JP3780643B2 - Absorption refrigeration system - Google Patents

Absorption refrigeration system Download PDF

Info

Publication number
JP3780643B2
JP3780643B2 JP18813197A JP18813197A JP3780643B2 JP 3780643 B2 JP3780643 B2 JP 3780643B2 JP 18813197 A JP18813197 A JP 18813197A JP 18813197 A JP18813197 A JP 18813197A JP 3780643 B2 JP3780643 B2 JP 3780643B2
Authority
JP
Japan
Prior art keywords
heat exchanger
absorption
cooling
heating
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18813197A
Other languages
Japanese (ja)
Other versions
JPH1137592A (en
Inventor
裕司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP18813197A priority Critical patent/JP3780643B2/en
Publication of JPH1137592A publication Critical patent/JPH1137592A/en
Application granted granted Critical
Publication of JP3780643B2 publication Critical patent/JP3780643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
【0002】
本願発明は、吸収式冷凍装置に関するものである。
【従来の技術】
【0003】
一般に、吸収式冷凍装置は、発生器、凝縮器、蒸発器、吸収熱交換器および吸収器を順次接続して構成されており、冷暖房兼用タイプのものも開発されている。
【0004】
この冷暖房兼用タイプの吸収式冷凍装置における冷暖切換機構としては、水などの二次媒体を利用し、冷房運転時には蒸発器において発生する冷熱を二次媒体により熱搬送して冷房用熱源とし、暖房運転時には凝縮器や吸収器において発生する温熱を二次媒体により熱搬送して暖房用熱源として用いるようにしたものが採用されている。
【発明が解決しようとする課題】
【0005】
ところが、上記従来技術のものでは、冷暖切換機構を、二次媒体の経路変更により行うようにしているため、構造が複雑となるとともに、コストアップにもなる。
【0006】
吸収式冷凍装置において、四路切換弁を用いて発生器において発生せしめられた冷媒蒸気を室外熱交換器あるいは室内熱交換器に導き得るように構成して、冷暖房兼用タイプとする試みもなされているが、この場合、暖房運転時において、ボイラーと同等の機能しか得られず、吸収熱を利用できないという不具合があった。
【0007】
本願発明は、上記の点に鑑みてなされたもので、四路切換弁により冷媒流通方向を切り換える暖房サイクルにおいて吸収熱を利用できるようにすることを目的とするものである。
【課題を解決するための手段】
【0008】
本願発明の第1の基本構成(請求項1の発明)では、上記課題を解決するための手段として、発生器2、室外熱交換器4、逆止弁6Aを併設した冷房用減圧機構5A、逆止弁6Bを併設した暖房用減圧機構5B、室内熱交換器7、冷房用吸収熱交換器8、吸収器9を順次接続してなる吸収式冷凍装置において、冷房運転時には前記発生器2から導かれる高温冷媒蒸気g1を前記室外熱交換器4へ導き且つ前記室内熱交換器7から導かれる低温冷媒蒸気g2を前記冷房用吸収熱交換器8へ導くとともに、暖房運転時には前記発生器2から導かれる高温冷媒蒸気g1を前記室内熱交換器7へ導き且つ前記室外熱交換器4から導かれる低温冷媒蒸気g2を前記冷房用吸収熱交換器8へ導くように冷媒流通方向を切り換える四路切換弁14と、暖房運転時にのみ前記室内熱交換器7から導かれる凝縮液冷媒l3の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g3を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g1に合流させる第1バイパス回路18と、暖房運転時にのみ前記吸収器9の入口側の吸収液を前記吸収器9の出口側に側路させる第2バイパス回路21とを付設している。
【0009】
上記のように構成したことにより、冷房運転時においては発生器2において発生された高温冷媒蒸気g1が凝縮器として作用する室外熱交換器4において凝縮液化され、冷房用減圧機構5Aにおいて減圧された後、蒸発器として作用する室内熱交換器7において蒸発気化され、その際発生せしめられる冷熱が室内冷房用熱源として利用される。なお、室内熱交換器7において蒸発気化された冷媒蒸気g2は冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l1に吸収されて吸収濃溶液l2となって発生器2へ還流される。
【0010】
一方、暖房運転時においては発生器2において発生された高温冷媒蒸気g1が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用される。そして、室内熱交換器7において凝縮液化された凝縮液冷媒l3は、暖房用減圧機構5Bにおいて減圧された後、蒸発器として作用する室外熱交換器4において蒸発気化されて低温冷媒蒸気g2となり、その後冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l1に吸収されて吸収濃溶液l2となって発生器2へ還流されるが、前記凝縮液冷媒l3の一部は、前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給され、ここで低温冷媒蒸気g2の吸収希溶液l1への吸収により生じた吸収熱によって蒸発気化されて冷媒蒸気g3となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g1に合流される。つまり、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上することとなるのである。
【0011】
また、暖房運転時にのみ前記吸収器9の入口側の吸収液を前記吸収器9の出口側に側路させる第2バイパス回路21を付設したことにより、吸収熱交換器8,17において回収されなかった熱が系外へ放出されることがなくなり、さらなる暖房COPの向上が得られる。
【0012】
請求項2の発明におけるように、前記第1バイパス回路18における暖房用吸収熱交換器17の入口側に凝縮液冷媒l3を圧送するための溶液ポンプ19を介設するとともに、前記吸収器9から導かれる吸収濃溶液l2の一部を前記溶液ポンプ19の入口側へ導く濃溶液供給回路24を付設した場合、凝縮液冷媒l3の暖房用吸収熱交換器17への供給がヘッド差に関係なく円滑に行えるとともに、溶液ポンプ19の入口側への吸収濃溶液l2の供給により溶液の粘性の不足(即ち、冷媒のみでは潤滑が不十分となる)による溶液ポンプ19の焼き付きを防止できる。
【0013】
本願発明の第2の基本構成(請求項3の発明)では、上記課題を解決するための手段として、発生器2、室外熱交換器4、逆止弁6Aを併設した冷房用減圧機構5A、逆止弁6Bを併設した暖房用減圧機構5B、室内熱交換器7、冷房用吸収熱交換器8、吸収器9を順次接続してなる吸収式冷凍装置において、冷房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室外熱交換器4へ導き且つ前記室内熱交換器7から導かれる低温冷 媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くとともに、暖房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室内熱交換器7へ導き且つ前記室外熱交換器4から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くように冷媒流通方向を切り換える四路切換弁14と、暖房運転時にのみ前記室内熱交換器7から導かれる凝縮液冷媒l 3 の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g 3 を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g 1 に合流させる第1バイパス回路18とを付設するとともに、前記第1バイパス回路18における暖房用吸収熱交換器17の入口側に凝縮液冷媒l 3 を圧送するための溶液ポンプ19を介設し且つ前記吸収器9から導かれる吸収濃溶液l 2 の一部を前記溶液ポンプ19の入口側へ導く濃溶液供給回路24を付設している。
【0014】
上記のように構成したことにより、冷房運転時においては発生器2において発生された高温冷媒蒸気g 1 が凝縮器として作用する室外熱交換器4において凝縮液化され、冷房用減圧機構5Aにおいて減圧された後、蒸発器として作用する室内熱交換器7において蒸発気化され、その際発生せしめられる冷熱が室内冷房用熱源として利用される。なお、室内熱交換器7において蒸発気化された冷媒蒸気g 2 は冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l 1 に吸収されて吸収濃溶液l 2 となって発生器2へ還流される。
【0015】
一方、暖房運転時においては発生器2において発生された高温冷媒蒸気g 1 が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用される。そして、室内熱交換器7において凝縮液化された凝縮液冷媒l 3 は、暖房用減圧機構5Bにおいて減圧された後、蒸発器として作用する室外熱交換器4において蒸発気化されて低温冷媒蒸気g 2 となり、その後冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l 1 に吸収されて吸収濃溶液l 2 となって発生器2へ還流されるが、前記凝縮液冷媒l 3 の一部は、前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給され、ここで低温冷媒蒸気g 2 の吸収希溶液l 1 への吸収により生じた吸収熱によって蒸発気化されて冷媒蒸気g 3 となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g 1 に合流される。つまり、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上することとなるのである。
【0016】
また、第1バイパス回路18における暖房用吸収熱交換器17の入口側に凝縮液冷媒l 3 を圧送するための溶液ポンプ19を介設するとともに、吸収器9から導かれる吸収濃溶液l 2 の一部を溶液ポンプ19の入口側へ導く濃溶液供給回路24を付設したことにより、凝縮液冷媒l 3 の暖房用吸収熱交換器17への供給がヘッド差に関係なく円滑に行えるとともに、溶液ポンプ19の入口側への吸収濃溶液l 2 の供給により溶液の粘性の不足(即ち、冷媒のみでは潤滑が不十分となる)による溶液ポンプ19の焼き付きを防止できる。
【0017】
請求項4の発明におけるように、前記第1バイパス回路18における前記暖房用吸収熱交換器17の出口側に気液分離器26を設けるとともに、該気液分離器26における液相部26aの溶液l4を前記吸収器9から導かれる吸収濃溶液l2に合流させる一方、前記気液分離器26における気相部26bの冷媒蒸気g3を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g1に合流させるようにすると、溶液ポンプ19の入口側への吸収濃溶液l2の供給により暖房用吸収熱交換器17において凝縮液冷媒l3が完全に蒸発気化されないことがあっても、気液分離器26において冷媒蒸気g3と溶液l4とに分離され、溶液l4は吸収器9の出口側から導かれる吸収濃溶液l2に合流される一方、冷媒蒸気g3は発生器2からの高温冷媒蒸気g1に合流されることとなり、室内熱交換器7へ供給される高温冷媒蒸気g1の純度低下を防止することができる。
【0018】
請求項5の発明におけるように、前記室外熱交換器4と前記室内熱交換器7との間に凝縮液冷媒l3を貯溜するレシーバ15を介設するとともに、該レシーバ15に前記第1バイパス回路18を接続した場合、凝縮液冷媒l3が貯溜されているレシーバ15から第1バイパス回路18への凝縮液冷媒l3の供給が行われることとなり、凝縮液冷媒l3の供給が円滑に行える。
【0019】
本願発明の第3の基本構成(請求項6の発明)では、上記課題を解決するための手段として、発生器2、室外熱交換器4、逆止弁6Aを併設した冷房用減圧機構5A、逆止弁6Bを併設した暖房用減圧機構5B、室内熱交換器7、冷房用吸収熱交換器8、吸収器9を順次接続してなる吸収式冷凍装置において、冷房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室外熱交換器4へ導き且つ前記室内熱交換器7から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くとともに、暖房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室内熱交換器7へ導き且つ前記室外熱交換器4から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くように冷媒流通方向を切り換える四路切換弁14と、暖房運転時にのみ前記室内熱交換器7から導かれる凝縮液冷媒l 3 の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g 3 を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g 1 に合流させる第1バイパス回路18とを付設するとともに、前記室外熱交換器4と前記室内熱交換器7との間に凝縮液冷媒l 3 を貯溜するレシーバ15を介設するとともに、該レシーバ15に前記第1バイパス回路18を接続している。
【0020】
上記のように構成したことにより、冷房運転時においては発生器2において発生された高温冷媒蒸気g 1 が凝縮器として作用する室外熱交換器4において凝縮液化され、冷房用減圧機構5Aにおいて減圧された後、蒸発器として作用する室内熱交換器7において蒸発気化され、その際発生せしめられる冷熱が室内冷房用熱源として利用される。なお、室内熱交換器7において蒸発気化された冷媒蒸気g 2 は冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l 1 に吸収されて吸収濃溶液l 2 となって発生器2へ還流される。
【0021】
一方、暖房運転時においては発生器2において発生された高温冷媒蒸気g 1 が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用される。そして、室内熱交換器7において凝縮液化された凝縮液冷媒l 3 は、暖房用減圧機構5Bにおいて減圧された後、蒸発器として作用する室外熱交換器4において蒸発気化されて低温冷媒蒸気g 2 となり、その後冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l 1 に吸収されて吸収濃溶液l 2 となって発生器2へ還流されるが、前記凝縮液冷媒l 3 の一部は、前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給され、ここで低温冷媒蒸気g 2 の吸収希溶液l 1 への吸収により生じた吸収熱によって蒸発気化されて冷媒蒸気g 3 となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g 1 に合流される。つまり、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上することとなるのである。
【0022】
また、室外熱交換器4と室内熱交換器7との間に凝縮液冷媒l 3 を貯溜するレシーバ15を介設するとともに、該レシーバ15に第1バイパス回路18を接続したことにより、凝縮液冷媒l 3 が貯溜されているレシーバ15から第1バイパス回路18への凝縮液冷媒l 3 の供給が行われることとなり、凝縮液冷媒l 3 の供給が円滑に行える。
【発明の実施の形態】
【0023】
以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について詳述する。
【0024】
第1の実施の形態(請求項1、5、に対応)
図1には、本願発明の第1の実施の形態にかかる吸収式冷凍装置の冷媒回路が示されている。
【0025】
この吸収式冷凍装置は、冷媒として塩素原子を有しないR407C等の代替冷媒を用い、吸収液としてジエチレングリコールジメチルエーテル等の有機溶剤または冷凍機油等を用いるものであり、加熱手段として作用するガスバーナ1により加熱され、高温冷媒蒸気g1を発生させる発生器2と、該発生器2により発生された高温冷媒蒸気g1中に含まれる吸収液を分離する気液分離器3と、該気液分離器3から導かれる高温冷媒蒸気g1が四路切換弁14を介して冷房運転時および暖房運転時においてそれぞれ供給される室外熱交換器4および室内熱交換器7と、該室外熱交換器4と室内熱交換器7との間に介設された冷房用および暖房用減圧機構5A,5Bと、冷房運転時に前記室内熱交換器7により蒸発気化され且つ前記四路切換弁14を介して供給される低温冷媒蒸気g2を前記発生器2から導かれる希溶液l1に吸収させる際に発生する吸収熱を回収する冷房用吸収熱交換器8と、該冷房用吸収熱交換器8から導かれる溶液にさらに冷媒蒸気を吸収させる空冷吸収器9と、該空冷吸収器9から前記冷房用吸収熱交換器8を経て前記発生器2に導かれる途中の濃溶液l2に前記発生器2から前記冷房用吸収熱交換器8に導かれる途中の希溶液l1の保有する熱を回収する熱回収用溶液熱交換器10とを備えて構成されている。符号11は濃溶液l2を圧送するための溶液ポンプ、12は溶液ポンプ11を保護するために濃溶液l2を過冷却する過冷却器、13は発生器2からの希溶液l1を減圧するための減圧機構である。
【0026】
前記冷房用および暖房用減圧機構5A,5Bには、冷房運転時および暖房運転時において凝縮液冷媒l3が減圧機構5A,5Bをそれぞれ側路するように逆止弁6A,6Bがそれぞれ併設されており、該減圧機構5A,5B間には、凝縮液冷媒l3を貯溜するためのレシーバ15が設けられている。
【0027】
この吸収式冷凍装置においては、前記レシーバ15と前記冷房用減圧機構5Aとの間にあって前記室外熱交換器4あるいは室内熱交換器7から導かれる凝縮冷媒l3と前記室内熱交換器7あるいは室外熱交換器4から前記四路切換弁14を経て導かれる低温冷媒蒸気g2とを熱交換させる過冷却用気液熱交換器16が付設されている。なお、該過冷却用気液熱交換器16から導かれる低温冷媒蒸気g2は冷房用吸収熱交換器8へ導かれる。
【0028】
また、この吸収式冷凍装置においては、暖房運転時にのみ前記室内熱交換器7から導かれ、前記レシーバ15に貯溜された凝縮液冷媒l3の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g3を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g1に合流させる第1バイパス回路18が付設されている。前記暖房用吸収熱交換器17においては、冷房用吸収熱交換器8において発生器2から気液分離器3を経て供給される吸収希溶液l1に室外熱交換器4から導かれる冷媒蒸気g2を吸収する際に発生する吸収熱により凝縮液冷媒l3の蒸発気化が行われる。前記第1バイパス回路18における前記暖房用吸収熱交換器17の入口側には、凝縮液冷媒l3を圧送するための溶液ポンプ19が介設されている。符号20は冷房運転時に閉弁され、暖房運転時に開弁される第1冷暖切換弁である。
【0029】
さらに、暖房運転時にのみ前記吸収器9の入口側の吸収液を前記吸収器9の出口側に側路させる第2バイパス回路21が付設されている。該第2バイパス回路21には、冷房運転時に閉弁され、暖房運転時に開弁される第2冷暖切換弁22が介設されている。符号23は空冷吸収器9の入口側に設けられ、冷房運転時に開弁され、暖房運転時に閉弁される第3冷暖切換弁である。
【0030】
上記のように構成された吸収式冷凍装置は、次のように作用する。
【0031】
(I) 冷房運転時
四路切換弁14は実線方向に切り換えられ、第1および第2冷暖切換弁20,22は全閉とされ、第3冷暖切換弁23は全開とされており、発生器2から発生された高温冷媒蒸気g1は凝縮器として作用する室外熱交換器4において凝縮液化され、逆止弁6B、レシーバ15を経て、過冷却用気液熱交換器16において過冷却され、冷房用減圧機構5Aにおいて減圧された後、蒸発器として作用する室内熱交換器7において蒸発気化され、その際発生せしめられる冷熱が室内冷房用熱源として利用される。なお、室内熱交換器7において蒸発気化された冷媒蒸気g2は、四路切換弁14を経て冷房用吸収熱交換器8、空冷吸収器9に導かれ、発生器2から導かれた吸収希溶液l1に吸収され、得られた吸収濃溶液l2は、過冷却器12、ポンプ11、冷房用吸収熱交換器8および熱回収用溶液熱交換器10を経て発生器2へ還流される。
【0032】
(II) 暖房運転時
四路切換弁14は点線方向に切り換えられ、第1および第2冷暖切換弁20,22は全開とされ、第3冷暖切換弁23は全閉とされており、発生器2において発生された高温冷媒蒸気g1が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用される。なお、室内熱交換器7において凝縮液化された凝縮液冷媒l3は、逆止弁6Aを経て、過冷却用気液熱交換器16において過冷却され、レシーバ15を経て暖房用減圧機構5Bにおいて減圧された後、蒸発器として作用する室外熱交換器4において蒸発気化されて低温冷媒蒸気g2となり、その後冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l1に吸収されて吸収濃溶液l2となって第2バイパス回路21を経て発生器2へ還流されるが、前記凝縮液冷媒l3の一部は、前記レシーバ15から冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給され、ここで低温冷媒蒸気g2の吸収希溶液l1への吸収により生じた吸収熱によって蒸発気化されて冷媒蒸気g3となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g1に合流される。つまり、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上することとなるのである。
【0033】
しかも、暖房運転時においては、吸収熱交換器8,17から導かれる吸収濃溶液l2は空冷吸収器9をバイパスする第2バイパス回路21を経て発生器2へ還流されることとなているので、吸収熱交換器8,17において回収されなかった熱が系外へ放出されることがなくなり、さらなる暖房COPの向上が得られる。
【0034】
第2の実施の形態(請求項1〜3、5、6に対応)
図2には、本願発明の第2の実施の形態にかかる吸収式冷凍装置の冷媒回路が示されている。
【0035】
この場合、吸収器9から導かれる吸収濃溶液l2の一部を、溶液ポンプ11の出口側から第1バイパス回路18における溶液ポンプ19の入口側へ導く濃溶液供給回路24が付設されている。符号25は第2バイパス回路24を流れる吸収濃溶液l2の流量を制限するための絞り機構である。このようにすると、溶液ポンプ19の入口側への吸収濃溶液l2の供給により溶液の粘性の不足(即ち、冷媒のみでは潤滑が不十分となる)による溶液ポンプ19の焼き付きを防止することができる。その他の構成および作用効果は第1の実施の形態におけると同様なので説明を省略する。
【0036】
第3の実施の形態(請求項1〜5、6に対応)
図3には、本願発明の第3の実施の形態にかかる吸収式冷凍装置の冷媒回路が示されている。
【0037】
この場合、第1バイパス回路18における暖房用吸収熱交換器17の出口側には、第2の気液分離器26が設けられており、該気液分離器26における液相部26aの溶液l4は、吸収器9から導かれる吸収濃溶液l2に合流せしめられる一方、前記気液分離器26における気相部26bの冷媒蒸気g3は、前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g1に合流せしめられるように構成されている。このようにすると、溶液ポンプ19の入口側への吸収濃溶液l2の供給により暖房用吸収熱交換器17において凝縮液冷媒l3が完全に蒸発気化されないことがあっても、気液分離器26において冷媒蒸気g3と溶液l4とに分離され、溶液l4は吸収器9の出口側から導かれる吸収濃溶液l2に合流される一方、冷媒蒸気g3は発生器2からの高温冷媒蒸気g1に合流されることとなり、室内熱交換器7へ供給される高温冷媒蒸気g1の純度低下を防止することができる。従って、室内熱交換器7における凝縮温度の低下を防止することができる。その他の構成および作用効果は第1の実施の形態におけると同様なので説明を省略する。
【0038】
第4の実施の形態(請求項1〜5、6に対応)
図4には、本願発明の第4の実施の形態にかかる吸収式冷凍装置の冷媒回路が示されている。
【0039】
この場合、発生器2から導かれる高温冷媒蒸気g1の保有する熱を吸収器9から前記発生器2に導かれる吸収濃溶液l2の一部であって熱回収用溶液熱交換器10をバイパスする濃溶液l2に回収する熱回収用気液熱交換器27が付設されている。このようにすると、前記熱回収用気液熱交換器27において空冷吸収器9から導かれる吸収濃溶液l2の一部と発生器2から導かれる高温冷媒蒸気g1とが熱交換することとなり、吸収濃溶液l2の温度上昇に寄与する(即ち、高温冷媒蒸気g1の保有する熱量が吸収濃溶液l2に熱回収される)。
【0040】
また、この場合、前記熱回収用気液熱交換器27から導かれる冷媒蒸気g1中に含まれる吸収剤成分を分離する第3の気液分離器28と、該気液分離器28から導かれる冷媒蒸気g1の保有する熱を冷房用吸収熱交換器8に導かれる途中の冷媒蒸気g2に回収する熱回収用蒸気熱交換器29とが付設されている。そして、前記気液分離器28において分離された吸収剤成分を多く含む凝縮液l5は気液分離器3から導かれる吸収液(即ち、高温希溶液)l1に合流される。つまり、凝縮液l5は高温希溶液l1と合流して熱回収用溶液熱交換器10へ供給されることとなっているのである。このようにすると、気液分離器28において吸収剤成分が分離されることとなり、凝縮器として作用する室外熱交換器4あるいは室内熱交換器7へ供給される冷媒蒸気g1の純度が大幅に向上することとなり、凝縮温度の低下をきたすことがなくなる。しかも、前記気液分離器28において分離された吸収剤成分を多く含む凝縮液l5は、気液分離器3から導かれる吸収希溶液l1と合流した後、熱回収用溶液熱交換器10へ供給されることとなり、凝縮液5の保有するエンタルピーを有効に利用することができる。また、前記冷房用吸収熱交換器8に供給される低温冷媒蒸気g2の温度が、熱回収用蒸気熱交換器29における高温冷媒蒸気g1との熱交換により上昇せしめられることとなり、冷房用吸収熱交換器8における吸収熱回収もさらに向上する。
【0041】
さらに、この場合、前記冷房用吸収熱交換器8から前記発生器2に導かれる途中の吸収濃溶液l2の一部に前記発生器2から導かれる排気ガスg0の保有する熱を回収する排熱回収用熱交換器30が前記熱回収用溶液熱交換器10および熱回収用気液熱交換器27と並列に設けられている。このようにすると、熱回収用溶液熱交換器10、熱回収用気液熱交換器27および排熱回収用熱交換器30に供給される吸収濃溶液l2の温度が低くなるため、吸収希溶液l1、高温冷媒蒸気g1および排気ガスg0の保有する熱を効率良く回収することができることとなり、全体としての熱回収量が増大する。
【0042】
その他の構成および作用効果は第1の実施の形態におけると同様なので説明を省略する。
【0043】
なお、フロン系、アンモニア系の吸収式冷凍装置においては、濃溶液はフロンあるいはアンモニアを多く含み、希溶液はフロンあるいはアンモニアを少なく含む溶液を表現するが、LiBr/水系の吸収式冷凍装置の場合、濃溶液はLiBrを多く含み、希溶液はLiBrを少なく含む溶液を表現する。
【発明の効果】
【0044】
本願発明の第1の基本構成(請求項1の発明)によれば、発生器2、室外熱交換器4、逆止弁6Aを併設した冷房用減圧機構5A、逆止弁6Bを併設した暖房用減圧機構5B、室内熱交換器7、冷房用吸収熱交換器8、吸収器9を順次接続してなる吸収式冷凍装置において、冷房運転時には前記発生器2から導かれる高温冷媒蒸気g1を前記室外熱交換器4へ導き且つ前記室内熱交換器7から導かれる低温冷媒蒸気g2を前記冷房用吸収熱交換器8へ導くとともに、暖房運転時には前記発生器2から導かれる高温冷媒蒸気g1を前記室内熱交換器7へ導き且つ前記室外熱交換器4から導かれる低温冷媒蒸気g2を前記冷房用吸収熱交換器8へ導くように冷媒流通方向を切り換える四路切換弁14と、暖房運転時にのみ前記室内熱交換器7から導かれる凝縮液冷媒l3の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g3を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g1に合流させる第1バイパス回路18とと、暖房運転時にのみ前記吸収器9の入口側の吸収液を前記吸収器9の出口側に側路させる第2バイパス回路21とを付設して、暖房運転時においては発生器2において発生された高温冷媒蒸気g1が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用されるとともに、蒸発器として作用する室外熱交換器4において蒸発気化された低温冷媒蒸気g2が、冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l1に吸収され、その際発生する吸収熱により前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給された凝縮液冷媒l3を蒸発気化し(即ち、熱回収し)、冷媒蒸気g3となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g1に合流されるようにしたので、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上するという優れた効果がある。また、暖房運転時にのみ前記吸収器9の入口側の吸収液を前記吸収器9の出口側に側路させる第2バイパス回路21を付設したことにより、吸収熱交換器8,17において回収されなかった熱が系外へ放出されることがなくなり、さらなる暖房COPの向上が得られるという効果もある。
【0045】
請求項2の発明におけるように、前記第1バイパス回路18における暖房用吸収熱交換器17の入口側に凝縮液冷媒l3を圧送するための溶液ポンプ19を介設するとともに、前記吸収器9から導かれる吸収濃溶液l2の一部を前記溶液ポンプ19の入口側へ導く濃溶液供給回路24を付設した場合、凝縮液冷媒l3の暖房用吸収熱交換器17への供給がヘッド差に関係なく円滑に行えるとともに、溶液ポンプ19の入口側への吸収濃溶液l2の供給により溶液の粘性の不足(即ち、冷媒のみでは潤滑が不十分となる)による溶液ポンプ19の焼き付きを防止できる。
【0046】
本願発明の第2の基本構成(請求項3の発明)によれば、発生器2、室外熱交換器4、逆止弁6Aを併設した冷房用減圧機構5A、逆止弁6Bを併設した暖房用減圧機構5B、室内熱交換器7、冷房用吸収熱交換器8、吸収器9を順次接続してなる吸収式冷凍装置において、冷房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室外熱交換器4へ導き且つ前記室内熱交換器7から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くとともに、暖房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室内熱交換器7へ導き且つ前記室外熱交換器4から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くように冷媒流通方向を切り換える四路切換弁14と、暖房運転時にのみ前記室内熱交換器7から導かれる凝縮液冷媒l 3 の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g 3 を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g 1 に合流させる第1バイパス回路18とを付設するとともに、前記第1バイパス回路18における暖房用吸収熱交換器17の入口側に凝縮液冷媒l 3 を圧送するための溶液ポンプ19を介設し且つ前記吸収器9から導かれる吸収濃溶液l 2 の一部を前記溶液ポンプ19の入口側へ導く濃溶液供給回路24を付設して、暖房運転時においては発生器2において発生された高温冷媒蒸気g 1 が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用されるとともに、蒸発器として作用する室外熱交換器4において蒸発気化された低温冷媒蒸気g 2 が、冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l 1 に吸収され、その際発生する吸収熱により前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給された凝縮液冷媒l 3 を蒸発気化し(即ち、熱回収し)、冷媒蒸気g 3 となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g 1 に合流されるようにしたので、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上するという優れた効果がある。また、第1バイパス回路18における暖房用吸収熱交換器17の入口側に凝縮液冷媒l 3 を圧送するための溶液ポンプ19を介設するとともに、吸収器9から導かれる吸収濃溶液l 2 の一部を溶液ポンプ19の入口側へ導く濃溶液供給回路24を付設したことにより、凝縮液冷媒l 3 の暖房用吸収熱交換器17への供給がヘッド差に関係なく円滑に行えるとともに、溶液ポンプ19の入口側への吸収濃溶液l 2 の供給により溶液の粘性の不足(即ち、冷媒のみでは潤滑が不十分となる)による溶液ポンプ19の焼き付きを防止できるという効果もある。
【0047】
請求項4の発明におけるように、前記第1バイパス回路18における前記暖房用吸収熱交換器17の出口側に気液分離器26を設けるとともに、該気液分離器26における液相部26aの溶液l4を前記吸収器9から導かれる吸収濃溶液l2に合流させる一方、前記気液分離器26における気相部26bの冷媒蒸気g3を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g1に合流させるようにすると、溶液ポンプ19の入口側への吸収濃溶液l2の供給により暖房用吸収熱交換器17において凝縮液冷媒l3が完全に蒸発気化されないことがあっても、気液分離器26において冷媒蒸気g3と溶液l4とに分離され、溶液l4は吸収器9の出口側から導かれる吸収濃溶液l2に合流される一方、冷媒蒸気g3は発生器2からの高温冷媒蒸気g1に合流されることとなり、室内熱交換器7へ供給される高温冷媒蒸気g1の純度低下を防止することができる。
【0048】
請求項5の発明におけるように、前記室外熱交換器4と前記室内熱交換器7との間に凝縮液冷媒l3を貯溜するレシーバ15を介設するとともに、該レシーバ15に前記第1バイパス回路18を接続した場合、凝縮液冷媒l3が貯溜されているレシーバ15から第1バイパス回路18への凝縮液冷媒l3の供給が行われることとなり、凝縮液冷媒l3の供給が円滑に行える。
【0049】
本願発明の第3の基本構成(請求項6の発明)によれば、発生器2、室外熱交換器4、逆止弁6Aを併設した冷房用減圧機構5A、逆止弁6Bを併設した暖房用減圧機構5B、室内熱交換器7、冷房用吸収熱交換器8、吸収器9を順次接続してなる吸収式冷凍装置において、冷房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室外熱交換器4へ導き且つ前記室内熱交換器7から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くとともに、暖房運転時には前記発生器2から導かれる高温冷媒蒸気g 1 を前記室内熱交換器7へ導き且つ前記室外熱交換器4から導かれる低温冷媒蒸気g 2 を前記冷房用吸収熱交換器8へ導くように冷媒流通方向を切り換える四路切換弁14と、暖房運転時にのみ前記室内熱交換器7から導かれる凝縮液冷媒l 3 の一部が供給され且つ前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17を備え、該暖房用吸収熱交換器17において蒸発気化された冷媒蒸気g 3 を前記発生器2から前記四路切換弁14に導かれる途中の高温冷媒蒸気g 1 に合流させる第1バイパス回路18とを付設するとともに、前記室外熱交換器4と前記室内熱交換器7との間に凝縮液冷媒l 3 を貯溜するレシーバ15を介設するとともに、該レシーバ15に前記第1バイパス回路18を接続して、暖房運転時においては発生器2において発生された高温冷媒蒸気g 1 が凝縮器として作用する室内熱交換器7において凝縮液化され、その際発生せしめられる温熱が室内暖房用熱源として利用されるとともに、蒸発器として作用する室外熱交換器4において蒸発気化された低温冷媒蒸気g 2 が、冷房用吸収熱交換器8および吸収器9において発生器2から導かれた吸収希溶液l 1 に吸収され、その際発生する吸収熱により前記冷房用吸収熱交換器8と一体形成された暖房用吸収熱交換器17に供給された凝縮液冷媒l 3 を蒸発気化し(即ち、熱回収し)、冷媒蒸気g 3 となって前記発生器2から四路切換弁14に導かれる高温冷媒蒸気g 1 に合流されるようにしたので、暖房用吸収熱交換器17において吸収熱の回収が行われることとなり、暖房成績係数(以下、COPという)が向上するという優れた効果がある。また、室外熱交換器4と室内熱交換器7との間に凝縮液冷媒l 3 を貯溜するレシーバ15を介設するとともに、該レシーバ15に第1バイパス回路18を接続したことにより、凝縮液冷媒l 3 が貯溜されているレシーバ15から第1バイパス回路18への凝縮液冷媒l 3 の供給が行われることとなり、凝縮液冷媒l 3 の供給が円滑に行えるという効果もある。
【図面の簡単な説明】
【図1】 本願発明の第1の実施の形態にかかる吸収式冷凍装置の冷媒回路図である。
【図2】 本願発明の第2の実施の形態にかかる吸収式冷凍装置の冷媒回路図である。
【図3】 本願発明の第3の実施の形態にかかる吸収式冷凍装置の冷媒回路図である。
【図4】 本願発明の第4の実施の形態にかかる吸収式冷凍装置の冷媒回路図である。
【符号の説明】
2は発生器、4は室外熱交換器、5Aは冷房用減圧機構、5Bは暖房用減圧機構、6A,6Bは逆止弁、7は室内熱交換器、8は冷房用吸収熱交換器、9は吸収器(空冷吸収器)、14は四路切換弁、15はレシーバ、17は暖房用吸収熱交換器、18は第1バイパス回路、19は溶液ポンプ、20は第1冷暖切換弁、21は第2バイパス回路、22は第2冷暖切換弁、23は第3冷暖切換弁、24は濃溶液供給回路、26は気液分離器、26aは液相部、26bは気相部、g0は排気ガス、g1は高温冷媒蒸気、g2は低温冷媒蒸気、g3は冷媒蒸気、l1は希溶液、l2は濃溶液、l3は凝縮液冷媒、l4は溶液。
[0001]
BACKGROUND OF THE INVENTION
[0002]
  The present invention relates to an absorption refrigeration apparatus.
[Prior art]
[0003]
  In general, an absorption refrigeration apparatus is configured by sequentially connecting a generator, a condenser, an evaporator, an absorption heat exchanger, and an absorber, and an air conditioning / heating type has also been developed.
[0004]
  As a cooling / heating switching mechanism in this cooling / heating type absorption refrigeration system, a secondary medium such as water is used, and during cooling operation, the cooling heat generated in the evaporator is transferred by the secondary medium to be used as a cooling heat source. In operation, the heat generated in the condenser or absorber is transferred by a secondary medium and used as a heating heat source.
[Problems to be solved by the invention]
[0005]
  However, in the above prior art, since the cooling / heating switching mechanism is performed by changing the path of the secondary medium, the structure is complicated and the cost is increased.
[0006]
  In the absorption refrigeration system, an attempt has been made to use a four-way switching valve so that the refrigerant vapor generated in the generator can be guided to an outdoor heat exchanger or an indoor heat exchanger, and to be an air-conditioning combined type. However, in this case, during heating operation, only a function equivalent to that of a boiler can be obtained, and the absorbed heat cannot be used.
[0007]
  This invention is made | formed in view of said point, and it aims at making it possible to utilize absorbed heat in the heating cycle which switches a refrigerant | coolant distribution direction with a four-way switching valve.
[Means for Solving the Problems]
[0008]
  Of the present inventionFirstIn the basic configuration (invention of claim 1), as means for solving the above-described problems, the generator 2, the outdoor heat exchanger 4, the cooling pressure reducing mechanism 5A provided with the check valve 6A, and the check valve 6B are provided. In the absorption refrigeration apparatus in which the decompression mechanism 5B for heating, the indoor heat exchanger 7, the absorption heat exchanger 8 for cooling, and the absorber 9 are sequentially connected, the high-temperature refrigerant vapor g guided from the generator 2 during cooling operation1To the outdoor heat exchanger 4 and the low-temperature refrigerant vapor g led from the indoor heat exchanger 72To the absorption heat exchanger 8 for cooling, and the high-temperature refrigerant vapor g led from the generator 2 during heating operation1To the indoor heat exchanger 7 and the low-temperature refrigerant vapor g led from the outdoor heat exchanger 42A four-way switching valve 14 for switching the refrigerant flow direction so as to guide the refrigerant to the absorption heat exchanger 8 for cooling, and the condensate refrigerant l led from the indoor heat exchanger 7 only during heating operation.ThreeAnd a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17.ThreeOn the way to the four-way selector valve 14 from the generator 21The first bypass circuit 18 to be joined toAnd a second bypass circuit 21 for bypassing the absorbent on the inlet side of the absorber 9 to the outlet side of the absorber 9 only during heating operation,Is attached.
[0009]
  With the above configuration, the high-temperature refrigerant vapor g generated in the generator 2 during the cooling operation.1Is condensed and liquefied in the outdoor heat exchanger 4 acting as a condenser, and after being depressurized in the cooling decompression mechanism 5A, it is evaporated and vaporized in the indoor heat exchanger 7 acting as an evaporator, and the cold heat generated at that time is generated indoors. Used as a heat source for cooling. The refrigerant vapor g evaporated in the indoor heat exchanger 72Is an absorption dilute solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling.1Absorbed concentrated solution l2And returned to the generator 2.
[0010]
  On the other hand, during the heating operation, the high-temperature refrigerant vapor g generated in the generator 21Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating. And the condensate refrigerant l condensed in the indoor heat exchanger 7ThreeIs depressurized in the heating decompression mechanism 5B, and then evaporated and evaporated in the outdoor heat exchanger 4 acting as an evaporator, so that the low-temperature refrigerant vapor g2Then, the absorption diluted solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling1Absorbed concentrated solution l2To the generator 2 and the condensate refrigerant lThreeIs supplied to a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, where the low-temperature refrigerant vapor g2Absorbing dilute solution l1The refrigerant vapor g is evaporated by the absorption heat generated by the absorption into the refrigerant.ThreeThe high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 141To join. That is, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved.
[0011]
  In addition, since the second bypass circuit 21 for bypassing the absorbing liquid on the inlet side of the absorber 9 to the outlet side of the absorber 9 is provided only during the heating operation, it is not recovered in the absorption heat exchangers 8 and 17. Heat is not released to the outside of the system, and further improvement in heating COP is obtained.
[0012]
  As in the invention of claim 2, the condensate refrigerant l is provided on the inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18.ThreeIn addition, a solution pump 19 for pumping the solution is used, and an absorption concentrated solution l led from the absorber 9 is provided.2When a concentrated solution supply circuit 24 for guiding a part of the refrigerant to the inlet side of the solution pump 19 is provided, the condensate refrigerant lThreeCan be smoothly supplied to the absorption heat exchanger 17 for heating regardless of the head difference, and the absorption concentrated solution l to the inlet side of the solution pump 19 can be obtained.2This prevents the seizure of the solution pump 19 due to insufficient solution viscosity (that is, lubrication alone is insufficient for lubrication).
[0013]
  In the second basic configuration of the present invention (invention of claim 3), as means for solving the above problems, a cooling pressure reducing mechanism 5A provided with a generator 2, an outdoor heat exchanger 4, and a check valve 6A, In an absorption refrigeration system in which a decompression mechanism 5B for heating with a check valve 6B, an indoor heat exchanger 7, an absorption heat exchanger 8 for cooling, and an absorber 9 are sequentially connected, the generator 2 High temperature refrigerant vapor led 1 To the outdoor heat exchanger 4 and from the indoor heat exchanger 7 Steam vapor g 2 To the absorption heat exchanger 8 for cooling, and the high-temperature refrigerant vapor g led from the generator 2 during heating operation 1 To the indoor heat exchanger 7 and the low-temperature refrigerant vapor g led from the outdoor heat exchanger 4 2 A four-way switching valve 14 for switching the refrigerant flow direction so as to guide the refrigerant to the absorption heat exchanger 8 for cooling, and the condensate refrigerant l led from the indoor heat exchanger 7 only during heating operation. Three And a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17. Three On the way to the four-way selector valve 14 from the generator 2 1 And the first bypass circuit 18 to be joined to the refrigerant, the condensate refrigerant l on the inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18. Three An absorbent concentrated solution l which is provided with a solution pump 19 for pumping the water and guided from the absorber 9 2 A concentrated solution supply circuit 24 for guiding a part of the solution to the inlet side of the solution pump 19 is provided.
[0014]
  With the above configuration, the high-temperature refrigerant vapor g generated in the generator 2 during the cooling operation. 1 Is condensed and liquefied in the outdoor heat exchanger 4 acting as a condenser, and after being depressurized in the cooling decompression mechanism 5A, is evaporated and vaporized in the indoor heat exchanger 7 acting as an evaporator, and the cold heat generated at that time is generated indoors. Used as a heat source for cooling. The refrigerant vapor g evaporated in the indoor heat exchanger 7 2 Is an absorption dilute solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling. 1 Absorbed concentrated solution l 2 And returned to the generator 2.
[0015]
On the other hand, during the heating operation, the high-temperature refrigerant vapor g generated in the generator 2 1 Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating. And the condensate refrigerant l condensed in the indoor heat exchanger 7 Three Is depressurized in the heating decompression mechanism 5B and then evaporated and vaporized in the outdoor heat exchanger 4 acting as an evaporator, so that the low-temperature refrigerant vapor g 2 Then, the absorption diluted solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling 1 Absorbed concentrated solution l 2 To the generator 2 and the condensate refrigerant l Three Is supplied to a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, where the low-temperature refrigerant vapor g 2 Absorbing dilute solution l 1 The refrigerant vapor g is evaporated by the absorption heat generated by the absorption into the refrigerant. Three The high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 14 1 To join. That is, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved.
[0016]
  Further, the condensate refrigerant l is provided on the inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18. Three And a solution pump 19 for pressure-feeding, and an absorbing concentrated solution l led from the absorber 9 2 Is provided with a concentrated solution supply circuit 24 for leading a part of the refrigerant to the inlet side of the solution pump 19. Three Can be smoothly supplied to the absorption heat exchanger 17 for heating regardless of the head difference, and the absorption concentrated solution l to the inlet side of the solution pump 19 can be obtained. 2 This prevents the seizure of the solution pump 19 due to insufficient solution viscosity (that is, lubrication alone is insufficient for lubrication).
[0017]
  As in the invention of claim 4, a gas-liquid separator 26 is provided on the outlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18, and the liquid phase portion 26 a solution in the gas-liquid separator 26 is provided. lFourAbsorbing concentrated solution l led from the absorber 92The refrigerant vapor g in the gas phase portion 26b in the gas-liquid separator 26ThreeOn the way to the four-way selector valve 14 from the generator 21In the case of merging with the solution, the absorbed concentrated solution l to the inlet side of the solution pump 192Of the condensate refrigerant l in the absorption heat exchanger 17 for heating.ThreeEven if the gas is not completely evaporated and vaporized, the refrigerant vapor g in the gas-liquid separator 26ThreeAnd solution lFourAnd the solution lFourIs an absorption concentrated solution l led from the outlet side of the absorber 92While the refrigerant vapor gThreeIs the high-temperature refrigerant vapor g from the generator 21High-temperature refrigerant vapor g to be supplied to the indoor heat exchanger 71It is possible to prevent a decrease in purity.
[0018]
  As in the invention of claim 5, a condensate refrigerant l is provided between the outdoor heat exchanger 4 and the indoor heat exchanger 7.ThreeWhen the first bypass circuit 18 is connected to the receiver 15, the condensate refrigerant 1ThreeCondensate refrigerant 1 from the receiver 15 in which is stored to the first bypass circuit 18ThreeThe condensate refrigerant lThreeCan be smoothly supplied.
[0019]
  In the third basic configuration of the present invention (invention of claim 6), as means for solving the above problems, a cooling pressure reducing mechanism 5A provided with a generator 2, an outdoor heat exchanger 4, and a check valve 6A, In an absorption refrigeration apparatus in which a decompression mechanism 5B for heating equipped with a check valve 6B, an indoor heat exchanger 7, an absorption heat exchanger 8 for cooling, and an absorber 9 are connected in sequence, the generator 2 High temperature refrigerant vapor led 1 To the outdoor heat exchanger 4 and the low-temperature refrigerant vapor g led from the indoor heat exchanger 7 2 To the absorption heat exchanger 8 for cooling, and the high-temperature refrigerant vapor g led from the generator 2 during heating operation 1 To the indoor heat exchanger 7 and the low-temperature refrigerant vapor g led from the outdoor heat exchanger 4 2 A four-way switching valve 14 for switching the refrigerant flow direction so as to guide the refrigerant to the absorption heat exchanger 8 for cooling, and the condensate refrigerant l led from the indoor heat exchanger 7 only during heating operation. Three And a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17. Three On the way to the four-way selector valve 14 from the generator 2 1 And a first bypass circuit 18 to be joined to the outdoor heat exchanger 4 and the indoor heat exchanger 7. Three The first bypass circuit 18 is connected to the receiver 15.
[0020]
  With the above configuration, the high-temperature refrigerant vapor g generated in the generator 2 during the cooling operation. 1 Is condensed and liquefied in the outdoor heat exchanger 4 acting as a condenser, and after being depressurized in the cooling decompression mechanism 5A, is evaporated and vaporized in the indoor heat exchanger 7 acting as an evaporator, and the cold heat generated at that time is generated indoors. Used as a heat source for cooling. The refrigerant vapor g evaporated in the indoor heat exchanger 7 2 Is an absorption dilute solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling. 1 Absorbed concentrated solution l 2 And returned to the generator 2.
[0021]
On the other hand, during the heating operation, the high-temperature refrigerant vapor g generated in the generator 2 1 Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating. And the condensate refrigerant l condensed in the indoor heat exchanger 7 Three Is depressurized in the heating decompression mechanism 5B and then evaporated and vaporized in the outdoor heat exchanger 4 acting as an evaporator, so that the low-temperature refrigerant vapor g 2 Then, the absorption diluted solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling 1 Absorbed concentrated solution l 2 To the generator 2 and the condensate refrigerant l Three Is supplied to a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, where the low-temperature refrigerant vapor g 2 Absorbing dilute solution l 1 The refrigerant vapor g is evaporated by the absorption heat generated by the absorption into the refrigerant. Three The high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 14 1 To join. That is, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved.
[0022]
  In addition, the condensate refrigerant l between the outdoor heat exchanger 4 and the indoor heat exchanger 7 Three The receiver 15 for storing the refrigerant is connected, and the first bypass circuit 18 is connected to the receiver 15 so that the condensate refrigerant l Three Condensate refrigerant 1 from the receiver 15 in which is stored to the first bypass circuit 18 Three The condensate refrigerant l Three Can be smoothly supplied.
DETAILED DESCRIPTION OF THE INVENTION
[0023]
  Hereinafter, some preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0024]
  First Embodiment (Claims 1, 5,6Corresponding to)
  FIG. 1 shows a refrigerant circuit of an absorption refrigeration apparatus according to a first embodiment of the present invention.
[0025]
  This absorption refrigeration apparatus uses an alternative refrigerant such as R407C having no chlorine atom as a refrigerant, and uses an organic solvent such as diethylene glycol dimethyl ether or refrigeration oil as an absorbing liquid, and is heated by a gas burner 1 that acts as a heating means. High-temperature refrigerant vapor g1And a high-temperature refrigerant vapor g generated by the generator 21A gas-liquid separator 3 for separating the absorption liquid contained therein, and a high-temperature refrigerant vapor g led from the gas-liquid separator 31Are supplied via the four-way switching valve 14 during the cooling operation and the heating operation, respectively, between the outdoor heat exchanger 4 and the indoor heat exchanger 7 and between the outdoor heat exchanger 4 and the indoor heat exchanger 7. The cooling and heating decompression mechanisms 5A and 5B, and the low-temperature refrigerant vapor g evaporated by the indoor heat exchanger 7 and supplied via the four-way switching valve 14 during the cooling operation.2A dilute solution led from the generator 21An absorption heat exchanger for cooling 8 that recovers absorption heat generated when it is absorbed by the air, an air-cooling absorber 9 that further absorbs refrigerant vapor in a solution led from the absorption heat exchanger 8 for cooling, and the air-cooling absorber Concentrated solution l on the way from 9 to the generator 2 through the cooling absorption heat exchanger 82In the middle of the dilute solution l introduced from the generator 2 to the cooling absorption heat exchanger 81And a heat recovery solution heat exchanger 10 that recovers the heat held by the. Reference numeral 11 is a concentrated solution l2A solution pump for pumping the solution, 12 is a concentrated solution to protect the solution pump 11213 is a dilute solution l from the generator 21Is a pressure reducing mechanism for reducing the pressure.
[0026]
  The cooling and heating decompression mechanisms 5A and 5B include a condensate refrigerant 1 during the cooling operation and the heating operation.ThreeAre provided with check valves 6A and 6B so as to bypass the decompression mechanisms 5A and 5B, respectively, and between the decompression mechanisms 5A and 5B, the condensate refrigerant 1ThreeA receiver 15 is provided for storing the.
[0027]
  In this absorption refrigeration apparatus, the condensed refrigerant l is provided between the receiver 15 and the cooling decompression mechanism 5A and guided from the outdoor heat exchanger 4 or the indoor heat exchanger 7.ThreeAnd the low-temperature refrigerant vapor g guided from the indoor heat exchanger 7 or the outdoor heat exchanger 4 through the four-way switching valve 14.2And a supercooling gas-liquid heat exchanger 16 for exchanging heat with each other. The low-temperature refrigerant vapor g led from the supercooling gas-liquid heat exchanger 162Is led to the absorption heat exchanger 8 for cooling.
[0028]
  Further, in this absorption refrigeration apparatus, the condensate refrigerant l led from the indoor heat exchanger 7 and stored in the receiver 15 only during the heating operation.ThreeAnd a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17.ThreeOn the way to the four-way selector valve 14 from the generator 21A first bypass circuit 18 for joining the two is attached. In the heating absorption heat exchanger 17, the absorption diluted solution 1 supplied from the generator 2 through the gas-liquid separator 3 in the cooling absorption heat exchanger 8.1Refrigerant vapor g led from the outdoor heat exchanger 42Condensate refrigerant l by the heat of absorption generated when absorbingThreeIs evaporated. The inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18 has a condensate refrigerant 1ThreeA solution pump 19 is provided for pressure feeding. Reference numeral 20 denotes a first cooling / heating switching valve which is closed during the cooling operation and opened during the heating operation.
[0029]
  Furthermore, the 2nd bypass circuit 21 which bypasses the absorption liquid of the entrance side of the said absorber 9 to the exit side of the said absorber 9 only at the time of heating operation is attached. The second bypass circuit 21 is provided with a second cooling / heating switching valve 22 that is closed during the cooling operation and opened during the heating operation. Reference numeral 23 is a third cooling / heating switching valve provided on the inlet side of the air-cooling absorber 9 and opened during the cooling operation and closed during the heating operation.
[0030]
  The absorption refrigeration apparatus configured as described above operates as follows.
[0031]
  (I) During cooling operation
  The four-way switching valve 14 is switched in the direction of the solid line, the first and second cooling / heating switching valves 20, 22 are fully closed, the third cooling / heating switching valve 23 is fully opened, and the high temperature generated from the generator 2. Refrigerant vapor g1Is condensed and liquefied in the outdoor heat exchanger 4 acting as a condenser, and after passing through the check valve 6B and the receiver 15, is supercooled in the supercooling gas-liquid heat exchanger 16 and decompressed in the cooling decompression mechanism 5A. The indoor heat exchanger 7 acting as an evaporator is evaporated and vaporized, and the cold generated at that time is used as a heat source for indoor cooling. The refrigerant vapor g evaporated in the indoor heat exchanger 72Is led to the absorption heat exchanger 8 for cooling and the air-cooling absorber 9 through the four-way switching valve 14, and the absorbed dilute solution l led from the generator 2.1Absorbed concentrated solution obtained2Is returned to the generator 2 through the supercooler 12, the pump 11, the cooling heat exchanger 8 and the heat recovery solution heat exchanger 10.
[0032]
  (II) During heating operation
  The four-way switching valve 14 is switched in the dotted line direction, the first and second cooling / heating switching valves 20 and 22 are fully opened, the third cooling / heating switching valve 23 is fully closed, and the high temperature generated in the generator 2 is changed. Refrigerant vapor g1Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating. In addition, the condensate refrigerant l condensed in the indoor heat exchanger 7ThreeIs supercooled in the supercooling gas-liquid heat exchanger 16 through the check valve 6A, depressurized in the heating decompression mechanism 5B through the receiver 15, and then evaporated in the outdoor heat exchanger 4 acting as an evaporator. Vaporized low-temperature refrigerant vapor g2Then, the absorption diluted solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling1Absorbed concentrated solution l2And is returned to the generator 2 through the second bypass circuit 21, but the condensate refrigerant 1ThreeIs supplied from the receiver 15 to the heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, where the low-temperature refrigerant vapor g2Absorbing dilute solution l1The refrigerant vapor g is evaporated by the absorption heat generated by the absorption into the refrigerant.ThreeThe high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 141To join. That is, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved.
[0033]
  Moreover, during heating operation, the concentrated absorbent solution l led from the absorption heat exchangers 8 and 17 is used.2Is returned to the generator 2 through a second bypass circuit 21 that bypasses the air-cooled absorber 9.TsuTherefore, the heat not recovered in the absorption heat exchangers 8 and 17 is not released to the outside of the system, and further improvement of the heating COP can be obtained.
[0034]
  Second Embodiment (Claims 1-3, 5), 6Corresponding to)
  FIG. 2 shows a refrigerant circuit of an absorption refrigeration apparatus according to a second embodiment of the present invention.
[0035]
  In this case, the absorbing concentrated solution l led from the absorber 92A concentrated solution supply circuit 24 that leads a part of the solution from the outlet side of the solution pump 11 to the inlet side of the solution pump 19 in the first bypass circuit 18 is attached. Reference numeral 25 denotes an absorbing concentrated solution l flowing through the second bypass circuit 24.2It is a throttling mechanism for restricting the flow rate. In this way, the concentrated absorption solution l to the inlet side of the solution pump 192Can prevent seizure of the solution pump 19 due to insufficient viscosity of the solution (that is, lubrication alone is insufficient for lubrication). Since other configurations and operational effects are the same as those in the first embodiment, description thereof will be omitted.
[0036]
  Third Embodiment (Claims 1 to 5), 6Corresponding to)
  FIG. 3 shows a refrigerant circuit of an absorption refrigeration apparatus according to a third embodiment of the present invention.
[0037]
  In this case, a second gas-liquid separator 26 is provided on the outlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18, and the solution l of the liquid phase portion 26 a in the gas-liquid separator 26 is provided.FourIs the absorption concentrated solution l led from the absorber 92The refrigerant vapor g in the gas phase portion 26b in the gas-liquid separator 26ThreeIs a high-temperature refrigerant vapor g in the middle of being led from the generator 2 to the four-way switching valve 141It is comprised so that it may join. In this way, the concentrated absorption solution l to the inlet side of the solution pump 192Of the condensate refrigerant l in the absorption heat exchanger 17 for heating.ThreeEven if the gas is not completely evaporated and vaporized, the refrigerant vapor g in the gas-liquid separator 26ThreeAnd solution lFourAnd the solution lFourIs an absorption concentrated solution l led from the outlet side of the absorber 92While the refrigerant vapor gThreeIs the high-temperature refrigerant vapor g from the generator 21High-temperature refrigerant vapor g to be supplied to the indoor heat exchanger 71It is possible to prevent a decrease in purity. Accordingly, it is possible to prevent a decrease in the condensation temperature in the indoor heat exchanger 7. Since other configurations and operational effects are the same as those in the first embodiment, description thereof will be omitted.
[0038]
  Fourth Embodiment (Claims 1 to 5), 6Corresponding to)
  FIG. 4 shows a refrigerant circuit of an absorption refrigeration apparatus according to a fourth embodiment of the present invention.
[0039]
  In this case, the high-temperature refrigerant vapor g led from the generator 21Absorbed concentrated solution l that guides the heat held by the absorber 2 to the generator 22A concentrated solution l that bypasses the solution heat exchanger 10 for heat recovery.2And a heat recovery gas / liquid heat exchanger 27 for recovery. In this way, the concentrated absorbent solution l led from the air-cooled absorber 9 in the heat recovery gas-liquid heat exchanger 27.2High temperature refrigerant vapor g led from a part of the generator 21Heat exchange with the absorption concentrated solution2(That is, the high-temperature refrigerant vapor g1The amount of heat held by2Heat recovered).
[0040]
  In this case, the refrigerant vapor g guided from the heat recovery gas-liquid heat exchanger 27 is also provided.1A third gas-liquid separator 28 for separating the absorbent component contained therein, and a refrigerant vapor g guided from the gas-liquid separator 281Refrigerant vapor in the middle of the heat held by the cooling heat absorption heat exchanger 8 being led2And a heat recovery steam heat exchanger 29 for recovery. And the condensate 1 containing a large amount of the absorbent component separated in the gas-liquid separator 28FiveIs an absorption liquid (ie, hot dilute solution) l led from the gas-liquid separator 31To join. That is, condensate lFiveIs a hot dilute solution1Therefore, the heat recovery solution heat exchanger 10 is supplied. If it does in this way, an absorber component will be isolate | separated in the gas-liquid separator 28, and the refrigerant | coolant vapor | steam g supplied to the outdoor heat exchanger 4 or the indoor heat exchanger 7 which acts as a condenser.1As a result, the purity of the water is greatly improved, and the condensation temperature is not lowered. Moreover, the condensate 1 containing a large amount of the absorbent component separated in the gas-liquid separator 28.FiveIs an absorption dilute solution l led from the gas-liquid separator 31And then supplied to the solution heat exchanger 10 for heat recovery, and the condensateFiveCan be used effectively. In addition, the low-temperature refrigerant vapor g supplied to the cooling absorption heat exchanger 82Is the high temperature refrigerant vapor g in the heat recovery steam heat exchanger 291As a result, the absorption heat recovery in the cooling absorption heat exchanger 8 is further improved.
[0041]
  Further, in this case, the absorption concentrated solution l on the way from the cooling absorption heat exchanger 8 to the generator 22Part of the exhaust gas g led from the generator 20An exhaust heat recovery heat exchanger 30 that recovers the heat held by the heat recovery solution is provided in parallel with the heat recovery solution heat exchanger 10 and the heat recovery gas-liquid heat exchanger 27. In this way, the absorbed concentrated solution l supplied to the heat recovery solution heat exchanger 10, the heat recovery gas-liquid heat exchanger 27, and the exhaust heat recovery heat exchanger 30.2As the temperature of1, High-temperature refrigerant vapor g1And exhaust gas g0It is possible to efficiently recover the heat held by the, and the overall heat recovery amount increases.
[0042]
  Since other configurations and operational effects are the same as those in the first embodiment, description thereof will be omitted.
[0043]
  In the Freon-based and ammonia-based absorption refrigeration apparatus, the concentrated solution represents a solution containing a large amount of chlorofluorocarbon or ammonia, and the dilute solution represents a solution containing a small amount of chlorofluorocarbon or ammonia. The concentrated solution represents a solution containing a large amount of LiBr, and the diluted solution represents a solution containing a small amount of LiBr.
【The invention's effect】
[0044]
  Of the present inventionFirstAccording to the basic configuration (the invention of claim 1), the generator 2, the outdoor heat exchanger 4, the cooling decompression mechanism 5A provided with the check valve 6A, the heating decompression mechanism 5B provided with the check valve 6B, In an absorption refrigeration apparatus in which a heat exchanger 7, an absorption heat exchanger 8 for cooling, and an absorber 9 are sequentially connected, a high-temperature refrigerant vapor g led from the generator 2 during cooling operation.1To the outdoor heat exchanger 4 and the low-temperature refrigerant vapor g led from the indoor heat exchanger 72To the absorption heat exchanger 8 for cooling, and the high-temperature refrigerant vapor g led from the generator 2 during heating operation1To the indoor heat exchanger 7 and the low-temperature refrigerant vapor g led from the outdoor heat exchanger 42A four-way switching valve 14 for switching the refrigerant flow direction so as to guide the refrigerant to the absorption heat exchanger 8 for cooling, and the condensate refrigerant l led from the indoor heat exchanger 7 only during heating operation.ThreeAnd a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17.ThreeOn the way to the four-way selector valve 14 from the generator 21A first bypass circuit 18 to be joined toAnd a second bypass circuit 21 for bypassing the absorbent on the inlet side of the absorber 9 to the outlet side of the absorber 9 only during heating operation,And the high-temperature refrigerant vapor g generated in the generator 2 during the heating operation.1Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating, and the low-temperature refrigerant evaporated and vaporized in the outdoor heat exchanger 4 acting as an evaporator Steam g2Is the absorption diluted solution l introduced from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling.1The condensate refrigerant l supplied to the heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8 by the absorbed heat generated at that timeThreeIs vaporized (that is, heat is recovered) and refrigerant vapor gThreeThe high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 141Therefore, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved.In addition, since the second bypass circuit 21 for bypassing the absorbing liquid on the inlet side of the absorber 9 to the outlet side of the absorber 9 is provided only during the heating operation, it is not recovered in the absorption heat exchangers 8 and 17. Heat is not released outside the system, and there is an effect that further improvement in heating COP can be obtained.
[0045]
  As in the invention of claim 2, the condensate refrigerant l is provided on the inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18.ThreeIn addition, a solution pump 19 for pumping the solution is used, and an absorption concentrated solution l led from the absorber 9 is provided.2When a concentrated solution supply circuit 24 for guiding a part of the refrigerant to the inlet side of the solution pump 19 is provided, the condensate refrigerant lThreeCan be smoothly supplied to the absorption heat exchanger 17 for heating regardless of the head difference, and the absorption concentrated solution l to the inlet side of the solution pump 19 can be obtained.2This prevents the seizure of the solution pump 19 due to insufficient solution viscosity (that is, lubrication alone is insufficient for lubrication).
[0046]
  According to the second basic configuration of the present invention (the invention of claim 3), the cooling pressure reducing mechanism 5A provided with the generator 2, the outdoor heat exchanger 4, the check valve 6A, and the heating provided with the check valve 6B are provided. In the absorption refrigeration apparatus in which the decompression mechanism 5B, the indoor heat exchanger 7, the cooling absorption heat exchanger 8, and the absorber 9 are sequentially connected, the high-temperature refrigerant vapor g guided from the generator 2 during the cooling operation. 1 To the outdoor heat exchanger 4 and the low-temperature refrigerant vapor g led from the indoor heat exchanger 7 2 To the absorption heat exchanger 8 for cooling, and the high-temperature refrigerant vapor g led from the generator 2 during heating operation 1 To the indoor heat exchanger 7 and the low-temperature refrigerant vapor g led from the outdoor heat exchanger 4 2 A four-way switching valve 14 for switching the refrigerant flow direction so as to guide the refrigerant to the absorption heat exchanger 8 for cooling, and the condensate refrigerant l led from the indoor heat exchanger 7 only during heating operation. Three And a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17. Three On the way to the four-way selector valve 14 from the generator 2 1 And the first bypass circuit 18 to be joined to the refrigerant, the condensate refrigerant l on the inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18. Three An absorbent concentrated solution l which is provided with a solution pump 19 for pumping the water and guided from the absorber 9 2 Is provided with a concentrated solution supply circuit 24 for leading a part of the refrigerant to the inlet side of the solution pump 19, and the high-temperature refrigerant vapor g generated in the generator 2 during the heating operation. 1 Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating, and the low-temperature refrigerant evaporated and vaporized in the outdoor heat exchanger 4 acting as an evaporator Steam g 2 Is absorbed from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling. 1 The condensate refrigerant l supplied to the heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8 by the absorbed heat generated at that time Three Is vaporized (that is, heat is recovered) and refrigerant vapor g Three The high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 14 1 Thus, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved. Further, the condensate refrigerant l is provided on the inlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18. Three And a solution pump 19 for pressure-feeding, and an absorbing concentrated solution l led from the absorber 9 2 Is provided with a concentrated solution supply circuit 24 for leading a part of the refrigerant to the inlet side of the solution pump 19. Three Can be smoothly supplied to the absorption heat exchanger 17 for heating regardless of the head difference, and the absorption concentrated solution l to the inlet side of the solution pump 19 can be obtained. 2 This also has the effect of preventing seizure of the solution pump 19 due to insufficient viscosity of the solution (that is, lubrication alone is insufficient for lubrication).
[0047]
  As in the invention of claim 4, a gas-liquid separator 26 is provided on the outlet side of the heating absorption heat exchanger 17 in the first bypass circuit 18, and the liquid phase portion 26 a solution in the gas-liquid separator 26 is provided. lFourAbsorbing concentrated solution l led from the absorber 92The refrigerant vapor g in the gas phase portion 26b in the gas-liquid separator 26ThreeOn the way to the four-way selector valve 14 from the generator 21In the case of merging with the solution, the absorbed concentrated solution l to the inlet side of the solution pump 192Of the condensate refrigerant l in the absorption heat exchanger 17 for heating.ThreeEven if the gas is not completely evaporated and vaporized, the refrigerant vapor g in the gas-liquid separator 26ThreeAnd solution lFourAnd the solution lFourIs an absorption concentrated solution l led from the outlet side of the absorber 92While the refrigerant vapor gThreeIs the high-temperature refrigerant vapor g from the generator 21High-temperature refrigerant vapor g to be supplied to the indoor heat exchanger 71It is possible to prevent a decrease in purity.
[0048]
  As in the invention of claim 5, a condensate refrigerant l is provided between the outdoor heat exchanger 4 and the indoor heat exchanger 7.ThreeWhen the first bypass circuit 18 is connected to the receiver 15, the condensate refrigerant 1ThreeCondensate refrigerant 1 from the receiver 15 in which is stored to the first bypass circuit 18ThreeThe condensate refrigerant lThreeCan be smoothly supplied.
[0049]
  According to the third basic configuration of the present invention (invention of claim 6), the cooling pressure reducing mechanism 5A provided with the generator 2, the outdoor heat exchanger 4, the check valve 6A, and the heating provided with the check valve 6B are provided. In the absorption refrigeration apparatus in which the decompression mechanism 5B, the indoor heat exchanger 7, the cooling absorption heat exchanger 8, and the absorber 9 are sequentially connected, the high-temperature refrigerant vapor g guided from the generator 2 during the cooling operation. 1 To the outdoor heat exchanger 4 and the low-temperature refrigerant vapor g led from the indoor heat exchanger 7 2 To the absorption heat exchanger 8 for cooling, and the high-temperature refrigerant vapor g led from the generator 2 during heating operation 1 To the indoor heat exchanger 7 and the low-temperature refrigerant vapor g led from the outdoor heat exchanger 4 2 A four-way switching valve 14 for switching the refrigerant flow direction so as to guide the refrigerant to the absorption heat exchanger 8 for cooling, and the condensate refrigerant l led from the indoor heat exchanger 7 only during heating operation. Three And a heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8, and the refrigerant vapor g evaporated in the heating absorption heat exchanger 17. Three On the way to the four-way selector valve 14 from the generator 2 1 And a first bypass circuit 18 to be joined to the outdoor heat exchanger 4 and the indoor heat exchanger 7. Three Is connected to the first bypass circuit 18 so that the high-temperature refrigerant vapor g generated in the generator 2 during the heating operation is stored. 1 Is condensed and liquefied in the indoor heat exchanger 7 acting as a condenser, and the heat generated at this time is used as a heat source for indoor heating, and the low-temperature refrigerant evaporated and vaporized in the outdoor heat exchanger 4 acting as an evaporator Steam g 2 Is absorbed from the generator 2 in the absorption heat exchanger 8 and the absorber 9 for cooling. 1 The condensate refrigerant l supplied to the heating absorption heat exchanger 17 integrally formed with the cooling absorption heat exchanger 8 by the absorbed heat generated at that time Three Is vaporized (that is, heat is recovered) and refrigerant vapor g Three The high-temperature refrigerant vapor g led from the generator 2 to the four-way selector valve 14 1 Thus, the absorption heat is recovered in the heating absorption heat exchanger 17, and the heating performance coefficient (hereinafter referred to as COP) is improved. In addition, the condensate refrigerant l between the outdoor heat exchanger 4 and the indoor heat exchanger 7 Three The receiver 15 for storing the refrigerant is connected, and the first bypass circuit 18 is connected to the receiver 15 so that the condensate refrigerant l Three Condensate refrigerant 1 from the receiver 15 in which is stored to the first bypass circuit 18 Three The condensate refrigerant l Three There is also an effect that can be smoothly supplied.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to a first embodiment of the present invention.
FIG. 2 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to a second embodiment of the present invention.
FIG. 3 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to a third embodiment of the present invention.
FIG. 4 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to a fourth embodiment of the present invention.
[Explanation of symbols]
  2 is a generator, 4 is an outdoor heat exchanger, 5A is a cooling decompression mechanism, 5B is a heating decompression mechanism, 6A and 6B are check valves, 7 is an indoor heat exchanger, 8 is an absorption heat exchanger for cooling, 9 is an absorber (air-cooled absorber), 14 is a four-way switching valve, 15 is a receiver, 17 is an absorption heat exchanger for heating, 18 is a first bypass circuit, 19 is a solution pump, 20 is a first cooling / heating switching valve, 21 is a second bypass circuit, 22 is a second cooling / heating switching valve, 23 is a third cooling / heating switching valve, 24 is a concentrated solution supply circuit, 26 is a gas-liquid separator, 26a is a liquid phase section, 26b is a gas phase section, g0Is the exhaust gas, g1Is high-temperature refrigerant vapor, g2Is low-temperature refrigerant vapor, gThreeIs refrigerant vapor, l1Is a dilute solution, l2Is concentrated solution, lThreeIs condensate refrigerant, lFourIs a solution.

Claims (6)

発生器(2)、室外熱交換器(4)、逆止弁(6A)を併設した冷房用減圧機構(5A)、逆止弁(6B)を併設した暖房用減圧機構(5B)、室内熱交換器(7)、冷房用吸収熱交換器(8)、吸収器(9)を順次接続してなる吸収式冷凍装置であって、冷房運転時には前記発生器(2)から導かれる高温冷媒蒸気(g1)を前記室外熱交換器(4)へ導き且つ前記室内熱交換器(7)から導かれる低温冷媒蒸気(g2)を前記冷房用吸収熱交換器(8)へ導くとともに、暖房運転時には前記発生器(2)から導かれる高温冷媒蒸気(g1)を前記室内熱交換器(7)へ導き且つ前記室外熱交換器(4)から導かれる低温冷媒蒸気(g2)を前記冷房用吸収熱交換器(8)へ導くように冷媒流通方向を切り換える四路切換弁(14)と、暖房運転時にのみ前記室内熱交換器(7)から導かれる凝縮液冷媒(l3)の一部が供給され且つ前記冷房用吸収熱交換器(8)と一体形成された暖房用吸収熱交換器(17)を備え、該暖房用吸収熱交換器(17)において蒸発気化された冷媒蒸気(g3)を前記発生器(2)から前記四路切換弁(14)に導かれる途中の高温冷媒蒸気(g1)に合流させる第1バイパス回路(18)と、暖房運転時にのみ前記吸収器(9)の入口側の吸収液を前記吸収器(9)の出口側に側路させる第2バイパス回路(21)とを付設したことを特徴とする吸収式冷凍装置。Generator (2), outdoor heat exchanger (4), cooling decompression mechanism (5A) with check valve (6A), heating decompression mechanism (5B) with check valve (6B), room heat An absorption refrigeration apparatus in which an exchanger (7), an absorption heat exchanger for cooling (8), and an absorber (9) are sequentially connected, and high-temperature refrigerant vapor led from the generator (2) during cooling operation (G 1 ) is led to the outdoor heat exchanger (4) and the low-temperature refrigerant vapor (g 2 ) led from the indoor heat exchanger (7) is led to the cooling absorption heat exchanger (8), and heating is performed. During operation, the high-temperature refrigerant vapor (g 1 ) led from the generator (2) is led to the indoor heat exchanger (7) and the low-temperature refrigerant vapor (g 2 ) led from the outdoor heat exchanger (4) is A four-way selector valve (14) for switching the refrigerant flow direction so as to lead to the cooling absorption heat exchanger (8); Condensed liquid refrigerant (l 3) of the part is supplied and the cooling for absorption heat exchanger (8) integrally formed absorption heat exchanger for heating derived from the indoor heat exchanger only during operation (7) ( 17), and the refrigerant vapor (g 3 ) evaporated and vaporized in the heating absorption heat exchanger (17) is in the middle of being led from the generator (2) to the four-way selector valve (14). A first bypass circuit (18) that joins (g 1 ), and a second bypass circuit that bypasses the absorbent on the inlet side of the absorber (9) to the outlet side of the absorber (9) only during heating operation (21) and an absorption refrigeration apparatus. 前記第1バイパス回路(18)における暖房用吸収熱交換器(17)の入口側に凝縮液冷媒(l3)を圧送するための溶液ポンプ(19)を介設するとともに、前記吸収器(9)から導かれる吸収濃溶液(l2)の一部を前記溶液ポンプ(19)の入口側へ導く濃溶液供給回路(24)を付設したことを特徴とする前記請求項1記載の吸収式冷凍装置。A solution pump (19) for pumping condensate refrigerant (l 3 ) is provided on the inlet side of the heating absorption heat exchanger (17) in the first bypass circuit (18), and the absorber (9 absorbent concentrated solution derived from) (l 2) claim 1 Symbol placement of absorption part, characterized in that additionally provided a concentrated solution supply circuit (24) leading to the inlet side of the solution pump (19) of Refrigeration equipment. 発生器(2)、室外熱交換器(4)、逆止弁(6A)を併設した冷房用減圧機構(5A)、逆止弁(6B)を併設した暖房用減圧機構(5B)、室内熱交換器(7)、冷房用吸収熱交換器(8)、吸収器(9)を順次接続してなる吸収式冷凍装置であって、冷房運転時には前記発生器(2)から導かれる高温冷媒蒸気(gGenerator (2), outdoor heat exchanger (4), cooling decompression mechanism (5A) with check valve (6A), heating decompression mechanism (5B) with check valve (6B), room heat An absorption refrigeration apparatus in which an exchanger (7), an absorption heat exchanger for cooling (8), and an absorber (9) are sequentially connected, and high-temperature refrigerant vapor led from the generator (2) during cooling operation (G 11 )を前記室外熱交換器(4)へ導き且つ前記室内熱交換器(7)から導かれる低温冷媒蒸気(g) To the outdoor heat exchanger (4) and from the indoor heat exchanger (7) 22 )を前記冷房用吸収熱交換器(8)へ導くとともに、暖房運転時には前記発生器(2)から導かれる高温冷媒蒸気(g) To the cooling absorption heat exchanger (8) and high-temperature refrigerant vapor (g) guided from the generator (2) during heating operation. 11 )を前記室内熱交換器(7)へ導き且つ前記室外熱交換器(4)から導かれる低温冷媒蒸気(g) To the indoor heat exchanger (7) and from the outdoor heat exchanger (4) 22 )を前記冷房用吸収熱交換器(8)へ導くように冷媒流通方向を切り換える四路切換弁(14)と、暖房運転時にのみ前記室内熱交換器(7)から導かれる凝縮液冷媒(l) And a four-way switching valve (14) for switching the refrigerant flow direction so as to lead to the cooling absorption heat exchanger (8), and a condensate refrigerant (l) led from the indoor heat exchanger (7) only during heating operation. 3Three )の一部が供給され且つ前記冷房用吸収熱交換器(8)と一体形成された暖房用吸収熱交換器(17)を備え、該暖房用吸収熱交換器(17)において蒸発気化された冷媒蒸気(g), And a heating absorption heat exchanger (17) integrally formed with the cooling absorption heat exchanger (8), and is evaporated and evaporated in the heating absorption heat exchanger (17). Refrigerant vapor (g 3Three )を前記発生器(2)から前記四路切換弁(14)に導かれる途中の高温冷媒蒸気(g) High-temperature refrigerant vapor (g) in the middle of being led from the generator (2) to the four-way selector valve (14) 11 )に合流させる第1バイパス回路(18)とを付設するとともに、前記第1バイパス回路(18)における暖房用吸収熱交換器(17)の入口側に凝縮液冷媒(lAnd a condensate refrigerant (l) on the inlet side of the heating absorption heat exchanger (17) in the first bypass circuit (18). 3Three )を圧送するための溶液ポンプ(19)を介設し且つ前記吸収器(9)から導かれる吸収濃溶液(lA concentrated solution (l) which is provided with a solution pump (19) for pumping and is led from the absorber (9) 22 )の一部を前記溶液ポンプ(19)の入口側へ導く濃溶液供給回路(24)を付設したことを特徴とする吸収式冷凍装置。The absorption refrigeration apparatus is provided with a concentrated solution supply circuit (24) for guiding a part of the solution to the inlet side of the solution pump (19). 前記第1バイパス回路(18)における前記暖房用吸収熱交換器(17)の出口側に気液分離器(26)を設けるとともに、該気液分離器(26)における液相部(26a)の濃溶液(l2)を前記吸収器(9)から導かれる吸収濃溶液(l4)に合流させる一方、前記気液分離器(26)における気相部(26b)の冷媒蒸気(g3)を前記発生器(2)から前記四路切換弁(14)に導かれる途中の高温冷媒蒸気(g1)に合流させたことを特徴とする前記請求項2および請求項のいずれか一項記載の吸収式冷凍装置。A gas-liquid separator (26) is provided on the outlet side of the heating absorption heat exchanger (17) in the first bypass circuit (18), and the liquid phase part (26a) of the gas-liquid separator (26) is provided. The concentrated solution (l 2 ) is merged with the absorbed concentrated solution (l 4 ) guided from the absorber (9), while the refrigerant vapor (g 3 ) in the gas phase part (26b) in the gas-liquid separator (26). the generator (2) wherein any one of claims 2 and 3, characterized in that are merged into the middle of the high-temperature refrigerant vapor led to the four-way switching valve (14) (g 1) from the The absorption refrigeration apparatus described. 前記室外熱交換器(4)と前記室内熱交換器(7)との間に凝縮液冷媒(l3)を貯溜するレシーバ(15)を介設するとともに、該レシーバ(15)に前記第1バイパス回路(18)を接続したことを特徴とする前記請求項1ないし請求項4のいずれか一項記載の吸収式冷凍装置。A receiver (15) for storing condensate refrigerant (l 3 ) is interposed between the outdoor heat exchanger (4) and the indoor heat exchanger (7), and the receiver (15) includes the first heat exchanger (15). The absorption refrigeration apparatus according to any one of claims 1 to 4, wherein a bypass circuit (18) is connected. 発生器(2)、室外熱交換器(4)、逆止弁(6A)を併設した冷房用減圧機構(5A)、逆止弁(6B)を併設した暖房用減圧機構(5B)、室内熱交換器(7)、冷房用吸収熱交換器(8)、吸収器(9)を順次接続してなる吸収式冷凍装置であって、冷房運転時には前記発生器(2)から導かれる高温冷媒蒸気(gGenerator (2), outdoor heat exchanger (4), cooling decompression mechanism (5A) with check valve (6A), heating decompression mechanism (5B) with check valve (6B), room heat An absorption refrigeration apparatus in which an exchanger (7), an absorption heat exchanger for cooling (8), and an absorber (9) are sequentially connected, and high-temperature refrigerant vapor led from the generator (2) during cooling operation (G 11 )を前記室外熱交換器(4)へ導き且つ前記室内熱交換器(7)から導かれる低温冷媒蒸気(g) To the outdoor heat exchanger (4) and from the indoor heat exchanger (7) 22 )を前記冷房用吸収熱交換器(8)へ導くとともに、暖房運転時には前記発生器(2)から導かれる高温冷媒蒸気(g) To the cooling absorption heat exchanger (8) and high-temperature refrigerant vapor (g) guided from the generator (2) during heating operation. 11 )を前記室内熱交換器(7)へ導き且つ前記室外熱交換器(4)から導かれる低温冷媒蒸気(g) To the indoor heat exchanger (7) and from the outdoor heat exchanger (4) 22 )を前記冷房用吸収熱交換器(8)へ導くように冷媒流通方向を切り換える四路切換弁(14)と、暖房運転時にのみ前記室内熱交換器(7)から導かれる凝縮液冷媒(l) And a four-way switching valve (14) for switching the refrigerant flow direction so as to lead to the cooling absorption heat exchanger (8), and a condensate refrigerant (l) led from the indoor heat exchanger (7) only during heating operation. 3Three )の一部が供給され且つ前記冷房用吸収熱交換器(8)と一体形成された暖房用吸収熱交換器(17)を備え、該暖房用吸収熱交換器(17)において蒸発気化された冷媒蒸気(g), And a heating absorption heat exchanger (17) integrally formed with the cooling absorption heat exchanger (8), and is evaporated and evaporated in the heating absorption heat exchanger (17). Refrigerant vapor (g 3Three )を前記発生器(2)から前記四路切換弁(14)に導かれる途中の高温冷媒蒸気(g) High-temperature refrigerant vapor (g) in the middle of being led from the generator (2) to the four-way selector valve (14) 11 )に合流させる第1バイパス回路(18)とを付設するとともに、前記室外熱交換器(4)と前記室内熱交換器(7)との間に凝縮液冷媒(lAnd a first bypass circuit (18) to be joined to the outdoor heat exchanger (4) and the indoor heat exchanger (7). 3Three )を貯溜するレシーバ(15)を介設するとともに、該レシーバ(15)に前記第1バイパス回路(18)を接続したことを特徴とする吸収式冷凍装置。) Is stored, and the first bypass circuit (18) is connected to the receiver (15).
JP18813197A 1997-07-14 1997-07-14 Absorption refrigeration system Expired - Fee Related JP3780643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18813197A JP3780643B2 (en) 1997-07-14 1997-07-14 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18813197A JP3780643B2 (en) 1997-07-14 1997-07-14 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH1137592A JPH1137592A (en) 1999-02-12
JP3780643B2 true JP3780643B2 (en) 2006-05-31

Family

ID=16218282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18813197A Expired - Fee Related JP3780643B2 (en) 1997-07-14 1997-07-14 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3780643B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143435A (en) * 2017-06-22 2017-09-08 江苏科技大学海洋装备研究院 The distributed energy resource system and method for work of a kind of LNG Power Vessels
CN110274410B (en) * 2019-07-19 2023-09-19 珠海格力电器股份有限公司 Air conditioning system for recovering heat and control method

Also Published As

Publication number Publication date
JPH1137592A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
US6718792B1 (en) Integrated aqua-ammonia chiller/heater
JP2011133123A (en) Refrigerating cycle device
CA2426526C (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
EP0354749B1 (en) Air-cooled absorption Air-conditioner
JP3780643B2 (en) Absorption refrigeration system
JP5240040B2 (en) Refrigeration equipment
JPH0953864A (en) Engine type cooling device
JP5434207B2 (en) Refrigeration equipment
JP3780644B2 (en) Absorption refrigeration system
JP3401546B2 (en) Absorption refrigerator
KR20200120186A (en) Absorption type chiller-heater
JP4184196B2 (en) Hybrid absorption heat pump system
JP3281275B2 (en) Absorption air conditioner
JP2000055505A (en) Combined heat transfer device
JP2000146355A (en) Composite heat transfer system
JP3577891B2 (en) Refrigeration equipment
JP5434208B2 (en) Refrigeration equipment
JP3785743B2 (en) Absorption refrigeration system
JP3851136B2 (en) Absorption refrigerator
JPH10306959A (en) Absorption refrigerating machine and refrigerator provided with the machine
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JPH1183233A (en) Combined heat transfer equipment
JPH1183086A (en) Refrigerator
JPH10300288A (en) Absorption type refrigerating machine and refrigerating equipment having the same
JPH08313108A (en) Absorbing type refrigerating machine using exhaust heat of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees