JPH10335673A - Semiconductor device and active matrix type liquid crystal display device - Google Patents

Semiconductor device and active matrix type liquid crystal display device

Info

Publication number
JPH10335673A
JPH10335673A JP10189100A JP18910098A JPH10335673A JP H10335673 A JPH10335673 A JP H10335673A JP 10189100 A JP10189100 A JP 10189100A JP 18910098 A JP18910098 A JP 18910098A JP H10335673 A JPH10335673 A JP H10335673A
Authority
JP
Japan
Prior art keywords
gate electrode
region
gate
liquid crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10189100A
Other languages
Japanese (ja)
Other versions
JP3000213B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Akira Mase
晃 間瀬
正明 ▲ひろ▼木
Masaaki Hiroki
Yasuhiko Takemura
保彦 竹村
Kouyuu Chiyou
宏勇 張
Hideki Uoji
秀貴 魚地
Hideki Nemoto
英樹 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP18910098A priority Critical patent/JP3000213B2/en
Publication of JPH10335673A publication Critical patent/JPH10335673A/en
Application granted granted Critical
Publication of JP3000213B2 publication Critical patent/JP3000213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an offset region wherein an electric field due to a gate electrode is not applied to a part contiguous to a source region or a drain region, out of a channel region, by making channel length of an insulated gate type field effect transistor longer than the length in the channel length direction of the gate electrode. SOLUTION: Material capable of anode oxidation is selected for a gate electrode part turning to a gate electrode 15 and oxide layers 16, the surface part of the gate electrode part is anodized, and the oxide layers 16 are formed. The distance (channel length) between a source region 20 and a drain region 21 which are ion implantation regions becomes longer about two times the thickness of the oxide layer 16 than the practical length in the channel length direction of the gate electrode 15. In parts 26 and 27 in a channel region 19 which face the oxide layers 16 formed on both side surfaces of the gate electrode, interposing a gate insulating film 17, an electric field due to the gate electrode is not applied at all, or becomes very weak as compared with a part just under the gate electrode. Thereby an offset region to which an electric field is not applied can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アクティブマトリ
クス型電気光学装置、特にアクティブマトリクス型液晶
電気光学装置等に利用でき、明解なスイッチング特性を
有する電界効果型トランジスタの構造およびその作製方
法を示すものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type electro-optical device, particularly to an active matrix type liquid crystal electro-optical device and the like, and shows a structure of a field effect transistor having clear switching characteristics and a method of manufacturing the same. It is.

【0002】[0002]

【従来の技術】従来のアクティブマトリクス型液晶電気
光学装置に用いる薄膜絶縁ゲート型電界効果トランジス
タは、図2に示すような構造を有している。絶縁基板9
上にブロッキング層8を有し、ソース4、ドレイン5、
およびチャネル領域3を有する半導体層上にゲート絶縁
膜2とゲート電極1を有する。その上に層間絶縁膜12
およびソース電極6、ドレイン電極7を有する。
2. Description of the Related Art A thin film insulated gate field effect transistor used in a conventional active matrix type liquid crystal electro-optical device has a structure as shown in FIG. Insulating substrate 9
A blocking layer 8 is provided thereon, and a source 4, a drain 5,
And a gate insulating film 2 and a gate electrode 1 on a semiconductor layer having a channel region 3. An interlayer insulating film 12 is formed thereon.
And a source electrode 6 and a drain electrode 7.

【0003】この従来の絶縁ゲート型電界効果トランジ
スタの作製手順は、ガラス基板9上にブロッキング層を
SiO2 をターゲットとしてスパッタ法で成膜したのち
に、プラズマCVD法を用いて半導体層を作製し、それ
をパターンニングすることでソース、ドレイン、チャネ
ル領域となる半導体層を形成の後に、スパッタ法を用い
て酸化珪素からなるゲート絶縁膜2を成膜し、その後減
圧CVD法を用いてP(リン)を高濃度ドープしたゲー
ト電極用導電層を成膜の後にパターニングを施してゲー
ト電極1を作製する。その後、ゲート電極をマスクとし
た不純物イオンの注入を行い、ソース5およびドレイン
4を作製し、その後熱処理を行って活性化を行う、とい
うものであった。
[0003] In this conventional manufacturing method of an insulated gate field effect transistor, a blocking layer is formed on a glass substrate 9 by sputtering using SiO 2 as a target, and then a semiconductor layer is formed by plasma CVD. After forming a semiconductor layer to be a source, a drain and a channel region by patterning it, a gate insulating film 2 made of silicon oxide is formed by a sputtering method, and then P ( A gate electrode 1 is formed by patterning after forming a gate electrode conductive layer heavily doped with phosphorus (phosphorus). After that, impurity ions are implanted using the gate electrode as a mask to form the source 5 and the drain 4, and then heat treatment is performed for activation.

【0004】この様に作製した絶縁ゲート型電界効果ト
ランジスタは、ゲート電極1のチャネル長方向の長さと
チャネル長10はほぼ等しい。
In the insulated gate type field effect transistor manufactured as described above, the length of the gate electrode 1 in the channel length direction is substantially equal to the channel length 10.

【0005】[0005]

【発明が解決しようとする課題】この様な構造を有する
絶縁ゲート型電界効果トランジスタの電流電圧特性はn
チャネルの場合図3に示す様に、逆バイアス領域13に
おいて、ソースドレイン間の印加電圧が増加するにつれ
て、リーク電流が増加するという欠点を有していた。
The current-voltage characteristic of an insulated gate field effect transistor having such a structure is n
In the case of a channel, as shown in FIG. 3, the reverse bias region 13 has a disadvantage that the leak current increases as the applied voltage between the source and the drain increases.

【0006】この様なリーク電流が増した場合、この素
子をアクティブマトリクス型液晶電気光学装置に用いた
時には、図5(A)に示した様に、書き込み電流30を
通じて液晶29に蓄電された電荷は、非書き込み期間中
に素子のリーク部分を通してリーク電流31が放電され
てしまい、良好なコントラストを得ることができなかっ
た。
When such a leak current is increased, when this element is used in an active matrix type liquid crystal electro-optical device, the electric charge stored in the liquid crystal 29 through the write current 30 as shown in FIG. In the case of, the leak current 31 was discharged through the leak portion of the element during the non-writing period, so that good contrast could not be obtained.

【0007】そのために、このような場合従来例として
図5(B)に示した様に、電荷保持のためのコンデンサ
ー32を設置することが必要になっていた。しかしなが
ら、これらコンデンサーを形成するためには、金属配線
による容量用の電極を必要とするために、開口率を低下
させる要因となっていた。またこれをITOなどの透明
電極にて形成し開口率を向上させる例も報告されている
が、余分なプロセスを必要とするために、歓迎されるも
のではなかった。本発明は以上の様な問題を解決するも
のである。
For this reason, in such a case, it is necessary to provide a capacitor 32 for holding electric charges as shown in FIG. 5B as a conventional example. However, in order to form these capacitors, a capacitance electrode formed of metal wiring is required, which has been a factor of reducing the aperture ratio. In addition, there has been reported an example in which this is formed with a transparent electrode such as ITO to improve the aperture ratio, but it has not been welcomed since an extra process is required. The present invention solves the above problems.

【0008】[0008]

【課題を解決するための手段】この問題の一つの解決方
法として、本発明者らは絶縁ゲート型電界効果トランジ
スタにおいて、チャネル長(ソース領域とドレイン領域
の間の距離)をゲート電極のチャネル長方向の長さより
も長くすることにより、チャネル領域のうちのソース領
域またはドレイン領域に接する部分にゲート電極による
電界のかからないまたは非常に弱いオフセット領域を形
成することで、図4に示すような電流電圧特性をとるこ
とを知見した。
As one solution to this problem, the present inventors have proposed that the channel length (distance between a source region and a drain region) of an insulated gate field-effect transistor is determined by the channel length of a gate electrode. By making the length longer than the length in the direction, an offset region in which no electric field is applied by the gate electrode or a very weak offset region is formed in a portion of the channel region which is in contact with the source region or the drain region. It was found that characteristics were taken.

【0009】本発明の基本的な構成を図1に示す。絶縁
基板25上にブロッキング層24があり、その上に半導
体層としてソース領域20、ドレイン領域21、および
チャネル領域19を設ける。チャネル領域19上にはゲ
ート絶縁膜17とその上に陽極酸化可能な材料を陽極酸
化して絶縁層である酸化物層16を形成したゲート電極
15が形成されている。ソース領域、ドレイン領域にそ
れぞれ接してソース電極22、ドレイン電極23を設け
る。
FIG. 1 shows a basic configuration of the present invention. A blocking layer 24 is provided on an insulating substrate 25, and a source region 20, a drain region 21, and a channel region 19 are provided thereon as semiconductor layers. On the channel region 19, a gate insulating film 17 and a gate electrode 15 on which an oxide layer 16 as an insulating layer is formed by anodizing a material capable of being anodized are formed. A source electrode 22 and a drain electrode 23 are provided in contact with the source region and the drain region, respectively.

【0010】図1に示す様に、ゲート電極15と酸化物
層16となるゲート電極部に陽極酸化が可能な材料を選
び、その表面部分を陽極酸化して酸化物層16を形成す
ることで、イオン打ち込みの領域であるソース領域20
とドレイン領域21の間の距離すなわちチャネル長28
は、実質的なゲート電極15のチャネル長方向の長さよ
りも酸化物層16の厚みの概略2倍程度長くなる。ゲー
ト電極部の材料としては、主としてチタン(Ti)、ア
ルミニウム(Al)、タンタル(Ta)、クロム(C
r)、シリコン(Si)単体、あるいはそれらの合金が
適している。
As shown in FIG. 1, a material capable of anodic oxidation is selected for a gate electrode portion to be a gate electrode 15 and an oxide layer 16, and an oxide layer 16 is formed by anodizing a surface portion thereof. Source region 20 for ion implantation
Distance between the drain region 21 and the channel length 28
Is approximately twice as long as the thickness of the oxide layer 16 than the substantial length of the gate electrode 15 in the channel length direction. The material of the gate electrode portion is mainly titanium (Ti), aluminum (Al), tantalum (Ta), chromium (C
r), silicon (Si) alone, or an alloy thereof is suitable.

【0011】その結果、ゲート電極両側面に形成された
る酸化物層16にゲート絶縁膜17を介して向かい合う
チャネル領域19中の部分26および27には、ゲート
電極による電界が全くかからないあるいはゲート電極の
垂直下の部分と比較して非常に弱くなる。
As a result, in the portions 26 and 27 in the channel region 19 which face the oxide layer 16 formed on both side surfaces of the gate electrode with the gate insulating film 17 interposed therebetween, no electric field is applied by the gate electrode or the gate electrode has no electric field. Very weak compared to the vertically lower part.

【0012】本装置の作製方法は、ソース、ドレイン、
チャネル領域となる半導体層およびゲート絶縁膜層17
を形成後に陽極酸化可能な材料によってゲート電極部を
形成した後に、前記半導体層にp型化またはn型化せし
める不純物イオンを注入してソース領域20およびドレ
イン領域21を形成し、その後ゲート電極部表面部分を
陽極酸化してゲート電極15と酸化物層16を形成し、
熱処理工程等を施す、というものである。
[0012] The method of manufacturing the device includes a source, a drain,
Semiconductor layer serving as channel region and gate insulating film layer 17
After forming a gate electrode portion with a material that can be anodized after the formation, a source region 20 and a drain region 21 are formed by implanting impurity ions to make the semiconductor layer p-type or n-type, and then the gate electrode portion is formed. Anodizing the surface portion to form a gate electrode 15 and an oxide layer 16,
That is, a heat treatment step or the like is performed.

【0013】または、前記半導体層およびゲート絶縁膜
層17を形成後に陽極酸化可能な材料によってゲート電
極部を形成した後に、ゲート電極部表面部分を陽極酸化
してゲート電極15と酸化物層16を形成して、その後
前記半導体層にp型化またはn型化せしめる不純物イオ
ンを注入してソース領域20およびドレイン領域21を
形成してから熱処理工程を施す工程でも良い。
Alternatively, after forming the semiconductor layer and the gate insulating film layer 17 and then forming a gate electrode portion with an anodic oxidizable material, the surface of the gate electrode portion is anodized to form the gate electrode 15 and the oxide layer 16. After forming, the source region 20 and the drain region 21 may be formed by implanting impurity ions for making the semiconductor layer into p-type or n-type, and then performing a heat treatment process.

【0014】以上のような工程をとることで、チャネル
長がゲート電極のチャネル長方向の長さより長い絶縁ゲ
ート型電界効果トランジスタを、マスクずれ等による性
能のばらつきなどを発生することなく容易かつ確実に作
製することが可能となる。
By performing the above steps, an insulated gate field effect transistor having a channel length longer than the length of the gate electrode in the channel length direction can be easily and reliably manufactured without causing performance variations due to mask shift or the like. Can be manufactured.

【0015】以下に実施例を示す。An embodiment will be described below.

【実施例】【Example】

【0016】〔実施例1〕本実施例では、対角1インチ
を有する液晶電気光学装置を用いた、ビデオカメラ用ビ
ューファインダーを作製し、本発明を実施したので説明
を加える。
[Embodiment 1] In this embodiment, a viewfinder for a video camera using a liquid crystal electro-optical device having a diagonal of 1 inch is manufactured, and the present invention is implemented.

【0017】本実施例では画素数が387×128の構
成にして、本発明の構成を有した低温プロセスによる高
移動度TFT(薄膜トランジスタ)を用いた素子を形成
し、ビューファインダーを構成した。本実施例で使用す
る液晶表示装置の基板上のアクティブ素子の配置の様子
を図7に示し、図6に本実施例の回路図を示す。図7の
A−A’断面およびB−B’断面を示す作製プロセスを
図8に描く。A−A’断面はNTFTを示し、B−B’
断面はPTFTを示す。
In this embodiment, a viewfinder is formed by forming a device having a structure of 387 × 128 pixels and using a high mobility TFT (thin film transistor) by a low-temperature process having the structure of the present invention. FIG. 7 shows an arrangement of active elements on a substrate of a liquid crystal display device used in this embodiment, and FIG. 6 shows a circuit diagram of this embodiment. FIG. 8 illustrates a manufacturing process showing the AA ′ cross section and the BB ′ cross section of FIG. AA 'section shows NTFT, and BB'
The cross section shows the PTFT.

【0018】図8(A)において、安価な、700℃以
下、例えば約600℃の熱処理に耐え得るガラス基板5
1上にマグネトロンRF(高周波) スパッタ法を用いて
ブロッキング層52としての酸化珪素膜を1000〜3
000Åの厚さに作製する。プロセス条件は酸素100
%雰囲気、成膜温度150℃、出力400〜800W、
圧力0.5Paとした。タ−ゲットに石英または単結晶
シリコンを用いた成膜速度は30〜100Å/分であっ
た。
In FIG. 8A, an inexpensive glass substrate 5 that can withstand heat treatment at 700 ° C. or less, for example, about 600 ° C.
A silicon oxide film as a blocking layer 52 is formed on the substrate 1 by using a magnetron RF (high frequency) sputtering method.
It is manufactured to a thickness of 000 mm. Process condition is oxygen 100
% Atmosphere, film formation temperature 150 ° C, output 400-800W,
The pressure was 0.5 Pa. The film formation rate using quartz or single crystal silicon as a target was 30 to 100 ° / min.

【0019】この上にシリコン膜をLPCVD(減圧気
相)法、スパッタ法またはプラズマCVD法により形成
した。減圧気相法で形成する場合、結晶化温度よりも1
00〜200℃低い450〜550℃、例えば530℃
でジシラン(Si2H6) またはトリシラン(Si3H8) をCVD
装置に供給して成膜した。反応炉内圧力は30〜300
Paとした。成膜速度は50〜250Å/ 分であった。
PTFTとNTFTとのスレッシュホ−ルド電圧(Vt
h)に概略同一に制御するため、ホウ素をジボランを用
いて1×1015〜1×1018cm-3の濃度として成膜中に添加
してもよい。
A silicon film was formed thereon by LPCVD (low pressure gas phase), sputtering or plasma CVD. When formed by the reduced pressure gas phase method, the temperature is 1
450-550 ° C lower by 00-200 ° C, for example 530 ° C
CVD of disilane (Si 2 H 6 ) or trisilane (Si 3 H 8 )
The film was supplied to the apparatus to form a film. Reactor pressure is 30 ~ 300
Pa. The deposition rate was 50-250 ° / min.
Threshold voltage (Vt) between PTFT and NTFT
In order to control substantially the same as in h), boron may be added at a concentration of 1 × 10 15 to 1 × 10 18 cm −3 during film formation using diborane.

【0020】スパッタ法で行う場合、スパッタ前の背圧
を1×10-5Pa以下とし、単結晶シリコンをタ−ゲット
として、アルゴンに水素を20〜80%混入した雰囲気
で行った。例えばアルゴン20%、水素80%とした。
成膜温度は150℃、周波数は13.56MHz、スパ
ッタ出力は400〜800W、圧力は0.5Paであっ
た。
When the sputtering method is used, the back pressure before the sputtering is set to 1 × 10 −5 Pa or less, and single crystal silicon is used as a target in an atmosphere in which hydrogen is mixed with 20 to 80% of argon. For example, argon was 20% and hydrogen was 80%.
The film formation temperature was 150 ° C., the frequency was 13.56 MHz, the sputter output was 400 to 800 W, and the pressure was 0.5 Pa.

【0021】プラズマCVD法により珪素膜を作製する
場合、温度は例えば300℃とし、モノシラン(SiH4)ま
たはジシラン(Si2H6) を用いた。これらをPCVD装置
内に導入し、13.56MHzの高周波電力を加えて成
膜した。
When a silicon film is formed by the plasma CVD method, the temperature is, for example, 300 ° C., and monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used. These were introduced into a PCVD apparatus, and a high-frequency power of 13.56 MHz was applied to form a film.

【0022】これらの方法によって形成された被膜は、
酸素が5×1021cm-3以下であることが好ましい。この酸
素濃度が高いと、結晶化させにくく、熱アニ−ル温度を
高くまたは熱アニ−ル時間を長くしなければならない。
また少なすぎると、バックライトによりオフ状態のリ−
ク電流が増加してしまう。そのため4×1019〜4×10 21
cm-3の範囲とした。水素は4×1020cm-3であり、珪素4
×1022cm-3として比較すると1原子%であった。
The coatings formed by these methods are:
Oxygen is 5 × 10twenty onecm-3The following is preferred. This acid
If the element concentration is high, it is difficult to crystallize,
High or long thermal annealing times must be used.
If the amount is too small, the lamp is turned off by the backlight.
Current increases. Therefore 4 × 1019~ 4 × 10 twenty one
cm-3Range. Hydrogen is 4 × 1020cm-3And silicon 4
× 10twenty twocm-3Was 1 atomic%.

【0023】上記方法によって、アモルファス状態の珪
素膜を500〜5000Å、例えば1500Åの厚さに
作製の後、450〜700℃の温度にて12〜70時間
非酸化物雰囲気にて中温の加熱処理、例えば水素雰囲気
下にて600℃の温度で保持した。珪素膜の下の基板表
面にアモルファス構造の酸化珪素膜が形成されているた
め、この熱処理で特定の核が存在せず、全体が均一に加
熱アニ−ルされる。即ち、成膜時はアモルファス構造を
有し、また水素は単に混入しているのみである。
After the amorphous silicon film is formed to a thickness of 500 to 5000 °, for example, 1500 ° by the above-mentioned method, heat treatment is performed at a temperature of 450 to 700 ° C. for 12 to 70 hours in a non-oxide atmosphere at a medium temperature. For example, it was kept at a temperature of 600 ° C. in a hydrogen atmosphere. Since a silicon oxide film having an amorphous structure is formed on the surface of the substrate under the silicon film, no specific nucleus is present in this heat treatment, and the whole is annealed uniformly. That is, it has an amorphous structure at the time of film formation, and hydrogen is simply mixed therein.

【0024】アニ−ルにより、珪素膜はアモルファス構
造から秩序性の高い状態に移り、一部は結晶状態を呈す
る。特にシリコンの成膜後の状態で比較的秩序性の高い
領域は特に結晶化をして結晶状態となろうとする。しか
しこれらの領域間に存在する珪素により互いの結合がな
されるため、珪素同志は互いにひっぱりあう。レ−ザラ
マン分光により測定すると単結晶の珪素のピ−ク522
cm-1より低周波側にシフトしたピ−クが観察される。そ
れの見掛け上の粒径は半値巾から計算すると、50〜5
00Åとマイクロクリスタルのようになっているが、実
際はこの結晶性の高い領域は多数あってクラスタ構造を
有し、各クラスタ間は互いに珪素同志で結合(アンカリ
ング) がされたセミアモルファス構造の被膜を形成させ
ることができた。
By the annealing, the silicon film shifts from an amorphous structure to a highly ordered state, and a part of the silicon film exhibits a crystalline state. In particular, a region having a relatively high order in a state after the formation of silicon is particularly likely to be crystallized to be in a crystalline state. However, since the silicon existing between these regions is bonded to each other, silicon mutually pulls each other. When measured by laser Raman spectroscopy, a single crystal silicon peak 522 is obtained.
A peak shifted to a lower frequency side than cm −1 is observed. Its apparent particle size is 50 to 5 when calculated from the half width.
Although it is a microcrystal with a size of 00Å, there are actually a large number of regions with high crystallinity and a cluster structure, and a semi-amorphous structure film in which each cluster is bonded to each other by silicon (anchoring). Could be formed.

【0025】結果として、被膜は実質的にグレインバウ
ンダリ(以下GBという)がないといってもよい状態を
呈する。キャリアは各クラスタ間をアンカリングされた
個所を通じ互いに容易に移動し得るため、いわゆるGBの
明確に存在する多結晶珪素よりも高いキャリア移動度と
なる。即ちホ−ル移動度(μh)=10〜200cm2
VSec、電子移動度(μe )=15〜300cm2 /V
Secが得られる。
As a result, the coating exhibits a state substantially free of grain boundaries (hereinafter referred to as GB). Carriers can easily move from one cluster to another through anchored locations, resulting in higher carrier mobility than so-called GB polycrystalline silicon. That is, hole mobility (μh) = 10 to 200 cm 2 /
VSec, electron mobility (μe) = 15 to 300 cm 2 / V
Sec is obtained.

【0026】他方、上記の如き中温でのアニ−ルではな
く、900〜1200℃の高温アニ−ルにより被膜を多
結晶化してもよい、しかしその場合は核からの固相成長
により被膜中の不純物の偏析がおきて、GBには酸素、
炭素、窒素等の不純物が多くなり、結晶中の移動度は大
きいが、GBでのバリア(障壁)を作ってそこでのキャ
リアの移動を阻害してしまう。結果として10cm2/Vsec
以上の移動度がなかなか得られないのが実情である。そ
のために酸素、炭素、窒素等の不純物濃度をセミアモル
ファスのものよりも数分の1から数十分の1にする必要
がある。その様にした場合、50〜100cm2 /Vse
cが得られた。
On the other hand, the film may be polycrystallized by high-temperature annealing at 900 to 1200 ° C., instead of annealing at the above-mentioned medium temperature. Impurity segregation occurs, GB has oxygen,
Impurities such as carbon and nitrogen increase, and the mobility in the crystal is high. However, a barrier is formed in GB to hinder the movement of carriers there. As a result, 10 cm 2 / Vsec
It is a fact that the above mobility is not easily obtained. For this purpose, the concentration of impurities such as oxygen, carbon, nitrogen, etc., needs to be reduced from several tenths to several tenths than semi-amorphous ones. In such a case, 50-100 cm 2 / Vse
c was obtained.

【0027】このようにして形成した珪素膜にフォトエ
ッチングを施し、NTFT用の半導体層53(チャネル
巾20μm)、PTFT用の半導体層54を作製した。
The silicon film formed in this manner was subjected to photoetching to produce a semiconductor layer 53 for NTFT (channel width 20 μm) and a semiconductor layer 54 for PTFT.

【0028】この上にゲート絶縁膜となる酸化珪素膜を
500〜2000Å例えば1000Åの厚さに形成し
た。これはブロッキング層としての酸化珪素膜の作製と
同一条件とした。これを成膜中に弗素を少量添加し、ナ
トリウムイオンの固定化をさせてもよい。
On this, a silicon oxide film to be a gate insulating film was formed to a thickness of 500 to 2000 {for example, 1000}. This was made under the same conditions as those for forming the silicon oxide film as the blocking layer. A small amount of fluorine may be added during film formation to fix sodium ions.

【0029】この後、この上側にアルミニウム膜を形成
した。これをフォトマスクにてパタ−ニングして図8
(B) を得た。NTFT用のゲート絶縁膜55、ゲート電
極部56を形成し、両者のチャネル長方向の長さは10
μmすなわちチャネル長を10μmとした。同様に、P
TFT用のゲート絶縁膜57、ゲート電極部58を形成
し、両者のチャネル長方向の長さは7μmすなわちチャ
ネル長を7μmとした。また双方のゲート電極部56、
58の厚さは共に0.8μmとした。図8(C)におい
て、PTFT用のソ−ス59、ドレイン60に対し、ホ
ウ素(B)を1〜5×1015cm-2のド−ズ量でイオン注
入法により添加した。次に図8(D)の如く、フォトレ
ジスト61をフォトマスクを用いて形成した。NTFT
用のソ−ス62、ドレイン63としてリン(P)を1〜
5×1015cm-2のドーズ量でイオン注入法により添加し
た。
Thereafter, an aluminum film was formed on the upper side. This was patterned using a photomask, and FIG.
(B) was obtained. A gate insulating film 55 and a gate electrode portion 56 for NTFT are formed.
μm, that is, the channel length was 10 μm. Similarly, P
A gate insulating film 57 for the TFT and a gate electrode portion 58 were formed, and the length in the channel length direction was 7 μm, that is, the channel length was 7 μm. Also, both gate electrode portions 56,
The thickness of each of 58 was 0.8 μm. In FIG. 8C, boron (B) was added to the PTFT source 59 and the drain 60 by ion implantation at a dose of 1 to 5 × 10 15 cm −2 . Next, as shown in FIG. 8D, a photoresist 61 was formed using a photomask. NTFT
Phosphorus (P) as source 62 and drain 63 for
It was added by ion implantation at a dose of 5 × 10 15 cm −2 .

【0030】その後、ゲート電極部に陽極酸化を施し
た。L−酒石酸をエチレングリコールに5%の濃度で希
釈し、アンモニアを用いてpHを7.0±0.2に調整
した。その溶液中に基板を浸し、定電流源の+側を接続
し、−側には白金の電極を接続して20mAの定電流状
態で電圧を印加し、150Vに到達するまで酸化を継続
した。さらに、150Vで定電圧状態で加え0.1mA
以下になるまで酸化を継続した。このようにして、ゲー
ト電極部56、58の表面に酸化アルミニウム層64を
形成し、NTFT用のゲート電極65、PTFT用のゲ
ート電極66を得た。酸化アルミニウム層64は0.3
μmの厚さに形成した。
Thereafter, the gate electrode was anodized. L-tartaric acid was diluted in ethylene glycol at a concentration of 5%, and the pH was adjusted to 7.0 ± 0.2 with ammonia. The substrate was immersed in the solution, the positive side of the constant current source was connected, the platinum electrode was connected to the negative side, a voltage was applied at a constant current of 20 mA, and oxidation was continued until the voltage reached 150V. Further, 0.1 mA is applied at a constant voltage at 150 V.
The oxidation was continued until: In this way, an aluminum oxide layer 64 was formed on the surfaces of the gate electrode portions 56 and 58, and a gate electrode 65 for NTFT and a gate electrode 66 for PTFT were obtained. The aluminum oxide layer 64 has a thickness of 0.3
It was formed to a thickness of μm.

【0031】次に、600℃にて10〜50時間再び加
熱アニ−ルを行った。NTFTのソ−ス62、ドレイン
63、PTFTのソ−ス59、ドレイン60を不純物を
活性化してN+ 、P+ として作製した。またゲイト絶縁
膜55、57下にはチャネル形成領域67、68がセミ
アモルファス半導体として形成されている。
Next, annealing was performed again at 600 ° C. for 10 to 50 hours. The source 62 and the drain 63 of the NTFT and the source 59 and the drain 60 of the PTFT were formed as N + and P + by activating impurities. Channel formation regions 67 and 68 are formed below the gate insulating films 55 and 57 as semi-amorphous semiconductors.

【0032】本作製方法においては、不純物のイオン注
入とゲート電極周囲の陽極酸化の順序を入れ換えても良
い。この様に、ゲート電極の周囲に酸化金属からなる絶
縁層を形成したことで、ゲート電極の実質長さは、チャ
ネル長さよりも絶縁膜の厚さの2倍分、この場合は0.
6μmだけ短くなることになり、電界のかからないオフ
セット領域を設けることで、逆バイアス時のリーク電流
を減少させることが出来た。
In this manufacturing method, the order of ion implantation of impurities and anodic oxidation around the gate electrode may be reversed. Since the insulating layer made of a metal oxide is formed around the gate electrode in this manner, the substantial length of the gate electrode is twice the thickness of the insulating film rather than the channel length.
The length was shortened by 6 μm, and by providing an offset region where an electric field was not applied, it was possible to reduce the leak current at the time of reverse bias.

【0033】本実施例では熱アニ−ルは図8(A)、
(E)で2回行った。しかし図8(A)のアニ−ルは求
める特性により省略し、双方を図8(E)のアニ−ルに
より兼ね製造時間の短縮を図ってもよい。図8(E)に
おいて、層間絶縁物69を前記したスパッタ法により酸
化珪素膜の形成として行った。この酸化珪素膜の形成は
LPCVD法、光CVD法、常圧CVD法を用いてもよ
い。層間絶縁物は0.2〜0.6μmたとえば0.3μ
mの厚さに形成し、その後、フォトマスクを用いて電極
用の窓70を形成した。さらに、図8(F)に示す如く
これら全体にアルミニウムをスパッタ法により形成し、
リード71、73、およびコンタクト72をフォトマス
クを用いて作製した後、表面を平坦化用有機樹脂74例
えば透光性ポリイミド樹脂を塗布形成し、再度の電極穴
あけをフォトマスクにて行った。
In this embodiment, the thermal annealing is performed as shown in FIG.
(E) was performed twice. However, the annealing in FIG. 8A may be omitted depending on the desired characteristics, and both may be replaced by the annealing in FIG. 8E to shorten the manufacturing time. In FIG. 8E, a silicon oxide film was formed on the interlayer insulator 69 by the above-described sputtering method. This silicon oxide film may be formed by an LPCVD method, a photo CVD method, or a normal pressure CVD method. The interlayer insulator is 0.2 to 0.6 μm, for example, 0.3 μm.
m, and then a window 70 for an electrode was formed using a photomask. Further, as shown in FIG. 8 (F), aluminum is formed on the whole of these by sputtering,
After the leads 71 and 73 and the contact 72 were manufactured using a photomask, the surface was coated with a flattening organic resin 74, for example, a light-transmitting polyimide resin, and the electrode hole was formed again using the photomask.

【0034】2つのTFTを相補型構成とし、かつその
出力端を液晶装置の一方の画素の電極を透明電極として
それに連結するため、スパッタ法によりITO(インジ
ュ−ムスズ酸化膜)を形成した。それをフォトマスクに
よりエッチングし、電極75を構成させた。このITO
は室温〜150℃で成膜し、200〜400℃の酸素ま
たは大気中のアニ−ルにより成就した。かくの如くにし
てNTFT76とPTFT77と透明導電膜の電極75
とを同一ガラス基板51上に作製した。得られたTFT
の電気的な特性はPTFTで移動度は20(cm2/Vs)、
Vthは−5.9(V)で、NTFTで移動度は40(cm
2/Vs)、Vthは5.0(V)であった。
An ITO (indium tin oxide film) was formed by a sputtering method so that the two TFTs had a complementary structure, and their output terminals were connected to an electrode of one pixel of the liquid crystal device as a transparent electrode. This was etched using a photomask to form an electrode 75. This ITO
Was formed at room temperature to 150 ° C. and achieved by oxygen at 200 to 400 ° C. or annealed in the air. Thus, NTFT 76, PTFT 77 and transparent conductive electrode 75
Were fabricated on the same glass substrate 51. Obtained TFT
Has electrical characteristics of PTFT and a mobility of 20 (cm 2 / Vs),
Vth is -5.9 (V), and the mobility is 40 (cm) in NTFT.
2 / Vs) and Vth was 5.0 (V).

【0035】上記の様な方法に従って液晶装置用の一方
の基板を作製した。この液晶表示装置の電極等の配置は
図7に示している。NTFT76およびPTFT77を
第1の信号線40と第2の信号線41との交差部に設け
た。このようなC/TFTを用いたマトリクス構成を有
せしめた。NTFT76は、ドレイン63の入力端のリ
ード71を介し第2の信号線41に連結され、ゲート5
6は多層配線形成がなされた信号線40に連結されてい
る。ソ−ス62の出力端はコンタクト72を介して画素
の電極75に連結している。
One substrate for a liquid crystal device was manufactured according to the method described above. The arrangement of the electrodes and the like of this liquid crystal display device is shown in FIG. The NTFT 76 and PTFT 77 are provided at the intersection of the first signal line 40 and the second signal line 41. A matrix configuration using such a C / TFT is provided. The NTFT 76 is connected to the second signal line 41 via the lead 71 at the input end of the drain 63, and is connected to the gate 5.
Reference numeral 6 is connected to a signal line 40 on which a multilayer wiring is formed. The output terminal of the source 62 is connected to a pixel electrode 75 via a contact 72.

【0036】他方、PTFT77はドレイン60の入力
端がリード73を介して第2の信号線41に連結され、
ゲート58は信号線40に、ソ−ス59の出力端はコン
タクト72を介してNTFTと同様に画素電極75に連
結している。かかる構造を左右、上下に繰り返すことに
より、本実施例は構成されている。
On the other hand, the PTFT 77 has the input terminal of the drain 60 connected to the second signal line 41 via the lead 73,
The gate 58 is connected to the signal line 40, and the output terminal of the source 59 is connected to the pixel electrode 75 via the contact 72 in the same manner as the NTFT. The present embodiment is configured by repeating such a structure left, right, up and down.

【0037】次に第二の基板として、青板ガラス上にス
パッタ法を用いて、酸化珪素膜を2000Å積層した基
板上に、やはり スパッタ法によりITO(インジュ−
ム・スズ酸化膜)を形成した。このITOは室温〜15
0℃で成膜し、200〜400℃の酸素または大気中の
アニ−ルにより成就した。また、この基板上にカラーフ
ィルターを形成して、第二の基板とした。
Next, as a second substrate, an ITO (indium nitride) was formed on a blue glass sheet by sputtering using a sputtering method and a silicon oxide film having a thickness of 2000 .ANG.
Tin oxide film). This ITO is between room temperature and 15
Films were formed at 0 ° C. and achieved with oxygen at 200-400 ° C. or in air. In addition, a color filter was formed on this substrate to form a second substrate.

【0038】その後、前記第一の基板と第二の基板によ
って、紫外線硬化型アクリル樹脂とネマチック液晶組成
物の6対4の混合物を挟持し、周囲をエポキシ性接着剤
にて固定した。基板上のリードはそのピッチが46μm
と微細なため、COG法を用いて接続をおこなった。本
実施例ではICチップ上に設けた金バンプをエポキシ系
の銀パラジウム樹脂で接続し、ICチップと基板間を固
着と封止を目的としたエポキシ変成アクリル樹脂にて埋
めて固定する方法を用いた。その後、外側に偏光板を貼
り、透過型の液晶表示装置を得た。
Thereafter, a 6: 4 mixture of an ultraviolet curable acrylic resin and a nematic liquid crystal composition was sandwiched between the first substrate and the second substrate, and the periphery was fixed with an epoxy adhesive. The pitch of the leads on the substrate is 46 μm
Therefore, the connection was performed using the COG method. In this embodiment, a method is used in which gold bumps provided on an IC chip are connected with an epoxy-based silver-palladium resin, and the IC chip and the substrate are filled and fixed with an epoxy-modified acrylic resin for the purpose of fixing and sealing. Was. Thereafter, a polarizing plate was attached on the outside to obtain a transmission type liquid crystal display device.

【0039】〔実施例2〕本実施例ではオフセット領域
の幅によるセミアモルファスシリコンTFTの特性の違
いについて記述する。本実施例では、セミアモルファス
シリコンTFTはアルミニウムゲートとし、アルミニウ
ムゲートの周囲を陽極酸化法によって酸化することによ
って、オフセット領域を形成させた。以下に詳細な作製
方法を記述する。
[Embodiment 2] In this embodiment, the difference in the characteristics of a semi-amorphous silicon TFT depending on the width of an offset region will be described. In the present embodiment, the semi-amorphous silicon TFT is an aluminum gate, and the offset region is formed by oxidizing the periphery of the aluminum gate by an anodic oxidation method. A detailed manufacturing method will be described below.

【0040】ガラス基板上に窒化珪素膜と酸化珪素膜の
多層膜を形成し、プラズマCVD法によって、アモルフ
ァス上のシリコン膜を150nm形成した。パターニン
グでは、その幅を80μmとした。したがって、このT
FTのチャネル幅は80μmである。これを窒素雰囲気
中で600℃、60時間加熱することによってセミアモ
ルファス状態のシリコンとした。
A multilayer film of a silicon nitride film and a silicon oxide film was formed on a glass substrate, and a 150 nm-thick amorphous silicon film was formed by a plasma CVD method. In patterning, the width was set to 80 μm. Therefore, this T
The channel width of the FT is 80 μm. This was heated in a nitrogen atmosphere at 600 ° C. for 60 hours to obtain semi-amorphous silicon.

【0041】次いで、酸素雰囲気中での酸化珪素ターゲ
ットのスパッタリングによって、ゲート酸化膜となる酸
化珪素被膜を形成した。その厚さは115nmとした。
さらに、電子ビーム蒸着によって、アルミニウム被膜を
形成し、公知のフォトリソグラフィー法によってアルミ
ニウム被膜および下地の酸化珪素被膜をエッチングし
て、ゲート電極を形成した。エチングには反応性イオン
エッチング(RIE)法を使用した。このようにして形
成したゲート電極のチャネル長は8μmとした。
Next, a silicon oxide film serving as a gate oxide film was formed by sputtering a silicon oxide target in an oxygen atmosphere. Its thickness was 115 nm.
Further, an aluminum film was formed by electron beam evaporation, and the aluminum film and the underlying silicon oxide film were etched by a known photolithography method to form a gate electrode. The reactive ion etching (RIE) method was used for the etching. The channel length of the gate electrode thus formed was 8 μm.

【0042】そして、ゲート電極およびその配線を陽極
酸化をおこなった。陽極酸化の方法は以下のようにおこ
なった。まず、容器内に3%の酒石酸のエチレングリコ
ール溶液を入れ、これに5wt%のアンモニア水を加え
て、pHを7.0±0.2となるように調整した。そし
て、25±2℃の温度で白金電極を陰極として、ガラス
基板ごと溶液中に浸し、アルミニウム配線を直流電源の
正極に接続して、陽極酸化をおこなった。
Then, the gate electrode and its wiring were anodized. The method of anodization was performed as follows. First, a 3% ethylene glycol solution of tartaric acid was placed in a container, and 5 wt% of aqueous ammonia was added thereto to adjust the pH to 7.0 ± 0.2. Then, at a temperature of 25 ± 2 ° C., a platinum electrode was used as a cathode, the glass substrate was immersed in the solution together with the glass substrate, and an aluminum wiring was connected to a positive electrode of a DC power supply to perform anodization.

【0043】陽極酸化では、最初に0.2〜1.0mA
/cm2 の定電流を流し、100〜250Vの適当な電
圧に到達した後は、電圧を一定に保ったまま、陽極酸化
を進め、電流が0.005mA/cm2 まで減少した時
点で通電をやめて、取り出した。本発明者の実験では、
初期の定電流の値は酸化膜形成の時間にのみ影響があ
り、最終的に形成される酸化膜の厚さにはほとんど影響
しないことが明らかになった。酸化膜の厚さに大きな影
響力を持つパラメータは到達最大電圧であり、例えば、
これが100V、150V、200V、250Vである
ときの得られる酸化膜の厚さは、それぞれ70nm、1
40nm、230nm、320nmであった。また、こ
のときには酸化されるアルミニウムの厚さの1.5倍の
酸化アルミニウムが得られることが本発明者の実験から
明らかになった。さらに、得られる酸化膜の厚さは全て
の部分にわたって極めて均質であった。
In the anodization, first, 0.2 to 1.0 mA
/ Cm 2 , and after reaching a proper voltage of 100 to 250 V, anodizing is continued while the voltage is kept constant, and when the current decreases to 0.005 mA / cm 2 , energization is started. I stopped and took it out. In our experiments,
It was found that the value of the initial constant current only affects the time of forming the oxide film, and has little effect on the thickness of the finally formed oxide film. A parameter that has a great influence on the thickness of the oxide film is the maximum voltage reached, for example,
When this is 100 V, 150 V, 200 V, and 250 V, the thickness of the obtained oxide film is 70 nm, 1
It was 40 nm, 230 nm, and 320 nm. Further, at this time, it was clarified from the experiment of the present inventors that aluminum oxide 1.5 times the thickness of aluminum to be oxidized was obtained. Furthermore, the thickness of the resulting oxide film was very uniform over all parts.

【0044】その後、レーザードーピング法によってソ
ース、ドレイン領域を形成した。レーザードーピング法
は以下の方法によっておこなった。使用したレーザー
は、エキシマーレーザーの1種であるKrFレーザー
で、その発振波長は248nmである。試料を気密性の
ある容器内に配置し、95paの減圧雰囲気とせしめ、
内部にドーピングガスとしてジボラン(B2 6 )、あ
るいはフォスヒン(PH3)を導入して、1ショットの
エネルギーが350mJのレーザーパルスを50ショッ
ト照射した。
Thereafter, source and drain regions were formed by a laser doping method. Laser doping was performed by the following method. The laser used was a KrF laser, which is a kind of excimer laser, and its oscillation wavelength was 248 nm. The sample was placed in an airtight container, and a reduced pressure atmosphere of 95 pa was applied.
Diborane (B 2 H 6 ) or phosphor (PH 3 ) was introduced as a doping gas into the inside, and a laser pulse having an energy of 350 mJ per shot was irradiated for 50 shots.

【0045】ドーピングガスには、P型チャネルを形成
する場合には水素で希釈したジボランを用い、その流量
はジボラン100sccm、水素20sccmとした。
また、N型チャネルを形成する場合にはフォスヒンを用
い、その流量は100sccmとした。
As a doping gas, diborane diluted with hydrogen was used when a P-type channel was formed, and the flow rate was 100 sccm of diborane and 20 sccm of hydrogen.
In the case of forming an N-type channel, phosphor was used, and the flow rate was 100 sccm.

【0046】その後、チャネル領域の活性化を促進する
目的で、水素中で250℃、30分のアニールをおこな
った。そして、公知の方法によって層間絶縁膜とソー
ス、ドレイン電極・配線を形成し、TFTを完成させ
た。
Thereafter, in order to promote activation of the channel region, annealing was performed at 250 ° C. for 30 minutes in hydrogen. Then, an interlayer insulating film and source / drain electrodes / wirings were formed by a known method to complete a TFT.

【0047】このようにして作製したTFTの特性例を
図9および図10に示す。図9はPチャネルTFT、図
10はNチャネルTFTである。オフセットの大きさは
直接測定することは困難であるので、ゲート電極の周囲
の酸化膜の厚さ(オフセットの大きさを十分に反映する
と考えられる)によって、本発明の効果を記述する。
FIGS. 9 and 10 show examples of characteristics of the TFT thus manufactured. FIG. 9 shows a P-channel TFT, and FIG. 10 shows an N-channel TFT. Since it is difficult to directly measure the magnitude of the offset, the effect of the present invention is described by the thickness of the oxide film around the gate electrode (which is considered to sufficiently reflect the magnitude of the offset).

【0048】図9、図10から明らかなように、酸化膜
の厚さが大きいほど、すなわちオフセット領域の幅が大
きいほど、逆方向リーク電流やオフ電流が減少すること
がわかった。特にその効果はNチャネルTFTで著しい
ことがあきらかになった。すなわち、図から分かるよう
に、NチャネルTFTでは、ゲイト電圧が0のときの電
流(オフ電流)が、オフセット領域の形成とともに減少
して、実用的なレベルにまで低下した。PチャネルTF
Tでは、オフ電流が低下するということはなかったが、
逆方向リーク電流は著しく減少した。このようにオフセ
ット領域を設けることによるオフ電流の減少は、図11
に示される。図中でIOFF はオフ電流、Ionはオン電流
である。
As is apparent from FIGS. 9 and 10, the reverse leakage current and the off-current decrease as the thickness of the oxide film increases, that is, as the width of the offset region increases. In particular, it became clear that the effect was remarkable in the N-channel TFT. That is, as can be seen from the figure, in the N-channel TFT, the current (off-state current) when the gate voltage is 0 decreases with the formation of the offset region, and decreases to a practical level. P channel TF
At T, the off current did not decrease,
Reverse leakage current was significantly reduced. The decrease in the off-state current due to the provision of the offset region is as shown in FIG.
Is shown in In the figure, I OFF is an off current, and I on is an on current.

【0049】また、オフセット領域を設けることによる
TFTのしきい値電圧(Vth)の変化は見られなかっ
た。この様子を図12に示す。しかしながら、別の実験
によると、オフセット領域が異常に大きい場合にはチャ
ネルの形成が不連続的であるので、特性の悪化が観測さ
れた。例えば、図13に示すようにオフセット領域の幅
が300nmを越えると、NチャネルでもPチャネルで
も急速に電界移動度が減少した。これらの結果を考慮す
ると、オフセット領域の幅としては、200〜400n
mが適していることが明らかになった。
No change in the threshold voltage (V th ) of the TFT due to the provision of the offset region was observed. This is shown in FIG. However, according to another experiment, when the offset region was abnormally large, the channel formation was discontinuous, so that deterioration of the characteristics was observed. For example, as shown in FIG. 13, when the width of the offset region exceeded 300 nm, the electric field mobility rapidly decreased in both the N channel and the P channel. In consideration of these results, the width of the offset region is 200 to 400 n
It has been found that m is suitable.

【0050】〔実施例3〕本発明によって得られるTF
Tにおいては、オフセット領域の幅によって、オフ電流
だけでなく、ソース/ドレイン間の耐圧や動作速度が変
化する。したがって、例えば、陽極酸化膜の厚さ等のパ
ラメータを最適化することによって、目的に応じたTF
Tを作製することが出来る。しかしながら、このような
パラメータは一般に1枚の基板上に形成された個々のT
FTに対して調節できるものではない。例えば、実際の
回路においては、1枚の基板上に、低速動作でもよい
が、高耐圧のTFTと低耐圧でもよいが、高速動作の要
求されるTFTを同時に形成することが望まれる場合が
ある。一般に、本発明においては、オフセット領域の幅
が大きいほど、オフ電流が小さく、耐圧性も向上する
が、動作速度が低下するという欠点もあった。
Example 3 TF obtained by the present invention
At T, not only the off-state current but also the withstand voltage between the source and the drain and the operating speed change depending on the width of the offset region. Therefore, for example, by optimizing parameters such as the thickness of the anodic oxide film,
T can be manufactured. However, such parameters are generally dependent on the individual T.sub.Ts formed on a single substrate.
It cannot be adjusted for FT. For example, in an actual circuit, a low-speed operation may be performed on a single substrate, or a high-breakdown-voltage TFT and a low-breakdown-voltage TFT may be formed. . In general, in the present invention, as the width of the offset region is larger, the off-state current is smaller and the breakdown voltage is improved, but there is a disadvantage that the operation speed is reduced.

【0051】本実施例はこのような問題を解決する1例
を示す。図14(断面図)および図15(上面図)には
本実施例を示す。本実施例では、特願平3−29633
1に記述されるような、PチャネルTFTとNチャネル
TFTを1つの画素(液晶画素等『を駆動するために使
用する画像表示方法において使用される回路の作製に関
するものである。ここで、NチャネルTFTは高速性が
要求され、耐圧はさほど問題とされない。一方、Pチャ
ネルTFTは、動作速度はさほど問題とされないが、オ
フ電流が低いことが必要とされ、場合によっては耐圧性
がよいことも必要とされる。したがって、NチャネルT
FTは陽極酸化膜が薄く(20〜100nm)、Pチャ
ネルTFTは陽極酸化膜が厚い(250〜400nm)
ことが望まれる。以下にその作製工程について説明す
る。
This embodiment shows an example for solving such a problem. This embodiment is shown in FIG. 14 (cross-sectional view) and FIG. 15 (top view). In this embodiment, Japanese Patent Application No. 3-29633
1 relates to the fabrication of a circuit used in an image display method using a P-channel TFT and an N-channel TFT in one pixel (eg, a liquid crystal pixel). The channel TFT is required to have a high speed, and the withstand voltage is not a problem, while the P-channel TFT is not so important in the operation speed, but requires a low off-current, and in some cases, has a good withstand voltage. Therefore, N channel T
FT has a thin anodic oxide film (20 to 100 nm), and P-channel TFT has a thick anodic oxide film (250 to 400 nm).
It is desired. Hereinafter, the manufacturing process will be described.

【0052】図14(A)および図15(A)に示すよ
うにコーニング7059を基板101として、実質真性
のアモルファスあるいは多結晶半導体、例えばアモルフ
ァスシリコン膜を厚さ50nmだけ形成し、これを島状
にパターニングして、NチャネルTFT領域102とP
チャネルTFT領域103を形成する。これを窒素雰囲
気中600℃で60時間アニールし、再結晶化させた。
As shown in FIGS. 14A and 15A, using a Corning 7059 as a substrate 101, a substantially intrinsic amorphous or polycrystalline semiconductor, for example, an amorphous silicon film is formed to a thickness of 50 nm, and this is formed into an island shape. To the N-channel TFT region 102 and P
A channel TFT region 103 is formed. This was annealed at 600 ° C. for 60 hours in a nitrogen atmosphere to recrystallize.

【0053】さらに、ECRプラズマCVD法によって
ゲイト酸化膜104として、酸化珪素被膜を厚さ115
nmだけ堆積し、スパッタリング法によって耐熱金属で
あるタンタルの被膜を厚さ500nmだけ形成し、これ
をパターニングして、NチャネルTFTのゲイト電極部
105およびPチャネルTFTのゲイト電極部106を
形成した。タンタルのかわりに抵抗の小さな(不純物が
十分にドープされた)多結晶シリコンでもよい。このと
きのチャネルの大きさは長さを8μm、幅を8μmとし
た。また、全てのゲイト電極・配線は図15(A)に示
されているように共通の配線150に電気的に接続され
ている。
Further, a silicon oxide film having a thickness of 115 is formed as the gate oxide film 104 by ECR plasma CVD.
Then, a 500-nm thick film of tantalum, which is a heat-resistant metal, was formed by sputtering and then patterned to form a gate electrode portion 105 of an N-channel TFT and a gate electrode portion 106 of a P-channel TFT. Instead of tantalum, polycrystalline silicon having a small resistance (fully doped with impurities) may be used. The size of the channel at this time was 8 μm in length and 8 μm in width. Further, all the gate electrodes / wirings are electrically connected to a common wiring 150 as shown in FIG.

【0054】さらに、ゲイト電極・配線150に電気を
通じ、陽極酸化法によって、ゲイト電極・配線105、
106の周囲(上面および側面)に酸化タンタルの被膜
107、108を形成した。陽極酸化は実施例2と同じ
条件でおこなった。ただし、最大電圧は50Vととし
た。したがって、この工程で作製された陽極酸化膜の厚
さは約60nmである。(図14(B))
Further, electricity is passed through the gate electrode / wiring 150 to form the gate electrode / wiring 105 by anodic oxidation.
Coatings 107 and 108 of tantalum oxide were formed around (on the top and side surfaces) of 106. Anodization was performed under the same conditions as in Example 2. However, the maximum voltage was set to 50V. Therefore, the thickness of the anodic oxide film manufactured in this step is about 60 nm. (FIG. 14 (B))

【0055】次に図15(B)において、151で示さ
れるように、ゲイト電極・配線105をレーザーエッチ
ングによって配線150から切り離した。そして、この
状態で再び、陽極酸化を始めた。条件は先と同じである
が、このときには最大電圧は250Vまで上げた。その
結果、配線105には電流が流れないので、何の変化も
生じなかったが、配線106には電流が流れるため、ゲ
イト配線106の周囲に厚さ約300nmの酸化タンタ
ル皮膜109が形成された。(図14(C))
Next, in FIG. 15B, as shown by 151, the gate electrode / wiring 105 was separated from the wiring 150 by laser etching. Then, in this state, anodic oxidation was started again. The conditions were the same as before, but at this time the maximum voltage was increased to 250V. As a result, no current flowed through the wiring 105, so that no change occurred. However, since a current flowed through the wiring 106, a tantalum oxide film 109 having a thickness of about 300 nm was formed around the gate wiring 106. . (FIG. 14C)

【0056】その後、イオンドーピング法によって、不
純物を島状半導体102および103に導入した。公知
のCMOS技術を採用することにより、半導体領域10
2にはリン(P)を、半導体領域103には硼素(B)
を導入した。イオンドーピングのエネルギーは5keV
ととした。本発明人らの知るところでは、このエネルギ
ーが10keVを越えると、不純物拡散領域の活性化を
おこなうためには、600℃以上の高温が必要とされた
が、そのようなプロセスでは製品の歩留りを高くするこ
とが非常に難しかった。しかしながら、イオンドーピン
グのエネルギーが10keV以下であれば、600℃以
下、例えば450〜500℃で十分に抵抗の低い状態と
することが出来た。
Thereafter, impurities were introduced into the island-shaped semiconductors 102 and 103 by an ion doping method. By employing the well-known CMOS technology, the semiconductor region 10
2 for phosphorus (P) and semiconductor region 103 for boron (B).
Was introduced. Energy of ion doping is 5 keV
And The present inventors know that when this energy exceeds 10 keV, a high temperature of 600 ° C. or more was required to activate the impurity diffusion region. However, such a process reduces the product yield. It was very difficult to get high. However, if the energy of ion doping is 10 keV or less, the resistance can be made sufficiently low at 600 ° C. or less, for example, 450 to 500 ° C.

【0057】イオンドーピングの後、窒素雰囲気中で、
500℃のアニールを30時間おこなうことによって、
ソース/ドレイン領域のシート抵抗を十分低くすること
が出来た。ここまでの状態を図14(D)に示す。図か
ら明らかなように、左側のTFTのオフセットの幅は小
さく、また、右側のTFTのオフセットの幅は大きい。
その後、公知の技術によって、金属配線106や150
の必要な箇所(例えば152や153)を切断し、さら
に、層間絶縁膜を形成し、コンタクトホールを形成し、
各電極に配線(例えば112や113)を形成し、図1
5(C)に示すように回路を完成させた。
After the ion doping, in a nitrogen atmosphere,
By performing annealing at 500 ° C. for 30 hours,
The sheet resistance of the source / drain regions could be sufficiently reduced. The state so far is shown in FIG. As is clear from the figure, the offset width of the left TFT is small, and the offset width of the right TFT is large.
Thereafter, the metal wirings 106 and 150 are formed by a known technique.
(For example, 152 and 153) are cut, an interlayer insulating film is formed, a contact hole is formed,
Wiring (for example, 112 or 113) is formed on each electrode, and FIG.
The circuit was completed as shown in FIG.

【0058】このようにして作製された回路において
は、NチャネルTFTは、オフセット領域の幅が小さ
く、オフ電流は若干多いが、高速性に優れていた。一
方、PチャネルTFTは、高速動作は困難であったが、
オフ電流が少なく、画素キャパシターに蓄積された電荷
を保持する能力に優れていた。
In the circuit thus manufactured, the N-channel TFT had a small offset region width and a slightly large off-state current, but was excellent in high-speed operation. On the other hand, the P-channel TFT is difficult to operate at high speed,
The off-state current was small and the ability to hold the charge stored in the pixel capacitor was excellent.

【0059】このように1枚の基板上に機能が異なるT
FTを集積しなければならない場合は他にもある。例え
ば、液晶表示ドライバーにおいては、シフトレジスター
等の論理回路には高速TFTが、出力回路には高耐圧T
FTが要求される。このような相反する目的に応じたT
FTを作製する場合には本実施例で示した方法は有効で
ある。
As described above, T with different functions is provided on one substrate.
There are other cases where the FT must be integrated. For example, in a liquid crystal display driver, a high-speed TFT is used for a logic circuit such as a shift register, and a high-voltage TFT is used for an output circuit.
FT is required. T corresponding to such conflicting objectives
The method described in this embodiment is effective for manufacturing an FT.

【0060】[0060]

【発明の効果】このようにして、本発明ではゲート電極
の表面に陽極酸化からなる絶縁膜層を設けることで、チ
ャネル長をゲート電極のチャネル長方向の長さよりも長
くなり、チャネル領域の両側部にゲート電極による電界
のかからないあるいは非常に弱い電界のかかるオフセッ
ト領域を設けることができ、逆バイアス時のリーク電流
を削減することが出来た。その結果、従来不可欠であっ
た電荷保持容量が不要となって、従来20%程度であっ
た開口率を35%以上にすることができ、より良好な表
示品質を得ることができた。
As described above, in the present invention, by providing an insulating film layer made of anodic oxidation on the surface of the gate electrode, the channel length becomes longer than the length of the gate electrode in the channel length direction. It is possible to provide an offset region where no electric field is applied by the gate electrode or where an extremely weak electric field is applied to the portion, and the leakage current at the time of reverse bias can be reduced. As a result, the conventionally indispensable charge storage capacitor is not required, and the aperture ratio, which was about 20% in the past, can be increased to 35% or more, and a better display quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体装置の構造を示す。FIG. 1 shows a structure of a semiconductor device according to the present invention.

【図2】従来例による半導体装置の構造を示す。FIG. 2 shows a structure of a semiconductor device according to a conventional example.

【図3】従来例による半導体装置の電流電圧特性を示
す。
FIG. 3 shows current-voltage characteristics of a conventional semiconductor device.

【図4】本発明による半導体装置の電流電圧特性を示
す。
FIG. 4 shows current-voltage characteristics of a semiconductor device according to the present invention.

【図5】従来例によるアクティブマトリクス型液晶電気
光学装置の回路構成を示す。
FIG. 5 shows a circuit configuration of a conventional active matrix type liquid crystal electro-optical device.

【図6】実施例1におけるアクティブマトリクス型液晶
電気光学装置の回路図を示す。
FIG. 6 is a circuit diagram of an active matrix liquid crystal electro-optical device according to the first embodiment.

【図7】実施例1におけるアクティブマトリクス型液晶
電気光学装置の構造を示す。
FIG. 7 shows a structure of an active matrix liquid crystal electro-optical device according to the first embodiment.

【図8】実施例1におけるアクティブマトリクス型液晶
電気光学装置の作製工程を示す。
FIG. 8 shows a manufacturing process of the active matrix liquid crystal electro-optical device in Example 1.

【図9】実施例2におけるPチャネルTFTの電流電圧
特性を示す。
FIG. 9 shows current-voltage characteristics of a P-channel TFT in Example 2.

【図10】実施例2におけるNチャネルTFTの電流電
圧特性を示す。
FIG. 10 shows current-voltage characteristics of an N-channel TFT in Example 2.

【図11】実施例2におけるドレイン電流の陽極酸化膜
厚依存性を示す。
FIG. 11 shows the dependency of the drain current on the anodic oxide film thickness in Example 2.

【図12】実施例2におけるしきい値電圧の陽極酸化膜
厚依存性を示す。
FIG. 12 shows the dependency of the threshold voltage on the anodic oxide film thickness in Example 2.

【図13】実施例2における電界移動度の陽極酸化膜厚
依存性を示す。
FIG. 13 shows the dependence of the electric field mobility on the anodic oxide film thickness in Example 2.

【図14】実施例2におけるTFT作製工程の断面図を
示す。
FIG. 14 shows a cross-sectional view of a TFT manufacturing step in Example 2.

【図15】実施例2におけるTFT作製工程の上面図を
示す。
FIG. 15 shows a top view of a TFT manufacturing step in Example 2.

【符号の説明】[Explanation of symbols]

9、25 絶縁基板 8、24、52 ブロッキング層 3、19、67、68 チャネル領域 10、28 チャネル長 4,20、59、62 ソース領域 5、21、60、63 ドレイン領域 2、17、55、57 ゲート絶縁膜 1、15、65、66 ゲート電極 16、64 酸化物層 6、22 ソース電極 7、23 ドレイン電極 12、69 層間絶縁膜 51 ガラス基板 72 コンタクト 75 画素電極 32 電荷保持用コンデンサー 53 NTFT用半導体層 54 PTFT用半導体層 76 NTFT 77 PTFT 9, 25 Insulating substrate 8, 24, 52 Blocking layer 3, 19, 67, 68 Channel region 10, 28 Channel length 4, 20, 59, 62 Source region 5, 21, 60, 63 Drain region 2, 17, 55, 57 Gate insulating film 1, 15, 65, 66 Gate electrode 16, 64 Oxide layer 6, 22 Source electrode 7, 23 Drain electrode 12, 69 Interlayer insulating film 51 Glass substrate 72 Contact 75 Pixel electrode 32 Charge holding capacitor 53 NTFT Semiconductor layer 54 PTFT semiconductor layer 76 NTFT 77 PTFT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 保彦 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 張 宏勇 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 魚地 秀貴 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 根本 英樹 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yasuhiko Takemura 398 Hase, Hase, Atsugi-shi, Kanagawa Prefecture Inside the Semi-Conductor Energy Laboratory Co., Ltd. (72) Inventor Hideki Uojichi 398 Hase, Atsugi-shi, Kanagawa Prefecture Inside Semi-Conductor Energy Laboratory Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 絶縁表面を有する基板上に、 ソース領域と、ドレイン領域と、前記ソース領域と前記
ドレイン領域の間に設けられたチャネル形成領域と、 前記チャネル形成領域に接して設けられたゲイト絶縁膜
と、 前記ゲイト絶縁膜に接して設けられたゲイト電極と、を
有する薄膜トランジスタが設けられた半導体装置であっ
て、 前記薄膜トランジスタのゲイト電極に第1の信号線が接
続され、 前記第1の信号線および前記ゲイト電極の表面には陽極
酸化膜が設けられ、 前記薄膜トランジスタと前記第1の信号線との上に層間
絶縁膜が設けられ、 前記層間絶縁膜に形成されたコンタクトホールを通して
前記薄膜トランジスタのソース領域またはドレイン領域
に第2の信号線が接続され、 前記層間絶縁膜と前記第2の信号線との上に平坦な有機
樹脂膜が設けられたことを特徴とする半導体装置。
1. A substrate having an insulating surface, a source region, a drain region, a channel forming region provided between the source region and the drain region, and a gate provided in contact with the channel forming region. A semiconductor device provided with a thin film transistor having an insulating film and a gate electrode provided in contact with the gate insulating film, wherein a first signal line is connected to a gate electrode of the thin film transistor, An anodized film is provided on the surface of the signal line and the gate electrode, an interlayer insulating film is provided on the thin film transistor and the first signal line, and the thin film transistor is provided through a contact hole formed in the interlayer insulating film. A second signal line is connected to the source region or the drain region, and a flat surface is formed on the interlayer insulating film and the second signal line. Wherein a the machine resin film is provided.
【請求項2】 請求項1において、前記有機樹脂膜は透
光性を有することを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein the organic resin film has a light-transmitting property.
【請求項3】 請求項1または請求項2において、前記
有機樹脂膜はポリイミド樹脂からなることを特徴とする
半導体装置。
3. The semiconductor device according to claim 1, wherein the organic resin film is made of a polyimide resin.
【請求項4】 請求項1乃至3のいずれか一 におい
て、前記ゲイト電極および前記第1の信号線は、チタ
ン、アルミニウム、タンタル、クロム、またはシリコン
を主とした材料からなることを特徴とする半導体装置。
4. The device according to claim 1, wherein the gate electrode and the first signal line are made of a material mainly containing titanium, aluminum, tantalum, chromium, or silicon. Semiconductor device.
【請求項5】 絶縁表面を有する基板上に、 ソース領域と、ドレイン領域と、前記ソース領域と前記
ドレイン領域の間に設けられたチャネル形成領域と、 前記チャネル形成領域に接して設けられたゲイト絶縁膜
と、 前記ゲイト絶縁膜に接して設けられたゲイト電極と、を
有する複数の薄膜トランジスタと、 前記複数の薄膜トランジスタのゲイト電極に接続された
複数の第1の信号線と、 前記複数の第1の信号線および前記ゲイト電極の表面に
設けられた陽極酸化物と、 前記複数の薄膜トランジスタと前記複数の第1の信号線
との上に設けられた層間絶縁膜と、 前記層間絶縁膜に形成されたコンタクトホールを通して
前記複数の薄膜トランジスタのソース領域またはドレイ
ン領域に接続された複数の第2の信号線と、 前記層間絶縁膜と前記複数の第2の信号線との上に設け
られた平坦な有機樹脂膜と、 前記有機樹脂膜に形成されたコンタクトホールを通して
前記複数の薄膜トランジスタのドレイン領域またはソー
ス領域に電気的に接続された複数の透明電極と、を有す
るアクティブマトリクス型液晶表示装置において、 前記陽極酸化膜は、前記ゲイト電極および前記第1の信
号線を構成する金属の陽極酸化物からなることを特徴と
するアクティブマトリクス型液晶表示装置。
5. A source region, a drain region, a channel forming region provided between the source region and the drain region, and a gate provided in contact with the channel forming region on a substrate having an insulating surface. A plurality of thin film transistors having an insulating film; a gate electrode provided in contact with the gate insulating film; a plurality of first signal lines connected to the gate electrodes of the plurality of thin film transistors; An anodic oxide provided on the surface of the signal line and the gate electrode, an interlayer insulating film provided on the plurality of thin film transistors and the plurality of first signal lines, and formed on the interlayer insulating film. A plurality of second signal lines connected to a source region or a drain region of the plurality of thin film transistors through the contact holes; A plurality of second signal lines, and a plurality of flat organic resin films provided on the plurality of second signal lines; and a plurality of second signal lines electrically connected to drain regions or source regions of the plurality of thin film transistors through contact holes formed in the organic resin films. An active matrix liquid crystal display device comprising: a transparent electrode; wherein the anodic oxide film is made of an anodic oxide of a metal constituting the gate electrode and the first signal line. Display device.
【請求項6】 請求項5において、前記有機樹脂膜は透
光性を有することを特徴とするアクティブマトリクス型
液晶表示装置。
6. The active matrix liquid crystal display device according to claim 5, wherein the organic resin film has a light transmitting property.
【請求項7】 請求項5または請求項6において、前記
有機樹脂膜はポリイミド樹脂からなることを特徴とする
アクティブマトリクス型液晶表示装置。
7. The active matrix liquid crystal display device according to claim 5, wherein the organic resin film is made of a polyimide resin.
【請求項8】 請求項5乃至7のいずれか一において、
前記ゲイト電極および前記第1の信号線は、チタン、ア
ルミニウム、タンタル、クロム、またはシリコンを主と
した材料からなることを特徴とするアクティブマトリク
ス型液晶表示装置。
8. The method according to claim 5, wherein
The active matrix type liquid crystal display device, wherein the gate electrode and the first signal line are made of a material mainly containing titanium, aluminum, tantalum, chromium, or silicon.
【請求項9】 請求項5乃至8のいずれか一に記載のア
クティブマトリクス型液晶表示装置を用いたことを特徴
とする半導体装置。
9. A semiconductor device using the active matrix liquid crystal display device according to claim 5. Description:
【請求項10】 請求項5乃至8のいずれか一に記載の
アクティブマトリクス型液晶表示装置を用いたことを特
徴とするビューファインダー。
10. A view finder using the active matrix liquid crystal display device according to claim 5. Description:
JP18910098A 1991-08-23 1998-07-03 Semiconductor devices and active matrix liquid crystal display devices. Expired - Fee Related JP3000213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18910098A JP3000213B2 (en) 1991-08-23 1998-07-03 Semiconductor devices and active matrix liquid crystal display devices.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-237100 1991-08-23
JP23710091 1991-08-23
JP18910098A JP3000213B2 (en) 1991-08-23 1998-07-03 Semiconductor devices and active matrix liquid crystal display devices.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3419492A Division JP2845303B2 (en) 1991-08-23 1992-01-24 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10335673A true JPH10335673A (en) 1998-12-18
JP3000213B2 JP3000213B2 (en) 2000-01-17

Family

ID=26505307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18910098A Expired - Fee Related JP3000213B2 (en) 1991-08-23 1998-07-03 Semiconductor devices and active matrix liquid crystal display devices.

Country Status (1)

Country Link
JP (1) JP3000213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3000213B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
JP2845303B2 (en) Semiconductor device and manufacturing method thereof
US5521107A (en) Method for forming a field-effect transistor including anodic oxidation of the gate
US6476447B1 (en) Active matrix display device including a transistor
JP3109051B2 (en) Semiconductor device and manufacturing method thereof
KR100360965B1 (en) Method of Manufacturing Semiconductor Device
US6936844B1 (en) Semiconductor device having a gate wiring comprising laminated wirings
JP3556679B2 (en) Electro-optical device
KR100676330B1 (en) Semiconductor device, method of manufacturing semiconductor device and method of manufacturing thin film transistor
JP3224215B2 (en) Method for manufacturing thin-film insulated gate semiconductor device
JPH0832079A (en) Semiconductor device and manufacture thereof
JPH0659278A (en) Liquid crystal display device and its production
JP3000213B2 (en) Semiconductor devices and active matrix liquid crystal display devices.
JP3320035B2 (en) Semiconductor device
KR960008133B1 (en) Semiconductor device and manufacturing method thereof
JP2652366B2 (en) Semiconductor device and manufacturing method thereof
JP2540688B2 (en) Semiconductor device and manufacturing method thereof
JP2890037B2 (en) Semiconductor device and manufacturing method thereof
JP2868168B2 (en) Method for manufacturing semiconductor device
JP2001166339A (en) Display device
JPH09166791A (en) Semiconductor device and active matrix type liquid crystal display device
KR960011185B1 (en) Electric optical device
JPH0645607A (en) Liquid-crystal display device and its manufacture
JP3084252B2 (en) Method for manufacturing inverted staggered insulated gate semiconductor device
JP2739149B2 (en) Liquid crystal display
JP3245146B2 (en) Liquid crystal display device and fabricating method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees