
Orthoalkyl silicate having at least one kind of alkyl group in the same molecule may be used. Further, two or more kinds of alkyl orthosilicates may be used as a mixture.

【0026】オルトアルキルシリケートは、水分がある
と容易に加水分解を受けてアルコキシル基が水酸基とな
り、更に水酸基同士から水が取れて脱水縮重合を起こし
て重合していくが、このようなある程度脱水縮重合が進
んだものを使用することができる。要するに、加熱によ
り脱水縮重合が進行し、最終的にシリカゲルあるいはシ
リカの形で導電性微粒子をガラス表面上に固定させる能
力を有すればよい。なお脱水縮重合反応を進行させるた
めに、少量の水分や反応促進剤として塩酸や硫酸のよう
な酸を共存させると良い。
Orthoalkyl silicate is easily hydrolyzed in the presence of moisture to convert an alkoxyl group into a hydroxyl group, and water is removed from the hydroxyl groups to cause dehydration polycondensation. Those having advanced polycondensation can be used. In short, it suffices if it has the ability to promote dehydration-condensation polymerization by heating and ultimately fix the conductive fine particles on the glass surface in the form of silica gel or silica. In order to promote the dehydration-condensation polymerization reaction, a small amount of water or an acid such as hydrochloric acid or sulfuric acid as a reaction accelerator may be allowed to coexist.

【0027】アルキルシリケート部分加水分解重合物
は、上記のようにオルトアルキルシリケートを出発原料
として作製することができるが、同様のアルキルシリケ
ート部分加水分解重合物が得られるならばその原料は必
ずしもオルトアルキルシリケートに限定することはな
い。市販品として例えばエチルシリケート40やメチル
シリケート51(多摩化学工業)を入手することができ
るが、このような化合物もそのまま、或いはさらに加水
分解縮重合を進行させた上、所定量に希釈して用いるこ
とができる。さらに、例えば、チタン、ジルコニウム、
アルミニウムなどのアルコキシドの加水分解物を必要に
応じて添加することも可能である。
The alkyl silicate partially hydrolyzed polymer can be prepared using orthoalkyl silicate as a starting material as described above, but if the same alkyl silicate partially hydrolyzed polymer is obtained, the raw material is not necessarily orthoalkyl. It is not limited to silicate. For example, ethyl silicate 40 or methyl silicate 51 (Tama Chemical Industry) can be obtained as a commercially available product, and such a compound is used as it is or after being subjected to further hydrolysis-condensation polymerization and diluted to a predetermined amount. be able to. Further, for example, titanium, zirconium,
A hydrolyzate of an alkoxide such as aluminum can be added as needed.

【0028】上記のアルキルシリケート部分加水分解重
合物の添加量は、固化した時のSiO2の量が導電性微
粒子の量と同量以下で用いるか、又は全く含有しないこ
とが好ましい。すなわち導電性微粒子は塗布液中に0.
1〜10重量%含まれるのが好ましいが、アルキルシリ
ケート部分加水分解重合物としては最大量10重量%ま
でに抑えることが望ましい。その理由はアルキルシリケ
ート部分加水分解重合物の含有量が適量以上に増える
と、膜界面が荒れたり導電粒子の充填状態が悪化して、
ヘイズや抵抗値が増加するからである。アルキルシリケ
ート部分加水分解重合物の添加は、基板との密着性や膜
の塗布性の向上には寄与するという利点があるが、オー
バーコートを施して2層膜として膜表面強度が確保でき
る場合には、1層目用の塗布液中には全く含まれなくて
も差し支えない。
The addition amount of the above-mentioned alkyl silicate partially hydrolyzed polymer is preferably such that the amount of the solidified SiO 2 is equal to or less than the amount of the conductive fine particles or is not contained at all. That is, the conductive fine particles are contained in the coating solution in an amount of 0.1%.
It is preferably contained in an amount of 1 to 10% by weight, but it is desirable to suppress the maximum amount of the alkyl silicate partially hydrolyzed polymer to 10% by weight. The reason is that when the content of the alkyl silicate partially hydrolyzed polymer is increased to an appropriate amount or more, the film interface becomes rough or the filling state of the conductive particles deteriorates,
This is because haze and resistance value increase. The addition of the alkyl silicate partially hydrolyzed polymer has the advantage of contributing to the improvement of the adhesion to the substrate and the applicability of the film. However, when the overcoat is applied and the film surface strength can be secured as a two-layer film, May not be contained at all in the coating liquid for the first layer.

【0029】本発明の塗布液をCRTの完成球表面、あ
るいは封着前のCRT用前面ガラス表面に塗布・乾燥
し、その後大気中で焼成することにより、電界シールド
効果のある暗色系透明導電膜を、簡便かつ低コストで製
造することができる。塗布液をCRTフェイスパネルに
塗布した後の焼成は、大気中で150〜450℃の温度
で行う。真空封着前のCRT前面ガラスに成膜する場合
は、ガラス軟化点直下まで昇温可能であるが、封着後の
CRT完成球の成膜に対しては加熱温度が高いと破裂の
危険性があるため、200℃以下で行うことが好まし
い。
The coating solution of the present invention is applied and dried on the surface of a completed CRT sphere or on the surface of a front glass for CRT before sealing, and then baked in the air to form a dark transparent conductive film having an electric field shielding effect. Can be manufactured simply and at low cost. The baking after applying the application liquid to the CRT face panel is performed at a temperature of 150 to 450 ° C. in the air. When a film is formed on the front glass of a CRT before vacuum sealing, the temperature can be raised to just below the glass softening point. However, when forming a film of a completed CRT ball after sealing, a high heating temperature may cause rupture. Therefore, it is preferable to carry out at 200 ° C. or lower.

【0030】焼成中にはシリケートの縮重合化と溶媒成
分の蒸発が起こり、塗布膜は収縮・乾燥・硬化する。シ
リケートの縮重合反応が完了するのは200〜250℃
であるために、200℃以下の焼成では少量の未反応・
未蒸発インク成分の残存は避けられない。従って、焼成
温度は200℃以下でもかなり強固な膜が形成される
が、事情が許すならば一般的に高い温度の方が好まし
い。焼成温度が250℃以上の時は、シリケートのゲル
縮合反応や乾燥化は完了し、これが膜をさらに収縮させ
るため導電性微粒子の充填密度が上がり、表面抵抗値が
下がる。また導電性微粒子間の接触状態も溶媒成分の蒸
発に伴い改善されて、抵抗値の安定性や経時変化を改善
する。
During the firing, polycondensation of the silicate and evaporation of the solvent component occur, and the coating film shrinks, dries and hardens. The completion of the silicate polycondensation reaction is 200-250 ° C
Therefore, a small amount of unreacted
Unevaporated ink components remain unavoidable. Therefore, even if the sintering temperature is 200 ° C. or less, a very strong film is formed, but if circumstances permit, a higher temperature is generally preferred. When the firing temperature is 250 ° C. or higher, the gel condensation reaction and drying of the silicate are completed, and this further shrinks the film, so that the packing density of the conductive fine particles increases and the surface resistance value decreases. Also, the contact state between the conductive fine particles is improved with the evaporation of the solvent component, and the stability of the resistance value and the change with time are improved.

【0031】本発明による塗布液は導電性微粒子を分散
したものであり、焼成時の熱による塗布液成分の分解或
いは化学反応を利用して目的の導電性微粒子の薄膜を形
成するものではない。従って特性の安定した均一な膜厚
の薄膜を形成することができる。また、焼成温度として
は溶媒成分や分散剤成分の蒸発、或いはアルキルシリケ
ート部分加水分解物の重合固化を促進できる温度でよい
ので、上記に説明したような低温成膜が可能である。
The coating liquid according to the present invention is obtained by dispersing conductive fine particles, and does not form a thin film of the desired conductive fine particles by utilizing decomposition or chemical reaction of the coating liquid components due to heat during baking. Therefore, it is possible to form a thin film having stable characteristics and a uniform thickness. Further, the firing temperature may be a temperature at which the evaporation of the solvent component and the dispersant component or the polymerization and solidification of the alkyl silicate partial hydrolyzate can be promoted, so that the low-temperature film formation as described above is possible.

【0032】塗布液による単層膜の強度を補う目的で、
アルキルシリケ−ト部分加水分解重合物を含有する塗布
液を更に塗布してその後焼成する場合、その焼成温度は
例えば150〜450℃でよい。
In order to supplement the strength of the single-layer film by the coating solution,
When a coating solution containing the alkyl silicate partially hydrolyzed polymer is further applied and then fired, the firing temperature may be, for example, 150 to 450 ° C.

【0033】[0033]

【実施例】以下、本発明の実施例を示す。以下の実施例
において使用したアルキルシリケート部分加水分解重合
物を含む溶液(以下、「シリケート溶液」という)とし
ては、平均重合度で4〜5量体である多摩化学工業製エ
チルシリケート40を30部と、エタノール44部とを
混合し、撹拌しながら水−エタノール溶液(蒸留水46
部+エタノール20部)を滴下し、さらに1重量%HC
l水溶液10部とエタノール7部との混合溶液を滴下し
て作製したものを用いた。使用に当たってはこれをエタ
ノールなどの溶媒で適宜希釈した。なお、このシリケー
ト溶液は、一例を示すためのものであって、この例が本
発明を限定するものではない。
Embodiments of the present invention will be described below. As a solution containing an alkyl silicate partially hydrolyzed polymer used in the following examples (hereinafter, referred to as “silicate solution”), 30 parts of Tama Chemical Industries ethyl silicate 40 having an average degree of polymerization of 4 to pentamer was used. And 44 parts of ethanol are mixed, and stirred with a water-ethanol solution (distilled water 46).
Parts + 20 parts of ethanol), and 1% by weight of HC
A solution prepared by dropping a mixed solution of 10 parts of an aqueous solution and 7 parts of ethanol was used. Before use, this was appropriately diluted with a solvent such as ethanol. Note that this silicate solution is merely an example, and this example does not limit the present invention.

【0034】形成した膜の表面抵抗値は、三菱油化
(株)製表面抵抗計MCP−T200を用いて測定し
た。ヘイズ値と透過率は、村上色彩技術研究所製ヘイズ
メータ、HR−200を用いて測定した。また導電性微
粒子の粒径は、日本電子製透過電子顕微鏡で評価した。
圧粉抵抗値は1トンの静水圧で形成したペレットをPA
UW法で測定した。
The surface resistance of the formed film was measured using a surface resistance meter MCP-T200 manufactured by Mitsubishi Yuka Corporation. The haze value and the transmittance were measured using a haze meter HR-200 manufactured by Murakami Color Research Laboratory. The particle size of the conductive fine particles was evaluated with a transmission electron microscope manufactured by JEOL.
The powder resistance value of the pellets formed by hydrostatic pressure of 1 ton
It was measured by the UW method.

【0035】(実施例1) 二塩化錫0.01gを溶解
した水溶液100g中に、平均粒径18nmのRuO2
超微粉3gを1時間含浸し、フィルター濾過した後十分
水洗し、120℃で乾燥した。一方、硝酸銀3%水溶液
にアンモニア水を液が透明になるまで添加して調整した
Ag・アンモニア錯体水溶液100gを用意し、また、
還元液として、酒石酸ナトリウムカリウム4水和物(ロ
ッセル塩)の30%水溶液9.5gを水90.5gで希
釈したものを用意した。
Example 1 RuO 2 having an average particle size of 18 nm was added to 100 g of an aqueous solution in which 0.01 g of tin dichloride was dissolved.
The powder was impregnated with 3 g of ultrafine powder for 1 hour, filtered, washed sufficiently with water, and dried at 120 ° C. On the other hand, 100 g of an aqueous solution of Ag / ammonia complex prepared by adding aqueous ammonia to a 3% aqueous solution of silver nitrate until the liquid becomes transparent is prepared.
As a reducing solution, a solution prepared by diluting 9.5 g of a 30% aqueous solution of sodium potassium tartrate tetrahydrate (Rossel salt) with 90.5 g of water was prepared.

【0036】この還元液に上記処理したRuO2超微粉
を入れ、10分間攪拌した後上記のAg・アンモニア錯
体水溶液を加え、攪拌しながら銀の析出反応を4時間継
続した後、1μmのメンブレンフィルターで濾過、水洗
浄し、120℃で乾操させて銀の皮膜層で被覆したRu
2粉を得た。
The above treated RuO 2 ultrafine powder was added to the reduced solution, stirred for 10 minutes, and then the above Ag / ammonia complex aqueous solution was added. The silver precipitation reaction was continued for 4 hours with stirring, and then a 1 μm membrane filter was used. Ru, washed with water, dried at 120 ° C. and covered with a silver coating layer
O 2 powder was obtained.

【0037】この粉の圧粉抵抗値は、6.1×10-4Ω
・cmとなり、銀の被覆処理を行なわない揚合の圧粉抵
抗値4.7×10-3Ω・cmに比べて釣1桁低下した。
The powder resistance value of this powder is 6.1 × 10 −4 Ω.
Cm, which is one digit lower than the dust resistance of 4.7 × 10 −3 Ω · cm in the case where silver coating is not performed.

【0038】(実施例2) 実施例1と同様の方法で得
た銀の皮膜層で被覆したRuO2粉を15部、分散溶媒
として4ヒドロキシ−4メチル−2ペンタノン(ジアセ
トンアルコール)25部、および分散剤としてシラン系
カップリング剤(東芝シリコーン(株)製TSL880
2)5部の割合で撹祥・混合し、直径5mmのジルコニ
アボールを用いてボールミル分散を100時間行なった
後、エタノールを加えて再度強力に攪拌混合し、銀の皮
膜層で被覆したRuO2粉による導電性微粒子が5重量
%含有された塗布液を作製した。
(Example 2) 15 parts of RuO 2 powder coated with a silver coating layer obtained in the same manner as in Example 1, and 25 parts of 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol) as a dispersion solvent And a silane coupling agent as a dispersant (TSL880 manufactured by Toshiba Silicone Co., Ltd.)
2) Stir and mix at a ratio of 5 parts, perform ball mill dispersion using a zirconia ball having a diameter of 5 mm for 100 hours, add ethanol, mix vigorously again, and mix RuO 2 coated with a silver coating layer. A coating liquid containing 5% by weight of conductive fine particles of powder was prepared.

【0039】この塗布液をさらに固形分濃度0.5、
1.0、2.0、3.0%になるようにエタノールで希
釈して、160rpmで回転する200×200×3m
mのソーダライム板ガラス上にビーカーから滴下し、そ
の後大気中において180℃で30分焼成して、導電性
微粒子の分散した単層膜を形成した。このようにして形
成された単層膜は、固形分濃度0.5、1.0、2.
0、3.0%の塗布液に応じてそれぞれ表面抵抗値7.
5×105Ω/□、2.3×105Ω/□、8.6×10
3Ω/□、3.4×103Ω/□の値を示した。表面抵抗
値3.4×103Ω/□の膜ではへイズ値が2.1%、
透過率が70%であった。
This coating solution was further subjected to a solid concentration of 0.5,
200 × 200 × 3 m, diluted with ethanol to 1.0, 2.0, 3.0%, and rotated at 160 rpm
m was dropped from a beaker onto a soda lime plate glass, and then baked in the air at 180 ° C. for 30 minutes to form a single-layer film in which conductive fine particles were dispersed. The monolayer film thus formed has a solid content concentration of 0.5, 1.0, 2..
0, 3.0%, respectively.
5 × 10 5 Ω / □, 2.3 × 10 5 Ω / □, 8.6 × 10
3 Ω / □, 3.4 × 10 3 Ω / □. A film having a surface resistance of 3.4 × 10 3 Ω / □ has a haze value of 2.1%,
The transmittance was 70%.

【0040】(実施例3) 実施例2の固形分濃度3.
0%の塗布液を、160rpmで回転する200×20
0×3mmのソーダライム板ガラス上にビーカーから滴
下し、続けて前記のシリケート溶液をSiO2濃度が
1.1%になるようにエタノールで希釈した液を滴下
し、その後大気中において180℃で30分焼成して、
RuO2分散層とオーバーコート層からなる2層膜を作
製した。このようにして形成された2層膜の特性は、表
面抵抗値7.6×102Ω/□、ヘイズ2.1%、透過
率69%であった。
(Example 3) The solid concentration of Example 2 was 3.
200 × 20 rotating 0% coating solution at 160 rpm
A 0 × 3 mm soda lime plate glass was dropped from a beaker, followed by dropwise addition of a solution obtained by diluting the above silicate solution with ethanol so that the SiO 2 concentration became 1.1%. Bake for a minute,
A two-layer film composed of a RuO 2 dispersion layer and an overcoat layer was prepared. The characteristics of the two-layer film thus formed were such that the surface resistance was 7.6 × 10 2 Ω / □, the haze was 2.1%, and the transmittance was 69%.

【0041】(実施例4) 導電性微粒子としてRuO
2の代わりに平均粒径32nmのPb2RuO6.5超微粉
を用いた他は、実施例1と同様にして銀の被覆処理を行
った。得られた粉の圧粉抵抗値は8.3×10-4Ω・c
mとなり、銀の被覆処理を行わない場合の圧粉抵抗値
9.0×10-2Ω・cmと比較して2桁近く低下した。
Example 4 RuO was used as the conductive fine particles.
A silver coating treatment was performed in the same manner as in Example 1 except that Pb 2 RuO 6.5 ultrafine powder having an average particle size of 32 nm was used instead of 2 . The powder resistance of the obtained powder is 8.3 × 10 −4 Ω · c.
m, which is almost two orders of magnitude lower than the dust resistance value of 9.0 × 10 −2 Ω · cm when the silver coating treatment is not performed.

【0042】(実施例5) 実施例4で得られた銀被覆
Pb2RuO6.5超微粉を用いて実施例2と同様にして固
形分濃度3.0%の銀被覆Pb2RuO6.5分散塗布液を
作製し、これを実施例3と同様の方法でスピンコートし
てシリケートをオーバーコート層とする2層膜を作製し
た。この2層膜の特性は、表面抵抗値8.8×102Ω
/□、、透過率は67%、ヘイズ値が3.5%であっ
た。
Example 5 A silver-coated Pb 2 RuO 6.5 dispersion coating solution having a solid content of 3.0% was obtained in the same manner as in Example 2 using the silver-coated Pb 2 RuO 6.5 ultrafine powder obtained in Example 4. This was spin-coated in the same manner as in Example 3 to form a two-layer film using silicate as an overcoat layer. The characteristic of this two-layer film is that the surface resistance value is 8.8 × 10 2 Ω.
/ □, transmittance was 67%, and haze value was 3.5%.

【0043】(比較例1) 導電性微粒子として、特許
請求の範囲1に記載の銀を含む導電性微粒子を使わない
で、平均粒径19nmの住友金属鉱山(株)製ITO超
微粉(ITO−UFP)のみを用いた。その他の操作は
実施例2と同様にして2層膜を形成し、特性評価をし
た。この場合、表面抵抗値8.6×103Ω/□が得ら
れたが、透過率は96%で暗い膜にすることはできなか
った。
(Comparative Example 1) The conductive fine particles containing silver described in claim 1 were not used as the conductive fine particles, and an ITO ultrafine powder (ITO-) having an average particle diameter of 19 nm manufactured by Sumitomo Metal Mining Co., Ltd. was used. UFP) alone. Other operations were performed in the same manner as in Example 2 to form a two-layer film, and the characteristics were evaluated. In this case, a surface resistance of 8.6 × 10 3 Ω / □ was obtained, but the transmittance was 96%, and a dark film could not be formed.

【0044】(比較例2) 導電性微粒子として平均粒
径8nmの三菱化学(株)製高導電性カーボン粉末を用
いた他は実施例2と同様にして膜を形成し、特性評価を
した。この場合、透過率は46%とかなり暗くなると同
時に、表面抵抗値も3.9×108Ω/□と非常に高く
なった。
Comparative Example 2 A film was formed in the same manner as in Example 2 except that high-conductivity carbon powder manufactured by Mitsubishi Chemical Corporation having an average particle diameter of 8 nm was used as the conductive fine particles, and the characteristics were evaluated. In this case, the transmittance was extremely dark at 46%, and the surface resistance was very high at 3.9 × 10 8 Ω / □.

【0045】(比較例3) 導電性微粒子として平均粒
径55nmのRuO2粉を用いて、実施例1と同様にし
て銀被覆処理を行い、実施例2と同様にして固形分濃度
3.0%の銀被覆RuO2分散塗布液を作製し、これを
実施例3と同様の方法でスピンコートしてシリケートを
オーバーコート層とする2層膜を作製した。この2層膜
の特性は、表面抵抗値は5.8×102Ω/□で低い値
であったが、透過率は47%に落ち、ヘイズ値も5.5
%と高い値となった。
(Comparative Example 3) A silver coating treatment was performed in the same manner as in Example 1 using RuO 2 powder having an average particle size of 55 nm as the conductive fine particles. % Of a silver-coated RuO 2 dispersion coating liquid was prepared and spin-coated in the same manner as in Example 3 to prepare a two-layer film having silicate as an overcoat layer. Regarding the characteristics of this two-layer film, the surface resistance was 5.8 × 10 2 Ω / □, which was a low value, but the transmittance dropped to 47% and the haze value was 5.5.
%.

【0046】以上の実施例及び比較例との対比から明ら
かなように、導電性粉末としてITOなどの透明酸化物
のみやカーボンなどの黒色導電物を含む処理液を用いた
ときは表面抵抗値や透過率・反射率などにおいて望む特
性を得ることができないが、銀を被覆したルテニウム酸
化物微粒子を分散した塗布液を用いることにより、ヘイ
ズを上げることなく透過率を適度に低減でき、かつ電界
シールドに必要な高い導電性をもつ膜を得ることができ
る。
As is clear from the comparison with the above Examples and Comparative Examples, when a processing solution containing only a transparent oxide such as ITO or a black conductive material such as carbon was used as the conductive powder, the surface resistance value and Desired characteristics such as transmittance and reflectivity cannot be obtained, but by using a coating solution in which silver-coated ruthenium oxide fine particles are dispersed, transmittance can be reduced appropriately without increasing haze, and electric field shielding A film having high conductivity required for the above can be obtained.

【0047】[0047]

【発明の効果】以上説明したように、CRT画面の可視
光を散乱せずに透過率を低減する機能をもち、従来より
も優れた導電性を有することにより人体に影響を及ぼす
可能性のある低周波電界の遮蔽に十分な効果がある膜
を、塗布法を用いて簡便かつ低コストに作製するための
暗色系透明導電膜形成用塗布液、及びこれを用いた暗色
系透明導電膜が提供された。
As described above, the CRT screen has the function of reducing the transmittance without scattering the visible light, and has a higher conductivity than the conventional one, which may affect the human body. Provided is a coating solution for forming a dark-colored transparent conductive film and a dark-colored transparent conductive film using the same, which can easily and inexpensively produce a film having a sufficient effect of shielding a low-frequency electric field using a coating method. Was done.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 503 H01B 13/00 503C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01B 13/00 503 H01B 13/00 503C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性微粒子としてルテニウム酸化物微
粒子が極性溶媒中に分散され、該ルテニウム酸化物微粒
子は粒子表面の一部又は全部が銀の皮膜層で被覆され、
かつ、その粒径が50nm以下であることを特徴とする
暗色系透明導電膜形成用塗布液。
1. Ruthenium oxide fine particles as conductive fine particles are dispersed in a polar solvent, and the ruthenium oxide fine particles are partially or entirely covered with a silver film layer,
A coating liquid for forming a dark-colored transparent conductive film, which has a particle size of 50 nm or less.
【請求項2】 導電性微粒子としてルテニウム酸化物微
粒子が極性溶媒中に分散され、該ルテニウム酸化物微粒
子は粒子表面の一部又は全部が銀の皮膜層で被覆され、
かつ、その粒径が50nm以下であり、該極性溶媒はア
ルキルシリケート部分加水分解重合物を含有することを
特徴とする暗色系透明導電膜形成用塗布液。
2. Ruthenium oxide fine particles are dispersed in a polar solvent as conductive fine particles, and the ruthenium oxide fine particles are partially or entirely coated with a silver film layer,
A coating liquid for forming a dark-colored transparent conductive film, wherein the particle diameter is 50 nm or less, and the polar solvent contains an alkyl silicate partially hydrolyzed polymer.
【請求項3】 請求項1または請求項2のいずれかに記
載の暗色系透明導電膜形成用塗布液を基材にコートして
得た暗色系透明導電膜。
3. A dark-colored transparent conductive film obtained by coating a substrate with the coating solution for forming a dark-colored transparent conductive film according to claim 1.
【請求項4】 請求項1または請求項2のいずれかに記
載の暗色系透明導電膜形成用塗布液を基材にコートし、
その上にアルキルシリケート部分加水分解重合物の溶液
をコートした後焼成して得た暗色系透明導電膜。
4. A base material is coated with the coating liquid for forming a dark-colored transparent conductive film according to claim 1 or 2,
A dark-colored transparent conductive film obtained by coating a solution of the alkyl silicate partially hydrolyzed polymer thereon and then baking it.
JP19860996A 1996-07-29 1996-07-29 Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same Pending JPH1045427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19860996A JPH1045427A (en) 1996-07-29 1996-07-29 Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19860996A JPH1045427A (en) 1996-07-29 1996-07-29 Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same

Publications (1)

Publication Number Publication Date
JPH1045427A true JPH1045427A (en) 1998-02-17

Family

ID=16394046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19860996A Pending JPH1045427A (en) 1996-07-29 1996-07-29 Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same

Country Status (1)

Country Link
JP (1) JPH1045427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905100A1 (en) * 1997-09-30 1999-03-31 Sumitomo Metal Mining Company Limited Coating solution for forming a selectively transmitting film
JP2009181773A (en) * 2008-01-30 2009-08-13 Sumitomo Chemical Co Ltd Conductive film forming method, transistor, and organic electroluminescent element
JP2017063034A (en) * 2015-09-25 2017-03-30 三星電子株式会社Samsung Electronics Co.,Ltd. Electrical conductors, production methods thereof, and devices including the same
WO2019139160A1 (en) * 2018-01-15 2019-07-18 三菱マテリアル株式会社 Conductive film and method for manufacturing same
US10622115B2 (en) * 2014-12-26 2020-04-14 National Institute Of Advanced Industrial Science And Technology Flexible conductive film and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905100A1 (en) * 1997-09-30 1999-03-31 Sumitomo Metal Mining Company Limited Coating solution for forming a selectively transmitting film
JP2009181773A (en) * 2008-01-30 2009-08-13 Sumitomo Chemical Co Ltd Conductive film forming method, transistor, and organic electroluminescent element
US10622115B2 (en) * 2014-12-26 2020-04-14 National Institute Of Advanced Industrial Science And Technology Flexible conductive film and process for producing the same
JP2017063034A (en) * 2015-09-25 2017-03-30 三星電子株式会社Samsung Electronics Co.,Ltd. Electrical conductors, production methods thereof, and devices including the same
WO2019139160A1 (en) * 2018-01-15 2019-07-18 三菱マテリアル株式会社 Conductive film and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH09286936A (en) Applying solution for forming transparent conductive film, transparent conductive film using the same and its formation
US7135223B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
KR100414387B1 (en) Silver sol, preparation thereof, coating material for forming transparent conductive film and transparent conductive film
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP3266323B2 (en) Composite functional materials
JP3399270B2 (en) Transparent conductive film and composition for forming the same
JP3272111B2 (en) Paint for forming low refractive index film, antistatic / antireflective film, transparent laminate with antistatic / antireflective film, and cathode ray tube
JPH1045427A (en) Coating liquid for forming dark color transparent conductive film and dark color transparent conductive film formed by using the same
JP3002327B2 (en) Paint for forming conductive / high refractive index film and transparent material laminate with conductive / high refractive index film
JP3460484B2 (en) Transparent conductive film
JP3399268B2 (en) Transparent black conductive film
JPH07268251A (en) Coating composition for conductive film with high rffractive index, and transparent laminate with conductive reflectionproof film obtained therefrom
JP2859783B2 (en) Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film and display device
JP2865474B2 (en) Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP3425637B2 (en) Dark transparent conductive film for electric field shielding
JPH0953030A (en) Clear conductive coating material and clear conductive film
JP2892250B2 (en) Paint for forming antistatic / high refractive index film, transparent laminate with antistatic / antireflective film and display device
JP3323563B2 (en) Transparent material laminate with conductive and low reflectance coating film
JP3451808B2 (en) Low reflective transparent conductive film and method for forming the same
JPH08127860A (en) Treatment solution for forming transparent conductive film, production of transparent conductive film by using the treatment solution, and the resulting transparent conductive film
JPH06279755A (en) Fluid for shielding electric field
JPH06228500A (en) Antistatic and antireflecting film and coating for forming thereof
JPH1131417A (en) Transparent conductive film and display device
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same