JPH1033984A - Catalyst for purifying exhaust gas and method for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas and method for purifying exhaust gas

Info

Publication number
JPH1033984A
JPH1033984A JP8195053A JP19505396A JPH1033984A JP H1033984 A JPH1033984 A JP H1033984A JP 8195053 A JP8195053 A JP 8195053A JP 19505396 A JP19505396 A JP 19505396A JP H1033984 A JPH1033984 A JP H1033984A
Authority
JP
Japan
Prior art keywords
powder
exhaust gas
catalyst
storage material
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8195053A
Other languages
Japanese (ja)
Other versions
JP3508969B2 (en
Inventor
Yasuo Ikeda
靖夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19505396A priority Critical patent/JP3508969B2/en
Publication of JPH1033984A publication Critical patent/JPH1033984A/en
Application granted granted Critical
Publication of JP3508969B2 publication Critical patent/JP3508969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the durability by suppressing the decrease in durability due to particle growth of Pt by using Pt and Rh and preventing the NOX storage/release ability of an NOX storage material from being lowered. SOLUTION: This catalyst comprises a mixture of a first powder having Rh carried on porous particles and a second powder having Pt and NOX storage material carried on porous particles. At least one of the first and second powders carries at least one element selected from among Co, Fe, and Ni. Since Rh and Pt are carried separately, the oxidation ability of Pt is prevented from being lowered, the NOX storage material is not lowered in performance, and therefore a high NOX purification rate is retained from the initial stage to the duration life. Further, by causing Co and the like to be carried, generation of hydrogen is facilitated, NOX reduction is improved, and poisoning with sulfur can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの内燃
機関から排出される排ガスを浄化する排ガス浄化用触媒
及び排ガス浄化方法に関し、さらに詳しくは、酸素過剰
の排ガス、すなわち排ガス中に含まれる一酸化炭素(C
O)、水素(H2 )及び炭化水素(HC)等の還元性成
分を完全に酸化するのに必要な酸素量より過剰の酸素を
含む排ガス中の、窒素酸化物(NOx )を効率良く還元
浄化できる排ガス浄化用触媒及び排ガス浄化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method for purifying exhaust gas discharged from an internal combustion engine of an automobile or the like. Carbon oxide (C
O), hydrogen (H 2 ) and hydrocarbons (HC) such as nitrogen oxides (NO x ) in exhaust gas containing excess oxygen in excess of the amount of oxygen necessary to completely oxidize reducing components. The present invention relates to an exhaust gas purifying catalyst capable of reduction purification and an exhaust gas purifying method.

【0002】[0002]

【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、理論空燃比(ストイキ)において排ガス中のCO及
びHCの酸化とNOx の還元とを同時に行って浄化する
三元触媒が用いられている。このような三元触媒として
は、例えばコーディエライトなどからなる耐熱性基材に
γ−アルミナからなる多孔質担体層を形成し、その多孔
質担体層に白金(Pt)、ロジウム(Rh)などの触媒
貴金属を担持させたものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst has been used as a catalyst for purifying exhaust gas of automobiles, which purifies by simultaneously oxidizing CO and HC and reducing NOx in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric). As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃費
が向上するために燃料の使用が低減され、その燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protection of the global environment. As a solution, lean combustion in an oxygen-excess atmosphere has been proposed. Burn is promising. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)において排ガス中のCO,H
C,NOx を同時に酸化・還元し浄化するものであっ
て、リーンバーン時の排ガスの酸素過剰雰囲気下におい
ては、NOx の還元除去に対して充分な浄化性能を示さ
ない。このため、酸素過剰雰囲気下においてもNOx
浄化しうる触媒及び浄化システムの開発が望まれてい
た。
On the other hand, in the conventional three-way catalyst, when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), CO, H
It purifies by simultaneously oxidizing and reducing C and NO x, and does not exhibit sufficient purification performance for the reduction and removal of NO x under an atmosphere of excess oxygen in the exhaust gas during lean burn. Therefore, development of a catalyst and purification system has been desired can purify NO x even in an oxygen rich atmosphere.

【0005】そこで本願出願人は、先にBaなどのアル
カリ土類金属とPtをアルミナなどの多孔質担体に担持
した排ガス浄化用触媒(例えば特開平5−317625
号公報)を提案している。この排ガス浄化用触媒を用
い、空燃比をリーン側からパルス状にストイキ〜リッチ
側となるように制御することにより、リーン側ではNO
x がアルカリ土類金属(NOx 吸蔵材)に吸蔵され、そ
れがストイキ又はリッチ側でHCやCOなどの還元性成
分と反応して浄化されるため、リーンバーンにおいても
NOx を効率良く浄化することができる。
Accordingly, the applicant of the present application has previously described Al and others such as Ba.
Supports potassium earth metal and Pt on porous carriers such as alumina
Exhaust gas purifying catalysts (for example, see JP-A-5-317625)
Gazette). Using this exhaust gas purification catalyst
Air-fuel ratio is pulsed from lean to stoichiometric to rich
Control on the lean side, NO on the lean side
xIs an alkaline earth metal (NOxOcclusion material)
This leads to reduction of HC or CO on the stoichiometric or rich side.
Purified by reacting with the minute, even in lean burn
NOxCan be efficiently purified.

【0006】[0006]

【発明が解決しようとする課題】上記排ガス浄化用触媒
におけるNOx の浄化反応は、排ガス中のNOを酸化し
てNOx とする第1ステップと、NOx 吸蔵材上にNO
x を吸蔵する第2ステップと、NOx 吸蔵材から放出さ
れたNOx を触媒上で還元する第3ステップとからなる
ことがわかっている。
[0007] purification reaction of the NO x in the catalyst for the exhaust gas purification, a first step of the NO x is oxidized to NO in the exhaust gas, NO on the NO x storage material
It is known that the method comprises a second step of storing x and a third step of reducing NO x released from the NO x storage material on the catalyst.

【0007】しかしながら従来の排ガス浄化用触媒にお
いては、リーン雰囲気においてPtに粒成長が生じ、触
媒活性点の減少により上記第1ステップと第3ステップ
の反応性が低下するという不具合がある。一方、リーン
雰囲気におけるこのような粒成長が生じにくい触媒貴金
属として、Rhが知られているが、酸化能はPtには及
ばない。そこでPtとRhを併用することが考えられて
いる。
[0007] However, the conventional exhaust gas purifying catalyst has a disadvantage in that Pt grains grow in a lean atmosphere, and the reactivity of the first and third steps is reduced due to a decrease in catalytic active points. On the other hand, Rh is known as a catalytic noble metal in which such grain growth hardly occurs in a lean atmosphere, but its oxidizing ability is inferior to Pt. Therefore, it has been considered to use Pt and Rh together.

【0008】ところがPtとRhを併用すると、Ptの
酸化能が低下するという不具合があることが明らかとな
った。そのため、Rhの添加量が多くなるにつれてNO
を酸化してNOx とする第1ステップの反応性が低下
し、第2ステップにおけるNO x の吸蔵能も低下する。
またRhはNOx 吸蔵材との相性が悪く、RhとNOx
吸蔵材とが共存するとNOx 吸蔵材及びRhの特性が十
分に発揮できないという問題もある。
However, when Pt and Rh are used together,
It is clear that there is a problem that the oxidizing ability decreases.
Was. Therefore, as the amount of Rh added increases, NO
Oxidizes NOxThe reactivity of the first step decreases
NO in the second step xStorage capacity also decreases.
Rh is NOxPoor compatibility with occlusion material, Rh and NOx
NO when coexisting with occlusion materialxThe characteristics of the storage material and Rh are sufficient
There is also a problem that it cannot be fully demonstrated.

【0009】また燃料に含まれている硫黄(S)成分が
酸化されてSO2 となり、それが触媒上でさらに酸化さ
れてサルフェートが生成する。これがNOx 吸蔵材と反
応すると、NOx 吸蔵材のNOx 吸蔵作用が消失し、い
わゆる硫黄被毒が生じてNO x の還元浄化が困難となる
という不具合もある。本発明はこのような事情に鑑みて
なされたものであり、PtとRhを用いてPtの粒成長
による耐久性の低下を抑制するとともに、NOx 吸蔵材
のNOx 吸蔵・放出能の低下を防止し、以て耐久性の向
上を図ることを目的とする。
Further, the sulfur (S) component contained in the fuel is
Oxidized to SOTwoWhich is further oxidized on the catalyst.
To produce sulfate. This is NOxOcclusion material and anti
NOxNO of occlusion materialxThe occlusion effect disappears,
NO with sulfur poisoning xReduction purification becomes difficult
There is also a defect. The present invention has been made in view of such circumstances.
The growth of Pt using Pt and Rh
Not only reduces the durability due toxOcclusion material
NOxPrevents a decrease in occlusion / release capacity, thereby improving durability
The purpose is to aim at the above.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、多孔質粒子にRhを担
持した第1粉末と、多孔質粒子にPtとNOx 吸蔵材を
担持した第2粉末とを混在してなり、第1粉末と第2粉
末の少なくとも一方にはCo,Fe及びNiから選ばれ
る少なくとも1種の元素が担持されていることにある。
Means for Solving the Problems The characteristics of the exhaust gas purifying catalyst of the present invention for solving the above-mentioned problems, carrying first powder carrying Rh on porous particles, Pt and the NO x storage material in the porous particles The second powder is mixed with at least one element selected from Co, Fe and Ni on at least one of the first powder and the second powder.

【0011】また同様に上記課題を解決する本発明の排
ガス浄化方法の特徴は、多孔質粒子にRhを担持した第
1粉末と多孔質粒子にPtとNOx 吸蔵材を担持した第
2粉末とを混在してなり第1粉末と第2粉末の少なくと
も一方にはCo,Fe及びNiから選ばれる少なくとも
1種の元素が担持されている触媒を排ガス中に配置し、
酸素過剰のリーン雰囲気においてNOx 吸蔵材にNOx
を吸蔵し、一時的にストイキ〜リッチ雰囲気に変化させ
ることによりNOx 吸蔵材から放出されるNO x を還元
して浄化することにある。
[0011] Similarly, the present invention solves the above-mentioned problems.
The feature of the gas purification method is that the porous particles support Rh
1 Pt and NO in powder and porous particlesxNo. supporting occlusion material
2 powders mixed together and at least the first powder and the second powder
On the other hand, at least one selected from Co, Fe and Ni
Placing a catalyst carrying one element in the exhaust gas,
NO in lean atmosphere with excess oxygenxNO for occlusion materialx
Occlusion and temporarily change to stoichiometric to rich atmosphere
NOxNO released from the storage material xReduce
And purify it.

【0012】[0012]

【発明の実施の形態】本発明の排ガス浄化用触媒では、
Rhは第1粉末に存在し、PtとNOx 吸蔵材は第2粉
末に存在して、第1粉末と第2粉末とが混在している。
つまりPtとNOx 吸蔵材とは近接担持され、RhとP
tとは分離担持されている。したがって、Rhの近接に
よりPtの酸化能が低下する不具合が防止されている。
また、PtとNOx 吸蔵材とが近接担持されていること
で、Ptにより排ガス中のNOが酸化されてNOx とな
る第1ステップと、NOx 吸蔵材にNOx を吸蔵する第
2ステップとが円滑に行われる。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
Rh is present in the first powder, Pt and the NO x storage material is present in the second powder, the first powder and the second powder are mixed.
In other words, Pt and the NO x storage material are carried in close proximity, and Rh and P
It is separated and carried from t. Therefore, the problem that the oxidizing ability of Pt decreases due to the proximity of Rh is prevented.
In addition, since Pt and the NO x storage material are carried in close proximity, the first step in which NO in the exhaust gas is oxidized by the Pt to become NO x, and the second step in which NO x is stored in the NO x storage material Is performed smoothly.

【0013】そして第1粉末と第2粉末とが混在した状
態であるので、離間した状態といえどもRhは第2粉末
とある程度近接している。したがってNOx 吸蔵材から
放出されたNOx は、Rhにより還元されて浄化され
る。また、RhはPtと比較してリーン雰囲気中におけ
る粒成長が著しく小さい。したがってRhの存在により
三元活性の耐久性が向上する。またRhはNOx 吸蔵材
と分離して担持されているため、相互の相性の悪さが解
消され、NOx 吸蔵材及びRhの性能が低下するのが防
止される。
Since the first powder and the second powder are in a mixed state, Rh is somewhat close to the second powder even in a separated state. Thus the NO x storage NO released from material x is purified is reduced by Rh. Further, Rh has a significantly smaller grain growth in a lean atmosphere than Pt. Therefore, the durability of ternary activity is improved by the presence of Rh. Further, since Rh is supported separately from the NO x storage material, mutual incompatibility is eliminated, and the performance of the NO x storage material and Rh is prevented from lowering.

【0014】さらに本発明の排ガス浄化用触媒では、第
1粉末と第2粉末の少なくとも一方にCo,Fe及びN
iから選ばれる少なくとも1種の元素が担持されてい
る。これらの元素は、(1)式に示すスチームリフォー
ミング反応あるいは(2)式に示す水性ガスシフト反応
を促進させる機能をもち、これにより水素の発生が促進
される。そして発生した水素はその強い還元力によりN
x を還元し、耐久後にも高いNOx 還元性能が維持さ
れる。
Further, in the exhaust gas purifying catalyst of the present invention, at least one of the first powder and the second powder contains Co, Fe and N
At least one element selected from i is supported. These elements have a function of accelerating the steam reforming reaction represented by the formula (1) or the water gas shift reaction represented by the formula (2), thereby promoting the generation of hydrogen. The generated hydrogen is converted into N by its strong reducing power.
The O x reduction, higher the NO x reduction performance is maintained even after endurance.

【0015】 Cn m + n H2 O → n CO+(n +m/2 )H2 (1) CO + H2 O → CO2 + H2 (2) また、NOx 吸蔵材近傍に発生した水素は、NOx 吸蔵
材に取り込まれたサルフェートを還元するため、NOx
吸蔵材の硫黄被毒劣化を抑制することができる。
[0015] C n H m + n H 2 O → n CO + (n + m / 2) H 2 (1) CO + H 2 O → CO 2 + H 2 (2) were also generated near the NO x storage material Hydrogen reduces sulfate taken in the NO x storage material, so that NO x
Sulfur poisoning deterioration of the storage material can be suppressed.

【0016】本発明の排ガス浄化方法では、リーン雰囲
気において、PtによりHC及びCOが酸化浄化され
る。それと同時に、Ptにより排ガス中のNOが酸化さ
れてNOx となる第1ステップと、NOx 吸蔵材にNO
x を吸蔵する第2ステップとが行われる。この時、Pt
とNOx 吸蔵材とが近接担持され、RhはPtと分離し
て担持されているため、Rhの近接によりPtの酸化能
が低下するような不具合がなく、第1ステップ及び第2
ステップは円滑に行われる。
In the exhaust gas purifying method of the present invention, HC and CO are oxidized and purified by Pt in a lean atmosphere. NO At the same time, a first step of NO in the exhaust gas is oxidized NO x by Pt, to the NO x storage material
and a second step of storing x . At this time, Pt
And the NO x storage material are carried in close proximity to each other, and Rh is carried separately from Pt. Therefore, there is no problem that the oxidizing ability of Pt is reduced by the proximity of Rh, and the first step and the second
The steps are performed smoothly.

【0017】そして一時的にストイキ〜リッチ雰囲気に
変化させることにより、NOx 吸蔵材に吸蔵されていた
NOx が放出され、Pt及びRhの触媒作用により排ガ
ス中のHC及びCOと反応し、また上記(1)式及び
(2)式の反応により生成したH2 と反応することで、
NOx が還元浄化される。多孔質粒子としては、第1粉
末、第2粉末ともにアルミナ、シリカ、ジルコニア、シ
リカ−アルミナ、ゼオライトなどから選択することがで
きる。このうちの一種でもよいし複数種類を混合あるい
は複合化して用いることもできる。なお、耐熱性、また
ZrはRhとの相性が良いことなどの理由により、第1
粉末にはアルミナ又はジルコニアを用い、第2粉末には
アルミナを用いることが好ましい。
[0017] Then By temporarily changed to the stoichiometric-rich atmosphere, NO x, which have been stored in the NO x storage material is released, reacts with HC and CO in the exhaust gas by the catalytic action of Pt and Rh, also By reacting with H 2 generated by the reaction of the above formulas (1) and (2),
NO x is reduced and purified. As the porous particles, both the first powder and the second powder can be selected from alumina, silica, zirconia, silica-alumina, zeolite, and the like. One of these may be used, or a plurality of them may be mixed or combined for use. The first heat resistance and the compatibility of Zr with Rh are good.
Preferably, alumina or zirconia is used for the powder, and alumina is used for the second powder.

【0018】多孔質粒子の粒径は、第1粉末と第2粉末
ともに1〜100μmの範囲が好ましい。粒径が1μm
より小さいとRhとPtを分離担持した効果を得にく
く、100μmより大きくなると、第1粉末と第2粉末
の間の作用が小さくなる。また、多孔質粒子の粒径は、
第1粉末と第2粉末とでほぼ同一の粒径とすることが望
ましい。粒径に大きな差があると、小さな粒子が大きな
粒子の間に細密充填されるため、RhとPt及びNOx
吸蔵材が近接する確率が高くなるからである。
The particle diameter of the porous particles is preferably in the range of 1 to 100 μm for both the first powder and the second powder. Particle size 1μm
If it is smaller, it is difficult to obtain the effect of separating and supporting Rh and Pt, and if it is larger than 100 μm, the action between the first powder and the second powder becomes small. Also, the particle size of the porous particles,
It is desirable that the first powder and the second powder have substantially the same particle size. If there is a large difference in particle size, small particles are densely packed between large particles, so that Rh and Pt and NOx
This is because the probability that the occlusion material approaches will increase.

【0019】第1粉末のRhの担持量としては、多孔質
粒子120g当たり0.1〜10gの範囲が望ましい。
Rhの担持量が0.1g/120gより少ないと耐久性
が低下し、10g/120gより多く担持しても効果が
飽和するとともにコストの増大を招く。また第2粉末の
Ptの担持量としては、多孔質粒子120g当たり0.
1〜10gの範囲が望ましい。Ptの担持量が0.1g
/120gより少ないとHC、CO及びNOx の浄化率
が低下し、10g/120gより多く担持しても効果が
飽和するとともにコストの増大を招く。なお第2粉末に
は、PtとともにPdを担持させることもできる。この
場合には、PtとPdの合計が多孔質粒子120g当た
り0.1〜10gの範囲とすることが望ましい。
The amount of Rh supported in the first powder is preferably in the range of 0.1 to 10 g per 120 g of the porous particles.
If the supported amount of Rh is less than 0.1 g / 120 g, the durability is reduced. If the supported amount is more than 10 g / 120 g, the effect is saturated and the cost is increased. The amount of Pt carried in the second powder was 0.1 g per 120 g of the porous particles.
A range of 1 to 10 g is desirable. 0.1 g of Pt carried
If it is less than / 120 g, the purification rate of HC, CO and NOx will decrease, and if it is carried more than 10 g / 120 g, the effect will be saturated and the cost will increase. In addition, Pd can be carried on the second powder together with Pt. In this case, it is desirable that the total of Pt and Pd be in the range of 0.1 to 10 g per 120 g of the porous particles.

【0020】NOx 吸蔵材としては、アルカリ金属、ア
ルカリ土類金属及び希土類金属から選ばれる少なくとも
一種の元素を用いることができる。アルカリ金属として
はリチウム(Li)、ナトリウム(Na)、カリウム
(K)、セシウム(Cs)が挙げられる。また、アルカ
リ土類金属とは周期表2A族元素をいい、マグネシウム
(Mg)、カルシウム(Ca)、ストロンチウム(S
r)、バリウム(Ba)が挙げられる。また希土類金属
としてはランタン(La)、セリウム(Ce)、プラセ
オジム(Pr)などが挙げられる。
As the NO x occluding material, at least one element selected from alkali metals, alkaline earth metals and rare earth metals can be used. Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), and cesium (Cs). Alkaline earth metals refer to Group 2A elements of the periodic table, and include magnesium (Mg), calcium (Ca), strontium (S
r) and barium (Ba). Examples of the rare earth metal include lanthanum (La), cerium (Ce), and praseodymium (Pr).

【0021】このNOx 吸蔵材の第2粉末中の担持量と
しては、多孔質粒子120g当たり0.05〜0.5モ
ルの範囲が望ましい。NOx 吸蔵材の担持量が0.05
モル/120gより少ないとNOx 浄化率が低下し、
0.5モル/120gより多く担持しても効果が飽和す
る。第1粉末と第2粉末の混合比は、RhとPtあるい
はPtとPdの合計の重量比換算で第1粉末:第2粉末
=0.05:1〜1:1の範囲が好ましい。また多孔質
粒子として第1粉末と第2粉末ともにアルミナを用いた
場合には、アルミナの重量比換算で第1粉末:第2粉末
=0.1:1〜2:1の範囲が好ましい。これらの範囲
から外れると、上記したRh及びPtの過不足の場合と
同様の不具合が発生する場合がある。
The amount of the NO x occluding material carried in the second powder is preferably in the range of 0.05 to 0.5 mol per 120 g of the porous particles. The loading amount of the NO x storage material is 0.05
If the amount is less than mol / 120 g, the NO x purification rate decreases,
Even if more than 0.5 mol / 120 g is supported, the effect is saturated. The mixing ratio of the first powder and the second powder is preferably in the range of 0.05: 1 to 1: 1 of the first powder and the second powder in terms of the weight ratio of Rh and Pt or the total of Pt and Pd. When alumina is used for both the first powder and the second powder as the porous particles, the ratio of the first powder to the second powder is preferably 0.1: 1 to 2: 1 in terms of the weight ratio of alumina. If the ratio is out of these ranges, the same problem as in the case of excess or deficiency of Rh and Pt described above may occur.

【0022】Co,Fe及びNiから選ばれる元素の担
持量は、単独あるいは複数種類の場合ともに、多孔質粒
子120g当たり0.01〜2.0モルの範囲とするこ
とが望ましい。この元素の担持量が0.01モル/12
0gより少ないと担持した効果が現れず、2.0モル/
120gより多く担持しても効果が飽和するとともに貴
金属の作用を低下させる場合がある。
The amount of the element selected from Co, Fe and Ni is preferably in the range of 0.01 to 2.0 mol per 120 g of the porous particles, singly or in the case of plural kinds. The supported amount of this element is 0.01 mol / 12
When the amount is less than 0 g, the effect of supporting is not exhibited, and 2.0 mol /
Even if the amount is more than 120 g, the effect may be saturated and the effect of the noble metal may be reduced.

【0023】Co,Fe及びNiから選ばれる元素は、
第1粉末の多孔質粒子及び第2粉末の多孔質粒子のどち
らにも担持することができる。また第1粉末と第2粉末
の両方に担持してもよい。なお、Co,Fe及びNiか
ら選ばれる元素を担持した多孔質粒子には、さらにSi
及びMgの少なくとも一方からなる助触媒を担持するこ
とも好ましい。この助触媒を担持することにより、水素
生成反応が促進される効果が加わる。この助触媒の担持
量としては、多孔質粒子120g当たり0.005〜
2.0モルの範囲とすることが望ましい。助触媒の担持
量が0.005モル/120gより少ないと担持した効
果が現れず、2.0モル/120gより多く担持しても
効果が飽和する。
The elements selected from Co, Fe and Ni are:
It can be carried on both the porous particles of the first powder and the porous particles of the second powder. Further, it may be carried on both the first powder and the second powder. The porous particles supporting an element selected from Co, Fe and Ni are further provided with Si.
It is also preferred to carry a co-catalyst consisting of at least one of Mg and Mg. By supporting the co-catalyst, an effect of accelerating the hydrogen generation reaction is added. The amount of the co-catalyst to be carried is 0.005 to 120 g of the porous particles.
Desirably, the range is 2.0 mol. If the supported amount of the cocatalyst is less than 0.005 mol / 120 g, the effect of supporting is not exhibited, and if the supported amount is more than 2.0 mol / 120 g, the effect is saturated.

【0024】第1粉末と第2粉末の混合物から排ガス浄
化用触媒を形成するには、混合物を定法によりペレット
化してペレット触媒とすることができる。また混合物を
主成分とするスラリーを、コーディエライトや金属箔か
らなるハニカム担体にコートし焼成してモノリス触媒と
することもできる。請求項2に記載の本発明の浄化方法
では、酸素過剰のリーン雰囲気において第2粉末のPt
によりNOが酸化されてNOx となり、Ptと近接担持
されたNO x 吸蔵材にNOx が速やかに吸蔵される。こ
こでPtはRhと分離担持されているため、Ptの酸化
能が阻害されるのが防止され、NOは円滑にNOx とな
る。またNOx 吸蔵材はRhと分離担持されているの
で、NOx 吸蔵能の低下が防止されている。したがって
NOx はNOx 吸蔵材に円滑に吸蔵され、外部への放出
が防止されている。また排ガス中のHC及びCOは、P
t及びRhの触媒作用により存在する過剰の酸素と反応
して容易に酸化浄化される。
Exhaust gas purification from a mixture of the first powder and the second powder
The mixture is pelletized by a conventional method to form a catalyst for
Into a pellet catalyst. Also mix
Whether the main component slurry is cordierite or metal foil
Coated with a honeycomb support made of
You can also. The purification method of the present invention according to claim 2.
In the oxygen-rich lean atmosphere, the Pt of the second powder
NO is oxidized by NOxAnd Pt and proximity carrying
NO xNO for occlusion materialxIs quickly absorbed. This
Here, Pt is separated and supported from Rh, so that Pt is oxidized.
Function is prevented from being hindered, and NOxTona
You. Also NOxThe storage material is separated from Rh
And NOxA decrease in storage capacity is prevented. Therefore
NOxIs NOxSmoothly absorbed by the storage material and released to the outside
Has been prevented. HC and CO in the exhaust gas are P
Reaction with excess oxygen present by catalysis of t and Rh
It is easily oxidized and purified.

【0025】そしてストイキ〜リッチ雰囲気において、
NOx 吸蔵材からNOx が放出され、放出されたNOx
はPt及びRhの触媒作用により排ガス中のHC及びC
Oと反応し、またCo,Fe及びNiから選ばれる元素
によって(1)式及び(2)式の反応が促進され生成し
たH2 と反応し、還元されてN2 となって浄化される。
このとき、Ptに粒成長が生じて還元能が低下していた
としても、RhはNO x の還元能に優れているためNO
x は円滑に還元浄化される。
Then, in a stoichiometric-rich atmosphere,
NOxNO from occlusion materialxIs released and the released NOx
Is HC and C in exhaust gas by the catalytic action of Pt and Rh.
Element that reacts with O and is selected from Co, Fe and Ni
Promotes the reactions of equations (1) and (2)
HTwoAnd reduced to NTwoIt is purified.
At this time, grain growth occurred in Pt, and the reducing ability was reduced.
Even if Rh is NO xNO because of its excellent ability to reduce NO
xIs reduced and purified smoothly.

【0026】[0026]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1) <第1粉末の調製>平均粒径5μmのアルミナ粉末に所
定濃度の硝酸ロジウム水溶液の所定量を含浸させ、11
0℃で3時間乾燥後、250℃で2時間焼成してRhを
担持した。Rhの担持量は、アルミナ粉末120g当た
り0.3gである。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) <Preparation of first powder> An alumina powder having an average particle diameter of 5 µm was impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration.
After drying at 0 ° C. for 3 hours, it was baked at 250 ° C. for 2 hours to carry Rh. The supported amount of Rh is 0.3 g per 120 g of alumina powder.

【0027】<第2粉末の調製>平均粒径5μmのアル
ミナ粉末に所定濃度の酢酸バリウム水溶液の所定量を含
浸させ、110℃で5時間乾燥後、500℃で2時間焼
成しBaを担持した。Baの担持量は、アルミナ粉末1
20g当たり0.3モルである。次に、上記で得られた
Ba担持アルミナ粉末に、濃度15g/Lの重炭酸アン
モニウム水溶液1.2Lを含浸させ、110℃で5時間
乾燥した。これによりBaは炭酸バリウムとなってアル
ミナ粉末に均一に担持された。
<Preparation of Second Powder> A predetermined amount of barium acetate aqueous solution having a predetermined concentration was impregnated into alumina powder having an average particle diameter of 5 μm, dried at 110 ° C. for 5 hours, and calcined at 500 ° C. for 2 hours to carry Ba. . The supported amount of Ba is as follows:
0.3 mol per 20 g. Next, the Ba-supported alumina powder obtained above was impregnated with 1.2 L of an aqueous solution of ammonium bicarbonate having a concentration of 15 g / L, and dried at 110 ° C. for 5 hours. As a result, Ba became barium carbonate and was uniformly supported on the alumina powder.

【0028】このBa/アルミナ粉末に、所定濃度のジ
ニトロジアンミン白金硝酸水溶液の所定量を含浸させ、
110℃で2時間乾燥後400℃で2時間焼成してPt
を担持した。Ptの担持量はアルミナ粉末120g当た
り2.0gである。これにより第2粉末が調製された。 <遷移金属の担持>上記第1粉末と第2粉末を等量混合
して混合粉末とし、この混合粉末に所定濃度の硝酸コバ
ルト水溶液を含浸させ、110℃で5時間乾燥後400
℃で2時間焼成してCoを担持した。Coの担持量は、
混合粉末120g当たり0.1モルである。
This Ba / alumina powder is impregnated with a predetermined amount of an aqueous solution of dinitrodiammineplatinic nitric acid having a predetermined concentration,
After drying at 110 ° C for 2 hours, baking at 400 ° C for 2 hours
Was carried. The supported amount of Pt is 2.0 g per 120 g of alumina powder. Thus, a second powder was prepared. <Support of transition metal> The first powder and the second powder are mixed in equal amounts to form a mixed powder.
Calcination was carried out at 2 ° C. for 2 hours to carry Co. The supported amount of Co is
0.1 mol per 120 g of the mixed powder.

【0029】<触媒の調製>得られた粉末を定法でペレ
ット化して、実施例1の触媒を調製した。このペレット
触媒の模式的な構成説明図を図1に示す。 <評価試験>得られたペレット触媒を評価試験装置内に
配置し、表1に示すモデルガスを通過させた。つまりリ
ッチモデルガスとリーンモデルガスを、それぞれ入りガ
ス温度350℃で、2リットル/minの条件で流し、
その時の触媒入りガス中のNO濃度と触媒出ガス中のN
O濃度の差から、それぞれの触媒についてNOの吸蔵量
と還元量を測定した。結果を表3に示す。
<Preparation of Catalyst> The obtained powder was pelletized by a conventional method to prepare a catalyst of Example 1. FIG. 1 is a schematic structural explanatory view of this pellet catalyst. <Evaluation Test> The obtained pellet catalyst was placed in an evaluation test apparatus, and the model gas shown in Table 1 was passed therethrough. In other words, the rich model gas and the lean model gas are flowed under the condition of 2 liter / min at the inlet gas temperature of 350 ° C., respectively.
At that time, the NO concentration in the catalyst-containing gas and the N
From the difference in the O concentration, the amount of stored and reduced NO was measured for each catalyst. Table 3 shows the results.

【0030】[0030]

【表1】 また表2に示す耐久モデルガスを、リッチ1分間−リー
ン4分間で切り換えながら、入りガス温度600℃で8
時間流す耐久試験を行った。耐久後の触媒の元素定量分
析から硫黄被毒量(S被毒量)を求めた。また、耐久試
験後の触媒について上記と同様にしてNOの吸蔵量と還
元量を測定し、この結果を表3に示す。
[Table 1] Further, while switching the endurance model gas shown in Table 2 between rich 1 minute and lean 4 minutes, 8
An endurance test was conducted for a long time. The sulfur poisoning amount (S poisoning amount) was determined from the elemental quantitative analysis of the catalyst after durability. The NO storage amount and the reduction amount of the catalyst after the durability test were measured in the same manner as described above, and the results are shown in Table 3.

【0031】[0031]

【表2】 (実施例2)実施例1と同様の第1粉末と、酢酸バリウ
ム水溶液の代わりに酢酸バリウムと硝酸コバルトの混合
水溶液を用いたこと以外は実施例1と同様にして調製さ
れた第2粉末とを用い、実施例1と同様にして混合粉末
を調製した。そして、この混合粉末をそのまま用いて実
施例2のペレット触媒を調製した。なお、第2粉末のB
aとCoの担持量は、アルミナ粉末120g当たりそれ
ぞれ0.3モルと0.1モルである。
[Table 2] (Example 2) A first powder similar to that of Example 1 and a second powder prepared in the same manner as in Example 1 except that a mixed aqueous solution of barium acetate and cobalt nitrate was used instead of the aqueous barium acetate solution. And a mixed powder was prepared in the same manner as in Example 1. And the pellet catalyst of Example 2 was prepared using this mixed powder as it was. In addition, B of the second powder
The supported amounts of a and Co are 0.3 mol and 0.1 mol, respectively, per 120 g of alumina powder.

【0032】得られた実施例2のペレット触媒につい
て、初期と耐久後のNO吸蔵量と還元量及び硫黄被毒量
を実施例1と同様に測定し、結果を表3に示す。 (実施例3)平均粒径5μmのアルミナ粉末に所定濃度
の硝酸コバルト水溶液の所定量を含浸させ、110℃で
5時間乾燥後500℃で2時間焼成した。Coの担持量
は、アルミナ粉末120g当たり0.1モルである。こ
のCo担持アルミナ粉末に、所定濃度の硝酸ロジウム水
溶液の所定量を含浸させ、110℃で3時間乾燥後25
0℃で2時間焼成し、第1粉末を調製した。
With respect to the obtained pellet catalyst of Example 2, the NO occlusion amount, the reduction amount, and the sulfur poisoning amount at the initial stage and after the endurance were measured in the same manner as in Example 1, and the results are shown in Table 3. Example 3 Alumina powder having an average particle size of 5 μm was impregnated with a predetermined amount of an aqueous solution of cobalt nitrate having a predetermined concentration, dried at 110 ° C. for 5 hours, and fired at 500 ° C. for 2 hours. The supported amount of Co is 0.1 mol per 120 g of alumina powder. This Co-supported alumina powder is impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration, dried at 110 ° C. for 3 hours, and then dried.
It was baked at 0 ° C. for 2 hours to prepare a first powder.

【0033】この第1粉末と実施例1と同様の第2粉末
を用い、実施例1と同様にして混合粉末を調製した。そ
して、この混合粉末をそのまま用いて実施例3のペレッ
ト触媒を調製した。得られた実施例3のペレット触媒に
ついて、初期と耐久後のNO吸蔵量と還元量及び硫黄被
毒量を実施例1と同様に測定し、結果を表3に示す。
A mixed powder was prepared in the same manner as in Example 1 by using the first powder and the second powder as in Example 1. And the pellet catalyst of Example 3 was prepared using this mixed powder as it was. With respect to the obtained pellet catalyst of Example 3, the NO storage amount, the reduction amount, and the sulfur poisoning amount at the initial stage and after the endurance were measured in the same manner as in Example 1, and the results are shown in Table 3.

【0034】(比較例)平均粒径5μmのアルミナ粉末
に所定濃度の酢酸バリウム水溶液の所定量を含浸させ、
110℃で3時間乾燥後、500℃で2時間焼成しBa
を担持した。Baの担持量は、アルミナ粉末120g当
たり0.3モルである。次に、上記で得られたBa担持
アルミナ粉末を、濃度15g/Lの重炭酸アンモニウム
水溶液に含浸させ、110℃で3時間乾燥した。これに
よりBaは炭酸バリウムとなってアルミナ粉末に均一に
担持された。
(Comparative Example) A predetermined amount of a barium acetate aqueous solution having a predetermined concentration was impregnated into alumina powder having an average particle size of 5 μm.
After drying at 110 ° C. for 3 hours, baking at 500 ° C. for 2 hours and Ba
Was carried. The supported amount of Ba is 0.3 mol per 120 g of alumina powder. Next, the Ba-supported alumina powder obtained above was impregnated with an aqueous solution of ammonium bicarbonate having a concentration of 15 g / L, and dried at 110 ° C. for 3 hours. As a result, Ba became barium carbonate and was uniformly supported on the alumina powder.

【0035】このBa/アルミナ粉末に、所定濃度のジ
ニトロジアンミン白金硝酸水溶液の所定量を含浸させ、
110℃で3時間乾燥後250℃で2時間乾燥してPt
を担持した。Ptの担持量はアルミナ粉末120g当た
り2.0gである。次に、得られたPt担持Ba/アル
ミナ粉末に所定濃度の硝酸ロジウム水溶液の所定量を含
浸させ、110℃で3時間乾燥後、250℃で2時間焼
成してRhを担持した。Rhの担持量は、アルミナ粉末
120g当たり0.3gである。
This Ba / alumina powder is impregnated with a predetermined amount of an aqueous solution of dinitrodiammineplatinic nitric acid having a predetermined concentration,
After drying at 110 ° C for 3 hours, drying at 250 ° C for 2 hours, Pt
Was carried. The supported amount of Pt is 2.0 g per 120 g of alumina powder. Next, the obtained Pt-supported Ba / alumina powder was impregnated with a predetermined amount of a rhodium nitrate aqueous solution having a predetermined concentration, dried at 110 ° C. for 3 hours, and calcined at 250 ° C. for 2 hours to carry Rh. The supported amount of Rh is 0.3 g per 120 g of alumina powder.

【0036】そして定法により得られた触媒粉末をペレ
ット化し、比較例のペレット触媒を調製した。得られた
比較例のペレット触媒について、初期と耐久後のNO吸
蔵量と還元量及び硫黄被毒量を実施例1と同様に測定
し、結果を表3に示す。(評価)
The catalyst powder obtained by a conventional method was pelletized to prepare a pellet catalyst of Comparative Example. With respect to the obtained pellet catalyst of the comparative example, the NO occlusion amount, the reduction amount, and the sulfur poisoning amount at the initial stage and after the durability were measured in the same manner as in Example 1, and the results are shown in Table 3. (Evaluation)

【0037】[0037]

【表3】 表3より、実施例の各触媒は、比較例に比べて耐久後の
NO吸蔵量及びNO還元量が向上し、特にNO還元量の
向上が大きい。また実施例の触媒では、比較例に比べて
硫黄被毒も抑制されていることもわかる。
[Table 3] As shown in Table 3, each catalyst of the example has an improved NO occlusion amount and an NO reduction amount after the endurance as compared with the comparative example, and the improvement of the NO reduction amount is particularly large. It can also be seen that the sulfur poisoning of the catalyst of the example was suppressed as compared with the comparative example.

【0038】すなわち本実施例の排ガス浄化用触媒は初
期、耐久後ともに高いNO浄化率を示すことが明らかで
ある。なお、上記実施例ではCoの場合について述べた
が、Coの代わりにFe又はNiを単独であるいは複数
種類混合して用いても同様の結果が得られたことを付記
しておく。
That is, it is clear that the exhaust gas purifying catalyst of this embodiment shows a high NO purifying rate both at the initial stage and after the endurance. In the above embodiment, the case of Co was described. However, it should be noted that the same result was obtained when Fe or Ni was used alone or in combination of plural kinds instead of Co.

【0039】また、上記実施例ではペレット触媒につい
て述べたが、コーディエライトや金属箔からなるハニカ
ム担体に第1粉末と第2粉末の混合粉末を主とするコー
ト層を形成したモノリス触媒としても、上記ペレット触
媒と同様の作用効果が奏されることはいうまでもない。
Although a pellet catalyst has been described in the above embodiment, a monolithic catalyst in which a coat layer mainly composed of a mixed powder of the first powder and the second powder is formed on a honeycomb carrier made of cordierite or metal foil may also be used. Needless to say, the same operation and effects as those of the above-mentioned pellet catalyst are exhibited.

【0040】[0040]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、初期、耐久後ともに高いNOx浄化能を示し、ま
たNOx 吸蔵材の硫黄被毒も抑制されるため、高い耐久
性を有している。また本発明の排ガス浄化方法によれ
ば、NOの酸化によるNOx の生成と、そのNOx のN
x 吸蔵材への吸蔵、及びNOx 吸蔵材から放出された
NOx の還元とが円滑に進行し、初期から耐久後まで高
いNOx 浄化性能を確保することができる。
According to the exhaust gas purifying catalyst of the present invention, high NO x purification performance is exhibited both at the initial stage and after the endurance, and the sulfur poisoning of the NO x occluding material is suppressed. doing. According to the exhaust gas purifying method of the present invention, the generation of the NO x due to oxidation of NO, N of the NO x
The storage in the O x storage material and the reduction of the NO x released from the NO x storage material proceed smoothly, and high NO x purification performance can be secured from the initial stage to the end of the durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の排ガス浄化用触媒の模式的
構成説明図である。
FIG. 1 is a schematic structural explanatory view of an exhaust gas purifying catalyst according to one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質粒子にRhを担持した第1粉末
と、多孔質粒子にPtとNOx 吸蔵材を担持した第2粉
末とを混在してなり、該第1粉末と該第2粉末の少なく
とも一方にはCo,Fe及びNiから選ばれる少なくと
も1種の元素が担持されていることを特徴とする排ガス
浄化用触媒。
1. A first powder in which Rh is supported on porous particles and a second powder in which Pt and a NO x storage material are supported on porous particles are mixed, and the first powder and the second powder are mixed. Characterized in that at least one of them carries at least one element selected from Co, Fe and Ni.
【請求項2】 多孔質粒子にRhを担持した第1粉末と
多孔質粒子にPtとNOx 吸蔵材を担持した第2粉末と
を混在してなり該第1粉末と該第2粉末の少なくとも一
方にはCo,Fe及びNiから選ばれる少なくとも1種
の元素が担持されている触媒を排ガス中に配置し、酸素
過剰のリーン雰囲気において該NOx吸蔵材にNOx
吸蔵し、一時的にストイキ〜リッチ雰囲気に変化させる
ことにより該NOx 吸蔵材から放出されるNOx を還元
して浄化することを特徴とする排ガス浄化方法。
Wherein the first powder and the porous first powder becomes a second and a powder mixture obtained by carrying Pt and the NO x storage material particles and the second powder carrying the Rh on porous particles of at least Meanwhile Co, the catalyst of at least one element selected from Fe and Ni is supported is disposed in the exhaust gas, the oxygen occluding NO x in the the NO x storage material in excess lean atmosphere, temporarily exhaust gas purification method, characterized in that purifying by reducing the NO x released from the the NO x storage material by changing the stoichiometric-rich atmosphere.
JP19505396A 1996-07-24 1996-07-24 Exhaust gas purification catalyst and exhaust gas purification method Expired - Lifetime JP3508969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19505396A JP3508969B2 (en) 1996-07-24 1996-07-24 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19505396A JP3508969B2 (en) 1996-07-24 1996-07-24 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH1033984A true JPH1033984A (en) 1998-02-10
JP3508969B2 JP3508969B2 (en) 2004-03-22

Family

ID=16334776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19505396A Expired - Lifetime JP3508969B2 (en) 1996-07-24 1996-07-24 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3508969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569803B2 (en) 2000-01-19 2003-05-27 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
JP2007160237A (en) * 2005-12-14 2007-06-28 Toyota Central Res & Dev Lab Inc Exhaust gas-clarification catalyst and exhaust gas-clarification method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569803B2 (en) 2000-01-19 2003-05-27 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
JP2007160237A (en) * 2005-12-14 2007-06-28 Toyota Central Res & Dev Lab Inc Exhaust gas-clarification catalyst and exhaust gas-clarification method using the same

Also Published As

Publication number Publication date
JP3508969B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
EP0852966B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP3741303B2 (en) Exhaust gas purification catalyst
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3798727B2 (en) Exhaust gas purification catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP3741292B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000015101A (en) Catalyst for purifying exhaust gas
JPH09253453A (en) Cleaning of exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3589376B2 (en) Exhaust gas purification catalyst
JP3508969B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3741297B2 (en) Exhaust gas purification catalyst
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH09299795A (en) Catalyst for purification of exhaust gas
JP7304241B2 (en) NOx purification catalyst and exhaust gas purification catalyst
JP2005288382A (en) Catalyst for purifying exhaust gas
JPH1052627A (en) Exhaust gas purifying catalyst
JP4556084B2 (en) Exhaust gas purification catalyst
JPH11267503A (en) Catalyst for cleaning exhaust gas
JP3855252B2 (en) Exhaust gas purification catalyst
JPH1080620A (en) Exhaust gas cleaning device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term