JPH10339515A - Absorptive freezer - Google Patents

Absorptive freezer

Info

Publication number
JPH10339515A
JPH10339515A JP9145490A JP14549097A JPH10339515A JP H10339515 A JPH10339515 A JP H10339515A JP 9145490 A JP9145490 A JP 9145490A JP 14549097 A JP14549097 A JP 14549097A JP H10339515 A JPH10339515 A JP H10339515A
Authority
JP
Japan
Prior art keywords
solution
heat exchanger
heat
temperature
concentrated solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9145490A
Other languages
Japanese (ja)
Other versions
JP3785743B2 (en
Inventor
Yuji Watabe
裕司 渡部
Kazuo Yonemoto
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP14549097A priority Critical patent/JP3785743B2/en
Publication of JPH10339515A publication Critical patent/JPH10339515A/en
Application granted granted Critical
Publication of JP3785743B2 publication Critical patent/JP3785743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To maximize the quantity of recovered heat as a whole, by recovering the quantity of heat that a high-temperature refrigerant steam possesses effectively to one part of the thick solution to be supplied to a heat exchanger for solution for heat recovery. SOLUTION: For this device, a gas-liquid heat exchanger 13 is laid, which recovers the heat that the high-temperature refrigerant steam g1 led from a generator 2 into the thick solution l2 which bypasses a heat exchanger 9 for solution for heat recovery besides being one part of a thick solution l2 being led from an absorber 8 to the generator 2. Then, this device is provided with flow control means 16 and 17 which control the flow of the thick solution l2 supplied to the heat exchanger 9 and the flow l2 supplied to the heat exchanger 13 so that the quantities of recovered heat in both may keep the maximum values, thus the quantity of heat that the high-temperature refrigerant steam g1 led out of the generator 2 can be recovered in one part of the thick solution from the absorber 8 to the generator 2, and also each flow of the thick solution supplied to the heat exchanger 9 and the heat exchanger 13 is controlled by the flow control means 16 and 17, so it becomes possible to keep the quantities of recovered heat in both at maximum values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、吸収式冷凍装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system.

【0002】[0002]

【従来の技術】例えば、冷媒として塩素原子を有しない
R407c等の代替冷媒を用い、吸収液として冷凍機油
等を用いた吸収式冷凍装置は、図5に示すように、加熱
手段(例えば、ガスバーナ1)により加熱され、高温冷
媒蒸気g1を発生させる発生器2と、該発生器2により
発生された高温冷媒蒸気g1中に含まれる吸収液を分離
する気液分離器3と、冷房運転時において該気液分離器
3から導かれる高温冷媒蒸気g1を凝縮液化する凝縮器
4と、該凝縮器4により凝縮液化された冷媒を減圧する
減圧機構5と、該減圧機構5により減圧された冷媒を蒸
発気化する蒸発器6と、該蒸発器6により蒸発気化され
た低温冷媒蒸気g2を前記発生器2から導かれる希溶液
1に吸収させる際に発生する吸収熱を回収する吸収熱
交換器7と、該吸収熱交換器7から導かれる溶液にさら
に冷媒蒸気を吸収させる空冷吸収器8と、該空冷吸収器
8から前記発生器2に導かれる途中の濃溶液l2に前記
発生器2から前記吸収熱交換器7に導かれる途中の希溶
液l1の保有する熱を回収する熱回収用溶液熱交換器9
とを備えて構成されている。符号10は濃溶液l2を圧
送するためのポンプ、11はポンプ10を保護するため
に濃溶液l2を過冷却する過冷却器、12は発生器2か
らの希溶液l1を減圧するための減圧機構である。
2. Description of the Related Art For example, as shown in FIG. 5, an absorption refrigerating apparatus using an alternative refrigerant such as R407c having no chlorine atom as a refrigerant and using a refrigerating machine oil or the like as an absorbing liquid has a heating means (for example, a gas burner). is heated by 1), and generator 2 for generating a high-temperature refrigerant vapor g 1, a gas-liquid separator 3 for separating the absorbent solution contained in the generated high temperature refrigerant vapor g 1 which by the generator 2, cooling operation a condenser 4 for condensing and liquefying the hot refrigerant vapor g 1 derived from gas-liquid separator 3 at the time, a pressure reducing mechanism 5 for decompressing the refrigerant condensed and liquefied by the condenser 4, is depressurized by the pressure reducing mechanism 5 and an evaporator 6 which refrigerant evaporation vaporized to recover the heat of absorption generated when is taken up in dilute solution l 1 led the cryogen vapor g 2 which is vaporized by the evaporator 6 from the generator 2 absorption Heat exchanger 7 and the absorption heat And air-cooled absorber 8 to further absorb the refrigerant vapor into the solution derived from the exchanger 7, the absorption heat exchanger from the generator 2 to the concentrated solution l 2 of course derived from the air-cooling the absorber 8 to the generator 2 heat-recovery solution heat exchanger 9 for recovering the middle of the heat possessed by the dilute solution l 1 is guided to 7
It is comprised including. Reference numeral 10 denotes a pump for pumping the concentrated solution l 2 , reference numeral 11 denotes a supercooler for supercooling the concentrated solution l 2 to protect the pump 10, and reference numeral 12 denotes a pressure reducing dilute solution l 1 from the generator 2. Is a pressure reducing mechanism.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記構成の
吸収式冷凍装置の場合、冷房運転時において発生器2か
ら凝縮器4に供給される高温冷媒蒸気g1の保有する熱
が凝縮器4において無駄に放熱されることとなってい
る。そこで、空冷吸収器8から熱回収用溶液熱交換器9
へ供給される濃溶液l2の一部に前記高温冷媒蒸気g1
保有する熱を回収するための熱回収用気液熱交換器を設
けることが考えられる。
By the way, in the case of the absorption refrigeration system having the above structure, the heat of the high-temperature refrigerant vapor g 1 supplied from the generator 2 to the condenser 4 during the cooling operation is retained in the condenser 4. It is supposed to be wastefully dissipated. Then, the solution heat exchanger 9 for heat recovery from the air-cooled absorber 8
Wherein be provided the heat-recovery gas-liquid heat exchanger for recovering heat held by the high-temperature refrigerant vapor g 1 is considered a part of the concentrated solution l 2 to be supplied to.

【0004】ところが、上記のように構成した場合、熱
回収用溶液熱交換器9へ供給されるべき濃溶液g2の一
部を熱回収用気液熱交換器へ分配することとなっている
ため、熱回収用溶液熱交換器9側へ供給される濃溶液g
2の流量が減少することとなり、その流量および希溶液
1との温度関係によっては、回収可能な熱量を完全に
回収できない運転状態が生ずることとなって成績係数
(即ち、COP)が低下するという不具合が生ずる。
[0004] However, when configured as described above, it has become possible to distribute a part of the concentrated solution g 2 to be supplied to the heat recovery solution heat exchanger 9 to heat-recovery gas-liquid heat exchanger Therefore, concentrated solution g supplied to the heat recovery solution heat exchanger 9 side
Becomes the second flow is reduced, depending on the temperature relationship between the flow rate and dilute solution L 1, the coefficient of performance becomes the operating state which can not be completely recovered recoverable heat is generated (i.e., COP) is reduced The problem described above occurs.

【0005】本願発明は、上記の点に鑑みてなされたも
ので、熱回収用溶液熱交換器へ供給されるべき濃溶液の
一部に高温冷媒蒸気の保有する熱量を有効に回収すると
ともに、全体としての熱回収量が最大値となるようにす
ることを目的とするものである。
The present invention has been made in view of the above points, and effectively recovers the amount of heat held by high-temperature refrigerant vapor in a part of a concentrated solution to be supplied to a heat recovery solution heat exchanger. The purpose is to make the total heat recovery amount the maximum value.

【0006】[0006]

【課題を解決するための手段】本願発明の基本構成(請
求項1の発明)では、上記課題を解決するための手段と
して、加熱手段1により加熱され、高温冷媒蒸気g1
発生させる発生器2と、該発生器2により発生された高
温冷媒蒸気g1を凝縮液化する凝縮器4と、該凝縮器4
により凝縮液化された冷媒を減圧する減圧機構5と、該
減圧機構5により減圧された冷媒を蒸発気化する蒸発器
6と、該蒸発器6により蒸発気化された低温冷媒蒸気g
2を前記発生器2から導かれる希溶液l1に吸収させる際
に発生する吸収熱を回収する吸収熱交換器7と、該吸収
熱交換器7から導かれる濃溶液l2にさらに冷媒蒸気g2
を吸収させる吸収器8と、該吸収器8から前記発生器2
に導かれる途中の濃溶液l2に前記発生器2から前記吸
収熱交換器7に導かれる途中の希溶液l1の保有する熱
を回収する熱回収用溶液熱交換器9とを備えた吸収式冷
凍装置において、前記発生器2から導かれる高温冷媒蒸
気g1の保有する熱を前記吸収器8から前記発生器2に
導かれる濃溶液l2の一部であって前記熱回収用溶液熱
交換器9をバイパスする濃溶液l2に回収する熱回収用
気液熱交換器13を付設するとともに、前記熱回収用溶
液熱交換器9に供給される濃溶液l2の流量と、前記熱
回収用気液熱交換器13に供給される濃溶液l2の流量
とを両者における熱回収量が最大値を維持するように制
御する流量制御手段を設けている。
According to the basic configuration of the present invention (the invention of claim 1), as a means for solving the above-mentioned problems, a generator which is heated by the heating means 1 and generates a high-temperature refrigerant vapor g1 is provided. A condenser 4 for condensing and liquefying the high-temperature refrigerant vapor g 1 generated by the generator 2;
A decompression mechanism 5 for decompressing the refrigerant condensed and liquefied by the evaporator, an evaporator 6 for evaporating and evaporating the refrigerant decompressed by the decompression mechanism 5, and a low-temperature refrigerant vapor g vaporized by the evaporator 6
The absorption heat exchanger 7 for recovering heat of absorption generated when absorbing a 2 in dilute solution l 1 derived from the generator 2, further refrigerant vapor g of concentrated solution l 2 derived from said absorber heat exchanger 7 Two
And a generator 2 that absorbs
A heat recovery solution heat exchanger 9 for recovering the heat possessed by the dilute solution l 1 being guided from the generator 2 to the absorption heat exchanger 7 to the concentrated solution l 2 being guided to In the refrigeration system, the heat held by the high-temperature refrigerant vapor g 1 guided from the generator 2 is part of the concentrated solution l 2 guided to the generator 2 from the absorber 8, and A gas-liquid heat exchanger 13 for heat recovery for recovering the concentrated solution l 2 bypassing the exchanger 9 is provided, and the flow rate of the concentrated solution l 2 supplied to the solution heat exchanger 9 for heat recovery, heat recovery amount in both the flow rate of the concentrated solution l 2 to be supplied to the recovery gas-liquid heat exchanger 13 is provided with a flow control means for controlling so as to maintain the maximum value.

【0007】上記のように構成したことにより、発生器
2から導かれる高温冷媒蒸気g1の保有する熱量を吸収
器8から発生器2に導かれる濃溶液l2の一部に回収す
ることができるとともに、熱回収用溶液熱交換器9に供
給される濃溶液l2の流量と、前記熱回収用気液熱交換
器13に供給される濃溶液l2の流量とが流量制御手段
により制御されることとなり、両者における熱回収量を
最大値に維持することができる。
[0007] By the structure described above, can be recovered in part the amount of heat held by the high-temperature refrigerant vapor g 1 derived from the generator 2 from the absorber 8 of the concentrated solution l 2 to be guided to the generator 2 it is possible to control the flow rate of the concentrated solution l 2 to be supplied to the heat recovery solution heat exchanger 9, with concentrated solutions l 2 flow rate and the flow rate control means which is supplied to the heat recovery gas-liquid heat exchanger 13 As a result, the heat recovery amount in both cases can be maintained at the maximum value.

【0008】請求項2の発明におけるように、前記流量
制御手段を、前記熱回収用溶液熱交換器9および熱回収
用気液熱交換器13に至る流路14,15にそれぞれ介
設された流量制御弁16,17と、該流量制御弁16,
17の開度を制御する制御手段18とにより構成した場
合、流量制御弁16,17の開度制御により熱回収用溶
液熱交換器9および熱回収用気液熱交換器13への濃溶
液l2の分配比が制御できることとなり、確実な制御が
得られる。この場合において、請求項3の発明における
ように、前記熱回収用溶液熱交換器9の入口側における
濃溶液l2の温度を検出する濃溶液温度検出手段19
と、前記熱回収用溶液熱交換器9の出口側における希溶
液l1の温度を検出する希溶液温度検出手段20とを付
設するとともに、前記制御手段18を、前記濃溶液温度
検出手段19により検出された濃溶液入口温度が前記希
溶液温度検出手段20により検出された希溶液出口温度
より所定値だけ低くなるように前記流量制御弁16,1
7を制御するものとすれば、熱回収用溶液熱交換器9に
おいて濃溶液l2と希溶液l1との温度差が殆どなくなる
か、または温度差がつき過ぎるということがなくなり、
効率的な熱回収を行うことができる。
As in the second aspect of the present invention, the flow rate control means is provided in the flow paths 14 and 15 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13, respectively. Flow control valves 16 and 17;
When the control means 18 controls the degree of opening of the concentrated solution 17 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13 by controlling the degree of opening of the flow control valves 16 and 17. The distribution ratio of 2 can be controlled, and reliable control can be obtained. In this case, as in the invention of claim 3, the concentrated solution temperature detection means for detecting the temperature of the concentrated solution l 2 at the inlet side of the heat recovery solution heat exchanger 9 19
If, while attaching a rare solution temperature detection means 20 for detecting the temperature of the dilute solution l 1 at the outlet side of the heat recovery solution heat exchanger 9, the control unit 18, by the concentrated solution temperature detecting unit 19 The flow control valves 16 and 1 are so controlled that the detected concentrated solution inlet temperature is lower than the diluted solution outlet temperature detected by the diluted solution temperature detecting means 20 by a predetermined value.
Assuming that controls 7, prevents the temperature difference between the concentrated solution l 2 in the heat-recovery solution heat exchanger 9 and a rare solution l 1 is little or eliminated, or that the temperature difference is too attached,
Efficient heat recovery can be performed.

【0009】また、請求項4の発明におけるように、前
記流量制御手段として、前記熱回収用溶液熱交換器9お
よび熱回収用気液熱交換器13に至る流路14,15に
それぞれ介設され、定格運転時において各流路14,1
5における濃溶液の流量比が最適となるように設定され
た固定絞り値を有する固定式流量制御機構22,23を
用いた場合、定格運転に最適な濃溶液l2の分配比が得
られることとなり、複雑な制御が不要となる。
Further, as in the fourth aspect of the present invention, the flow rate control means is interposed in flow paths 14 and 15 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13, respectively. At the time of rated operation.
When the fixed flow control mechanisms 22 and 23 having the fixed throttle values set so that the flow ratio of the concentrated solution in Step 5 is optimal, the optimum distribution ratio of the concentrated solution l 2 for rated operation can be obtained. And complicated control is not required.

【0010】[0010]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の幾つかの好適な実施の形態について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】第1の実施の形態(請求項1〜3に対応) 図1には、本願発明の第1の実施の形態にかかる吸収式
冷凍装置の冷媒回路が示されている。
First Embodiment (Corresponding to Claims 1 to 3) FIG. 1 shows a refrigerant circuit of an absorption refrigeration apparatus according to a first embodiment of the present invention.

【0012】この吸収式冷凍装置は、冷媒として塩素原
子を有しないR407c等の代替冷媒を用い、吸収液と
してジエチレングリコールジメチルエーテル等の有機溶
剤または冷凍機油等を用いるものであり、従来技術の項
において説明したものと同様に、加熱手段(例えば、ガ
スバーナ1)により加熱され、高温冷媒蒸気g1を発生
させる発生器2と、該発生器2により発生された高温冷
媒蒸気g1中に含まれる吸収液を分離する気液分離器3
と、冷房運転時において該気液分離器3から導かれる高
温冷媒蒸気g1を凝縮液化する凝縮器4と、該凝縮器4
により凝縮液化された冷媒を減圧する減圧機構5と、該
減圧機構5により減圧された冷媒を蒸発気化する蒸発器
6と、該蒸発器により蒸発気化された低温冷媒蒸気g2
を前記発生器2から導かれる希溶液l1に吸収させる際
に発生する吸収熱を回収する吸収熱交換器7と、該吸収
熱交換器7から導かれる溶液にさらに冷媒蒸気を吸収さ
せる空冷吸収器8と、該空冷吸収器8から前記発生器2
に導かれる途中の濃溶液l2に前記発生器2から前記吸
収熱交換器7に導かれる途中の希溶液l1の保有する熱
を回収する熱回収用溶液熱交換器9とを備えて構成され
ている。符号10は濃溶液l2を圧送するためのポン
プ、11はポンプ10を保護するために濃溶液l2を過
冷却する過冷却器、12は発生器2からの希溶液l1
減圧するための減圧機構である。
This absorption refrigerating apparatus uses an alternative refrigerant such as R407c having no chlorine atom as a refrigerant and uses an organic solvent such as diethylene glycol dimethyl ether or a refrigerating machine oil as an absorbing liquid. similar to that, the heating means (e.g., gas burner 1) is heated by high-temperature refrigerant vapor g 1 generator 2 for generating, absorbing liquid contained in the high-temperature refrigerant vapor g 1 generated by the generator 2 -Liquid separator 3 for separating oil
A condenser 4 for condensing and liquefying the high-temperature refrigerant vapor g 1 guided from the gas-liquid separator 3 during the cooling operation;
A decompression mechanism 5 for decompressing the refrigerant condensed and liquefied by the evaporator, an evaporator 6 for evaporating and evaporating the refrigerant decompressed by the decompression mechanism 5, and a low-temperature refrigerant vapor g 2 evaporated and vaporized by the evaporator.
The absorption heat exchanger 7 for recovering heat of absorption generated when is taken up in dilute solution l 1 derived from the generator 2, cooling absorption to absorb more refrigerant vapor into the solution derived from said absorber heat exchanger 7 From the air-cooled absorber 8 to the generator 2
And a heat recovery solution heat exchanger 9 for recovering the heat possessed by the dilute solution l 1 on the way from the generator 2 to the absorption heat exchanger 7 on the concentrated solution l 2 on the way. Have been. Reference numeral 10 denotes a pump for pumping the concentrated solution l 2 , reference numeral 11 denotes a supercooler for supercooling the concentrated solution l 2 to protect the pump 10, and reference numeral 12 denotes a pressure reducing dilute solution l 1 from the generator 2. Is a pressure reducing mechanism.

【0013】この吸収式冷凍装置は、減圧機構5および
蒸発器6が室内ユニットXを構成し、その他の諸機器が
室外ユニットYを構成することとなっている。なお、本
実施の形態の場合、1台の室外ユニットYに対して1台
の室内ユニットXを接続したものとされているが、図2
に示すように、1台の室外ユニットYに対して複数台
(例えば、4台)の室内ユニットX,X・・を接続した
マルチタイプとすることもできる。
In this absorption refrigerating apparatus, the pressure reducing mechanism 5 and the evaporator 6 constitute an indoor unit X, and other various devices constitute an outdoor unit Y. In this embodiment, one indoor unit X is connected to one outdoor unit Y.
, A plurality of (for example, four) indoor units X, X,... May be connected to one outdoor unit Y.

【0014】しかして、この吸収式冷凍装置には、前記
発生器2から導かれる高温冷媒蒸気g1の保有する熱を
前記吸収器8から前記発生器2に導かれる濃溶液l2
一部であって前記熱回収用溶液熱交換器9をバイパスす
る濃溶液l2に回収する熱回収用気液熱交換器13が付
設されている。
In this absorption refrigeration system, the heat of the high-temperature refrigerant vapor g 1 introduced from the generator 2 is transferred to a part of the concentrated solution l 2 introduced from the absorber 8 to the generator 2. heat-recovery gas-liquid heat exchanger 13 for recovering the concentrated solution l 2 to bypass the heat recovery solution heat exchanger 9 is attached to a at.

【0015】また、前記熱回収用溶液熱交換器9および
熱回収用気液熱交換器13に至る流路14,15には、
流量制御弁16,17がそれぞれ介設されている。
The flow paths 14 and 15 leading to the solution heat exchanger 9 for heat recovery and the gas-liquid heat exchanger 13 for heat recovery include:
Flow control valves 16 and 17 are provided respectively.

【0016】さらに、熱回収用溶液熱交換器9の入口側
における濃溶液l2の温度を検出する濃溶液温度検出手
段として作用する第1温度センサー19と、前記熱回収
用溶液熱交換器9の出口側における希溶液l1の温度を
検出する希溶液温度検出手段として作用する第2温度セ
ンサー20と、前記熱回収用気液熱交換器13の出口側
における高温冷媒蒸気g1の温度を検出する蒸気温度検
出手段として作用する第3温度センサー21が付設され
ている。
Furthermore, a first temperature sensor 19 which acts as a concentrated solution temperature detection means for detecting the temperature of the concentrated solution l 2 at the inlet side of the heat recovery solution heat exchanger 9, the heat recovery solution heat exchanger 9 A second temperature sensor 20 which functions as a dilute solution temperature detecting means for detecting the temperature of the dilute solution l 1 at the outlet side, and the temperature of the high-temperature refrigerant vapor g 1 at the outlet side of the heat recovery gas-liquid heat exchanger 13. A third temperature sensor 21 serving as a steam temperature detecting means for detecting is provided.

【0017】そして、前記第1ないし第3温度センサー
19〜21により検出された検出データは、制御手段と
して作用するコントローラ18に入力され、該コントロ
ーラ18においては前記検出データに基づいて各種演算
が実行され、該各種演算の結果は、制御信号として出力
され、前記流量制御弁16,17の開度を制御すること
となっている。つまり、前記流量制御弁16,17およ
びコントローラ18は、特許請求の範囲における流量制
御手段を構成することとなっているのである。
The detected data detected by the first to third temperature sensors 19 to 21 is input to a controller 18 acting as a control means, and the controller 18 executes various calculations based on the detected data. The results of the various calculations are output as control signals to control the opening of the flow control valves 16 and 17. In other words, the flow control valves 16, 17 and the controller 18 constitute a flow control means in the claims.

【0018】上記のように構成された吸収式冷凍装置
は、次のように作用する。
The absorption refrigeration system configured as described above operates as follows.

【0019】ガスバーナ1により加熱された発生器2か
ら高温冷媒蒸気g1と冷媒濃度の薄い吸収液(即ち、高
温希溶液l1)との混合物が発生せしめられ、気液分離
器3において高温冷媒蒸気g1と高温の希溶液l1とに分
離される。かくして得られた高温冷媒蒸気g1は、凝縮
器4に供給されて外部冷却物質(例えば、空気あるいは
水)により冷却されて凝縮液化するが、その前に熱回収
用気液熱交換器13において空冷吸収器8から導かれる
濃溶液l2の一部と熱交換し、濃溶液l2の温度上昇に寄
与する(即ち、高温冷媒蒸気g1の保有する熱量が濃溶
液l2に熱回収される)。
From the generator 2 heated by the gas burner 1 , a mixture of the high-temperature refrigerant vapor g 1 and an absorbent having a low refrigerant concentration (ie, a high-temperature dilute solution l 1 ) is generated. It is separated into a dilute solution l 1 of the steam g 1 and the high temperature. The thus obtained high-temperature refrigerant vapor g 1 is supplied to the condenser 4 by external cooling substance (e.g., air or water) will be condensed and liquefied is cooled by, in the heat-recovery gas-liquid heat exchanger 13 before it some of the concentrated solution l 2 derived from air-cooled absorber 8 and heat exchanger, which contributes to the temperature rise of the concentrated solution l 2 (i.e., the amount of heat held by the high-temperature refrigerant vapor g 1 is the heat recovery in the concentrated solution l 2 ).

【0020】一方、気液分離器3において分離された希
溶液l1は、熱回収用溶液熱交換器9を経て吸収熱交換
器7に供給されて蒸発器6から供給される低温冷媒蒸気
2を吸収する。
On the other hand, the dilute solution l 1 separated in the gas-liquid separator 3 is supplied to the absorption heat exchanger 7 via the heat recovery solution heat exchanger 9 and the low-temperature refrigerant vapor g supplied from the evaporator 6. Absorb 2

【0021】前述したように凝縮器4において凝縮液化
された冷媒は、減圧機構5で減圧された後蒸発器6にお
いて室内空気と熱交換して蒸発気化されて低温冷媒蒸気
2となり、前述したように吸収熱交換器7へ供給され
る。ここで、蒸発器6においては、室内空気が冷却され
て冷房用に供される。
[0021] are condensed in the condenser 4 as described above refrigerant, the low temperature refrigerant vapor g 2 next is vaporized in the evaporator 6 after being decompressed by the decompression mechanism 5 by exchanging heat with indoor air, the aforementioned Is supplied to the absorption heat exchanger 7. Here, in the evaporator 6, the room air is cooled and provided for cooling.

【0022】ところで、吸収熱交換器7においては、蒸
発器6から供給された低温冷媒蒸気g2が発生器2から
熱回収用溶液熱交換器9を経て供給される希溶液l1
吸収される。
By the way, in the absorption heat exchanger 7, is absorbed in the dilute solution l 1 to the evaporator 6 cryogen vapor g 2 supplied from the supplied from the generator 2 through the heat-recovery solution heat exchanger 9 You.

【0023】なお、吸収熱交換器7のみでは低温冷媒蒸
気g2の希溶液l1への吸収が不十分なので、吸収熱交換
器7から出た冷媒蒸気および吸収液を空冷吸収器8に送
り、さらに冷媒蒸気の吸収を行って濃溶液l2を得るよ
うにしている。
[0023] Incidentally, only the absorption heat exchanger 7 because the absorption of the dilute solution l 1 of the low-temperature refrigerant vapor g 2 is insufficient, the feed refrigerant vapor and absorption solution leaving the absorber heat exchanger 7 to the air-cooled absorber 8 , so as to obtain the concentrated solution l 2 further performs the absorption of the refrigerant vapor.

【0024】空冷吸収器8から出た濃溶液l2は過冷却
器11により完全に液化された後、ポンプ10により吸
収熱交換器7に送られ、前述したように吸収熱を回収
し、さらに熱回収用溶液熱交換器9および熱回収用気液
熱交換器13において高温の希溶液l1および冷媒蒸気
1から熱回収した後発生器2へ還流される。
[0024] After being completely liquefied by concentrated solution l 2 are subcooler 11 exiting the air-cooled absorber 8, is sent to the absorption heat exchanger 7 by the pump 10, the heat of absorption is recovered as described above, further In the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13, the heat is recovered from the high-temperature dilute solution l 1 and the refrigerant vapor g 1, and then returned to the generator 2.

【0025】ところで、本実施の形態の場合、前述した
ように、熱回収用溶液熱交換器9へ供給されるべき濃溶
液g2の一部を熱回収用気液熱交換器へ分配することと
なっているため、熱回収用溶液熱交換器9側へ供給され
る濃溶液g2の流量が減少することとなり、その流量お
よび希溶液L1との温度関係によっては、回収可能な熱
量を完全に回収できない運転状態が生ずることとなって
成績係数(即ち、COP)が低下するという不具合が生
ずるところから、第1ないし第3温度センサー19〜2
1からの検出データに基づいてコントローラ18から流
量制御弁16,17に対して開度制御信号が出力され、
熱回収量が最大値を維持するように制御される。
In the present embodiment, as described above, a part of the concentrated solution g 2 to be supplied to the heat recovery solution heat exchanger 9 is distributed to the heat recovery gas-liquid heat exchanger. and it turned in order that, it is the flow rate of the concentrated solution g 2 to be supplied to the heat recovery solution heat exchanger 9 side is reduced, depending on the temperature relationship between the flow rate and dilute solution L 1, the recoverable heat Since the operation state that cannot be completely recovered occurs and the coefficient of performance (that is, COP) decreases, the first to third temperature sensors 19 to 2 are removed.
An opening control signal is output from the controller 18 to the flow control valves 16 and 17 based on the detection data from 1 and
The heat recovery amount is controlled to maintain the maximum value.

【0026】例えば、第1温度センサー19により検出
された濃溶液入口温度が第2温度センサー20により検
出された希溶液出口温度より所定値だけ低くなり且つ第
3温度センサー21により検出された出口蒸気温度より
所定値だけ低くなるように流量制御弁16,17は制御
される。すると、図3に示すように、空冷吸収器8から
導かれる濃溶液l2の流量に対する熱回収用溶液熱交換
器9へ分配された濃溶液l2の流量との流量比Q1/Q0
が0.25〜0.75の間において熱回収量が最大値を
維持することとなる。従って、冷凍装置としての成績係
数(即ち、COP)が向上することとなるのである。
For example, the concentrated solution inlet temperature detected by the first temperature sensor 19 becomes lower than the diluted solution outlet temperature detected by the second temperature sensor 20 by a predetermined value, and the outlet vapor detected by the third temperature sensor 21 The flow control valves 16 and 17 are controlled so as to be lower than the temperature by a predetermined value. Then, as shown in FIG. 3, the flow ratio Q 1 / Q 0 of the flow rate of the concentrated solution l 2 distributed to the heat recovery solution heat exchanger 9 to the flow rate of the concentrated solution l 2 guided from the air-cooled absorber 8.
Is between 0.25 and 0.75, the heat recovery amount maintains the maximum value. Therefore, the coefficient of performance (that is, COP) of the refrigeration system is improved.

【0027】第2の実施の形態(請求項1、4に対応) 図4には、本願発明の第2の実施の形態にかかる吸収式
冷凍装置の冷媒回路が示されている。
Second Embodiment (Corresponding to Claims 1 and 4) FIG. 4 shows a refrigerant circuit of an absorption refrigeration apparatus according to a second embodiment of the present invention.

【0028】この場合、流量制御手段として、熱回収用
溶液熱交換器9および熱回収用気液熱交換器13に至る
流路14,15にそれぞれ介設され、定格運転時におい
て各流路14,15における濃溶液l2の流量比が最適
となるように設定された固定絞り値を有する固定式流量
制御機構(例えば、キャピラリチューブ22,23)が
用いられている。このようにすると、定格運転に最適な
濃溶液l2の分配比が得られることとなり、複雑な制御
が不要となる。その他の構成および作用効果は第1の実
施の形態におけると同様なので説明を省略する。
In this case, flow control means are provided in flow paths 14 and 15 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13, respectively. , a fixed flow rate control mechanism having a concentrated solution l fixed aperture flow rate ratio of 2 is set to be optimum in 15 (e.g., a capillary tube 22, 23) is used. In this way, it becomes possible distribution ratio optimum concentrated solution l 2 in the rated operation is achieved, complicated control is unnecessary. The other configuration and operation and effect are the same as those in the first embodiment, and the description is omitted.

【0029】なお、フロン系、アンモニア系の吸収式冷
凍装置においては、濃溶液はフロンあるいはアンモニア
を多く含み、希溶液はフロンあるいはアンモニアを少な
く含む溶液を表現するが、LiBr/水系の吸収式冷凍
装置の場合、濃溶液はLiBrを多く含み、希溶液はL
iBrを少なく含む溶液を表現する。
In a CFC-based or ammonia-based absorption refrigeration system, a concentrated solution represents a solution containing a large amount of chlorofluorocarbon or ammonia, and a dilute solution represents a solution containing a small amount of chlorofluorocarbon or ammonia. In the case of the apparatus, a concentrated solution contains a large amount of LiBr, and a dilute solution contains LBr.
Express a solution with low iBr.

【0030】[0030]

【発明の効果】本願発明(請求項1の発明)によれば、
加熱手段1により加熱され、高温冷媒蒸気g1を発生さ
せる発生器2と、該発生器2により発生された高温冷媒
蒸気g1を凝縮液化する凝縮器4と、該凝縮器4により
凝縮液化された冷媒を減圧する減圧機構5と、該減圧機
構5により減圧された冷媒を蒸発気化する蒸発器6と、
該蒸発器6により蒸発気化された低温冷媒蒸気g2を前
記発生器2から導かれる希溶液l1に吸収させる際に発
生する吸収熱を回収する吸収熱交換器7と、該吸収熱交
換器7から導かれる濃溶液l2にさらに冷媒蒸気g2を吸
収させる吸収器8と、該吸収器8から前記発生器2に導
かれる途中の濃溶液l2に前記発生器2から前記吸収熱
交換器7に導かれる途中の希溶液l1の保有する熱を回
収する熱回収用溶液熱交換器9とを備えた吸収式冷凍装
置において、前記発生器2から導かれる高温冷媒蒸気g
1の保有する熱を前記吸収器8から前記発生器2に導か
れる濃溶液l2の一部であって前記熱回収用溶液熱交換
器9をバイパスする濃溶液l2に回収する熱回収用気液
熱交換器13を付設するとともに、前記熱回収用溶液熱
交換器9に供給される濃溶液l2の流量と、前記熱回収
用気液熱交換器13に供給される濃溶液l2の流量とを
両者における熱回収量が最大値を維持するように制御す
る流量制御手段を設けているので、発生器2から導かれ
る高温冷媒蒸気g1の保有する熱量を吸収器8から発生
器2に導かれる濃溶液l2の一部に回収することができ
るとともに、熱回収用溶液熱交換器9に供給される濃溶
液l2の流量と、前記熱回収用気液熱交換器13に供給
される濃溶液l2の流量とが流量制御手段により制御さ
れることとなり、両者における熱回収量を最大値に維持
することができることとなり、冷凍装置としての成績係
数(即ち、COP)を向上させることができるという優
れた効果がある。
According to the invention of the present application (the invention of claim 1),
Is heated by the heating means 1, a generator 2 for generating a high-temperature refrigerant vapor g 1, a condenser 4 for condensing and liquefying the hot refrigerant vapor g 1 generated by the generator 2, is condensed and liquefied by the condenser 4 A decompression mechanism 5 for decompressing the refrigerant, an evaporator 6 for evaporating the refrigerant decompressed by the decompression mechanism 5,
The absorption heat exchanger 7 for recovering heat of absorption generated when absorbing a low-temperature refrigerant vapor g 2 which is vaporized in a dilute solution l 1 derived from the generator 2 by the evaporator 6, the absorption heat exchanger the absorber 8 to be concentrated in the solution l 2 further absorbs refrigerant vapor g 2 derived from 7, the absorption heat exchanger from the generator 2 from the absorber 8 to the concentrated solution l 2 of the course to be guided to the generator 2 A heat recovery solution heat exchanger 9 for recovering the heat of the dilute solution l 1 on the way to the heat generator 7.
Heat recovery to recover 1 held by heat to the concentrated solution l 2 to bypass the absorber 8 the heat recovery solution heat exchanger 9 a portion of the concentrated solution l 2 to be guided to the generator 2 from while attaching a gas-liquid heat exchanger 13, and concentrated solution l 2 flow rate supplied to the heat recovery solution heat exchanger 9, the concentrated solution l 2 to be supplied to the heat recovery gas-liquid heat exchanger 13 The flow rate control means for controlling the flow rate of the high-temperature refrigerant vapor g 1 guided from the generator 2 to the generator 8 it is possible to recover a portion of the concentrated solution l 2 is guided to 2, and the flow of concentrated solution l 2 to be supplied to the heat recovery solution heat exchanger 9, to the heat recovery gas-liquid heat exchanger 13 will be a concentrated solution l 2 flow rate to be supplied is controlled by the flow control means, in both Kicking will be the heat recovery amount can be maintained at the maximum value, coefficient of performance as the refrigeration system (i.e., COP) an excellent effect that it is possible to improve.

【0031】請求項2の発明におけるように、前記流量
制御手段を、前記熱回収用溶液熱交換器9および熱回収
用気液熱交換器13に至る流路14,15にそれぞれ介
設された流量制御弁16,17と、該流量制御弁16,
17の開度を制御する制御手段18とにより構成した場
合、流量制御弁16,17の開度制御により熱回収用溶
液熱交換器9および熱回収用気液熱交換器13への濃溶
液l2の分配比が制御できることとなり、確実な制御が
得られる。この場合において、請求項3の発明における
ように、前記熱回収用溶液熱交換器9の入口側における
濃溶液l2の温度を検出する濃溶液温度検出手段19
と、前記熱回収用溶液熱交換器9の出口側における希溶
液l1の温度を検出する希溶液温度検出手段20とを付
設するとともに、前記制御手段18を、前記濃溶液温度
検出手段19により検出された濃溶液入口温度が前記希
溶液温度検出手段20により検出された希溶液出口温度
より所定値だけ低くなるように前記流量制御弁16,1
7を制御するものとすれば、熱回収用溶液熱交換器9に
おいて濃溶液l2と希溶液l1との温度差が殆どなくなる
か、または温度差がつき過ぎるということがなくなり、
効率的な熱回収を行うことができる。
As in the second aspect of the present invention, the flow rate control means is provided in the flow paths 14 and 15 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13, respectively. Flow control valves 16 and 17;
When the control means 18 controls the degree of opening of the concentrated solution 17 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13 by controlling the degree of opening of the flow control valves 16 and 17. The distribution ratio of 2 can be controlled, and reliable control can be obtained. In this case, as in the invention of claim 3, the concentrated solution temperature detection means for detecting the temperature of the concentrated solution l 2 at the inlet side of the heat recovery solution heat exchanger 9 19
If, while attaching a rare solution temperature detection means 20 for detecting the temperature of the dilute solution l 1 at the outlet side of the heat recovery solution heat exchanger 9, the control unit 18, by the concentrated solution temperature detecting unit 19 The flow control valves 16 and 1 are so controlled that the detected concentrated solution inlet temperature is lower than the diluted solution outlet temperature detected by the diluted solution temperature detecting means 20 by a predetermined value.
Assuming that controls 7, prevents the temperature difference between the concentrated solution l 2 in the heat-recovery solution heat exchanger 9 and a rare solution l 1 is little or eliminated, or that the temperature difference is too attached,
Efficient heat recovery can be performed.

【0032】また、請求項4の発明におけるように、前
記流量制御手段として、前記熱回収用溶液熱交換器9お
よび熱回収用気液熱交換器13に至る流路14,15に
それぞれ介設され、定格運転時において各流路14,1
5における濃溶液の流量比が最適となるように設定され
た固定絞り値を有する固定式流量制御機構22,23を
用いた場合、定格運転に最適な濃溶液l2の分配比が得
られることとなり、複雑な制御が不要となる。
Further, as in the fourth aspect of the present invention, the flow rate control means is provided in the flow paths 14 and 15 to the heat recovery solution heat exchanger 9 and the heat recovery gas-liquid heat exchanger 13, respectively. At the time of rated operation.
When the fixed flow control mechanisms 22 and 23 having the fixed throttle values set so that the flow ratio of the concentrated solution in Step 5 is optimal, the optimum distribution ratio of the concentrated solution l 2 for rated operation can be obtained. And complicated control is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の第1の実施の形態にかかる吸収式冷
凍装置の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to a first embodiment of the present invention.

【図2】本願発明の第1の実施の形態にかかる吸収式冷
凍装置の他の例(マルチタイプ)を示すブロック図であ
る。
FIG. 2 is a block diagram showing another example (multi-type) of the absorption refrigeration apparatus according to the first embodiment of the present invention.

【図3】本願発明の第1の実施の形態にかかる吸収式冷
凍装置における濃溶液流量制御状態を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a concentrated solution flow control state in the absorption refrigeration apparatus according to the first embodiment of the present invention.

【図4】本願発明の第2の実施の形態にかかる吸収式冷
凍装置の冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to a second embodiment of the present invention.

【図5】従来の吸収式冷凍装置の冷媒回路図である。FIG. 5 is a refrigerant circuit diagram of a conventional absorption refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1は加熱手段(ガスバーナ)、2は発生器、4は凝縮
器、5は減圧機構、6は蒸発器、7は吸収熱交換器、8
は吸収器(空冷吸収器)、9は熱回収用溶液熱交換器、
13は熱回収用気液熱交換器、14,15は流路、1
6,17は流量制御弁、18は制御手段(コントロー
ラ)、19は濃溶液温度検出手段(第1温度センサ
ー)、20は希溶液温度検出手段(第2温度センサ
ー)、21は冷媒蒸気温度検出手段(第3温度センサ
ー)、22,23は固定式流量制御機構(キャピラリチ
ューブ)、g1は高温冷媒蒸気、g2は低温冷媒蒸気、l
1は希溶液、l2は濃溶液。
1 is a heating means (gas burner), 2 is a generator, 4 is a condenser, 5 is a decompression mechanism, 6 is an evaporator, 7 is an absorption heat exchanger, 8
Is an absorber (air-cooled absorber), 9 is a solution heat exchanger for heat recovery,
13 is a gas-liquid heat exchanger for heat recovery, 14 and 15 are flow paths, 1
6, 17 are flow rate control valves, 18 is control means (controller), 19 is concentrated solution temperature detection means (first temperature sensor), 20 is dilute solution temperature detection means (second temperature sensor), 21 is refrigerant vapor temperature detection means (third temperature sensors), the fixed flow rate control mechanism (capillary tube) 22, 23, g 1 is the high-temperature refrigerant vapor, g 2 is the low-temperature refrigerant vapor, l
1 is a dilute solution, 12 is a concentrated solution.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段(1)により加熱され、高温冷
媒蒸気(g1)を発生させる発生器(2)と、該発生器
(2)により発生された高温冷媒蒸気(g1)を凝縮液
化する凝縮器(4)と、該凝縮器(4)により凝縮液化
された冷媒を減圧する減圧機構(5)と、該減圧機構
(5)により減圧された冷媒を蒸発気化する蒸発器
(6)と、該蒸発器(6)により蒸発気化された低温冷
媒蒸気(g2)を前記発生器(2)から導かれる希溶液
(l1)に吸収させる際に発生する吸収熱を回収する吸
収熱交換器(7)と、該吸収熱交換器(7)から導かれ
る溶液にさらに冷媒蒸気(g2)を吸収させる吸収器
(8)と、該吸収器(8)から前記発生器(2)に導か
れる途中の濃溶液(l2)に該発生器(2)から前記吸
収熱交換器(7)に導かれる途中の希溶液(l1)の保
有する熱を回収する熱回収用溶液熱交換器(9)とを備
えた吸収式冷凍装置であって、前記発生器(2)から導
かれる高温冷媒蒸気(g1)の保有する熱を前記吸収器
(8)から前記発生器(2)に導かれる濃溶液(l2
の一部であって前記熱回収用溶液熱交換器(9)をバイ
パスする濃溶液(l2)に回収する熱回収用気液熱交換
器(13)を付設するとともに、前記熱回収用溶液熱交
換器(9)に供給される濃溶液(l2)の流量と、前記
熱回収用気液熱交換器(13)に供給される濃溶液(l
2)の流量とを両者における熱回収量が最大値を維持す
るように制御する流量制御手段を設けたことを特徴とす
る吸収式冷凍装置。
1. A is heated by a heating means (1), condensing the hot refrigerant vapor (g 1) generator for generating (2), the generator generated by the (2) high temperature refrigerant vapor (g 1) A condenser (4) for liquefaction, a decompression mechanism (5) for decompressing the refrigerant condensed and liquefied by the condenser (4), and an evaporator (6) for evaporating the refrigerant decompressed by the decompression mechanism (5). ) And an absorption for recovering the heat of absorption generated when the low-temperature refrigerant vapor (g 2 ) vaporized and vaporized by the evaporator (6) is absorbed by the dilute solution (l 1 ) led from the generator (2). A heat exchanger (7), an absorber (8) for further absorbing the refrigerant vapor (g 2 ) into the solution led from the absorption heat exchanger (7), and the generator (2) from the absorber (8). To the concentrated solution (l 2 ) on the way to the absorption heat exchanger (7). A heat recovery solution heat exchanger (9) for recovering the heat of the dilute solution (l 1 ) on the way, comprising: a high-temperature refrigerant vapor ( The concentrated solution (l 2 ) in which the heat retained by g 1 ) is led from the absorber (8) to the generator ( 2 ).
A heat-recovery gas-liquid heat exchanger (13) for recovering a concentrated solution (l 2 ) that is a part of the heat-recovery solution heat exchanger (9), The flow rate of the concentrated solution (l 2 ) supplied to the heat exchanger (9) and the concentrated solution (l 2 ) supplied to the heat recovery gas-liquid heat exchanger (13)
2 ) An absorption refrigeration system characterized by comprising flow rate control means for controlling the flow rate of ( 2 ) such that the heat recovery amount in both of them is maintained at a maximum value.
【請求項2】 前記流量制御手段を、前記熱回収用溶液
熱交換器(9)および熱回収用気液熱交換器(13)に
至る流路(14),(15)にそれぞれ介設された流量
制御弁(16),(17)と、該流量制御弁(16),
(17)の開度を制御する制御手段(18)とにより構
成したことを特徴とする前記請求項1記載の吸収式冷凍
装置。
2. The flow control means is interposed in flow paths (14) and (15) to the heat recovery solution heat exchanger (9) and the heat recovery gas-liquid heat exchanger (13), respectively. Flow control valves (16), (17), and the flow control valves (16),
2. The absorption refrigeration apparatus according to claim 1, wherein said absorption refrigeration apparatus is constituted by control means (18) for controlling the opening degree of (17).
【請求項3】 前記熱回収用溶液熱交換器(9)の入口
側における濃溶液(l2)の温度を検出する濃溶液温度
検出手段(19)と、前記熱回収用溶液熱交換器(9)
の出口側における希溶液(l1)の温度を検出する希溶
液温度検出手段(20)とを付設するとともに、前記制
御手段(18)を、前記濃溶液温度検出手段(19)に
より検出された濃溶液入口温度が前記希溶液温度検出手
段(20)により検出された希溶液出口温度より所定値
だけ低くなるように前記流量制御弁(16),(17)
を制御するものとしたことを特徴とする前記請求項2記
載の吸収式冷凍装置。
3. A concentrated solution temperature detecting means (19) for detecting the temperature of the concentrated solution (l 2 ) at the inlet side of the heat recovery solution heat exchanger (9), and the heat recovery solution heat exchanger (9). 9)
A dilute solution temperature detecting means (20) for detecting the temperature of the dilute solution (l 1 ) at the outlet side of the apparatus, and the control means (18) is detected by the concentrated solution temperature detecting means (19). The flow control valves (16) and (17) so that the concentrated solution inlet temperature is lower by a predetermined value than the diluted solution outlet temperature detected by the diluted solution temperature detecting means (20).
3. The absorption refrigeration apparatus according to claim 2, wherein the temperature is controlled.
【請求項4】 前記流量制御手段として、前記熱回収用
溶液熱交換器(9)および熱回収用気液熱交換器(1
3)に至る流路(14),(15)にそれぞれ介設さ
れ、定格運転時において各流路における濃溶液(l2
の流量比が最適となるように設定された固定絞り値を有
する固定式流量制御機構(22),(23)を用いたこ
とを特徴とする前記請求項1記載の吸収式冷凍装置。
4. The heat recovery solution heat exchanger (9) and the heat recovery gas-liquid heat exchanger (1) as the flow control means.
The concentrated solution (l 2 ) is interposed in each of the flow paths (14) and (15) leading to 3), and at the time of rated operation.
2. The absorption refrigeration system according to claim 1, wherein fixed flow control mechanisms (22) and (23) each having a fixed throttle value set so that the flow ratio of the refrigeration is optimized are used.
JP14549097A 1997-06-03 1997-06-03 Absorption refrigeration system Expired - Fee Related JP3785743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14549097A JP3785743B2 (en) 1997-06-03 1997-06-03 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14549097A JP3785743B2 (en) 1997-06-03 1997-06-03 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH10339515A true JPH10339515A (en) 1998-12-22
JP3785743B2 JP3785743B2 (en) 2006-06-14

Family

ID=15386478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14549097A Expired - Fee Related JP3785743B2 (en) 1997-06-03 1997-06-03 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3785743B2 (en)

Also Published As

Publication number Publication date
JP3785743B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
US5873260A (en) Refrigeration apparatus and method
EP0832402B1 (en) Liquid/vapor absorption system
JPH0331981B2 (en)
US4127010A (en) Heat activated heat pump method and apparatus
KR100445616B1 (en) Absorbed refrigerator
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
KR100355978B1 (en) Absorption refrigeration system with condensate solution coupling
JPH0953864A (en) Engine type cooling device
US5966948A (en) Sub-ambient absorber GAX cycle
JP3785743B2 (en) Absorption refrigeration system
JP3883894B2 (en) Absorption refrigerator
JP2678211B2 (en) Heat storage type cold / heat generator
JP3700330B2 (en) Absorption refrigeration system
JP3889655B2 (en) Absorption refrigerator
JP3444203B2 (en) Absorption refrigerator
JPH05272837A (en) Compression absorption composite heat pump
JPS6353456B2 (en)
JP3780643B2 (en) Absorption refrigeration system
US5911746A (en) Gax absorption cycle with secondary refrigerant
JP4184196B2 (en) Hybrid absorption heat pump system
KR200357878Y1 (en) Assistanting heater of a heat pump-type heating and cooling device
JP3780644B2 (en) Absorption refrigeration system
JPH1137591A (en) Absorption-type freezer
JPS6119404Y2 (en)
JPH10306950A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees