JPS6119404Y2 - - Google Patents

Info

Publication number
JPS6119404Y2
JPS6119404Y2 JP8132482U JP8132482U JPS6119404Y2 JP S6119404 Y2 JPS6119404 Y2 JP S6119404Y2 JP 8132482 U JP8132482 U JP 8132482U JP 8132482 U JP8132482 U JP 8132482U JP S6119404 Y2 JPS6119404 Y2 JP S6119404Y2
Authority
JP
Japan
Prior art keywords
pressure regenerator
low
solution
condenser
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8132482U
Other languages
Japanese (ja)
Other versions
JPS58184169U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8132482U priority Critical patent/JPS58184169U/en
Publication of JPS58184169U publication Critical patent/JPS58184169U/en
Application granted granted Critical
Publication of JPS6119404Y2 publication Critical patent/JPS6119404Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は吸収式冷凍機に関するものである。[Detailed explanation of the idea] The present invention relates to an absorption refrigerator.

第1図は従来の二重効用吸収式冷凍機の構成図
で、1は高圧再生器、2は低圧再生器、3は凝縮
器、4は蒸発器、5は吸収器、6は高温熱交換
器、7は低温交換器を示し、溶液は実線で示すよ
うに、また、冷媒は破線で示すように循環するよ
う配管接続されており、高圧再生器1で冷媒を蒸
発分離して濃度の高くなつた溶液は出口で飽和溶
液となつて高温熱交換器6で吸収器5から送られ
てくる低温の溶液と熱交換した後、低圧再生器2
に入る。この際、圧力差による等エンタルピ変化
で冷媒蒸気の発生が見られる。また、低圧再生器
2では、高圧再生器1からの冷媒蒸気により加熱
されて、新たに低圧の冷媒蒸気が発生し、その熱
量に等しい高圧再生器からの冷媒蒸気が凝縮す
る。さらに、この凝縮液冷媒も凝縮器に入る際に
圧力差により低圧の冷媒蒸気の発生がある。これ
を第2図に示した水の圧力−エンタルピ線図に表
わすと、イが高圧再生器1で発生した冷媒蒸気の
状態を示し、ロがこの冷媒蒸気が低圧再生器2で
凝縮した状態を示す。この熱で低圧再生器2の溶
液中の冷媒が蒸発し、ハの状態になる。一方、溶
液が低圧再生器2に入る際に発生する冷媒蒸気は
ニの状態となり、これらの冷媒蒸気は凝縮器3で
凝縮し、ホの状態となる。また低圧再生器2で凝
縮した液冷媒も凝縮器3に入つてホの状態とな
る。
Figure 1 is a configuration diagram of a conventional dual-effect absorption refrigerator, where 1 is a high-pressure regenerator, 2 is a low-pressure regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, and 6 is a high-temperature heat exchanger. The refrigerant is evaporated and separated in the high-pressure regenerator 1, and the refrigerant is evaporated to a high concentration. The stale solution becomes a saturated solution at the outlet, and after exchanging heat with the low-temperature solution sent from the absorber 5 in the high-temperature heat exchanger 6, it is transferred to the low-pressure regenerator 2.
to go into. At this time, refrigerant vapor is generated due to isenthalpic changes due to pressure differences. In addition, in the low-pressure regenerator 2, it is heated by the refrigerant vapor from the high-pressure regenerator 1, new low-pressure refrigerant vapor is generated, and refrigerant vapor from the high-pressure regenerator having an amount of heat equal to the generated refrigerant vapor is condensed. Furthermore, when this condensed liquid refrigerant also enters the condenser, low-pressure refrigerant vapor is generated due to a pressure difference. When this is expressed in the water pressure-enthalpy diagram shown in Figure 2, A shows the state of refrigerant vapor generated in the high-pressure regenerator 1, and B shows the state of this refrigerant vapor condensed in the low-pressure regenerator 2. show. This heat evaporates the refrigerant in the solution in the low-pressure regenerator 2, resulting in the state shown in (c). On the other hand, the refrigerant vapor generated when the solution enters the low-pressure regenerator 2 is in the state shown in (D), and these refrigerant vapors are condensed in the condenser 3 to become the state in E. Further, the liquid refrigerant condensed in the low-pressure regenerator 2 also enters the condenser 3, resulting in the state shown in E.

このように従来の二重効用吸収式冷凍機におい
て、高圧再生器1で発生した冷媒蒸気は、低圧再
生器2へ循環されて溶液と熱交換され、低圧の冷
媒蒸気を発生させ、自らは凝縮して凝縮器へと流
れるようになつているが、低圧再生器という大き
な熱交換器が必要であるため、機械自体の大型化
はさけられず、高価となつていた。
In this way, in a conventional dual-effect absorption refrigerator, the refrigerant vapor generated in the high-pressure regenerator 1 is circulated to the low-pressure regenerator 2, where it exchanges heat with the solution, generates low-pressure refrigerant vapor, and condenses itself. However, because it requires a large heat exchanger called a low-pressure regenerator, the machine itself has to be large and expensive.

本考案は、上記した点に鑑み提案されたもの
で、その目的とするところは、従来の二重効用吸
収式冷凍機と同等の能力する小型で安価な吸収式
冷凍機を提供することにある。
The present invention was proposed in view of the above points, and its purpose is to provide a compact and inexpensive absorption chiller that has the same performance as a conventional dual-effect absorption chiller. .

本考案は、高圧再生器からの溶液をフラツシユ
させるフラツシユ室を設け、同フラツシユ室を経
て吸収器に溶液を供給するよう溶液回路を構成す
ると共に前記高圧再生器で発生した冷媒蒸気を直
接凝縮器に導くよう冷媒回路を構成し、同凝縮器
と前記フラツシユ室を互に連通接続したことを特
徴とするもので、高圧再生器で発生した冷媒蒸気
は直接凝縮器へ入るようになつているため、この
間、等エンタルピ変化であり、一方、フラツシユ
室で発生する冷媒蒸気は飽和蒸気であり、これら
の冷媒蒸気は凝縮器に入つて凝縮されるが、この
間のエネルギーロスはなく、前記した従来の二重
効用吸収式冷凍機と同等の能力を発揮することに
なる。従つて、本考案によると、従来のもののよ
うな大型の低圧再生器が不要となり、小型コンパ
クトで、安価な吸収式冷凍機を得ることができ
る。
The present invention provides a flush chamber for flushing the solution from the high-pressure regenerator, configures a solution circuit to supply the solution to the absorber through the flash chamber, and directs the refrigerant vapor generated in the high-pressure regenerator to the condenser. The refrigerant circuit is configured so as to lead to the refrigerant, and the condenser and the flash chamber are connected in communication with each other, and the refrigerant vapor generated in the high-pressure regenerator directly enters the condenser. , during this period, there is an isenthalpic change, and on the other hand, the refrigerant vapor generated in the flash chamber is saturated vapor, and these refrigerant vapors enter the condenser and are condensed, but there is no energy loss during this time, unlike the conventional method described above. It will demonstrate the same capacity as a dual-effect absorption chiller. Therefore, according to the present invention, there is no need for a large-sized low-pressure regenerator as in conventional ones, and a small, compact, and inexpensive absorption refrigerator can be obtained.

以下、本考案を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第3図において、1は高圧再生器、3は凝縮
器、4は蒸発器、5は吸収器、6は高温熱交換器
6、7は低温熱交換器を示し、従来の低圧再生器
2に代えて、フラツシユ室8を設け、高圧再生器
1からの溶液を高温熱交換器6を経てフラツシユ
室8へ導入してフラツシユさせるようにすると共
にフラツシユ室8の溶液を低温熱交換器7を経て
吸収器5へ供給するよう溶液回路を構成してい
る。また高圧再生器1で発生する冷媒蒸気を直接
凝縮器3へ導くようにすると共にフラツシユ室8
で発生した冷媒蒸気を凝縮器3へ導くようフラツ
シユ室8と凝縮器3を互に連通接続し、両者の圧
力が等しくなるように構成している。
In FIG. 3, 1 is a high-pressure regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a high-temperature heat exchanger 6, and 7 is a low-temperature heat exchanger. Instead, a flashing chamber 8 is provided, and the solution from the high-pressure regenerator 1 is introduced into the flashing chamber 8 through a high-temperature heat exchanger 6 to be flushed, and the solution in the flashing chamber 8 is introduced through a low-temperature heat exchanger 7. A solution circuit is configured to supply the solution to the absorber 5. In addition, the refrigerant vapor generated in the high-pressure regenerator 1 is guided directly to the condenser 3, and the flash chamber 8
The flash chamber 8 and the condenser 3 are connected to each other so that the refrigerant vapor generated in the refrigerant vapor is guided to the condenser 3, so that the pressures thereof are equalized.

上記の如く、低圧再生器をなくしてフラツシユ
室8を設けることによつて、低圧再生器を設けた
従来のものと同等の能力を発揮させようとするも
のである。
As mentioned above, by eliminating the low-pressure regenerator and providing the flash chamber 8, it is intended to exhibit the same performance as the conventional system equipped with a low-pressure regenerator.

すなわち、高圧再生器1で発生した冷媒蒸気は
第2図の線図上ではイの状態であり、この蒸気は
低圧再生器がなく、直接凝縮管3へ入るようにな
つているため等エンタルピ変化でハの状態とな
る。一方、溶液は高圧再生器1から高温熱交換器
6を経てフラツシユ室8内にフラツシユされ、こ
の際、発生した冷媒蒸気は、第2図の線図上のニ
の状態にあり、上記冷媒蒸気とともに凝縮器3に
入つて凝縮され、ホの状態となる。この間のエネ
ルギーロスはなく、第1図に示した従来のものと
同等の能力が得られる。
In other words, the refrigerant vapor generated in the high-pressure regenerator 1 is in state A on the diagram in FIG. This results in a state of Ha. On the other hand, the solution is flashed from the high-pressure regenerator 1 through the high-temperature heat exchanger 6 into the flash chamber 8. At this time, the refrigerant vapor generated is in state 2 on the diagram in FIG. It also enters the condenser 3 and is condensed, resulting in the state shown in E. There is no energy loss during this time, and the same ability as the conventional one shown in FIG. 1 can be obtained.

従つて、大型の低圧再生器が不要となり、これ
に代えてフラツシユ室を設けるだけでよいため、
小型コンパクトで、安価な吸収式冷凍機を得るこ
とができる。
Therefore, there is no need for a large-sized low-pressure regenerator, and only a flash chamber is required in its place.
A small, compact, and inexpensive absorption refrigerator can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものを示す構成図、第2図は水
の圧力−エンタルピ線図、第3図は本考案の一実
施例を示す構成図である。 1……高圧再生器、3……凝縮器、4……蒸発
器、5……吸収器、6……高温熱交換器、7……
低温熱交換器、8……フラツシユ室。
FIG. 1 is a block diagram showing a conventional system, FIG. 2 is a water pressure-enthalpy diagram, and FIG. 3 is a block diagram showing an embodiment of the present invention. 1... High pressure regenerator, 3... Condenser, 4... Evaporator, 5... Absorber, 6... High temperature heat exchanger, 7...
Low temperature heat exchanger, 8...flash room.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高圧再生器からの溶液をフラツシユさせるフラ
ツシユ室を設け、同フラツシユ室を経て吸収器に
溶液を供給するよう溶液回路を構成すると共に前
記高圧再生器で発生した冷媒蒸気を直接凝縮器に
導くよう冷媒回路を構成し、同凝縮器とフラツシ
ユ室を互に連通接続したことを特徴とする吸収式
冷凍機。
A flushing chamber is provided to flush the solution from the high-pressure regenerator, and a solution circuit is configured to supply the solution to the absorber through the flashing chamber. An absorption refrigerating machine comprising a circuit in which a condenser and a flash chamber are connected to each other.
JP8132482U 1982-06-01 1982-06-01 absorption refrigerator Granted JPS58184169U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132482U JPS58184169U (en) 1982-06-01 1982-06-01 absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132482U JPS58184169U (en) 1982-06-01 1982-06-01 absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS58184169U JPS58184169U (en) 1983-12-07
JPS6119404Y2 true JPS6119404Y2 (en) 1986-06-11

Family

ID=30090435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132482U Granted JPS58184169U (en) 1982-06-01 1982-06-01 absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS58184169U (en)

Also Published As

Publication number Publication date
JPS58184169U (en) 1983-12-07

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JPS61110852A (en) Absorption heat pump/refrigeration system
GB2166534A (en) Absorption refrigeration system
JPS6119404Y2 (en)
US4476694A (en) Absorption cooling and heating system
JPS6045328B2 (en) heating device
JP3444203B2 (en) Absorption refrigerator
JP2628023B2 (en) Absorption refrigerator
JP2000266422A (en) Absorption refrigerating machine
JPH01208668A (en) Heat storage type cold and hot heat generating device
JPH0446342B2 (en)
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPH0350373Y2 (en)
JPS6122224B2 (en)
KR100402261B1 (en) Absorption refrigeration system utilizing multiple refrigeration cycle with multiple evaporator means.
JPS583011Y2 (en) heat pump equipment
JPS6118368Y2 (en)
JPS59128076U (en) Water - Lithium salt absorption chiller/heater
JPS6035174U (en) Dual effect absorption chiller
JPS6255591B2 (en)
KR20200058177A (en) Absorption refrigeration system with reverse osmosis filter
JPH11223408A (en) Absorption refrigerating device
JPS6035173U (en) Dual effect absorption chiller
JPS63181773U (en)
JPS5998242U (en) refrigerator freezing cycle