JPH10335536A - Ceramic-metal junctioned structure with excellent thermal shock resisting property - Google Patents

Ceramic-metal junctioned structure with excellent thermal shock resisting property

Info

Publication number
JPH10335536A
JPH10335536A JP10175367A JP17536798A JPH10335536A JP H10335536 A JPH10335536 A JP H10335536A JP 10175367 A JP10175367 A JP 10175367A JP 17536798 A JP17536798 A JP 17536798A JP H10335536 A JPH10335536 A JP H10335536A
Authority
JP
Japan
Prior art keywords
substrate
ceramic
metal
thermal shock
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10175367A
Other languages
Japanese (ja)
Other versions
JP2965965B2 (en
Inventor
Masami Kimura
正美 木村
Giyousan Nei
暁山 寧
Tetsuo Kohata
哲夫 降幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP10175367A priority Critical patent/JP2965965B2/en
Publication of JPH10335536A publication Critical patent/JPH10335536A/en
Application granted granted Critical
Publication of JP2965965B2 publication Critical patent/JP2965965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic-metal junctioned substrate, having excellent thermal shock resisting property, which can be sufficiently used as a highly excellent reliable part such as a power device mounting insulative circuit substrate. SOLUTION: First, tough-pitch copper plate 2 of 0.25 mm in thickness which will be used for a circuit and a tough pitch copper plate 2 of 0.2 mm in thickness which will be used for a heat sink are prepared as metal members, and a commercially available alumina substrate of 22 mm square used for an HIC is prepared. Then, the copper plate 2 is catalytically arranged on both main surfaces of the prepared alumina substrate 1, and a junction body is obtained by heating and cooling the above-mentioned material in an innert gas atmosphere. Then, the circuit side copper plate 2 in the obtained junction body is formed into the prescribed pattern shape having the edge part width of 0.3 mm, the interval of 0.25 mm and the length of 0.5 mm, and the heat sink side is formed into totally attached form by etching.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、優れた耐熱衝撃性をも
つセラミックス−金属接合基板に関し、さらに詳しくは
パワーデバイス搭載用絶縁回路基板など高い信頼性の要
求される部品としても十分に使用することができるセラ
ミックス−金属接合基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal bonded substrate having excellent thermal shock resistance, and more particularly to a ceramic-metal bonded substrate which is sufficiently used as a component requiring high reliability such as an insulated circuit board for mounting a power device. The present invention relates to a ceramic-metal bonded substrate that can be used.

【0002】[0002]

【従来の技術】従来、セラミックス部材と金属部材とを
接合する方法として、両部材を直接接触させて接合する
直接接合法や、セラミックス部材と金属部材との間に中
間層を介在させて接合する中間材法等が実用化されてい
る。直接接合法としては、例えばアルミナと銅とを不活
性ガス雰囲気中において直接接触させ、これを加熱・冷
却することにより接合体を得る方法(USP. 4811893に開
示)が知られている。また、ニオブとアルミナや窒化ケ
イ素とニッケル等の組み合わせでも直接接合体が得られ
ることが知られている。
2. Description of the Related Art Conventionally, as a method of joining a ceramic member and a metal member, a direct joining method in which the two members are brought into direct contact with each other, or an intermediate layer is interposed between the ceramic member and the metal member. The intermediate material method has been put to practical use. As a direct bonding method, for example, a method is known in which alumina and copper are brought into direct contact in an inert gas atmosphere and heated and cooled to obtain a bonded body (disclosed in US Pat. No. 4811893). Also, it is known that a direct bonded body can be obtained by a combination of niobium and alumina, or a combination of silicon nitride and nickel.

【0003】一方、中間材法としては、活性金属法やメ
タライズ法等がある。活性金属法とは、TiやZr等の
第IV族元素または第IV族元素を含む合金を中間材とし、
この中間材をセラミックス部材と金属部材との間に挟ん
で接合する方法である。例えば、窒化ケイ素とステンレ
スとの接合においてはAg−Cu−Ti系合金、アルミ
ナと銅との接合においてはCu−Ti系合金が中間材と
して用いられてきた。また、メタライズ法とは、セラミ
ックス部材の表面に金属膜を形成した後、ろう材を介し
て金属部材を接合する方法である。メタライズ法として
は、例えばアルミナにMoメタライズ層を形成し、その
表面にNiめっきを施した後、ろう材を介してCu板を
接合する方法が知られている。
On the other hand, as an intermediate material method, there are an active metal method and a metallization method. The active metal method uses a group IV element such as Ti or Zr or an alloy containing a group IV element as an intermediate material,
In this method, the intermediate member is sandwiched between a ceramic member and a metal member and joined. For example, an Ag-Cu-Ti alloy has been used as an intermediate material for bonding silicon nitride and stainless steel, and a Cu-Ti alloy has been used as an intermediate material for bonding alumina and copper. The metallization method is a method of forming a metal film on the surface of a ceramic member and joining the metal member via a brazing material. As a metallization method, for example, a method is known in which a Mo metallized layer is formed on alumina, the surface thereof is plated with Ni, and then a Cu plate is joined via a brazing material.

【0004】電気回路用のセラミックス−金属接合基板
は、チップや端子などのハンダ付け時または接合基板使
用時などにおける温度変化すなわち熱衝撃が付与される
と、セラミックス部材と金属部材との熱膨張係数の違い
から熱応力が発生する。発生した熱応力がセラミックス
部材の強度を上回ると、セラミックス部材にクラックが
発生したり破壊されてしまうため、熱応力をいかに緩和
するかということが大きな課題となっていた。
[0004] When a ceramic-metal bonding substrate for an electric circuit is subjected to a temperature change, that is, a thermal shock when soldering a chip or a terminal or when using a bonding substrate, the thermal expansion coefficient between the ceramic member and the metal member is increased. The thermal stress is generated from the difference. If the generated thermal stress exceeds the strength of the ceramic member, a crack is generated or broken in the ceramic member, and therefore, it has been a major problem how to reduce the thermal stress.

【0005】そこで、従来の技術では、接合温度からゆ
っくり冷却することによって熱衝撃を小さくしたり、セ
ラミックス部材と金属部材との間に中間材を挿入するこ
とにより、熱応力の緩和を図っていた。上記熱応力を緩
和するために両部材の間に挿入する中間材としては、セ
ラミックス部材の熱膨張係数と金属部材の熱膨張係数の
中間的なものや、塑性変形をする延性金属などが用いら
れてきた。
Therefore, in the conventional technology, thermal shock is reduced by slowly cooling from a joining temperature, or thermal stress is relaxed by inserting an intermediate material between a ceramic member and a metal member. . As the intermediate material to be inserted between the two members to reduce the thermal stress, an intermediate material between the thermal expansion coefficient of the ceramic member and the thermal expansion coefficient of the metal member, or a ductile metal that undergoes plastic deformation is used. Have been.

【0006】セラミックス部材と金属部材との間に熱応
力緩和用の中間材を介在させる方法は、例えば自動車用
ターボチャージャーのセラミックス製タービンローター
と金属シャフトとの接合、船舶ディーゼルエンジン用エ
キゾートバルブのセラミックスフェイス面と金属弁との
接合などの際に用いられてきた。また、Mo板を中間材
として介在させて接合したアルミナ−銅接合回路基板な
ども知られている。
Methods of interposing an intermediate material for relaxing thermal stress between a ceramic member and a metal member include, for example, joining a ceramic turbine rotor of a turbocharger for an automobile to a metal shaft, and an exhaust valve for a marine diesel engine. It has been used for joining ceramic face and metal valve. Further, an alumina-copper bonded circuit board and the like in which a Mo plate is interposed as an intermediate material and bonded are also known.

【0007】一方、接合体の形状を変えることにより、
上記熱応力を緩和する方法も開発されている。例えば、
電子材料として使われるセラミックス−金属接合回路基
板における回路側金属板の厚さを薄くしたり、回路側金
属板の端部のみを薄くして段差を付けることにより、セ
ラミックスにかかる応力を減少させていた。
On the other hand, by changing the shape of the joined body,
Methods for alleviating the above thermal stress have also been developed. For example,
The stress applied to ceramics is reduced by reducing the thickness of the circuit-side metal plate in the ceramic-metal bonded circuit board used as an electronic material, or by thinning only the end of the circuit-side metal plate to provide a step. Was.

【0008】しかしながら、上述のようにセラミックス
部材と金属部材の間に熱応力緩和用の中間材を挿入する
と、挿入した中間材によって放熱性が劣化したり、接合
体の厚さや重量が増大してしまうなどといった問題点が
あった。また、上述のように接合体の形状を変えると、
放熱性を確保するには金属板にある程度の厚みが必要で
あるため、十分な放熱性を確保することができなかった
り、薄くした部分にデバイスを搭載することができない
ため、根本的なパターンサイズを変更しなければならな
いなどといった問題点があった。さらに、上述従来の熱
応力緩和法によると、様々な中間材や特殊な形状の金属
板の作製を必要とするため、大幅なコストアップが避け
られないという問題点があった。
However, when an intermediate material for relieving thermal stress is inserted between the ceramic member and the metal member as described above, the inserted intermediate material deteriorates heat dissipation and increases the thickness and weight of the joined body. There were problems such as getting lost. Also, when the shape of the joined body is changed as described above,
Since the metal plate needs a certain thickness to ensure heat dissipation, it is not possible to secure sufficient heat dissipation, or it is not possible to mount devices on thinned parts, so the fundamental pattern size Had to be changed. Furthermore, according to the above-mentioned conventional thermal stress relaxation method, it is necessary to produce various intermediate materials and metal plates having a special shape, so that there is a problem that a significant increase in cost cannot be avoided.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述従来の
技術の問題点を解決し、放熱性の劣化や重量の増大がな
く、パターンサイズの変更や基板面積の増大を行なわな
くとも熱応力を緩和することができる耐熱衝撃性に優れ
るセラミックス−銅接合基板を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and does not cause deterioration of heat radiation or increase in weight, and thermal stress without changing the pattern size or the substrate area. It is an object of the present invention to provide a ceramics-copper joint substrate excellent in thermal shock resistance capable of alleviating cracks.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究の結果、セラミックス基板と
金属板との接合体において、セラミックス基板主面の広
がり方向にみて金属部材の縁部が凹凸状となるように金
属板を形成するか、またはセラミックス部材の両主面上
に同形状の金属部材をセラミックス基板の厚みを2等分
する平面に関して面対称である位置に接合することによ
り、上記課題が解決されることを見い出し、本発明を達
成することができた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, in a joined body of a ceramic substrate and a metal plate, the metal member was viewed from the direction in which the main surface of the ceramic substrate spread. A metal plate is formed so that an edge becomes uneven, or a metal member of the same shape is joined on both main surfaces of a ceramic member at a position which is plane-symmetric with respect to a plane which divides the thickness of the ceramic substrate into two equal parts. As a result, it has been found that the above-mentioned problems are solved, and the present invention has been achieved.

【0011】すなわち、本発明は、セラミックス基板と
その少なくとも一方の主面上に接合された金属板とから
なり、該金属板はその縁部がセラミックス基板主面と平
行する方向に凹凸状となるように形成されていることを
特徴とする耐熱衝撃性に優れたセラミックス−金属接合
基板、さらに好ましくは、セラミックス基板とその少な
くとも一方の主面上に接合された金属板とからなり、該
金属板はその総ての縁部がセラミックス基板主面と平行
する方向に 0.5mmの長さ、 0.3mmの幅、0.25ないし 1.0
mmから選ばれる間隔の凹凸状となるように形成されてい
ることを特徴とする耐熱衝撃性に優れたセラミックス−
金属接合基板;およびセラミックス基板の両主面上に同
形状の金属板がセラミックス基板の厚みを2等分する平
面に関して面対称である位置に接合されていることを特
徴とするセラミックス−金属接合基板を提供するもので
ある。
That is, the present invention comprises a ceramic substrate and a metal plate joined on at least one main surface thereof, and the metal plate has an uneven shape in a direction parallel to the main surface of the ceramic substrate. A ceramic-metal bonded substrate excellent in thermal shock resistance, characterized by being formed as described above, more preferably, a ceramic substrate and a metal plate bonded on at least one main surface thereof; Is 0.5mm long, 0.3mm wide, 0.25 to 1.0 in the direction parallel to the main surface of the ceramic substrate.
Ceramics with excellent thermal shock resistance characterized by being formed to have irregularities with an interval selected from mm
A ceramic-metal bonding substrate, comprising: a metal bonding substrate; and a metal plate of the same shape bonded on both main surfaces of the ceramic substrate at positions that are plane-symmetric with respect to a plane that divides the thickness of the ceramic substrate into two equal parts. Is provided.

【0012】[0012]

【作用】セラミックス−金属接合基板に繰り返し熱衝撃
を付与すると、セラミックス部材と金属部材との熱膨張
係数の差から熱応力が発生する。その際、セラミックス
部材が、発生した熱応力に耐え得る強度を有していない
場合、セラミックス部材表面における金属部材縁部近傍
からクラックが発生する。また、この接合基板にさらに
熱衝撃を付与するとセラミックス部材内部にまでクラッ
クが進行し、最後には破壊することが確認されている。
When a thermal shock is repeatedly applied to a ceramic-metal bonded substrate, a thermal stress is generated due to a difference in thermal expansion coefficient between the ceramic member and the metal member. At this time, if the ceramic member does not have strength enough to withstand the generated thermal stress, cracks occur from the vicinity of the edge of the metal member on the surface of the ceramic member. In addition, it has been confirmed that when a thermal shock is further applied to the bonded substrate, cracks progress to the inside of the ceramic member and finally break.

【0013】上記クラックの進行態様を図4および図5
を用いて以下に説明する。図4に示す従来のアルミナ−
銅接合基板に繰り返し熱衝撃を付与した場合、その繰り
返し回数が増加するにつれてクラック3はアルミナ基板
1における次のような部分に発生することが確認されて
いる。まず、図5(a)に示すように銅板パターンにお
ける凸コーナー部分近傍に発生し、次いで図5(b)に
示すように銅板パターンにおける直線部分に発生し、最
後に図5(c)に示すように銅板パターンにおける凹コ
ーナー部分に発生する。すなわち、セラミックス基板
に、あるパターン形状の金属板を接合したセラミックス
−金属接合基板においては、セラミックス基板にかかる
応力の大きさが場所によって違い、凸コーナー部が最も
大きく、次に直線部、凹コーナー部の順であることが、
クラックの発生順よりわかる。
FIGS. 4 and 5 show the progress of the crack.
This will be described below with reference to FIG. The conventional alumina shown in FIG.
It has been confirmed that when a thermal shock is repeatedly applied to the copper-bonded substrate, the cracks 3 occur in the following portions of the alumina substrate 1 as the number of repetitions increases. First, as shown in FIG. 5 (a), it occurs near the convex corner portion of the copper plate pattern, then as shown in FIG. 5 (b), it occurs in a linear portion of the copper plate pattern, and finally, as shown in FIG. This occurs in the concave corner portion of the copper plate pattern. In other words, in a ceramic-metal bonded substrate in which a metal plate having a certain pattern shape is bonded to a ceramic substrate, the magnitude of the stress applied to the ceramic substrate varies depending on the location, and the convex corner is the largest, followed by the linear portion and the concave corner. The order of the divisions is
It can be seen from the order of cracks.

【0014】本発明のセラミックス−金属接合基板は、
第1にセラミックス基板とその少なくとも一方の主面上
に接合された金属板とからなり、該金属板の縁部が基板
主面の平面的広がり方向に凹凸状となるように形成する
ことにより、耐熱衝撃性の向上を図っている。このよう
に金属板の縁部を凹凸状に形成することにより、耐熱衝
撃性が向上する理由は明らかではないが、次のように考
えることができる。金属板の縁部を凹凸状に形成する
と、はじめにセラミックス基板表面における金属板の縁
部近傍のうち、直線部分からクラックが発生するように
なる。また、金属板の縁部が凹凸状に形成されていない
接合基板と比較して凹凸状に形成されている接合基板
は、繰り返し熱衝撃を付与した際におけるクラックの発
生時期が遅い。これらのことから、金属板の縁部を凹凸
状に形成することにより、応力のかかる方向が変わって
応力分布が変化し、熱応力の大きさが減少するものと考
えられる。
[0014] The ceramic-metal bonding substrate of the present invention comprises:
First, a ceramic substrate and a metal plate bonded to at least one main surface thereof are formed, and an edge portion of the metal plate is formed so as to be uneven in a planar spreading direction of the main surface of the substrate. The thermal shock resistance is improved. The reason why the thermal shock resistance is improved by forming the edge portion of the metal plate in an uneven shape as described above is not clear, but can be considered as follows. When the edge of the metal plate is formed in an uneven shape, cracks are generated from a straight line portion in the vicinity of the edge of the metal plate on the surface of the ceramic substrate. In addition, as compared with a bonded substrate in which an edge of a metal plate is not formed in an uneven shape, a crack generation time when a thermal shock is repeatedly applied is late in a bonded substrate having an uneven shape. From these facts, it is considered that by forming the edge portion of the metal plate in an uneven shape, the direction in which the stress is applied changes, the stress distribution changes, and the magnitude of the thermal stress decreases.

【0015】本発明は第2に、セラミックス基板の両主
面上に同形状の金属板をセラミックス基板の厚みを2等
分する平面に関して面対称である位置に接合することに
より、耐熱衝撃性の向上を図っている。このように金属
板を接合することにより耐熱衝撃性が向上する理由は次
のように考えることができる。セラミックス基板の両主
面上に接合した金属板の形状がそれぞれ違う場合、熱衝
撃を付与すると面積が大きい金属板が接合された側が凹
となる反りがセラミックス基板に生じ、この反りによっ
て面積が小さい金属板が接合された側のセラミックス基
板表面に引張応力が発生する。
Secondly, the present invention provides a method of joining a metal plate having the same shape on both main surfaces of a ceramic substrate at a position which is plane-symmetric with respect to a plane which divides the thickness of the ceramic substrate into two equal parts. We are improving. The reason why the thermal shock resistance is improved by joining the metal plates in this way can be considered as follows. When the shape of the metal plate bonded on both main surfaces of the ceramic substrate is different, when the thermal shock is applied, the ceramic substrate has a warp in which the side where the metal plate having a large area is bonded becomes concave, and the warp reduces the area. Tensile stress is generated on the surface of the ceramic substrate to which the metal plate is bonded.

【0016】このことは、パワーデバイス搭載用セラミ
ックス−金属接合絶縁回路基板などのようにヒートシン
ク側がベタ面となっている接合基板は、ヒートシンク側
よりもパターン状に形成された回路側のセラミックス基
板表面からの方がクラックの発生が早いことからもわか
る。したがって、ヒートシンク側の金属板の形状を、回
路側と同形状にし、かつセラミックス基板の厚みを2等
分する平面に関して面対称である位置に接合することに
より、接合基板の反りがキャンセルされ、クラックの発
生が遅れるのである。
This means that a bonding substrate having a solid surface on the heat sink side, such as a ceramic-metal bonding insulated circuit substrate for mounting a power device, has a surface of the ceramic substrate on the circuit side formed in a pattern more than the heat sink side. It can also be seen from the fact that cracks occur more quickly from. Therefore, by making the shape of the metal plate on the heat sink side the same as that of the circuit side, and joining the ceramic substrate at a position that is plane-symmetric with respect to a plane that divides the thickness of the ceramic substrate into two, the warpage of the joined substrate is cancelled, and cracks are generated. Is delayed.

【0017】すなわち、本発明のセラミックス−金属接
合基板は、金属板を上記のような形状とすることにより
優れた耐熱衝撃性を得ているため、中間材などを介在さ
せる必要がなくなり、放熱性の劣化や重量の増加が防止
される。また、本発明のセラミックス−金属接合基板
は、金属板の縁部を凹凸状に形成しているが、回路のパ
ターンサイズ変更が必要となるようなレベルではないた
め、基板の面積を増大させる必要がない。さらに、本発
明のセラミックス−金属接合基板における金属板は、金
型法またはエッチング法といった従来の一般的な方法で
作製することができるため、低コストで量産することが
できる。
That is, since the ceramic-metal bonded substrate of the present invention has excellent thermal shock resistance by forming the metal plate as described above, it is not necessary to interpose an intermediate material or the like, and the heat radiation property is improved. Deterioration and weight increase are prevented. Further, in the ceramic-metal bonded substrate of the present invention, the edge of the metal plate is formed in an uneven shape, but the level is not at a level where the pattern size of the circuit needs to be changed. There is no. Further, since the metal plate in the ceramic-metal bonding substrate of the present invention can be manufactured by a conventional general method such as a mold method or an etching method, it can be mass-produced at low cost.

【0018】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は以下の実施例により制
限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.

【0019】[0019]

【実施例1】まず、金属部材として厚さ0.25mmの回路側
用のタフピッチ銅板2と、厚さ 0.2mmのヒートシンク側
用のタフピッチ銅板2とを用意し、セラミックス部材と
して22mm角の市販のHIC用アルミナ基板を用意した。
次いで、用意したアルミナ基板1の両主面に銅板2を接
触配置し、これを不活性ガス雰囲気中において加熱およ
び冷却して接合体を得た。次に、得られた接合体におけ
る回路側銅板2を、縁部の幅が 0.3mmで、長さが 0.5m
m、間隔だけはそれぞれ0.25mm、 0.5mmおよび 1.0mmと
寸法的に多少異なる凹凸形状をした所定のパターン形状
に、およびヒートシンク側をベタ形状にエッチングし、
3種類のアルミナ−銅接合基板を作製した(図1)。
Embodiment 1 First, a tough pitch copper plate 2 for a circuit side having a thickness of 0.25 mm and a tough pitch copper plate 2 for a heat sink side having a thickness of 0.2 mm were prepared as metal members, and a commercially available 22 mm square HIC was used as a ceramic member. An alumina substrate was prepared.
Next, the copper plates 2 were placed in contact with both main surfaces of the prepared alumina substrate 1 and heated and cooled in an inert gas atmosphere to obtain a joined body. Next, the circuit-side copper plate 2 in the obtained joined body was cut with an edge width of 0.3 mm and a length of 0.5 m.
m, only the spacing is 0.25mm, 0.5mm and 1.0mm, respectively, etched into a predetermined pattern shape with unevenness slightly different in dimensions, and the heat sink side is etched in a solid shape,
Three types of alumina-copper bonded substrates were produced (FIG. 1).

【0020】このようにして作製した3種類のアルミナ
−銅接合基板について耐熱衝撃性試験を行った。熱衝撃
試験はベルト炉を使用し、実際にチップをはんだ付けす
る条件と同じ、水素雰囲気中で最高温度 360℃×10分、
昇降温速度が20℃/分の条件で通炉し、クラック発生の
有無を調べ、その結果を表1に示した。なお、クラック
発生の有無はアルミナ−銅接合基板を所定の回数通炉
し、銅板を薬品で溶かした後赤インクに浸漬し水洗、乾
燥したものを実体顕微鏡でクラックのチェックを行う浸
透深傷法で評価した。また、サンプルはそれぞれ3ピー
ス以上とし、全ピースにクラックが発生しなかった場合
にクラックの発生なしとし、1ピースでもクラックが発
生した場合にクラック発生ありとした。
The three kinds of alumina-copper bonded substrates thus produced were subjected to a thermal shock resistance test. The thermal shock test uses a belt furnace and has the same conditions as those for actually soldering the chips.
The furnace was passed under the condition of a temperature rising / falling rate of 20 ° C./min, and the presence or absence of cracks was examined. The results are shown in Table 1. The presence or absence of cracks was determined by passing the alumina-copper bonded substrate through a furnace a predetermined number of times, dissolving the copper plate with a chemical, immersing it in red ink, washing with water, and then drying it. Was evaluated. Each sample was 3 pieces or more. If no cracks occurred in all the pieces, no cracks occurred. If even one piece cracked, cracks occurred.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【実施例2】金属部材として厚さ0.25mmのタフピッチ銅
板2を、アルミナ基板1の回路側およびヒートシンク側
に配置したこと以外は実施例1と同様にして接合体を得
た。次いで、回路側銅板2およびヒートシンク側銅板2
を同形状であり、かつアルミナ基板1の厚みを2等分す
る平面に関して面対称となるパターン形状にエッチング
し、本発明のアルミナ−銅接合基板を作製した(図
2)。
Example 2 A joined body was obtained in the same manner as in Example 1 except that a tough pitch copper plate 2 having a thickness of 0.25 mm was disposed on the circuit side and the heat sink side of the alumina substrate 1 as a metal member. Next, the circuit side copper plate 2 and the heat sink side copper plate 2
Was etched into a pattern shape having the same shape and being plane-symmetric with respect to a plane that divides the thickness of the alumina substrate 1 into two equal parts, thereby producing an alumina-copper bonded substrate of the present invention (FIG. 2).

【0023】上記のようにして作製したアルミナ−銅接
合基板について、実施例1と同様にして耐熱衝撃性試験
験および評価を行ない、その結果を表1に併記した。
With respect to the alumina-copper bonded substrate produced as described above, a thermal shock resistance test and evaluation were performed in the same manner as in Example 1, and the results are shown in Table 1.

【0024】[0024]

【比較例】回路側銅板2を縁部に凹凸のないパターン形
状、およびヒートシンク側をベタ形状にエッチングした
こと以外は実施例1と同様にして、従来のアルミナ−銅
接合基板を作製した(図3)。
Comparative Example A conventional alumina-copper bonded substrate was manufactured in the same manner as in Example 1 except that the circuit side copper plate 2 was etched into a pattern shape having no irregularities on the edges and the heat sink side was etched into a solid shape (FIG. 3).

【0025】上記のようにして作製したアルミナ−銅接
合基板について、実施例1と同様にして耐熱衝撃性試験
および評価を行ない、その結果を表1に併記した。
With respect to the alumina-copper bonded substrate produced as described above, a thermal shock resistance test and evaluation were performed in the same manner as in Example 1, and the results are shown in Table 1.

【0026】表1からもわかるように、比較例における
従来のアルミナ−銅接合基板(No.4)は、1回目の
通炉でクラックが発生してしまったのに対し、実施例1
および2における本発明のアルミナ−銅接合基板のうち
銅板の縁部に凹凸を形成したもの(No.1、2、3)
は、最低3回の通炉に耐えることができ、銅板の縁部に
凹凸を形成していないもの(No.5)であっても1回
の通炉に耐えることができ、耐熱衝撃性に優れていた。
As can be seen from Table 1, the conventional alumina-copper bonded substrate (No. 4) in the comparative example suffered from cracking in the first pass of the furnace, whereas Example 1 did not.
Of the alumina-copper bonded substrate of the present invention in Nos. 2 and 3 having irregularities formed on the edge of the copper plate (Nos. 1, 2, and 3)
Can withstand at least three passes, and can withstand one pass even if the copper plate has no irregularities at the edge (No. 5), and has a thermal shock resistance. It was excellent.

【0027】[0027]

【発明の効果】本発明のセラミックス−金属接合基板の
開発により、従来のセラミックス−金属接合基板と比較
して放熱性の劣化や重量の増大、およびパターンサイズ
の変更や基板面積を増大することなく耐熱衝撃性を向上
させることができるようになった。そのため、本発明の
セラミックス−金属接合基板は、低コストで製造するこ
とができ、商業的価値の極めて高いものである。
According to the development of the ceramic-metal bonded substrate of the present invention, compared with the conventional ceramic-metal bonded substrate, the heat radiation property is not deteriorated, the weight is increased, the pattern size is not changed, and the substrate area is not increased. The thermal shock resistance can be improved. Therefore, the ceramic-metal bonded substrate of the present invention can be manufactured at low cost, and has extremely high commercial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミナ−銅接合基板の一例を示す図
であって、(a)は回路側の平面図、(b)はヒートシ
ンク側の平面図、(c)は側断面図である。
FIG. 1 is a view showing an example of an alumina-copper bonding substrate according to the present invention, wherein (a) is a plan view on a circuit side, (b) is a plan view on a heat sink side, and (c) is a sectional side view. .

【図2】本発明のアルミナ−銅接合基板の別の一例を示
す図であって、(a)は回路側の平面図、(b)はヒー
トシンク側の平面図、(c)は側断面図である。
2A and 2B are diagrams showing another example of the alumina-copper bonding substrate of the present invention, wherein FIG. 2A is a plan view on the circuit side, FIG. 2B is a plan view on the heat sink side, and FIG. It is.

【図3】従来のアルミナ−銅接合基板を示す図であっ
て、(a)は回路側の平面図、(b)はヒートシンク側
の平面図、(c)は側断面図である。
3A and 3B are diagrams showing a conventional alumina-copper bonding substrate, wherein FIG. 3A is a plan view on a circuit side, FIG. 3B is a plan view on a heat sink side, and FIG.

【図4】図3に例示されるような従来のセラミックス−
銅接合基板に繰り返し熱衝撃を施した際、パターン側基
板表面におけるクラックの発生状況を示した平面図であ
って、(a)、(b)および(c)は熱衝撃の繰り返し
回数が異なり、その回数は(a)よりも(b)、(b)
よりも(c)が多い。
FIG. 4 shows a conventional ceramic as exemplified in FIG.
FIG. 9 is a plan view showing the occurrence of cracks on the pattern-side substrate surface when repeatedly applying a thermal shock to the copper-bonded substrate, wherein (a), (b) and (c) show different numbers of thermal shock repetitions; (B), (b)
(C) is greater than that of (c).

【符号の説明】[Explanation of symbols]

1‥‥‥アルミナ基板 2‥‥‥銅板 3‥‥‥クラック 1 Alumina substrate 2 Copper plate 3 Crack

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板とその少なくとも一方
の主面上に接合された金属板とからなり、該金属板はそ
の総ての縁部がセラミックス基板主面と平行する方向に
0.5mmの長さ、 0.3mmの幅、0.25ないし 1.0mmから選ば
れる間隔の凹凸状となるように形成されていることを特
徴とする耐熱衝撃性に優れたセラミックス−金属接合基
板。
1. A ceramic substrate comprising: a ceramic substrate and a metal plate bonded on at least one main surface thereof, wherein the metal plate has all edges in a direction parallel to the ceramic substrate main surface.
A ceramic-metal bonding substrate excellent in thermal shock resistance, characterized in that it is formed to have irregularities with a length of 0.5 mm, a width of 0.3 mm, and an interval selected from 0.25 to 1.0 mm.
【請求項2】 セラミックス基板の両主面上に同形状の
金属板がセラミックス基板の厚みを2等分する平面に関
して面対称である位置に接合されていることを特徴とす
る耐熱衝撃性に優れたセラミックス−金属接合基板。
2. Excellent thermal shock resistance characterized in that metal plates of the same shape are joined on both main surfaces of a ceramic substrate at positions that are plane-symmetric with respect to a plane that divides the thickness of the ceramic substrate into two equal parts. Ceramic-metal bonded substrate.
JP10175367A 1998-06-08 1998-06-08 Ceramic-metal bonded substrate with excellent thermal shock resistance Expired - Lifetime JP2965965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10175367A JP2965965B2 (en) 1998-06-08 1998-06-08 Ceramic-metal bonded substrate with excellent thermal shock resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10175367A JP2965965B2 (en) 1998-06-08 1998-06-08 Ceramic-metal bonded substrate with excellent thermal shock resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3350853A Division JP2815504B2 (en) 1991-12-11 1991-12-11 Ceramic-metal bonded substrate with excellent thermal shock resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP17934299A Division JP3281331B2 (en) 1999-06-25 1999-06-25 Ceramic-metal bonded substrate with excellent thermal shock resistance

Publications (2)

Publication Number Publication Date
JPH10335536A true JPH10335536A (en) 1998-12-18
JP2965965B2 JP2965965B2 (en) 1999-10-18

Family

ID=15994861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10175367A Expired - Lifetime JP2965965B2 (en) 1998-06-08 1998-06-08 Ceramic-metal bonded substrate with excellent thermal shock resistance

Country Status (1)

Country Link
JP (1) JP2965965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116775A (en) * 2023-09-25 2023-11-24 江苏富乐华半导体科技股份有限公司 Graphic design method of thick metal layer ceramic substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116775A (en) * 2023-09-25 2023-11-24 江苏富乐华半导体科技股份有限公司 Graphic design method of thick metal layer ceramic substrate
CN117116775B (en) * 2023-09-25 2024-03-26 江苏富乐华半导体科技股份有限公司 Graphic design method of thick metal layer ceramic substrate

Also Published As

Publication number Publication date
JP2965965B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP3512977B2 (en) High reliability semiconductor substrate
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
KR100565139B1 (en) Member for electronic circuit, method for manufacturing the member, and electronic part
WO2003090277A1 (en) Circuit board, process for producing the same and power module
JP2003273289A (en) Ceramic circuit board and power module
JP3922538B2 (en) Manufacturing method of ceramic circuit board
JP2002043482A (en) Member for electronic circuit, its manufacturing method and electronic component
JP2002329814A (en) Insulating substrate for mounting semiconductor and power module
JP2566341B2 (en) Semiconductor device
JP5141566B2 (en) Insulated circuit board manufacturing method, insulated circuit board, and power module substrate
JP2018148064A (en) Board for power module with heat sink
JP2815504B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JPH08250823A (en) Ceramic circuit board
JP3281331B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JPH05152461A (en) Ceramic circuit board
JP2965965B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JP3599517B2 (en) Circuit board for power module
JPH10247763A (en) Circuit board and manufacture thereof
JP2815498B2 (en) Ceramic-copper bonded substrate with excellent thermal shock resistance
JP4427154B2 (en) Ceramic circuit board
JP3722573B2 (en) Ceramic substrate, circuit board using the same, and manufacturing method thereof
JPH10242331A (en) Substrate for power module and manufacture thereof
JPH0677631A (en) Mounting method of chip component onto aluminum board
JP4779178B2 (en) Insulating substrate for semiconductor mounting and power module
JP2005050919A (en) Circuit board and semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13