JPH103916A - Manufacture of positive electrode active material - Google Patents

Manufacture of positive electrode active material

Info

Publication number
JPH103916A
JPH103916A JP8151162A JP15116296A JPH103916A JP H103916 A JPH103916 A JP H103916A JP 8151162 A JP8151162 A JP 8151162A JP 15116296 A JP15116296 A JP 15116296A JP H103916 A JPH103916 A JP H103916A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
composite oxide
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8151162A
Other languages
Japanese (ja)
Inventor
Atsuo Yamada
淳夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8151162A priority Critical patent/JPH103916A/en
Publication of JPH103916A publication Critical patent/JPH103916A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a transition metal composite oxide having high homogeneity with a high yield and few number of processes at a low cost by heat-fusing the raw material of the transition metal composite oxide, then liquid phase- mixing, solidifying, and sintering it to generate the transition metal composite oxide. SOLUTION: CH3 COOLi.2H2 O and Mn(NO3 )2 .6H2 O are mixed at the mol ratio of 1:2 and heat-fused, the mixture is stirred for 1hr in the liquid phase at 70-100 deg.C, it is kept at 130-200 deg.C for 6hr to be solidified, then it is crushed to obtain a positive electrode active material precursor, for example. The precursor is temporarily baked for 5hr in the air at 230-300 deg.C, then it is baked for 20hr in the air at 650-800 deg.C to obtain positive electrode active material powder. This powder is made of LiMn2 O4 single phase of the spinel phase, and it can be confirmed as the aggregation of fine particle powder of 10-200nm. A battery excellent in the capacity characteristic and cycle characteristic can be obtained at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池等を構成する正極活物質の製造方法の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing a positive electrode active material constituting a lithium ion secondary battery or the like.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器には、高エネルギー密度の高い二次電池が要求され
ている。従来、これら電子機器に使用される二次電池と
しては、ニッケル・カドミウム二次電池電池、鉛蓄電
池、リチウム二次電池などが挙げられる。特に、リチウ
ム二次電池は、電池電圧が高く、高エネルギー密度を有
し、自己放電も少なく、かつ、サイクル特性に優れてい
る。
2. Description of the Related Art In recent years, with advancement of electronic technology, electronic devices have been improved in performance, downsized, and portable, and these electronic devices have been required to have a secondary battery having a high energy density. Conventionally, as a secondary battery used in these electronic devices, a nickel-cadmium secondary battery, a lead storage battery, a lithium secondary battery and the like can be mentioned. In particular, a lithium secondary battery has a high battery voltage, a high energy density, low self-discharge, and excellent cycle characteristics.

【0003】このリチウム二次電池は、リチウムを可逆
的に脱挿入可能な正極及び負極と、両極間に介在するセ
パレータと、非水電解液或いは固体電解質とから構成さ
れる。
[0003] This lithium secondary battery comprises a positive electrode and a negative electrode capable of reversibly inserting and removing lithium, a separator interposed between the two electrodes, and a non-aqueous electrolyte or solid electrolyte.

【0004】一般に、負極活物質としては、リチウムイ
オンを可逆的に脱挿入可能なリチウムやリチウム合金、
もしくは導電性高分子や層状化合物(炭素材料や金属酸
化物)のような物質が用いられている。
In general, as the negative electrode active material, lithium or lithium alloy capable of reversibly inserting and removing lithium ions,
Alternatively, a substance such as a conductive polymer or a layered compound (a carbon material or a metal oxide) is used.

【0005】正極活物質としては、TiS2、MoS2
NbSe2、V25等の非含リチウム化合物や、LiM
2(Mは、Co、Ni、Mn、Fe等の遷移金属を示
す。)等の既にリチウムを含有する遷移金属複合酸化物
が用いられている。現在、高エネルギー密度、高電圧が
得られるとの観点から、4V級電池の正極としては、L
iCoO2が広く実用化されている。
As the positive electrode active material, TiS 2 , MoS 2 ,
Lithium-free compounds such as NbSe 2 and V 2 O 5 , and LiM
A transition metal composite oxide already containing lithium such as O 2 (M represents a transition metal such as Co, Ni, Mn, and Fe) is used. At present, from the viewpoint of obtaining a high energy density and a high voltage, the positive electrode of a 4V class battery is L
iCoO 2 has been widely put to practical use.

【0006】ところで、LiCoO2は、様々な面で理
想的な正極材料であるが、Coは、地球上の資源として
遍在であり、かつ稀少であるため、コストが高く、安定
供給に難があるといった問題があった。
By the way, LiCoO 2 is an ideal cathode material in various aspects, but Co is ubiquitous and scarce as a resource on the earth, so it is expensive and difficult to supply stably. There was a problem that there was.

【0007】そこで、より低コストのMnをベースとし
た正極材料が注目されている。現状では、正スピネル型
構造を有するLiMn24がMnをベースとした唯一の
4V級電池の正極材料であるが、その充放電容量とサイ
クル特性の低さが実用化のうえでひとつのネックとなっ
ていた。
[0007] Accordingly, attention has been paid to a lower-cost cathode material based on Mn. At present, LiMn 2 O 4 having a positive spinel structure is the only cathode material of a Mn-based 4V-class battery. Had become.

【0008】LiMn24の性能を最大限引き出し、高
いレベルの容量特性とサイクル特性を実現するには、合
成条件を最適化する必要があり、特に均一な混合が重要
であることが知られている。
In order to maximize the performance of LiMn 2 O 4 and achieve a high level of capacity and cycle characteristics, it is necessary to optimize the synthesis conditions, and it is known that uniform mixing is particularly important. ing.

【0009】通常、LiMn24の合成は、固相反応法
によって行われているが、均一な混合体を得るのが難し
く、高いレベルでの容量特性とサイクル特性を得るのが
難しい。十分な均一性を得るには、長時間の混合、或い
は焼成と粉砕工程を繰り返して行うことが必要であり、
プロセスが煩雑であった。
Usually, synthesis of LiMn 2 O 4 is carried out by a solid phase reaction method. However, it is difficult to obtain a uniform mixture, and it is difficult to obtain a high level of capacity characteristics and cycle characteristics. In order to obtain sufficient uniformity, it is necessary to repeat mixing for a long time, or firing and crushing steps,
The process was complicated.

【0010】これら問題を解決するため、低融点のLi
NO3を260℃付近でMn源中に含浸させた後焼成す
ることで、均一性を実現する方法が報告されている。ま
た、より高いレベルでの均一性を実現する方法として、
溶媒中にLi源とMn源とを溶解させ分子レベルで混合
させ、溶媒を飛ばした後焼成する方法も報告されてい
る。
To solve these problems, low melting point Li
There has been reported a method of achieving uniformity by impregnating NO 3 in a Mn source at about 260 ° C. and then firing. Also, as a way to achieve a higher level of uniformity,
A method has also been reported in which a Li source and a Mn source are dissolved in a solvent, mixed at the molecular level, and the solvent is removed before firing.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、低融点
のLiNO3を260℃付近でMn源中に含浸させた後
焼成する方法においては、ある程度の均一性が得られる
ものの、Mn源が固相であるためその均一化に限界があ
り、260℃というある程度高温での処理を必要とする
ためやはり工程数が増えるという問題があった。
However, in the method of impregnating LiNO 3 having a low melting point in a Mn source at about 260 ° C. and then calcining it, a certain degree of uniformity can be obtained, but the Mn source is in a solid phase. For this reason, there is a limit to the uniformity, and processing at a relatively high temperature of 260 ° C. is required, so that the number of steps also increases.

【0012】また、溶媒中にLi源とMn源とを溶解さ
せ分子レベルで混合させ、溶媒を飛ばした後焼成する方
法においては、極めて高い均一性が得られるものの、溶
媒を用いるため収率が低下する、溶媒を飛ばすプロセス
に多くのエネルギーが必要、溶媒の分のコストが上乗せ
される、或いはプロセスが煩雑になるという問題があっ
た。
In a method in which a Li source and a Mn source are dissolved in a solvent, mixed at a molecular level, and the solvent is skipped and then fired, extremely high uniformity is obtained, but the yield is high because a solvent is used. There is a problem that the energy is reduced, a large amount of energy is required for the process of removing the solvent, the cost for the solvent is added, or the process becomes complicated.

【0013】そこで、本発明は、上述のような問題点を
解決するために提案されたものであり、低コスト、高い
収率、少ない工程数で均一性の高い遷移金属複合酸化物
を得ることができる正極活物質の製造方法を提供するこ
とを目的とするものである。
Accordingly, the present invention has been proposed to solve the above-mentioned problems, and it is an object of the present invention to obtain a transition metal composite oxide having high uniformity with low cost, high yield, and a small number of steps. It is an object of the present invention to provide a method for producing a positive electrode active material capable of producing a positive electrode.

【0014】[0014]

【課題を解決するための手段】本発明に係る正極活物質
の製造方法は、遷移金属複合酸化物の原料を熱溶融させ
て液相混合した後、固化、焼結することで遷移金属複合
酸化物を生成することを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, there is provided a method for producing a positive electrode active material, comprising: a step of melting a raw material of a transition metal composite oxide; Producing an object.

【0015】上記遷移金属複合酸化物の原料には、融点
が200℃以下のものを用いるのが好ましい。また、生
成される遷移金属複合酸化物は、リチウムとマンガンと
の複合酸化物であることが好ましい。
It is preferable to use a material having a melting point of 200 ° C. or less as a raw material of the transition metal composite oxide. The transition metal composite oxide to be generated is preferably a composite oxide of lithium and manganese.

【0016】本発明に係る正極活物質の製造方法によれ
ば、遷移金属複合酸化物の原料を熱溶融させて直接液相
混合することにより遷移金属複合酸化物を生成するの
で、高い収率、少ない工程数で、均一性の高い正極活物
質を得ることができる。また、生成される遷移金属複合
酸化物がリチウムとマンガンとの複合酸化物である場合
には、従来に比べて低コストで均一性の高い正極活物質
を得ることができる。
According to the method for producing a positive electrode active material according to the present invention, the transition metal composite oxide is produced by hot-melting the raw material of the transition metal composite oxide and directly mixing in a liquid phase, so that the yield is high. A highly uniform positive electrode active material can be obtained with a small number of steps. Further, when the transition metal composite oxide to be generated is a composite oxide of lithium and manganese, it is possible to obtain a highly uniform cathode active material at a lower cost than in the past.

【0017】[0017]

【発明の実施の形態】本発明に係る正極活物質の製造方
法は、遷移金属複合酸化物の原料を熱溶融させて液相混
合した後、固化、焼結することで遷移金属複合酸化物を
生成する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a positive electrode active material according to the present invention, a transition metal composite oxide is obtained by thermally melting a raw material of a transition metal composite oxide, mixing the resulting mixture in a liquid phase, and then solidifying and sintering. Generate.

【0018】上記遷移金属複合酸化物の原料としては、
融点が200℃以下、より好ましくは100℃以下のも
のを用いるのが望ましい。したがって、これら遷移金属
複合酸化物の原料を混合する際には、混合温度を200
℃以下、より好ましくは100℃以下にするのが望まし
い。この混合温度以上になると、液相を維持するのが困
難であり、固化反応が進行しやすくなってしまう。
The raw materials of the transition metal composite oxide include:
It is desirable to use one having a melting point of 200 ° C. or lower, more preferably 100 ° C. or lower. Therefore, when mixing these raw materials of the transition metal composite oxide, the mixing temperature is set to 200.
C. or lower, more preferably 100 ° C. or lower. If the mixing temperature is higher than this, it is difficult to maintain the liquid phase, and the solidification reaction tends to proceed.

【0019】本発明に係る正極活物質の製造方法によれ
ば、遷移金属複合酸化物の原料を熱溶融させて直接液相
混合することにより遷移金属複合酸化物を生成するの
で、高い収率、少ない工程数で、均一性の高い正極活物
質を得ることができる。従って、この正極活物質によれ
ば、放充電容量とサイクル特性に優れた電池を提供する
ことができる。
According to the method for producing a positive electrode active material of the present invention, the transition metal composite oxide is produced by hot-melting the raw material of the transition metal composite oxide and directly mixing in a liquid phase. A highly uniform positive electrode active material can be obtained with a small number of steps. Therefore, according to this positive electrode active material, it is possible to provide a battery having excellent charge / discharge capacity and cycle characteristics.

【0020】また、本発明に係る正極活物質では、最終
的に粉末状の正極活物質を得るべく例えば固化の後粉砕
されるが、この固化によって得られた前駆体は均一かつ
微細に粉砕することができ、極めて粒径の小さい正極活
物質粉体が得られる。これにより、正極活物質のバルク
に対する反応表面積比が増加し、しかもこれが充電時に
あまり変化しない。よって、この正極活物質を用いたリ
チウムイオン二次電池においては、リチウムイオンが電
解液中移動する距離が格段小さくなり、電池の負荷特性
を向上させる。
In the positive electrode active material according to the present invention, the powdered positive electrode active material is finally pulverized, for example, after solidification to obtain the positive electrode active material. The precursor obtained by the solidification is uniformly and finely pulverized. Thus, a positive electrode active material powder having a very small particle size can be obtained. As a result, the ratio of the reaction surface area to the bulk of the positive electrode active material increases, and this does not change much during charging. Therefore, in a lithium ion secondary battery using this positive electrode active material, the distance over which lithium ions move in the electrolytic solution is significantly reduced, and the load characteristics of the battery are improved.

【0021】本発明に係る正極活物質の製造方法は、あ
らゆる遷移金属複合酸化物について適用可能である。例
えば従来、材料コストが安いものの、収率、均一性を得
るのが困難であったスピネル構造を持つリチウムマンガ
ン複合酸化物も、本発明によれば高い収率、また均一な
特性を有して形成されることになる。
The method for producing a positive electrode active material according to the present invention is applicable to any transition metal composite oxide. For example, a lithium manganese composite oxide having a spinel structure, which had a low material cost but was difficult to obtain uniformity in the past, has a high yield and uniform properties according to the present invention. Will be formed.

【0022】なお、スピネル構造を有するリチウムマン
ガン複合酸化物としては、LiMn24、またはMnサ
イトに微量のLiを置換させたLi(LixMn2-x)O
4が挙げられる。このリチウムマンガン複合酸化物の原
料としては、融点が低ければ特に限定されるものではな
いが、CH3COOLi・2H2O、Mn(NO32・6
2Oの混合材料等が挙げられる。
The lithium manganese composite oxide having a spinel structure is LiMn 2 O 4 , or Li (Li x Mn 2-x ) O in which a small amount of Li is substituted at the Mn site.
4 is mentioned. The raw material of the lithium manganese composite oxide is not particularly limited as long as it has a low melting point, but may be CH 3 COOLi.2H 2 O, Mn (NO 3 ) 2 .6.
A mixed material of H 2 O and the like can be mentioned.

【0023】なお、本発明の製造方法では、より低温で
処理を行うために、また均一性を上げるために、液相混
合時に適当量のエタノール、エチレングリコール等の溶
媒を加えてもよい。
In the production method of the present invention, an appropriate amount of a solvent such as ethanol or ethylene glycol may be added at the time of liquid phase mixing in order to perform the treatment at a lower temperature and to improve the uniformity.

【0024】また、本発明の製造方法では、混合溶液を
固化する過程において、温度を上げるだけでもよいが、
この過程において溶融材料をノズル等により粉霧し加熱
するスプレードライ法等を適用してもよい。これにより
固化の時間が短縮でき、敏速化、大量合成を図ることも
できる。また、この過程において、酸素、窒素、空気な
どの気流を導入することで、固化反応を促進することも
できる。さらに、この工程において、添加剤等を加え、
強固な2次凝集体を形成することで、電池組立時に電極
密度を向上させることもできる。
In the production method of the present invention, in the process of solidifying the mixed solution, the temperature may be simply increased,
In this process, a spray drying method or the like in which the molten material is atomized by a nozzle or the like and heated may be applied. As a result, the time for solidification can be shortened, and speeding up and mass synthesis can be achieved. In this process, a solidification reaction can be promoted by introducing an airflow such as oxygen, nitrogen, or air. Further, in this step, additives and the like are added,
By forming a strong secondary aggregate, the electrode density can be improved during battery assembly.

【0025】以上のように生成された遷移金属酸化物
は、正極活物質としてあらゆる電池に適用可能である
が、特にリチウム二次電池、リチウムイオン二次電池に
おいて適用する場合には、例えば、以下のような負極と
電解液と組み合わせて使用できる。
The transition metal oxide produced as described above can be applied to any battery as a positive electrode active material. In particular, when it is applied to a lithium secondary battery or a lithium ion secondary battery, for example, Can be used in combination with the negative electrode and the electrolytic solution.

【0026】負極には、リチウムを可逆的に脱挿入可能
なものであればいずれも使用可能であり、熱分解炭素
類、コークス類(ピッチコークス、ニードルコークス、
石油コークスなど)、グラファイト類、ガラス状炭素
類、有機高分子化合物焼成体(フェノール樹脂、フラン
樹脂などを適当な温度で焼成し炭素化したもの)、炭素
繊維、活性炭などの炭素質材料、あるいは、金属リチウ
ム、リチウム合金(例えば、リチウム−アルミ合金)の
他、ポリアセチレン、ポリピロールなどのポリマーが使
用可能である。
As the negative electrode, any one capable of reversibly inserting and removing lithium can be used. Pyrolytic carbons, cokes (pitch coke, needle coke,
Petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired products (calculated by firing phenolic resin, furan resin, etc. at an appropriate temperature and carbonized), carbonaceous materials such as carbon fiber and activated carbon, or In addition to lithium metal and lithium alloy (for example, lithium-aluminum alloy), polymers such as polyacetylene and polypyrrole can be used.

【0027】電解液には、リチウム塩を電解質とし、こ
れを有機溶媒に溶解させた電解液が用いられる。ここで
有機溶媒としては、特に限定されるものではないが、例
えば、プロピレンカーボネート、エチレンカーボネー
ト、1,2−ジメトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、スルホラン、アセトニトリル、
ジエチルカーボネート、ジピロピルカーボネートなどの
単独もしくは2種類以上の混合溶媒が使用可能である。
As the electrolytic solution, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone,
Tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolan, sulfolane, acetonitrile,
A single solvent or a mixed solvent of two or more such as diethyl carbonate and dipyrropyl carbonate can be used.

【0028】電解質には、LiClO4、LiAsF6
LiPF6、LiBF4、LiB(C654、LiC
l、LiBr、CH3SO3Li、CF3SO3Liなどが
使用可能である。
The electrolyte includes LiClO 4 , LiAsF 6 ,
LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiC
1, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like can be used.

【0029】[0029]

【実施例】以下、本発明を適用して製造された正極活物
質を用いて実際にリチウム二次電池を作製し、その効果
を調べた。なお、本発明は、本実施例につき具体的に説
明するが、本実施例に限定されるものではなく、本発明
の技術思想に基づく各種の変形が可能である。
EXAMPLES Hereinafter, a lithium secondary battery was actually manufactured using the positive electrode active material manufactured by applying the present invention, and its effect was examined. Although the present invention will be described specifically with reference to the present embodiment, the present invention is not limited to the present embodiment, and various modifications based on the technical idea of the present invention are possible.

【0030】実施例1 先ず、正極を次にようにして作製した。CH3COOL
i・2H2Oと、Mn(NO32・6H2Oとをモル比
1:2で混合し熱溶融させ、70〜100℃の温度範囲
で液相を保ちつつ1時間攪拌し、130〜200℃の温
度範囲で6時間保持することで固化し、粉砕することで
正極活物質前駆体を得た。この前駆体を230〜300
℃の温度範囲で空気中5時間仮焼きした後、650〜8
00℃の温度範囲で空気中20時間焼成して、正極活物
質粉末を得た。
Example 1 First, a positive electrode was produced as follows. CH 3 COOL
i.2H 2 O and Mn (NO 3 ) 2 .6H 2 O were mixed at a molar ratio of 1: 2, melted by heat, stirred for 1 hour in a temperature range of 70 to 100 ° C. while maintaining a liquid phase, and stirred at 130 ° C. The positive electrode active material precursor was obtained by solidifying by holding in a temperature range of ~ 200 ° C for 6 hours and pulverizing. 230-300 of this precursor
After calcination in air at a temperature range of 5 ° C. for 5 hours,
The powder was calcined in the air at a temperature of 00 ° C. for 20 hours to obtain a positive electrode active material powder.

【0031】この正極活物質粉末について、粉末X線回
折実験を行ったところ、スピネル相のLiMn24単相
であることが確認できた。また、この正極活物質につい
て、電子顕微鏡観察の結果、10〜200nmの微粒子
粉末の集合であることが確認できた。
An X-ray powder diffraction experiment was performed on the positive electrode active material powder, and it was confirmed that the powder was a single phase of LiMn 2 O 4 as a spinel phase. In addition, as a result of observation of the positive electrode active material with an electron microscope, it was confirmed that the positive electrode active material was an aggregate of fine particle powders of 10 to 200 nm.

【0032】そして、得られた正極活物質粉末80重量
部に対して、グラファイトを15重量部、フッ素系高分
子バインダーを5重量部加えて、ジメチルホルムアミド
(DMF)により混合し、正極合材を調整した。DMF
の揮発後、正極合材を約60mg秤り取り、約2cm2
の表面積を有する円盤状の電極に加圧成形し、これを正
極とした。
Then, with respect to 80 parts by weight of the obtained positive electrode active material powder, 15 parts by weight of graphite and 5 parts by weight of a fluoropolymer binder were added and mixed with dimethylformamide (DMF). It was adjusted. DMF
After volatilization, about 60 mg of the positive electrode mixture was weighed, and about 2 cm 2
Pressure molding was performed on a disk-shaped electrode having a surface area of, and this was used as a positive electrode.

【0033】次に、金属リチウムを正極と同じく円盤状
に打ち抜いて、これを負極とした。リチウム量は、正極
の最大充電能力の数百倍であり、正極の電気化学的性能
を制限するものではない。
Next, metal lithium was punched out in the same disk shape as the positive electrode to obtain a negative electrode. The amount of lithium is several hundred times the maximum charging capacity of the positive electrode, and does not limit the electrochemical performance of the positive electrode.

【0034】以上、上述した正極、及び負極を用い、電
解液にLiPF6を溶解したプロピレンカーボネイト
(PC)を用いて、リチウム二次電池を作製した。
Using the positive electrode and the negative electrode described above, a lithium secondary battery was manufactured using propylene carbonate (PC) in which LiPF 6 was dissolved in an electrolytic solution.

【0035】実施例2 先ず、正極を次にようにして作製した。CH3COOL
i・2H2Oと、Mn(NO32・6H2Oとをモル比
1.03:1.97で混合し熱溶融させ、これを70〜
100℃の温度範囲で液相を保ちつつ1時間攪拌し、1
30〜200℃の温度範囲で6時間保持することで固化
し、粉砕することで正極活物質前駆体を得た。この前駆
体を230〜300℃の温度範囲で空気中5時間仮焼き
した後、650〜800℃の温度範囲で空気中20時間
焼成して、正極活物質粉末を得た。
Example 2 First, a positive electrode was produced as follows. CH 3 COOL
i.2H 2 O and Mn (NO 3 ) 2 .6H 2 O were mixed at a molar ratio of 1.03: 1.97 and melted by heat.
Stir for 1 hour while maintaining the liquid phase in the temperature range of 100 ° C.
The positive electrode active material precursor was obtained by solidifying by holding in a temperature range of 30 to 200 ° C. for 6 hours and pulverizing the solid. This precursor was calcined in the air at a temperature of 230 to 300 ° C. for 5 hours, and then calcined in the air at a temperature of 650 to 800 ° C. for 20 hours to obtain a positive electrode active material powder.

【0036】この正極活物質粉末について、粉末X線回
折実験を行ったところ、スピネル相のLi(Li0.03
1.97)O4単相であることが確認できた。また、この
正極活物質について、電子顕微鏡観察の結果、10〜2
00nmの微粒子粉末の集合であることが確認できた。
When a powder X-ray diffraction experiment was performed on the positive electrode active material powder, Li (Li 0.03 M
n 1.97 ) O 4 single phase was confirmed. In addition, as for the positive electrode active material, as a result of observation with an electron microscope, 10 to 2
It was confirmed that it was an aggregate of 00 nm fine particle powder.

【0037】この正極を用いた以外は、実施例1と同様
にしてリチウム二次電池電池を作製した。
A lithium secondary battery was manufactured in the same manner as in Example 1 except that this positive electrode was used.

【0038】比較例1 先ず、正極を次のようにして作製した。炭酸リチウムと
Mn23をモル比1:2で混合し、空気中で700〜8
50℃の温度範囲内で20時間焼成し、正極活物質粉末
を得た。
Comparative Example 1 First, a positive electrode was produced as follows. Lithium carbonate and Mn 2 O 3 are mixed at a molar ratio of 1: 2, and are mixed in air at 700 to 8%.
The powder was fired at a temperature of 50 ° C. for 20 hours to obtain a positive electrode active material powder.

【0039】この正極活物質粉末について、粉末X線回
折実験を行ったところ、スピネル相のLiMn24単相
であることが確認できた。また、この正極活物質につい
て、電子顕微鏡観察の結果、1〜2μmの微粒子粉末の
集合であることが確認できた。
An X-ray powder diffraction experiment was performed on the positive electrode active material powder, and it was confirmed that the powder was a single phase of LiMn 2 O 4 as a spinel phase. Further, as a result of observation of the positive electrode active material with an electron microscope, it was confirmed that the positive electrode active material was an aggregate of fine particles of 1 to 2 μm.

【0040】この正極を用いた以外は、実施例1と同様
にしてリチウム二次電池電池を作製した。
A lithium secondary battery was manufactured in the same manner as in Example 1 except that this positive electrode was used.

【0041】比較例2 先ず、正極を次のようにして作製した。炭酸リチウムと
Mn23とをモル比1.03:1.97で混合し、空気
中で700〜850℃の温度範囲内で20時間焼成し、
正極活物質粉末を得た。
Comparative Example 2 First, a positive electrode was prepared as follows. Lithium carbonate and Mn 2 O 3 are mixed at a molar ratio of 1.03: 1.97, and calcined in air in a temperature range of 700 to 850 ° C. for 20 hours,
A positive electrode active material powder was obtained.

【0042】この正極活物質粉末について、粉末X線回
折実験を行ったところ、スピネル相のLi(Li0.03
1.97)O4単相であることが確認できた。また、この
正極活物質について、電子顕微鏡観察の結果、1〜2μ
mの微粒子粉末の集合であることが確認できた。
When a powder X-ray diffraction experiment was performed on the positive electrode active material powder, Li (Li 0.03 M
n 1.97 ) O 4 single phase was confirmed. Further, as a result of electron microscopic observation of this positive electrode active material,
m was confirmed to be a collection of fine particle powders.

【0043】この正極を用いた以外は、実施例1と同様
にしてリチウム二次電池電池を作製した。
A lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

【0044】以上のようにして作製されたリチウム二次
電池(実施例1、実施例2、比較例1、比較例2)のサ
イクル特性を評価するために、充放電電流密度を0.5
mA/cm2に固定し、3〜4.5Vの電位範囲内で繰
り返し充放電試験を行った。これらの結果を図1及び図
2に示す。
In order to evaluate the cycle characteristics of the lithium secondary batteries (Example 1, Example 2, Comparative Example 1, and Comparative Example 2) manufactured as described above, the charge / discharge current density was set to 0.5.
The charge / discharge test was repeatedly performed within a potential range of 3 to 4.5 V while fixing to mA / cm 2 . These results are shown in FIG. 1 and FIG.

【0045】図1及び図2からわかるように、実施例1
のリチウム二次電池においては、初期容量が137.1
mAh/g、実施例2のリチウム二次電池においては、
初期容量が131.0mAh/gという高容量が得ら
れ、固相反応法による比較例1及び比較例2に比べ、は
るかに優れた充放電容量とサイクル特性を得ることがで
きた。
As can be seen from FIG. 1 and FIG.
Has an initial capacity of 137.1.
mAh / g, in the lithium secondary battery of Example 2,
The initial capacity was as high as 131.0 mAh / g, and much better charge / discharge capacity and cycle characteristics could be obtained as compared with Comparative Examples 1 and 2 by the solid-state reaction method.

【0046】また、サイクル特性においては、実施例1
のリチウム二次電池より、実施例2のリチウム二次電池
の方がわずかに優れている。このことから、微量のLi
を添加し、Mnサイトを置換することが有効であること
がわかる。なお、ここでは、Mnサイトにリチウムイオ
ンをドープしているが、リチウムイオン以外の2価或い
は3価の陽イオンをドープすることもできる。
In the cycle characteristics, the first embodiment
The lithium secondary battery of Example 2 is slightly superior to the lithium secondary battery of Example 2. From this, a small amount of Li
To replace the Mn site is effective. Here, the Mn site is doped with lithium ions, but a divalent or trivalent cation other than lithium ions may be doped.

【0047】このように、本発明を適用した製造方法に
よれば、均一性が高く、粒径の小さい正極活物質が得ら
れるので、容量特性、サイクル特性に優れたリチウム二
次電池を提供することができる。
As described above, according to the manufacturing method to which the present invention is applied, a positive electrode active material having high uniformity and a small particle size can be obtained, so that a lithium secondary battery having excellent capacity characteristics and cycle characteristics is provided. be able to.

【0048】[0048]

【発明の効果】以上の説明から明らかなように、本発明
に係る正極活物質の製造方法は、遷移金属複合酸化物の
原料を熱溶融させて直接液相混合することにより遷移金
属複合酸化物を生成するので、高い収率、少ない工程数
で、均一性が高く、粒径の小さい正極活物質を得ること
ができる。また、生成される遷移金属複合酸化物がリチ
ウムとマンガンとの複合酸化物である場合には、従来に
比べて低コストで均一性が高く、粒径の小さい正極活物
質を得ることができる。
As is apparent from the above description, the method for producing a positive electrode active material according to the present invention is characterized in that the transition metal composite oxide Thus, a positive electrode active material having high uniformity and small particle size can be obtained with a high yield and a small number of steps. In addition, when the transition metal composite oxide to be generated is a composite oxide of lithium and manganese, a positive electrode active material with high uniformity and small particle size can be obtained at lower cost than in the past.

【0049】したがって、本発明に係る正極活物質の製
造方法によれば、低コストで、容量特性、サイクル特性
に優れた電池を提供することができる。
Therefore, according to the method for producing a positive electrode active material according to the present invention, it is possible to provide a low-cost battery having excellent capacity characteristics and cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用して製造された正極活物質を用い
て作製されたリチウム二次電池におけるサイクル数と充
電容量との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between the number of cycles and a charge capacity in a lithium secondary battery manufactured using a positive electrode active material manufactured by applying the present invention.

【図2】同リチウム二次電池におけるサイクル数と充電
容量との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between the number of cycles and a charge capacity in the lithium secondary battery.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属複合酸化物の原料を熱溶融させ
て液相混合した後、固化、焼結することで遷移金属複合
酸化物を生成することを特徴とする正極活物質の製造方
法。
1. A method for producing a positive electrode active material, wherein a raw material of a transition metal composite oxide is thermally melted, mixed in a liquid phase, and then solidified and sintered to produce a transition metal composite oxide.
【請求項2】 遷移金属複合酸化物の原料として、融点
が200℃以下のものを用いることを特徴とする請求項
1記載の正極活物質の製造方法。
2. The method for producing a positive electrode active material according to claim 1, wherein a material having a melting point of 200 ° C. or less is used as a raw material of the transition metal composite oxide.
【請求項3】 生成される遷移金属複合酸化物が、リチ
ウムとマンガンとの複合酸化物であることを特徴とする
請求項1記載の正極活物質の製造方法。
3. The method for producing a positive electrode active material according to claim 1, wherein the generated transition metal composite oxide is a composite oxide of lithium and manganese.
【請求項4】 生成される遷移金属複合酸化物が、スピ
ネル構造を有することを特徴とする請求項3記載の正極
活物質の製造方法。
4. The method for producing a positive electrode active material according to claim 3, wherein the generated transition metal composite oxide has a spinel structure.
【請求項5】 遷移金属複合酸化物の原料として、CH
3COOLi・2H2O、Mn(NO32・6H2Oを用
いることを特徴とする請求項3記載の正極活物質の製造
方法。
5. As a raw material of a transition metal composite oxide, CH
3 COOLi · 2H 2 O, Mn (NO 3) The method for producing a positive electrode active material according to claim 3, which comprises using a 2 · 6H 2 O.
JP8151162A 1996-06-12 1996-06-12 Manufacture of positive electrode active material Withdrawn JPH103916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8151162A JPH103916A (en) 1996-06-12 1996-06-12 Manufacture of positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8151162A JPH103916A (en) 1996-06-12 1996-06-12 Manufacture of positive electrode active material

Publications (1)

Publication Number Publication Date
JPH103916A true JPH103916A (en) 1998-01-06

Family

ID=15512695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8151162A Withdrawn JPH103916A (en) 1996-06-12 1996-06-12 Manufacture of positive electrode active material

Country Status (1)

Country Link
JP (1) JPH103916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056566A (en) * 1999-12-15 2001-07-04 성재갑 Method for preparing lithium manganese oxide for lithium cell and battery
JP2001192210A (en) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd Method for manufacturing lithium-manganese multiple oxide for non-aqueous lithium secondary battery
JP2008105912A (en) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING NANO-MULTIPLE OXIDE AxMyOz

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192210A (en) * 1999-11-02 2001-07-17 Seimi Chem Co Ltd Method for manufacturing lithium-manganese multiple oxide for non-aqueous lithium secondary battery
KR20010056566A (en) * 1999-12-15 2001-07-04 성재갑 Method for preparing lithium manganese oxide for lithium cell and battery
JP2008105912A (en) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING NANO-MULTIPLE OXIDE AxMyOz

Similar Documents

Publication Publication Date Title
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4151210B2 (en) Positive electrode active material and method for producing the same, non-aqueous electrolyte battery and method for producing the same
JP4491946B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4742413B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
EP0709906B1 (en) Non-aqueous electrolyte secondary cell
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP5478549B2 (en) Method for producing positive electrode active material
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
KR101698763B1 (en) Anode electrode material, preparation method thereof, electrode comprising the material, and lithium secondary battery comprising the electrode
JP5698951B2 (en) Positive electrode active material and method for producing the same, positive electrode and non-aqueous electrolyte secondary battery
JP5695842B2 (en) Method for producing lithium-containing composite oxide
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP5683890B2 (en) Positive electrode material, manufacturing method thereof, positive electrode and non-aqueous electrolyte secondary battery
JP4207434B2 (en) Positive electrode active material and method for producing non-aqueous electrolyte battery
WO2011152455A1 (en) Method for producing lithium-containing complex oxide
CN102428595B (en) Anode active material for lithium secondary battery, negative electrode for lithium secondary battery electrode, use their vehicle-mounted lithium secondary battery and the manufacture method of anode active material for lithium secondary battery
JPH09204918A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
KR101080619B1 (en) Negative electrode active material method of producing the same and nonaqueous electrolyte cell
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP5651377B2 (en) Method for producing lithium-containing composite oxide
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JPH07245106A (en) Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902