JP5141566B2 - Insulated circuit board manufacturing method, insulated circuit board, and power module substrate - Google Patents
Insulated circuit board manufacturing method, insulated circuit board, and power module substrate Download PDFInfo
- Publication number
- JP5141566B2 JP5141566B2 JP2009006172A JP2009006172A JP5141566B2 JP 5141566 B2 JP5141566 B2 JP 5141566B2 JP 2009006172 A JP2009006172 A JP 2009006172A JP 2009006172 A JP2009006172 A JP 2009006172A JP 5141566 B2 JP5141566 B2 JP 5141566B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- metal
- brazing material
- ceramic substrate
- metal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 143
- 239000002184 metal Substances 0.000 claims description 143
- 238000005219 brazing Methods 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 67
- 230000002093 peripheral effect Effects 0.000 claims description 49
- 239000000919 ceramic Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 10
- 238000005304 joining Methods 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 description 24
- 230000005855 radiation Effects 0.000 description 21
- 238000003825 pressing Methods 0.000 description 14
- 239000013078 crystal Substances 0.000 description 13
- 230000007547 defect Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018459 Al—Ge Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910020220 Pb—Sn Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
本発明は、絶縁回路基板の製造方法及び絶縁回路基板に係り、特に、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板に用いて好適な技術に関する。 The present invention relates to an insulating circuit board manufacturing method and an insulating circuit board, and more particularly to a technique suitable for use in a power module substrate used in a semiconductor device that controls a large current and a high voltage.
一般に、半導体素子の中でも電力供給のためのパワーモジュールは発熱量が比較的高いため、このパワーモジュール用基板としては、例えば特許文献1に示されるように、AlN、Al2O3、Si3N4、SiC等からなるセラミックス基板上にアルミニウム板等の金属板をAl−Si系等のろう材を介して接合させたものが用いられている。この金属板は、後工程のエッチング処理によって所望パターンの回路が形成されて回路層となる。そして、エッチング後は、この回路層の表面にはんだ材を介して電子部品(半導体チップ等のパワー素子)が搭載され、パワーモジュールとなる。 In general, a power module for supplying power among semiconductor elements has a relatively high calorific value. As this power module substrate, for example, as shown in Patent Document 1, AlN, Al 2 O 3 , Si 3 N 4. A metal plate such as an aluminum plate joined to a ceramic substrate made of SiC or the like via a brazing material such as an Al-Si type is used. This metal plate becomes a circuit layer by forming a circuit having a desired pattern by an etching process in a later step. After etching, an electronic component (power element such as a semiconductor chip) is mounted on the surface of the circuit layer via a solder material to form a power module.
また、この金属板は、例えば特許文献2に示されるように、箔状のろう材をセラミックス基板と金属板との間に介在させて高温状態で積層方向に加圧することにより、溶融したろう材によってセラミックス基板に接合される。 In addition, as shown in Patent Document 2, for example, this metal plate is a molten brazing material by interposing a foil-like brazing material between the ceramic substrate and the metal plate and pressing in the stacking direction in a high temperature state. To be bonded to the ceramic substrate.
上述のようにセラミックス基板に金属板を接合した場合、特許文献2に示されるように、溶融したろう材がセラミックス基板および金属板の側面を経由して金属板の表面に付着し、この表面を変質させ、その後に固着される電子部品のボンディングワイヤの接着性が損なわれるという問題がある。このろう材が余剰となってはみ出すことを防ぐためには、箔状のろう材の厚さまたは面積を小さくして、ろう材の量を少なくすることが考えられる。
しかしながら、ろう材の量を少なくした場合には、金属板とセラミックス基板との間でろう材が不足する箇所が生じたり、またセラミックス基板の反りによって接合部分が剥離したりして、後工程で形成した回路層がはがれる等の問題が生じるおそれがある。また、金属板全面にろう材が付着せず、セラミックス基板に対して金属板を確実に接合できないおそれがある。さらに、接合が十分でない場合、温度変化を繰り返す熱サイクル条件下において剥離が生じてしまう場合もある。
When the metal plate is joined to the ceramic substrate as described above, as shown in Patent Document 2, the molten brazing material adheres to the surface of the metal plate via the ceramic substrate and the side surface of the metal plate, and this surface is There is a problem that the adhesiveness of the bonding wire of the electronic component that is altered and then fixed is impaired. In order to prevent the brazing material from surplus and protruding, it is conceivable to reduce the amount of brazing material by reducing the thickness or area of the foil brazing material.
However, when the amount of the brazing material is reduced, a portion where the brazing material is insufficient between the metal plate and the ceramic substrate may be generated, or the joint portion may be peeled off due to warpage of the ceramic substrate. There is a possibility that problems such as peeling off of the formed circuit layer may occur. Further, the brazing material does not adhere to the entire surface of the metal plate, and there is a possibility that the metal plate cannot be reliably bonded to the ceramic substrate. Furthermore, if the bonding is not sufficient, peeling may occur under thermal cycle conditions that repeat temperature changes.
本発明は、このような事情に鑑みてなされたものであって、回路面へのろう材の付着がなく、金属板とセラミックス基板とが確実に接合される絶縁回路基板の製造方法及び絶縁回路基板並びにパワーモジュール用基板を提供することを目的とする。 The present invention has been made in view of such circumstances, and there is no adhesion of brazing material to the circuit surface, and a method of manufacturing an insulated circuit board and an insulated circuit in which a metal plate and a ceramic substrate are reliably bonded. An object is to provide a substrate and a substrate for a power module.
本発明の絶縁回路基板の製造方法は、セラミックス基板の表面に金属回路板がろう付け接合されてなる絶縁回路基板の製造方法において、前記セラミックス基板の表面にろう材を介して前記金属回路板を積層し、これらを積層方向に加圧する際に、前記金属回路板の周縁部の圧力を294kPa以上981kPa未満とし、中央部の圧力を98kPa以上294kPa未満とすることを特徴とする。
すなわち、ろう付け接合時の圧力について金属回路板の周縁部を中央部よりも大きくすることにより、ろう材が金属回路板の周縁部とセラミックス基板との間を通過する抵抗が大きくなり、このろう材のせき止め効果により、金属回路板の中央部からろう材が周縁部を経由して外部にはみ出すことが防止される。
The method for manufacturing an insulated circuit board according to the present invention is a method for manufacturing an insulated circuit board in which a metal circuit board is brazed and joined to the surface of a ceramic substrate, and the metal circuit board is placed on the surface of the ceramic substrate via a brazing material. When laminating and pressing them in the laminating direction, the pressure at the peripheral edge of the metal circuit board is set to 294 kPa or more and less than 981 kPa, and the pressure at the center is set to 98 kPa or more and less than 294 kPa .
That is, by setting the peripheral edge of the metal circuit board to be larger than the central part with respect to the pressure at the time of brazing and joining, the resistance of the brazing material to pass between the peripheral edge of the metal circuit board and the ceramic substrate increases. The brazing effect of the material prevents the brazing material from protruding from the center of the metal circuit board to the outside via the peripheral edge.
また、前記周縁部は、前記金属回路板の周縁から2mmまでの領域であるのが好ましい。この場合、金属回路板の周縁部においては、強く加圧されてろう材が少なくなるため接合不十分となる傾向がある。そのため、加圧範囲を2mm以内とすることにより、万一の剥がれ発生時も2mm以上に進行させないようにすることができる。 Also, the peripheral portion is preferably a region from the peripheral edge of the metal circuit plate to 2 mm. In this case, the peripheral edge of the metal circuit board tends to be insufficiently bonded because it is strongly pressed and brazing material is reduced. Therefore, by setting the pressure range to be within 2 mm, it is possible to prevent the pressure range from proceeding to 2 mm or more even in the event of peeling.
本発明の絶縁回路基板は、セラミックス基板の表面に金属回路板がろう付け接合されてなる絶縁回路基板において、セラミックス基板と金属回路板とを接合してなるろう材痕跡層の厚さが、前記金属回路板の周縁部で5μm未満であり、前記中央部で5μm以上20μm未満であることを特徴とする。
すなわち、この絶縁回路基板では、周縁部の加圧力を高くした結果としてろう材痕跡層が薄く形成されるのであり、周縁部の溶融ろう材のせき止め効果により、この周縁部からはみ出すろう材が少なくなり、金属回路板表面の回路面へのろう材の付着を防止することができる。
ここでろう材痕跡層とは、セラミックス基板と金属回路板との接合界面から金属回路板側に入った位置に現れ、金属回路板の母材の結晶方位とは異なる方位の結晶粒が存在する層である。
In the insulated circuit board of the present invention, in the insulated circuit board formed by brazing and bonding the metal circuit board to the surface of the ceramic board, the thickness of the brazing material trace layer formed by joining the ceramic board and the metal circuit board is The peripheral edge of the metal circuit board is less than 5 μm, and the central portion is not less than 5 μm and less than 20 μm .
That is, in this insulated circuit board, the brazing material trace layer is formed thin as a result of increasing the pressurizing force at the peripheral portion, and the brazing material that protrudes from the peripheral portion is less due to the damming effect of the molten brazing material at the peripheral portion. Thus, adhesion of the brazing material to the circuit surface of the metal circuit board surface can be prevented.
Here, the trace layer of brazing material appears at a position entering the metal circuit board side from the bonding interface between the ceramic substrate and the metal circuit board, and there are crystal grains having an orientation different from the crystal orientation of the base material of the metal circuit board. Is a layer.
また、前記周縁部は、前記金属回路板の周縁から2mmまでの領域であるのが好ましい。 Also, the peripheral portion is preferably a region from the peripheral edge of the metal circuit plate to 2 mm.
さらに、本発明は、これら絶縁回路基板を用いたパワーモジュール用基板であって、前記セラミックス基板の裏面に放熱用金属板を介して又は該放熱用金属板を介さずにヒートシンクが取り付けられていることを特徴とする。
このパワーモジュール用基板は、セラミックス基板と金属回路板との間が強固に接合されているので、反対側のヒートシンクにより、熱サイクル環境の厳しい条件下で使用される場合でも、剥離の発生を防止することができる。
Furthermore, the present invention is a power module substrate using these insulated circuit boards, and a heat sink is attached to the back surface of the ceramic substrate via a heat radiating metal plate or not via the heat radiating metal plate. It is characterized by that.
This power module substrate is firmly bonded between the ceramic substrate and the metal circuit board, so the heat sink on the opposite side prevents the occurrence of delamination even when used under severe thermal cycling conditions. can do.
本発明によれば、金属回路板の周縁からろう材がはみ出すことが防止されるので、回路面へのろう材の付着がなく、金属回路板とセラミックス基板とが確実に接合され、熱サイクル環境の厳しい条件下で使用される場合でも、剥離の発生を防止することができ、信頼性の高い絶縁基板を提供することができる。 According to the present invention, since the brazing material is prevented from protruding from the peripheral edge of the metal circuit board, there is no adhesion of the brazing material to the circuit surface, and the metal circuit board and the ceramic substrate are reliably bonded, and the thermal cycle environment Even when used under severe conditions, peeling can be prevented and a highly reliable insulating substrate can be provided.
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明に係るパワーモジュール用基板を用いたパワーモジュールの全体構成について示している。この図1に示されるパワーモジュール1は、絶縁回路基板2を有するパワーモジュール用基板3と、該パワーモジュール用基板3の表面に搭載された半導体チップ等の電子部品4とから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall configuration of a power module using a power module substrate according to the present invention. The power module 1 shown in FIG. 1 includes a power module substrate 3 having an insulating circuit substrate 2 and an electronic component 4 such as a semiconductor chip mounted on the surface of the power module substrate 3.
パワーモジュール用基板3は、電子部品4が搭載される絶縁回路基板2と、この絶縁回路基板2の裏面に接合されたヒートシンク5とから構成されている。絶縁回路基板2は、セラミックス基板6の表面に電子部品4を搭載するための金属回路板7が積層され、セラミックス基板6の裏面に放熱層用金属板8が積層され、この放熱層用金属板8にヒートシンク5が取り付けられる構成である。
この場合、セラミックス基板6は、例えばAlN(窒化アルミニウム)、Si3N4(窒化珪素)等の窒化物系セラミックス、若しくはAl2O3(アルミナ)等の酸化物系セラミックスを母材として矩形状に形成されている。金属回路板7は、純アルミニウム若しくはアルミニウム合金により形成され、プレス加工により回路パターンの外形に成形されている。放熱層用金属板8は、純度99.0wt%以上の純アルミニウムによりセラミックス基板6より若干小さい矩形状に形成されている。
The power module substrate 3 includes an insulated circuit board 2 on which electronic components 4 are mounted and a heat sink 5 bonded to the back surface of the insulated circuit board 2. The insulated circuit board 2 has a metal circuit board 7 on which the electronic component 4 is mounted on the surface of the ceramic substrate 6, and a heat radiation layer metal plate 8 is laminated on the back surface of the ceramic substrate 6. The heat sink 5 is attached to 8.
In this case, the ceramic substrate 6 has a rectangular shape using, for example, a nitride ceramic such as AlN (aluminum nitride) or Si 3 N 4 (silicon nitride) or an oxide ceramic such as Al 2 O 3 (alumina) as a base material. Is formed. The metal circuit board 7 is made of pure aluminum or an aluminum alloy, and is formed into an outer shape of a circuit pattern by pressing. The heat radiation layer metal plate 8 is formed in a rectangular shape slightly smaller than the ceramic substrate 6 with pure aluminum having a purity of 99.0 wt% or more.
また、これらセラミックス基板6、金属回路板7、放熱層用金属板8の相互間はろう付けによって接合されており、そのろう材としては、Al−Si系、Al−Ge系、Al−Cu系、Al−Mg系またはAl−Mn系等が使用される。ろう材の厚さとしては、8〜30μmが好ましい。ろう材の厚さが8μm未満の場合は、初期接合状態での未接合部が発生する場合がある。また、例えば−40〜105℃の冷熱サイクル試験において剥がれが発生するおそれがあり、接合信頼性が低下する。一方、ろう材の厚さが30μmより厚い場合には、接合時の余剰ろう材がコブ状に回路端子に形成され、寸法不良のおそれがある。 The ceramic substrate 6, the metal circuit board 7, and the heat dissipation layer metal plate 8 are joined to each other by brazing, and the brazing material may be Al—Si, Al—Ge, or Al—Cu. Al-Mg type or Al-Mn type is used. The thickness of the brazing material is preferably 8 to 30 μm. When the thickness of the brazing material is less than 8 μm, an unbonded portion in the initial bonded state may occur. Further, for example, peeling may occur in a cooling cycle test at −40 to 105 ° C., and the bonding reliability is lowered. On the other hand, when the thickness of the brazing material is larger than 30 μm, the surplus brazing material at the time of joining is formed on the circuit terminal in the shape of a bump, and there is a risk of dimensional defects.
これらセラミックス基板6と金属回路板7及び放熱層用金属板8との接合部には、これらの接合界面から金属回路板6側又は放熱層用金属板7側に入った位置に、図2に示すように、金属回路板6又は放熱層用金属板7の母材の結晶方位とは異なる方位の結晶粒が存在するろう材痕跡層11が形成される。図2には、金属回路板7とセラミックス基板6との接合部を図示しているが、放熱層用金属板8とセラミックス基板6との接合部も同様である。このろう材痕跡層11は、金属回路板7(又は放熱層用金属板8)とセラミックス基板6との接合界面にほぼ全面的に形成されるが、金属回路板7(又は放熱層用金属板8)の周縁部Aが中央部Bよりも薄く形成されている。具体的には、その周縁部Aは、金属回路板7(又は放熱層用金属板8)の周縁から2mmまでの領域であり、ろう材痕跡層11は、周縁部Aで厚さt1が5μm未満とされ、中央部Bで厚さt2が5μm以上20μm未満とされている。
この場合、母材の結晶方位と異なる方位の結晶粒が接合界面の少なくとも40%以上の範囲で存在する場合にろう材痕跡層11とする。
In the joint portion between the ceramic substrate 6 and the metal circuit board 7 and the heat radiation layer metal plate 8, the metal interface board 6 side or the heat radiation layer metal plate 7 side from the joining interface is shown in FIG. As shown, a brazing material trace layer 11 in which crystal grains having an orientation different from the crystal orientation of the base material of the metal circuit board 6 or the metal plate 7 for heat radiation layer is present is formed. In FIG. 2, the joint portion between the metal circuit board 7 and the ceramic substrate 6 is illustrated, but the joint portion between the heat radiation layer metal plate 8 and the ceramic substrate 6 is the same. The brazing material trace layer 11 is formed almost entirely on the bonding interface between the metal circuit board 7 (or the heat dissipation layer metal plate 8) and the ceramic substrate 6, but the metal circuit board 7 (or the heat dissipation layer metal plate). The peripheral edge A of 8) is formed thinner than the central part B. Specifically, the peripheral portion A is an area from the peripheral edge of the metal circuit plate 7 (or dissipating layer metal plate 8) to 2 mm, the brazing material traces layer 11, the thickness t 1 at the peripheral portion A is less than 5 [mu] m, the thickness t 2 at the central portion B is less than 20μm more than 5 [mu] m.
In this case, the brazing material trace layer 11 is formed when crystal grains having an orientation different from the crystal orientation of the base material exist in a range of at least 40% or more of the bonding interface.
このろう材痕跡層11の確認に際しては、電子後方散乱回折像(Electron Back Scatter Diffraction Patterns)法(以下、EBSP法と称す)に基づき、接合界面付近の結晶方位を測定することにより、行うことができる。このEBSP法は、SEM(走査電子顕微鏡)にEBSP検出器を接続し、収束電子ビームを試料表面に照射したときに発生する個々の結晶の回折像(EBSP)の方位を解析し、方位データと測定点の位置情報から材料の結晶方位を測定する方法であり、その測定結果は結晶方位マップ(IPF(Inverse Pole Figure)Map)として示される。この結晶方位マップから、母材の結晶方位とは異なる方位の結晶粒が存在する領域(ろう材痕跡層)を確認することができる。
なお、金属回路板7の表面にはめっき被膜(図示略)が形成される。このめっき被膜の材料としてはニッケルが好適であり、無電解めっきによる場合はNi−1〜13wt%PやNi−0.5wt%B等、電解めっきによる場合は純Ni等が用いられる。
The brazing material trace layer 11 can be confirmed by measuring the crystal orientation in the vicinity of the bonding interface based on the Electron Back Scatter Diffraction Patterns (hereinafter referred to as EBSP method) method. it can. In this EBSP method, an EBSP detector is connected to an SEM (scanning electron microscope), and the orientation of a diffraction image (EBSP) of each crystal generated when a sample surface is irradiated with a focused electron beam is analyzed. This is a method of measuring the crystal orientation of the material from the position information of the measurement point, and the measurement result is shown as a crystal orientation map (IPF (Inverse Pole Figure) Map). From this crystal orientation map, it is possible to confirm a region (a brazing material trace layer) where crystal grains having an orientation different from the crystal orientation of the base material are present.
A plating film (not shown) is formed on the surface of the metal circuit board 7. Nickel is suitable as a material for the plating film, and Ni-1 to 13 wt% P and Ni-0.5 wt% B are used when electroless plating is used, and pure Ni is used when electrolytic plating is used.
そして、金属回路板7の上に、Sn−Ag−Cu系、Zn−Al系若しくはPb−Sn系等のはんだ材によって電子部品4が接合される。図中符号12がそのはんだ接合層を示す。なお、電子部品4と金属回路板7の端子部との間は、アルミニウムからなるボンディングワイヤ(図示略)により接続される。
一方、ヒートシンク5は、アルミニウム合金の押し出し成形によって形成され、その長さ方向に沿って冷却水を流通させるための多数の流路13が形成されており、放熱層用金属板8との間はろう付け、はんだ付け、ボルト等によって接合される。
Then, the electronic component 4 is joined onto the metal circuit board 7 by a solder material such as Sn—Ag—Cu, Zn—Al, or Pb—Sn. Reference numeral 12 in the figure indicates the solder joint layer. The electronic component 4 and the terminal portion of the metal circuit board 7 are connected by a bonding wire (not shown) made of aluminum.
On the other hand, the heat sink 5 is formed by extrusion molding of an aluminum alloy, and is formed with a number of flow paths 13 for circulating cooling water along its length direction. Joined by brazing, soldering, bolts, etc.
次に、このように構成されるパワーモジュール用基板3における絶縁回路基板2の製造方法について説明する。
まず、セラミックス基板6と金属回路板7及び放熱層用金属板8とをこれらの間にろう材15を配置した状態で積層する(図3参照)。このろう材15は、金属回路板7及び放熱層用金属板8をプレス加工によって打ち抜き成形する際に同時に成形されるものであり、金属回路板7及び放熱層用金属板8用の金属平板にろう材箔を貼付しておき、これら金属平板とろう材箔とを同時にプレス加工によって打ち抜くことにより、金属回路板7及び放熱層用金属板8の外形にろう材箔も打ち抜き成形される。
Next, the manufacturing method of the insulated circuit board 2 in the power module substrate 3 configured as described above will be described.
First, the ceramic substrate 6, the metal circuit board 7, and the heat radiation layer metal plate 8 are laminated with the brazing material 15 disposed therebetween (see FIG. 3). This brazing material 15 is formed at the same time as the metal circuit board 7 and the heat radiation layer metal plate 8 are stamped and formed by pressing, and is formed into a metal flat plate for the metal circuit board 7 and the heat radiation layer metal plate 8. A brazing filler metal foil is pasted, and the metal flat plate and the brazing filler metal foil are simultaneously punched out by press working, whereby the brazing filler metal foil is also stamped and formed on the outer shape of the metal circuit board 7 and the metal plate 8 for the heat radiation layer.
次に、これらセラミックス基板6と金属回路板7及び放熱層用金属板8との積層体を加圧装置21によって加圧した状態とする。
この加圧装置21は、積層体が載置されるベース22と、このベース22と平行な加圧板23とが対向配置され、これらを対向方向に加圧する加圧手段(図示略)が設けられた構成とされている。また、ベース22及び加圧板23は、それぞれ2枚のカーボン板24の間にシート部材25,26が介在した構成とされる。これらシート部材25,26は、例えばグラファイトシート等の弾性材により形成されており、加圧板23に設けられるシート部材25は金属回路板7の周縁に沿う環状に形成され、ベース22に設けられるシート部材26は放熱層用金属板8の周縁に沿う環状に形成される。これらシート部材25,26の幅は、このシート部材25,26を金属回路板7又は放熱層用金属板8の周縁に沿って配置したときに、これら金属回路板7又は放熱層用金属板8の周縁から内側に2mmの領域を覆うことができる寸法とされている。
Next, the laminated body of the ceramic substrate 6, the metal circuit board 7, and the heat dissipation layer metal plate 8 is pressed by the pressurizing device 21.
The pressurizing device 21 is provided with a base 22 on which a laminated body is placed and a pressurizing plate 23 parallel to the base 22, and a pressurizing means (not shown) for pressurizing them in the facing direction. It has been configured. The base 22 and the pressure plate 23 are configured such that sheet members 25 and 26 are interposed between two carbon plates 24, respectively. These sheet members 25 and 26 are formed of an elastic material such as a graphite sheet, for example. The sheet member 25 provided on the pressure plate 23 is formed in an annular shape along the peripheral edge of the metal circuit board 7 and is provided on the base 22. The member 26 is formed in an annular shape along the peripheral edge of the heat dissipation layer metal plate 8. The widths of the sheet members 25 and 26 are such that when the sheet members 25 and 26 are disposed along the periphery of the metal circuit board 7 or the heat dissipation layer metal plate 8, the metal circuit board 7 or the heat dissipation layer metal plate 8. It is set as the dimension which can cover the area | region of 2 mm inside from the periphery.
そして、これらシート部材25,26を金属回路板7又は放熱層用金属板8の周縁に相当する位置に配置して、ベース22と加圧板23との間で図3の矢印で示すようにセラミックス基板6、金属回路板7、放熱層用金属板8の積層体を加圧した状態とすると、金属回路板7及び放熱層用金属板8の周縁部には、シート部材25,26を介して大きな加圧力が作用し、シート部材25,26より内側の中央部ではカーボン板24の弾性作用により緩和された加圧力が作用し、その結果、シート部材25,26を配置した周縁部では、単位面積当たりの加圧力がシート部材25,26を配置していない中央部よりも大きく設定される。具体的には、シート部材25,26が配置されている金属回路板7又は放熱層用金属板8の周縁から内側に2mmの領域の圧力を294kPa以上981kPa未満とし、その領域より内側の中央部の圧力を98kPa以上294kPa未満とする。その圧力調整は、カーボン板24及びシート部材25,26の材質、弾性係数、厚さ等により行う。
そして、このように加圧した状態で、この加圧装置21ごと、加熱炉(図示略)内に配置して、不活性ガス雰囲気、還元ガス雰囲気又は真空雰囲気において、例えば640℃以上655℃以下の温度で1分以上60分以下の時間加熱することにより、ろう材15を溶融させてろう付けする。
These sheet members 25 and 26 are arranged at positions corresponding to the periphery of the metal circuit board 7 or the metal plate 8 for the heat radiation layer, and the ceramics as shown by the arrows in FIG. 3 between the base 22 and the pressure plate 23. When the laminated body of the substrate 6, the metal circuit board 7, and the heat dissipation layer metal plate 8 is pressed, the peripheral portions of the metal circuit board 7 and the heat dissipation layer metal plate 8 are interposed through sheet members 25 and 26. A large pressing force is applied, and a pressing force that is relaxed by the elastic action of the carbon plate 24 is applied to the central portion inside the sheet members 25 and 26. As a result, in the peripheral portion where the sheet members 25 and 26 are disposed, The pressing force per area is set to be larger than that of the central portion where the sheet members 25 and 26 are not arranged. Specifically, the pressure in the region of 2 mm inward from the periphery of the metal circuit board 7 or the heat radiation layer metal plate 8 on which the sheet members 25 and 26 are disposed is set to 294 kPa or more and less than 981 kPa, and the central portion inside the region Is set to 98 kPa or more and less than 294 kPa. The pressure is adjusted by the material, elastic coefficient, thickness, and the like of the carbon plate 24 and the sheet members 25 and 26.
And in the state pressurized in this way, it arrange | positions in the heating furnace (not shown) with this pressurization apparatus 21, and is 640 degreeC or more and 655 degrees C or less, for example in inert gas atmosphere, reducing gas atmosphere, or vacuum atmosphere. The brazing material 15 is melted and brazed by heating at a temperature of 1 minute to 60 minutes.
このように金属回路板7及び放熱層用金属板8の周縁部の圧力をそれより内側の中央部よりも大きくしてろう付けすることにより、溶融したろう材が金属回路板7又は放熱層用金属板8の周縁部とセラミックス基板6との間を通過する抵抗が大きくなり、その結果、金属回路板7及び放熱層用金属板8の中央部からろう材が周縁部を経由して外部にはみ出すことが防止される。 Thus, by brazing the metal circuit board 7 and the heat dissipation layer metal plate 8 at a peripheral portion with a pressure greater than that of the inner central portion, the molten brazing material is used for the metal circuit board 7 or the heat dissipation layer. The resistance passing between the peripheral portion of the metal plate 8 and the ceramic substrate 6 is increased, and as a result, the brazing material is exposed to the outside through the peripheral portion from the central portion of the metal circuit plate 7 and the metal plate 8 for heat dissipation layer. It is prevented from protruding.
したがって、このように製造された絶縁回路基板2は、セラミックス基板6と金属回路板7及び放熱層用金属板8との接合部からのろう材のはみ出しがなく、そのため、金属回路板7の表面にろう材が回り込んで表面の変質(いわゆるろうジミ)が発生することがなく、その上に搭載される電子部品4のボンディングワイヤを確実に接着することができ、接続信頼性が高められる。 Therefore, the insulating circuit board 2 manufactured in this way has no protrusion of the brazing material from the joint between the ceramic substrate 6, the metal circuit board 7, and the metal plate 8 for the heat dissipation layer. The brazing material does not wrap around and the surface is not deteriorated (so-called brazing), the bonding wire of the electronic component 4 mounted thereon can be securely bonded, and the connection reliability is improved.
一方、図4は、加圧装置の第2の例を示している。この加圧装置31は、金属回路板7又は放熱層用金属板8の周縁部と、これらの内側の中央部とを別々に加圧するようにしたものである。すなわち、ベース32及び加圧板33とも、カーボン板により形成されるが、金属回路板7又は放熱層用金属板8の周縁部に当接する部分に環状の周縁部加圧部材32A,33Aが設けられ、その内側に、中央部加圧部材32B,33Bが配置されている。そして、両周縁部加圧部材32A,33Aを加圧する周縁部加圧手段(図示略)と、中央部加圧部材32B,33Bを加圧する中央部加圧手段(図示略)とがそれぞれ設けられている。 On the other hand, FIG. 4 shows a second example of the pressure device. The pressurizing device 31 is configured to pressurize the peripheral portion of the metal circuit board 7 or the metal plate 8 for heat radiation layer and the inner central portion thereof separately. That is, both the base 32 and the pressure plate 33 are formed of a carbon plate, but annular peripheral edge pressure members 32A and 33A are provided at portions that contact the peripheral edge of the metal circuit board 7 or the heat radiation layer metal plate 8. The central portion pressing members 32B and 33B are disposed on the inner side. Peripheral part pressurizing means (not shown) for pressurizing both peripheral part pressurizing members 32A and 33A and central part pressurizing means (not shown) for pressurizing the central part pressurizing members 32B and 33B are provided. ing.
この加圧装置31を使用して絶縁回路基板2のろう付けを行う場合、金属回路板7及び放熱層用金属板8の周縁部に周縁部加圧部材32A,33Aを当接し、これら周縁部加圧部材32A,33Aと中央部加圧部材32B,33Bとで異なる加圧手段によって異なる加圧力を作用させる。具体的な加圧力は図3の第1の例による場合と同様であり、金属回路板7又は放熱層用金属板8の周縁から内側に2mmの領域の圧力を294kPa以上981kPa未満とし、その領域より内側の中央部の圧力を98kPa以上294kPa未満とする。
この加圧装置31においても、図3の加圧装置21と同様に、金属回路板7及び放熱層用金属板8の周縁部の圧力をそれより内側の中央部よりも大きくすることができ、溶融したろう材が周縁部を経由してはみ出すことが防止される。
When the insulating circuit board 2 is brazed using the pressurizing device 31, the peripheral edge pressing members 32A and 33A are brought into contact with the peripheral edge portions of the metal circuit board 7 and the heat radiation layer metal plate 8, and the peripheral edge portions thereof. Different pressurizing forces are applied to the pressing members 32A and 33A and the central pressing members 32B and 33B by different pressing means. The specific pressure is the same as in the case of the first example of FIG. 3, and the pressure in the region 2 mm inward from the peripheral edge of the metal circuit board 7 or the metal plate 8 for the heat dissipation layer is 294 kPa or more and less than 981 kPa. The pressure at the inner central part is set to 98 kPa or more and less than 294 kPa.
Also in this pressurizing device 31, as with the pressurizing device 21 in FIG. 3, the pressure at the peripheral edge of the metal circuit board 7 and the metal plate 8 for heat radiation layer can be made larger than the central part inside it, The molten brazing material is prevented from protruding through the peripheral edge.
次に、本実施形態の製造方法を評価するため、上記の2種類の加圧装置21,31と、セラミックス基板6、金属回路板7、放熱層用金属板8の積層体を面方向に均等な圧力で加圧する従来の加圧装置とを使用して、ろう付けしたときの金属回路板7の表面へのろう材のシミ出し量を測定した。図5(a)はろう材Wが金属回路板7の表面に回り込んだ状態を示しており、金属回路板7の周縁からの距離L(最大部)をシミ出し量とする。また、図5(b)に示すように、放熱用金属板8にヒートシンクとして厚さ5mmのアルミニウム板35(A6063材)をろう付けにより接合したものも作成し、−40℃から105℃に10分間で上昇させ、105℃に15分保持した後、105℃から−40℃に10分間で下降させ、−40℃に15分保持する温度履歴を1サイクルとした冷熱サイクルを1000〜3000サイクル付与し、超音波探傷にてセラミックス基板6と放熱層用金属板8との接合欠陥率を測定した。接合欠陥率は、超音波探傷にて円相当で1mmφ以上接合されていない部位(非接合部とする)が認められた場合を接合欠陥とし、接合面全体に占める非接合部の面積比率を測定した。いずれもセラミックス基板6としては窒化アルミニウムを使用し、ろう材としてAl−Si系ろう材を使用して、真空雰囲気で635℃×1分の加熱によりろう付けした。
結果を表1に示す。
Next, in order to evaluate the manufacturing method of the present embodiment, the two types of pressurizing devices 21 and 31 and the laminate of the ceramic substrate 6, the metal circuit board 7, and the heat dissipation layer metal plate 8 are evenly arranged in the plane direction. Using a conventional pressurizing apparatus that pressurizes at a high pressure, the amount of the solder material to be spotted onto the surface of the metal circuit board 7 when brazed was measured. FIG. 5A shows a state in which the brazing material W has wrapped around the surface of the metal circuit board 7, and the distance L (maximum part) from the periphery of the metal circuit board 7 is the amount of smearing. Further, as shown in FIG. 5 (b), an aluminum plate 35 (A6063 material) having a thickness of 5 mm is joined to the heat radiating metal plate 8 as a heat sink by brazing, and the temperature is increased from −40 ° C. to 105 ° C. Increased in minutes, held at 105 ° C. for 15 minutes, then lowered from 105 ° C. to −40 ° C. in 10 minutes and held at −40 ° C. for 15 minutes. Then, the bonding defect rate between the ceramic substrate 6 and the heat radiation layer metal plate 8 was measured by ultrasonic flaw detection. Bonding defect rate is measured by measuring the area ratio of the non-bonded portion in the entire bonding surface, where the ultrasonic defect is equivalent to a circle and a portion that is not bonded by 1mmφ or more (non-bonded portion) is recognized as a bonding defect. did. In either case, aluminum nitride was used as the ceramic substrate 6 and an Al—Si brazing material was used as the brazing material, and brazing was performed by heating at 635 ° C. for 1 minute in a vacuum atmosphere.
The results are shown in Table 1.
表1において、評価は、冷熱サイクル3000回後の欠陥率が35%以上となったものを×、25%以上を△、15%以上を○、15%未満を◎とした。その他の欄のエッジ部変形とは、余剰ろう材によるコブが発生したことを示す。
また、本実施形態の装置を使用した場合でも、周縁部の圧力を中央部の圧力より大きくしないでろう付けしたものは比較例とした。
この表1からわかるように、本実施例の場合は、金属回路板の表面へのろう材のシミ出しは認められなかったのに対して、比較例の場合は、一部シミ出しが認められた。また、冷熱サイクルを付与した後の評価も、本実施例の場合は、冷熱サイクル3000回後でも接合欠陥の発生は少ないが、比較例の場合は、接合条件によっては1000回後から接合欠陥率の大きいものがあり、3000回では欠陥率が大きく上昇している。
In Table 1, the evaluation was evaluated as x when the defect rate after 3000 cooling cycles was 35% or more, Δ as 25% or more, ○ as 15% or more, and ◎ as less than 15%. The edge part deformation | transformation of the other column shows that the bump by the excessive brazing material generate | occur | produced.
Moreover, even when the apparatus of this embodiment was used, what was brazed without making the pressure of a peripheral part larger than the pressure of a center part was made into the comparative example.
As can be seen from Table 1, in the case of the present example, no spotting of the brazing material on the surface of the metal circuit board was observed, whereas in the case of the comparative example, part of the spotting was recognized. It was. In addition, in the case of the present example, the occurrence of bonding defects is small even after 3000 cooling cycles in the case of this example, but in the case of the comparative example, the bonding defect rate after 1000 times depending on the bonding conditions. The defect rate is greatly increased at 3000 times.
以上、本発明の実施形態について詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、加圧装置を図6又は図7に示す構造としてもよい。図6に示す加圧装置41は、図3に示す加圧装置21に対して金属回路板7又は放熱層用金属板8に当接するカーボン板24を省略し、シート部材25,26によって直接金属回路板7又は放熱層用金属板8を加圧する構成とされる。この場合、金属回路板7及び放熱層用金属板8の中央部は、これらの周縁部に作用する加圧力が金属回路板7又は放熱層用金属板8を伝わることにより加圧され、これら金属回路板7又は放熱層用金属板8の弾性により、周縁部の圧力が中央部よりも大きくなる。また、図7に示す加圧装置51は、ベース52及び加圧板53の対向面に、金属回路板7又は放熱層用金属板8の周縁部に当接する突出部52a,53aが一体に突出して形成され、この突出部52a,53aによって金属回路板7又は放熱層用金属板8の周縁部が加圧される構成である。この場合も、図6の場合と同様に、周縁部の圧力が中央部よりも大きくなる。
As mentioned above, although embodiment of this invention was explained in full detail, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, the pressurizing device may have a structure shown in FIG. 6 or FIG. The pressurizing device 41 shown in FIG. 6 omits the carbon plate 24 in contact with the metal circuit plate 7 or the metal plate 8 for the heat radiation layer from the pressurizing device 21 shown in FIG. The circuit board 7 or the heat radiation layer metal plate 8 is pressurized. In this case, the central portion of the metal circuit board 7 and the heat dissipation layer metal plate 8 is pressurized by the applied pressure acting on the peripheral edge thereof being transmitted through the metal circuit board 7 or the heat dissipation layer metal plate 8, and the metal Due to the elasticity of the circuit board 7 or the metal plate 8 for heat dissipation layer, the pressure at the peripheral edge becomes larger than that at the center. Further, in the pressing device 51 shown in FIG. 7, protruding portions 52 a and 53 a that are in contact with the peripheral portion of the metal circuit plate 7 or the heat dissipation layer metal plate 8 are integrally protruded on the opposing surfaces of the base 52 and the pressing plate 53. The projecting portions 52a and 53a are formed so that the peripheral portion of the metal circuit board 7 or the heat radiation layer metal plate 8 is pressurized. Also in this case, as in the case of FIG. 6, the pressure at the peripheral edge portion is larger than that at the central portion.
また、ヒートシンクを設ける場合、実施形態ではセラミックス基板に放熱層用金属板を介してヒートシンクを取り付けたが、放熱層用金属板を介さずに、セラミックス基板に直接ヒートシンクを取り付けてもよい。その場合も、ろう付け、はんだ付け、ボルト等によって固定される。
さらに、ろう材を金属回路板及び放熱層用金属板に貼付して一体に成形する例としたが、金属回路板又は放熱層用金属板とは別にろう材を成形して、これらを積層する構成としてもよい。
In the case where a heat sink is provided, in the embodiment, the heat sink is attached to the ceramic substrate via the heat dissipation layer metal plate. However, the heat sink may be directly attached to the ceramic substrate without using the heat dissipation layer metal plate. In that case, it is fixed by brazing, soldering, bolts or the like.
Furthermore, the brazing material is applied to the metal circuit board and the heat dissipation layer metal plate, and is integrally molded. However, the brazing material is formed separately from the metal circuit board or the heat dissipation layer metal plate, and these are laminated. It is good also as a structure.
1 パワーモジュール
2 絶縁回路基板
3 パワーモジュール用基板
4 電子部品
5 ヒートシンク
6 セラミックス基板
7 金属回路板
8 放熱層用金属板
11 ろう材痕跡層
12 はんだ接合層
13 流路
15 ろう材
21 加圧装置
22 ベース
23 加圧板
25,26 シート部材
41 加圧装置
42 ベース
43 加圧板
51 加圧装置
52 ベース
53 加圧板
DESCRIPTION OF SYMBOLS 1 Power module 2 Insulated circuit board 3 Power module board 4 Electronic component 5 Heat sink 6 Ceramic substrate 7 Metal circuit board 8 Metal plate for heat radiation layer 11 Brazing material trace layer 12 Solder joint layer 13 Flow path 15 Brazing material 21 Pressure device 22 Base 23 Pressure plate 25, 26 Sheet member 41 Pressure device 42 Base 43 Pressure plate 51 Pressure device 52 Base 53 Pressure plate
Claims (5)
前記セラミックス基板の表面にろう材を介して前記金属回路板を積層し、これらを積層方向に加圧する際に、前記金属回路板の周縁部の圧力を294kPa以上981kPa未満とし、中央部の圧力を98kPa以上294kPa未満とすることを特徴とする絶縁回路基板の製造方法。 In a method for manufacturing an insulating circuit board in which a metal circuit board is brazed and bonded to the surface of a ceramic substrate,
When laminating the metal circuit board on the surface of the ceramic substrate via a brazing material and pressurizing them in the laminating direction, the pressure at the peripheral edge of the metal circuit board is 294 kPa or more and less than 981 kPa, and the pressure at the center is A method for manufacturing an insulated circuit board, wherein the insulating circuit board is set to 98 kPa or more and less than 294 kPa .
セラミックス基板と金属回路板とを接合してなるろう材痕跡層の厚さが、前記金属回路板の周縁部で5μm未満であり、前記中央部で5μm以上20μm未満であることを特徴とする絶縁回路基板。 In an insulated circuit board in which a metal circuit board is brazed and joined to the surface of a ceramic substrate,
Insulation, characterized in that the thickness of the brazing material trace layer formed by joining the ceramic substrate and the metal circuit board is less than 5 μm at the peripheral edge of the metal circuit board and not less than 5 μm and less than 20 μm at the center. Circuit board.
前記セラミックス基板の裏面に放熱用金属板を介して又は該放熱用金属板を介さずにヒートシンクが取り付けられていることを特徴とするパワーモジュール用基板。 A power module substrate using the insulated circuit board according to claim 3 or 4 ,
A power module substrate, wherein a heat sink is attached to the back surface of the ceramic substrate via a heat radiating metal plate or without the heat radiating metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006172A JP5141566B2 (en) | 2009-01-14 | 2009-01-14 | Insulated circuit board manufacturing method, insulated circuit board, and power module substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006172A JP5141566B2 (en) | 2009-01-14 | 2009-01-14 | Insulated circuit board manufacturing method, insulated circuit board, and power module substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010165807A JP2010165807A (en) | 2010-07-29 |
JP5141566B2 true JP5141566B2 (en) | 2013-02-13 |
Family
ID=42581766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009006172A Active JP5141566B2 (en) | 2009-01-14 | 2009-01-14 | Insulated circuit board manufacturing method, insulated circuit board, and power module substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5141566B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5245989B2 (en) * | 2009-03-31 | 2013-07-24 | 三菱マテリアル株式会社 | Method for manufacturing power module substrate and method for manufacturing power module substrate with heat sink |
KR101097524B1 (en) | 2010-09-06 | 2011-12-22 | 삼성전기주식회사 | Manufacturing method of multi-layer circuit board |
JP6152681B2 (en) * | 2013-03-28 | 2017-06-28 | 三菱マテリアル株式会社 | Power module substrate and manufacturing method thereof |
JP5900559B2 (en) * | 2014-08-28 | 2016-04-06 | 三菱マテリアル株式会社 | Power module substrate manufacturing method |
JP6375818B2 (en) * | 2014-09-19 | 2018-08-22 | 三菱マテリアル株式会社 | Manufacturing apparatus and manufacturing method for power module substrate with heat sink |
JP7054610B2 (en) * | 2017-06-01 | 2022-04-14 | 住ベリサーチ株式会社 | Dielectric property measuring jig, dielectric property measuring device and dielectric property measuring method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327737A (en) * | 2003-04-24 | 2004-11-18 | Kyocera Corp | Compound substrate and manufacturing method therefor |
JPWO2007036999A1 (en) * | 2005-09-28 | 2009-04-02 | パナソニック株式会社 | Circuit board connection structure, electronic device, circuit board connection method, and pressure jig for circuit board connection |
JP4702294B2 (en) * | 2007-01-23 | 2011-06-15 | 三菱マテリアル株式会社 | Power module substrate manufacturing method, power module substrate, and power module |
JP5061740B2 (en) * | 2007-06-12 | 2012-10-31 | 三菱マテリアル株式会社 | Power module substrate |
-
2009
- 2009-01-14 JP JP2009006172A patent/JP5141566B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010165807A (en) | 2010-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6717238B2 (en) | Power module substrate with heat sink | |
JP6359455B2 (en) | Semiconductor circuit board, semiconductor device using the same, and method for manufacturing semiconductor circuit board | |
US9560755B2 (en) | Bonding body, power module substrate, and heat-sink-attached power module substrate | |
WO2013094213A1 (en) | Ceramic copper circuit board and semiconductor device employing same | |
JP4793622B2 (en) | Ceramic circuit board, power module, and method of manufacturing power module | |
JP5141566B2 (en) | Insulated circuit board manufacturing method, insulated circuit board, and power module substrate | |
WO2008013279A1 (en) | Electronic component storing package and electronic device | |
JP6201827B2 (en) | Manufacturing method of power module substrate with heat sink | |
WO2007142261A1 (en) | Power element mounting substrate, method for manufacturing the power element mounting substrate, power element mounting unit, method for manufacturing the power element mounting unit, and power module | |
WO2015114987A1 (en) | Power module substrate, power module substrate manufacturing method, and power module using power module substrate | |
TWI750332B (en) | Substrate for power module with heat sink attached | |
JP2010010561A (en) | Power module substrate and method of manufacturing the same | |
JPH08255973A (en) | Ceramic circuit board | |
JP5987418B2 (en) | Manufacturing method of power module substrate with heat sink | |
JP5786569B2 (en) | Power module substrate manufacturing method | |
JP6028497B2 (en) | Power module substrate and manufacturing method thereof | |
JP2002064169A (en) | Heat radiating structure | |
JP2007273661A (en) | Semiconductor device | |
JP5045613B2 (en) | Power module substrate and manufacturing method thereof | |
JP6031784B2 (en) | Power module substrate and manufacturing method thereof | |
JP2014167984A (en) | Method of manufacturing substrate for power module with heat sink | |
JP6152626B2 (en) | Power module substrate manufacturing method | |
TWI749359B (en) | Wiring board | |
JP2005050886A (en) | Compound substrate and its manufacturing method | |
JP2017168635A (en) | Substrate for power module and manufacturing method of power module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5141566 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |