JP2007273661A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007273661A
JP2007273661A JP2006096356A JP2006096356A JP2007273661A JP 2007273661 A JP2007273661 A JP 2007273661A JP 2006096356 A JP2006096356 A JP 2006096356A JP 2006096356 A JP2006096356 A JP 2006096356A JP 2007273661 A JP2007273661 A JP 2007273661A
Authority
JP
Japan
Prior art keywords
layer
circuit board
semiconductor device
metal circuit
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006096356A
Other languages
Japanese (ja)
Inventor
Kazuhiro Shiomi
和弘 塩見
Masaaki Ishio
雅昭 石尾
Masanori Yamagiwa
正憲 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Hitachi Metals Neomaterial Ltd
Original Assignee
Nissan Motor Co Ltd
Neomax Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Neomax Materials Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006096356A priority Critical patent/JP2007273661A/en
Publication of JP2007273661A publication Critical patent/JP2007273661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having high thermal resistance against a heat cycle from a temperature not higher than a freezing point to a high temperature of not lower than 100°C, concerning a semiconductor device which is equipped with and constituted of a semiconductor element in the desired place of a metallic circuit substrate by joining a circuit substrate composed of a metal plate to a ceramic substrate. <P>SOLUTION: An Mo material 4a is arranged immediately under the semiconductor element 3, and also a Cu material 4b is arranged in the joint of the element. By this constitution, the Mo material suppresses the plane direction expansion of the Cu material with respect to the element between the metallic circuit substrate 2 and the semiconductor element. Since the Cu material softer than the Mo material is arranged on a joint surface so as to mitigate stress on the joint. Thus, mounting with high thermal resistance and high strength is enabled. The cylindrical Mo material arranged to constrain the Cu material in the joint immediately under the element is adopted as a stress mitigating mechanism having the same operation effect. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、セラミックス基板に金属板からなる回路基板を接合し、該金属回路基板に半導体素子を装着する構成の半導体装置における放熱基板の新規な構成に関し、半導体素子の直下の接合部にCu、金属回路基板との接合部にMoを配置し、さらにセラミックス基板と金属回路基板との接合部も同様構成とし、100℃以上の高温、例えば氷点下から300℃程度のヒートサイクルテストにも耐える高耐熱性を発揮できる半導体装置に関する。   The present invention relates to a novel structure of a heat dissipation board in a semiconductor device having a structure in which a circuit board made of a metal plate is bonded to a ceramic substrate and a semiconductor element is mounted on the metal circuit board. Mo is placed at the junction with the metal circuit board, and the junction between the ceramic substrate and the metal circuit board is configured in the same way, with high heat resistance that can withstand heat cycle tests at temperatures above 100 ° C, for example, below 300 ° C. The present invention relates to a semiconductor device capable of exhibiting performance.

電気自動車や内燃機関とモーターを用いたハイブリッド車、燃料電池自動車などのインバーター制御に用いられるIGBT、スイッチング電源などの各種パワーモジュール等には、セラミックス基板に金属板からなる回路基板を接合し、これをエッチングなどで金属回路基板となし、この金属回路基板に直接半導体素子を装着する構成の半導体装置(特許文献1)が用いられる。   Circuit boards made of metal plates are joined to ceramic substrates for various power modules such as IGBTs and switching power supplies used in inverter control of electric vehicles, hybrid vehicles using internal combustion engines and motors, fuel cell vehicles, etc. Is used as a metal circuit board by etching or the like, and a semiconductor device (Patent Document 1) having a structure in which a semiconductor element is directly attached to the metal circuit board is used.

上記用途に用いられる半導体装置は、取り出す出力の向上を図るために昇圧電圧やスイッチング周波数が高く要求されるようになり、その結果、半導体素子からの発熱が増大して100℃以上、さらには300℃以上に達することがあり、高耐熱性を得るためにセラミックス基板に金属回路基板と半導体素子を直接載置する前記構成を採用する。
特開2005-005404 特開2004-343035 特開平05-226527
Semiconductor devices used for the above applications are required to have a high boosted voltage and switching frequency in order to improve the output to be taken out. In order to obtain high heat resistance, the above structure in which the metal circuit board and the semiconductor element are directly placed on the ceramic substrate is adopted.
JP2005-005404 JP2004-343035 JP 05-226527

かかる構成の半導体装置は、自動車に使用されると、その環境によっては、氷点下数十℃から300℃の広い範囲のヒートサイクルを繰り返し受けることが想定されるため、半導体装置としての動作保証を得るために各接合部はこのヒートサイクルに耐える高耐熱性が要求される。   When the semiconductor device having such a configuration is used in an automobile, depending on the environment, it is assumed that a heat cycle in a wide range of several tens of degrees Celsius to 300 ° C. is repeatedly received. Therefore, each joint is required to have high heat resistance that can withstand this heat cycle.

セラミックス基板と金属回路基板間、金属回路基板と半導体素子間の各接合部には、100℃以上の高温で常用可能な高耐熱で高強度な実装が必要となり、苛酷なヒートサイクルで剥離しない強固な接合強度も要求される一方で、接合相手材料との熱膨係数差に起因して接合部にクラックを発生させないように応力緩和の機構も要求されるため、かかる相反する条件を満足する接合構造が必要である。   The joints between the ceramic substrate and the metal circuit board, and between the metal circuit board and the semiconductor element must be mounted with high heat resistance and strength that can be used at high temperatures of 100 ° C or higher, and will not peel off in severe heat cycles Bonding that satisfies such conflicting conditions is also required because a stress relaxation mechanism is also required so that cracks do not occur in the joint due to the difference in thermal expansion coefficient from the bonding partner material, while also requiring high bonding strength. A structure is needed.

この発明は、セラミックス基板上に金属板からなる回路基板を接合し、該金属回路基板の所要箇所に半導体素子を装着する構成の半導体装置において、100℃以上の高温で使用可能であり、さらには氷点下から300℃のヒートサイクルテストにも耐える高耐熱性を有した半導体装置の提供を目的としている。   The present invention can be used at a high temperature of 100 ° C. or higher in a semiconductor device having a structure in which a circuit board made of a metal plate is bonded to a ceramic substrate and a semiconductor element is mounted on a required portion of the metal circuit board. The purpose is to provide a semiconductor device having high heat resistance that can withstand a heat cycle test at 300 ° C. from below freezing point.

発明者らは、上述の半導体装置において、100℃以上の温度域での高耐熱、高強度な実装を実現するため、金属回路基板と半導体素子間の接合構造について、鋭意検討した結果、半導体素子の直下にMo材を配置しかつ当該素子の接合部にはCu材を配置した構成とすることで、金属回路基板と半導体素子間において、Mo材は該素子に対してCu材の平面方向の膨張を抑制でき、接合面にはMo材に比べ柔らかいCu材があることで接合部に与える応力を緩和でき、高耐熱、高強度な実装が可能となることを知見した。   As a result of intensive studies on the junction structure between the metal circuit board and the semiconductor element in order to achieve high heat resistance and high strength mounting in a temperature range of 100 ° C. or higher in the above semiconductor device, Between the metal circuit board and the semiconductor element, the Mo material is in the plane direction of the Cu material with respect to the element. It was found that expansion can be suppressed, and the stress applied to the joint can be relaxed by having a soft Cu material on the joint surface compared to the Mo material, enabling high heat resistance and high strength mounting.

また、発明者らは、上記の半導体素子の接合部にCu材を配置しかつ該素子の直下にMo材を配置する応力緩和機構は、Mo材は該素子の直下でなく該素子接合部のCu材を拘束するように配置、例えば筒形状のMo材であっても同様の作用効果で金属回路基板と半導体素子間の接合部に発生する応力を緩和できることを知見した。   In addition, the inventors have disclosed a stress relaxation mechanism in which a Cu material is disposed at a joint portion of the semiconductor element and a Mo material is disposed immediately below the element. It has been found that the stress generated at the joint between the metal circuit board and the semiconductor element can be relieved by the same action and effect even if the Cu material is arranged to constrain, for example, a cylindrical Mo material.

さらに、上記の金属回路基板と半導体素子間の接合構造に加え、さらにセラミックス基板と金属回路基板との接合部も同様構成、すなわち、半導体素子の直下のセラミックス基板との接合部はCu材で、このCu材にはMo材を配置してCu又はAlの金属回路基板と接続される構成を採用すると、半導体装置全体の高耐熱性がより向上することを知見し、この発明を完成した。   Furthermore, in addition to the joint structure between the metal circuit board and the semiconductor element described above, the joint part between the ceramic substrate and the metal circuit board has the same configuration, that is, the joint part between the ceramic substrate immediately below the semiconductor element is a Cu material, This Cu material has been found to be able to improve the high heat resistance of the entire semiconductor device by adopting a structure in which a Mo material is arranged and connected to a Cu or Al metal circuit board, and the present invention has been completed.

すなわち、この発明は、セラミックス基板上に金属板からなる回路基板を接合し、該金属回路基板の所要箇所に半導体素子を着設する構成の半導体装置であり、金属回路基板と半導体素子の接合部に、Mo層とCu層とが積層された上側クラッド材を、前記Cu層が前記素子と接するように介在させたことを特徴とする半導体装置である。   That is, the present invention is a semiconductor device having a structure in which a circuit board made of a metal plate is bonded onto a ceramic substrate and a semiconductor element is attached to a required portion of the metal circuit board. The upper clad material in which the Mo layer and the Cu layer are laminated is interposed so that the Cu layer is in contact with the element.

この発明は、金属回路基板と半導体素子の接合部に、Cu層が前記素子側と接しMo層が該回路基板と接するようMo層とCu層との板状の2層上側クラッド材を配置するか、あるいはCu層が前記素子側と接しMo層が前記素子直下のCu層外周側に一部又は全周囲に環状に接する環状上側クラッド材を配置したことを特徴とする半導体装置である。   In the present invention, a plate-like two-layer upper clad material of a Mo layer and a Cu layer is disposed at a junction between a metal circuit board and a semiconductor element so that the Cu layer is in contact with the element side and the Mo layer is in contact with the circuit board. Alternatively, an annular upper clad material in which the Cu layer is in contact with the element side and the Mo layer is in contact with the outer periphery of the Cu layer directly below the element in a part or all around is arranged.

また、この発明は、上記構成の半導体装置において、半導体素子の直下のセラミックス基板と金属回路基板との接合部に、Cu層が前記セラミックス基板と接しMo層が該回路基板と接するようMo層とCu層との板状の2層下側クラッド材を配置したことを特徴とする半導体装置である。   Further, the present invention provides a semiconductor device having the above-described structure, in which a Cu layer is in contact with the ceramic substrate and a Mo layer is in contact with the circuit substrate at a joint portion between the ceramic substrate and the metal circuit substrate immediately below the semiconductor element. A semiconductor device is characterized in that a plate-like two-layer lower clad material with a Cu layer is disposed.

この発明によると、金属回路基板と半導体素子の接合部で、接合部に発生する応力を緩和して強固な接合を維持でき、さらに、半導体素子直下のセラミックス基板と金属回路基板との接合部も同様に同部に発生する応力を緩和して強固な接合を維持できる。従って、この発明によると、100℃〜400℃の温度域おいて高耐熱、高強度な実装が要求される半導体装置を提供できる。   According to the present invention, at the joint between the metal circuit board and the semiconductor element, the stress generated at the joint can be relieved to maintain a strong joint, and the joint between the ceramic substrate directly below the semiconductor element and the metal circuit board can also be maintained. Similarly, it is possible to relieve the stress generated in the same part and maintain strong bonding. Therefore, according to the present invention, it is possible to provide a semiconductor device that requires high heat resistance and high strength mounting in a temperature range of 100 ° C. to 400 ° C.

この発明によると、半導体装置を製造する際に、Niめっきが不要であるろう付けにて接合が可能であり、また、セラミックス基板、金属回路基板、半導体素子、上側クラッド材、下側クラッド材のそれぞれの接合箇所のいずれか又は複数箇所を選択してろう付けにより接合したり、あるいは全ての箇所をろう付けとすることで1回の接合で組立てを完了できる。   According to the present invention, when manufacturing a semiconductor device, it is possible to join by brazing that does not require Ni plating, and the ceramic substrate, metal circuit board, semiconductor element, upper clad material, lower clad material Assembling can be completed by one-time joining by selecting any one or a plurality of joints and joining them by brazing or by brazing all the parts.

この発明によると、ろう付けを採用することで、上側クラッド材を半導体チップ実装部箇所にのみ局所配置することが可能となり、Mo使用量を必要最低限にできる。さらには、ろう材に高融点ろう材、例えばCu系ろう材を用いることで、接合部の熱伝導性、電気的特性にすぐれた半導体装置を提供できる。   According to the present invention, by employing brazing, the upper clad material can be locally disposed only at the semiconductor chip mounting portion, and the amount of Mo used can be minimized. Furthermore, by using a high melting point brazing material such as a Cu-based brazing material for the brazing material, it is possible to provide a semiconductor device having excellent thermal conductivity and electrical characteristics of the joint.

この発明において、半導体装置の構成は、セラミックス基板上に金属板からなる回路基板を接合し、該金属回路基板の所要箇所に半導体素子を着設する構成であればいずれの構成でもよい。   In the present invention, the configuration of the semiconductor device may be any configuration as long as a circuit board made of a metal plate is bonded to a ceramic substrate and a semiconductor element is attached to a required portion of the metal circuit board.

セラミックス基板は、SiN、AlN、Al2O3、SiC、Si3N4などが採用でき、特に、Si3N4が高強度が期待できる。 As the ceramic substrate, SiN, AlN, Al 2 O 3 , SiC, Si 3 N 4 and the like can be adopted. In particular, Si 3 N 4 can be expected to have high strength.

金属回路基板は、Cu、Al、Ag、Auなど導電性に優れた材料が採用でき、特に、Cuは電気抵抗が低く種々厚みのものが入手が容易で一般的であり、Alは電気抵抗が低くAlワイヤーボンディングが容易であることが至便である。   For metal circuit boards, materials with excellent conductivity such as Cu, Al, Ag, Au can be adopted. In particular, Cu has low electrical resistance and various thicknesses are readily available, and Al has electrical resistance. It is convenient that low Al wire bonding is easy.

半導体素子は、Si、SiC、GaN、GaAsなどが採用でき、特に、耐熱性に優れるSiCが好適である。   As the semiconductor element, Si, SiC, GaN, GaAs or the like can be adopted, and SiC having excellent heat resistance is particularly suitable.

この発明において、セラミック基板1上に設けた金属回路基板2と半導体素子3の接合部に、Cu層が半導体素子3と接するように介在させるMo層とCu層とを積層した構成の上側クラッド材4は、例えば、図1Aに示すごとく、Cu層が上記半導体素子3側と接してMo層が金属回路基板2と接するようMo層とCu層との板状の2層構造の上側クラッド材4の構成、また、図2Aに示すごとく、Cu層が上記半導体素子3側と接してMo層が上記素子3直下にあるCu層の外周側に接するよう構成した環状構造(リング構造)の上側クラッド材6の構成が採用できる。   In the present invention, an upper clad material having a structure in which a Mo layer and a Cu layer are disposed so that a Cu layer is in contact with the semiconductor element 3 at the junction between the metal circuit board 2 and the semiconductor element 3 provided on the ceramic substrate 1 For example, as shown in FIG. 1A, the upper clad material 4 having a plate-like two-layer structure of a Mo layer and a Cu layer so that the Cu layer is in contact with the semiconductor element 3 side and the Mo layer is in contact with the metal circuit board 2 as shown in FIG. In addition, as shown in FIG. 2A, the upper cladding of the annular structure (ring structure) configured such that the Cu layer is in contact with the semiconductor element 3 side and the Mo layer is in contact with the outer peripheral side of the Cu layer immediately below the element 3 The configuration of material 6 can be adopted.

Mo層とCu層を積層する上側クラッド材の構成としては、圧接又はAg系ろう材、Cu系ろう材により容易に接合することができる。圧接方法としては、特に限定されないが、CuとMo素材を所要の板厚み比率となるように準備して、これらを合わせて圧下率が例えば60〜80%となるように圧接し、その後、拡散焼鈍処理、例えば900℃〜1000℃、1〜10分保持する方法が採用できる。   As the structure of the upper clad material in which the Mo layer and the Cu layer are laminated, the upper clad material can be easily joined by pressure welding, an Ag-based brazing material, or a Cu-based brazing material. The pressure welding method is not particularly limited, but Cu and Mo materials are prepared so as to have a required plate thickness ratio, and these are combined and pressed so that the reduction ratio is, for example, 60 to 80%, and then diffused. An annealing treatment, for example, a method of holding at 900 ° C. to 1000 ° C. for 1 to 10 minutes can be employed.

Ag系ろう材、Cu系ろう材組成としては、特に限定しないが、例えばCu系ろう材組成として、Sn-Cu材が密着強度に優れ、接合性や取扱いが容易である。組成としては、1〜13質量%Sn-Cu材が好ましく、特に2〜7質量%Sn-Cu材は、高融点(970℃〜890℃)で熱伝導率(230W/m・K以上)が高いためさらに好ましい。   Although it does not specifically limit as Ag type brazing material and Cu type brazing material composition, Sn-Cu material is excellent in adhesive strength, for example as Cu type brazing material composition, and joining property and handling are easy. As composition, 1-13 mass% Sn-Cu material is preferable, especially 2-7 mass% Sn-Cu material has a high melting point (970 ° C-890 ° C) and thermal conductivity (230 W / mK or more). It is more preferable because it is high.

Cu層が前記素子側と接しMo層が前記素子直下のCu層外周側に一部又は全周囲に環状に接するクラッド材の構成としては、Ag系ろう材、Cu系ろう材により容易に接合することができる。ろう材組成については特に限定しないが、Cu系ろう材組成としては、上記のSn-Cu材が好ましい。   The structure of the clad material in which the Cu layer is in contact with the element side and the Mo layer is in contact with the outer peripheral side of the Cu layer directly below the element in a ring shape around the entire circumference is easily joined with an Ag-based brazing material or a Cu-based brazing material. be able to. The brazing material composition is not particularly limited, but the above-described Sn-Cu material is preferable as the Cu-based brazing material composition.

上記の積層した上側クラッド材は、Mo層とCu層の厚み比率は特に限定されないが、Moが全体厚みの20%〜80%であることが好ましい。
また、Mo層が前記素子直下のCu層外周側に環状に接するクラッド材において、Moの平面方向のは厚みとしては特に限定しないが、Mo-Cu-Moに並ぶ構成でMoが全体厚みの20%〜80%であることが好ましい。
In the laminated upper clad material, the thickness ratio of the Mo layer and the Cu layer is not particularly limited, but Mo is preferably 20% to 80% of the total thickness.
In addition, in the clad material in which the Mo layer is annularly in contact with the outer peripheral side of the Cu layer directly below the element, the thickness of the Mo in the planar direction is not particularly limited, but Mo is configured to be aligned with Mo-Cu-Mo. % To 80% is preferable.

この発明において、半導体素子3の直下のセラミックス基板1と金属回路基板2との接合部は、図1B、図2Bに示すごとく、Cu層が前記セラミックス基板1と接しMo層が該回路基板2と接するようMo層とCu層の2層板構造の下側クラッド材5を配置した構成を採用することができる。   In the present invention, as shown in FIGS.1B and 2B, the bonding portion between the ceramic substrate 1 and the metal circuit substrate 2 directly below the semiconductor element 3 is such that the Cu layer is in contact with the ceramic substrate 1 and the Mo layer is connected to the circuit substrate 2. A configuration in which the lower clad material 5 having a two-layer structure of a Mo layer and a Cu layer is disposed so as to be in contact with each other can be adopted.

Mo層とCu層を積層する下側クラッド材の構成としては、圧接又はAg系ろう材、Cu系ろう材により容易に接合することができる。圧接方法やろう材組成については特に限定しないが、圧接方法としては、Mo層とCu層の2層のみを圧接することはもちろん、その後に金属回路を構成するCu、Al、Ag、Auなどの金属層を、さらに圧接、あるいはスパッターやめっきにて成膜するほか、予め上記金属層とMo層とCu層を同時に圧接して所要厚みとすることが可能である。   As a configuration of the lower clad material for laminating the Mo layer and the Cu layer, it can be easily joined by pressure welding, an Ag-based brazing material, or a Cu-based brazing material. The pressure welding method and the brazing material composition are not particularly limited, but as the pressure welding method, not only the Mo layer and the Cu layer, but also the Cu, Al, Ag, Au, etc. constituting the metal circuit after that are pressed. In addition to the metal layer being further formed by pressure welding, sputtering or plating, the metal layer, the Mo layer, and the Cu layer can be simultaneously pressured in advance to obtain a required thickness.

下側クラッド材のMo層とCu層を積層するろう材組成については特に限定しないが、Cu系ろう材組成としては、上記のSn-Cu材が好ましい。
また、下側クラッド材をろう材で接合した構成の場合、金属回路を構成する金属層との接合は、Cu系ろう材組成としては、上記のSn-Cu材が好ましい。
The brazing material composition for laminating the Mo layer and Cu layer of the lower clad material is not particularly limited, but the above-mentioned Sn—Cu material is preferable as the Cu-based brazing material composition.
In addition, in the case of a configuration in which the lower clad material is joined with a brazing material, the above Sn-Cu material is preferable as a Cu-based brazing material composition for joining with the metal layer constituting the metal circuit.

また、このセラミックス基板と金属回路基板との接合部において、金属回路基板は、下側クラッド材のMo層とCu層の厚み比率は特に限定されないが、Moが全体厚みの20%〜80%であることが好ましい。   Further, in the joint part between the ceramic substrate and the metal circuit substrate, the thickness ratio of the Mo layer and the Cu layer of the lower clad material is not particularly limited, but Mo is 20% to 80% of the total thickness. Preferably there is.

この発明において、半導体素子と上側クラッド材との接合、上側クラッド材と金属回路基板の金属回路層との接合、下側クラッド材とセラミックス基板との接合、の各接合には、公知のはんだまたは高融点ろう材を採用できる。高融点ろう材としては、Ag-Sn系、Ag-Cu系、Sn-Cu系、Al-Si系、Au-Sn系、Au-Si系ろう材や各種高耐熱金属ペーストやナノ金属ペーストなどがある。これらの高融点ろう材は一般的にはんだに比べ強度が高いため、この発明で採用するCuの応力緩和による効果がより一層顕著に現れると考えられる。   In the present invention, each of the bonding of the semiconductor element and the upper cladding material, the bonding of the upper cladding material and the metal circuit layer of the metal circuit board, and the bonding of the lower cladding material and the ceramic substrate may be performed by using known solder or High melting point brazing material can be used. Examples of high melting point brazing filler metals include Ag-Sn, Ag-Cu, Sn-Cu, Al-Si, Au-Sn, Au-Si, various high heat resistant metal pastes and nano metal pastes. is there. Since these high melting point brazing filler metals generally have higher strength than solder, it is considered that the effect of stress relaxation of Cu employed in the present invention appears more remarkably.

実施例1
図1Aに示す実施例の半導体装置の構成として、Si3N4板のセラミック基板1上に所要パターンで設けた厚みが300μmの圧延によるCu箔の金属回路基板2と、SiCからなる半導体素子3との接合部に、Mo材とCu材を圧延圧接して厚みが200μmからなる2層構造の上側クラッド材4が介在接合される構成を採用した。
Example 1
As a configuration of the semiconductor device of the example shown in FIG. 1A, a metal circuit board 2 of Cu foil formed by rolling with a thickness of 300 μm provided in a required pattern on a ceramic substrate 1 of a Si 3 N 4 plate, and a semiconductor element 3 made of SiC A structure is adopted in which the upper clad material 4 having a two-layer structure having a thickness of 200 μm is interposed and joined by rolling and welding the Mo material and the Cu material.

まず、セラミック基板1上に、厚み50μmのCu系ろう材(3Sn-Cu)を介在させて、厚みが300μmのCu箔材を載置してこれらを接合積層した後、エッチングにより所要パターンを形成して金属回路基板2となした。   First, a Cu-based brazing material (3Sn-Cu) with a thickness of 50 μm is placed on the ceramic substrate 1 and a 300 μm-thick Cu foil material is placed and bonded and laminated, and then the required pattern is formed by etching. Thus, a metal circuit board 2 was obtained.

次に、この金属回路基板2の所要位置に半導体素子3を載置すべく2層構造の上側クラッド材4を介在させて接合した。金属回路基板2と上側クラッド材4のMo層4aとの間に、厚み50μmのCu系ろう材(3Sn-Cu)箔を配置して上側クラッド材4を積層した。さらに、上側クラッド材4のCu層4b上に、厚み50μmのろう材箔(80Au-Sn)を配置して半導体素子3を載置して接合した。   Next, in order to place the semiconductor element 3 at a required position on the metal circuit board 2, the upper clad material 4 having a two-layer structure was interposed and joined. Between the metal circuit board 2 and the Mo layer 4a of the upper clad material 4, a Cu-based brazing material (3Sn—Cu) foil having a thickness of 50 μm was disposed and the upper clad material 4 was laminated. Further, a brazing material foil (80Au—Sn) having a thickness of 50 μm was placed on the Cu layer 4b of the upper clad material 4, and the semiconductor element 3 was placed and bonded thereto.

得られた図1Aに示す構成の半導体装置を用いて、ヒートサイクル試験(A試験、B試験)に供した。その結果、A試験、B試験ともに全ての接合部に剥離などの欠陥は認められなかった。   Using the obtained semiconductor device having the configuration shown in FIG. 1A, it was subjected to a heat cycle test (A test, B test). As a result, no defects such as peeling were observed in all the joints in both the A test and the B test.

ヒートサイクル試験は、雰囲気を-40℃から120℃(A試験)又は350℃(B試験)迄の間を、まず常温から120℃又は350℃の高温へ加熱し、該高温から放熱させて常温を経て冷却して-40℃の低温へ、該低温から放置して常温へと連続的に戻る過程を1サイクルとし、これを連続的又は断続的に、A試験は10,000サイクル、B試験は100〜1,000サイクル繰り返す条件で行った。   In the heat cycle test, the atmosphere is heated from -40 ° C to 120 ° C (A test) or 350 ° C (B test) first from room temperature to 120 ° C or 350 ° C, and then released from the high temperature to normal temperature. The process of cooling down to a low temperature of -40 ° C., leaving the low temperature to return to room temperature continuously is defined as one cycle, which is continuously or intermittently, 10,000 cycles for the A test and 100 cycles for the B test. It was performed under the condition of repeating 1,000 cycles.

実施例2
図1Bに示す実施例の半導体装置の構成として、Si3N4板のセラミック基板1上に所要パターンで設けた厚みが300μmの圧延によるCu箔の金属回路基板2との間に、Mo材とCu材を圧延圧接して厚みが150μmからなる2層構造の下側クラッド材5を介在させてあり、また、この金属回路基板2とSiCからなる半導体素子3との接合部にも、Mo材とCu材を圧延圧接して厚みが150μmからなる2層構造の上側クラッド材4を介在接合した構成を採用した。
Example 2
As the configuration of the semiconductor device of the embodiment shown in FIG. 1B, the Mo material and the metal circuit board 2 of Cu foil formed by rolling with a thickness of 300 μm provided in a required pattern on the ceramic substrate 1 of the Si 3 N 4 plate, The lower clad material 5 having a two-layer structure of 150 μm in thickness is interposed by rolling and welding the Cu material, and the Mo material is also present at the joint between the metal circuit board 2 and the semiconductor element 3 made of SiC. A structure was adopted in which an upper cladding material 4 having a two-layer structure having a thickness of 150 μm was interposed and rolled by pressure welding with a Cu material.

セラミック基板1上に厚み50μmのCu系ろう材(2Sn-Cu)箔を配置して、上記2層構造の下側クラッド材5を載置し、さらに厚み50μmのCu系ろう材(2Sn-Cu)箔を配置して、厚みが300μmのCu箔材を載置してこれらを同時に接合積層した後、エッチングにより所要パターンを形成して金属回路基板2となした。   A Cu-based brazing material (2Sn-Cu) foil having a thickness of 50 μm is disposed on the ceramic substrate 1, and the lower clad material 5 of the two-layer structure is placed thereon, and a Cu-based brazing material (2Sn-Cu) having a thickness of 50 μm is further placed. ) A foil was placed, a 300 μm thick Cu foil material was placed, and these were simultaneously bonded and laminated. Then, a required pattern was formed by etching to form a metal circuit board 2.

次に、この金属回路基板2の所要位置に半導体素子3を載置すべく上記2層構造の上側クラッド材4を介在させて接合した。まず、金属回路基板2と上側クラッド材4のMo層4aとの間に、厚み50μmのCu系ろう材(2Sn-Cu)箔を配置して上側クラッド材4を積層した。さらに、上側クラッド材4のCu層4b上に、厚み50μmのろう材(80Au-Sn)箔を配置して半導体素子3を載置して接合した。   Next, in order to place the semiconductor element 3 at a required position of the metal circuit board 2, the upper clad material 4 having the two-layer structure was interposed and joined. First, the upper clad material 4 was laminated by arranging a 50 μm thick Cu-based brazing material (2Sn—Cu) foil between the metal circuit board 2 and the Mo layer 4a of the upper clad material 4. Further, a brazing material (80Au—Sn) foil having a thickness of 50 μm was placed on the Cu layer 4b of the upper clad material 4, and the semiconductor element 3 was placed and bonded thereto.

得られた図1Bに示す構成の半導体装置を用いて、実施例1のヒートサイクル試験に供した。その結果、A試験、B試験ともに全ての接合部に剥離などの欠陥は認められなかった。   The obtained semiconductor device shown in FIG. 1B was used for the heat cycle test of Example 1. As a result, no defects such as peeling were observed in all the joints in both the A test and the B test.

実施例3
図2Aに示す実施例の半導体装置の構成として、Si3N4板のセラミック基板1上に所要パターンで設けた厚みが300μmの圧延によるCu箔の金属回路基板2と、SiCからなる半導体素子3との接合部に、厚みが200μmのCu層6bが前記素子3と接し、前記素子3直下のCu層6bの外周側にMo層6aが圧接された構成の環状上側クラッド材6が介在接合される構成を採用した。
Example 3
2A, as a configuration of the semiconductor device of the embodiment shown in FIG. 2A, a metal circuit board 2 made of Cu foil by rolling with a thickness of 300 μm provided in a required pattern on a ceramic substrate 1 made of Si 3 N 4 plate, and a semiconductor element 3 made of SiC An annular upper clad material 6 having a structure in which a Cu layer 6b having a thickness of 200 μm is in contact with the element 3 and a Mo layer 6a is press-contacted to the outer peripheral side of the Cu layer 6b immediately below the element 3 is interposed and joined to the joint portion The configuration is adopted.

まず、セラミック基板1上に、厚み50μmのCu系ろう材(3Sn-Cu)を介在させて、厚みが300μmのCu箔材を載置してこれらを接合積層した後、エッチングにより所要パターンを形成して金属回路基板2となした。   First, a Cu-based brazing material (3Sn-Cu) with a thickness of 50 μm is placed on the ceramic substrate 1 and a 300 μm-thick Cu foil material is placed and bonded and laminated, and then the required pattern is formed by etching. Thus, a metal circuit board 2 was obtained.

次に、この金属回路基板2の所要位置に半導体素子3を載置すべく環状上側クラッド材6を介在させて接合した。金属回路基板2と環状上側クラッド材6の環状Mo層6a及びCu層6bとの間に、厚み50μmのCu系ろう材(3Sn-Cu)箔を配置して環状上側クラッド材6を積層した。さらに、環状上側クラッド材6のCu層6b上に、厚み50μmのろう材箔(80Au-Sn)を配置して半導体素子3を載置して接合した。   Next, in order to place the semiconductor element 3 at a required position of the metal circuit board 2, the annular upper clad material 6 was interposed and joined. Between the metal circuit board 2 and the annular Mo layer 6a and the Cu layer 6b of the annular upper clad material 6, a Cu-based brazing material (3Sn—Cu) foil having a thickness of 50 μm was disposed to laminate the annular upper clad material 6. Furthermore, a brazing material foil (80Au—Sn) having a thickness of 50 μm was placed on the Cu layer 6b of the annular upper clad material 6, and the semiconductor element 3 was placed and bonded thereto.

得られた図2Aに示す構成の半導体装置を用いて、ヒートサイクル試験(A試験、B試験)に供した。その結果、A試験、B試験ともに全ての接合部に剥離などの欠陥は認められなかった。   The obtained semiconductor device having the configuration shown in FIG. 2A was used for a heat cycle test (A test, B test). As a result, no defects such as peeling were observed in all the joints in both the A test and the B test.

実施例4
図2Bに示す実施例の半導体装置の構成として、Si3N4板のセラミック基板1上に所要パターンで設けた厚みが300μmの圧延によるCu箔の金属回路基板2との間に、Mo材とCu材を圧延圧接して厚みが150μmからなる2層構造の下側クラッド材5を介在させてあり、また、この金属回路基板2とSiCからなる半導体素子3との接合部にも、厚みが200μmのCu層6bが前記素子3と接し、前記素子3直下のCu層6bの外周側にMo層6aが圧接された構成の環状上側クラッド材6を介在接合した構成を採用した。
Example 4
As a configuration of the semiconductor device of the embodiment shown in FIG. 2B, a Mo material and a Cu foil metal circuit board 2 formed by rolling with a thickness of 300 μm provided in a required pattern on a ceramic substrate 1 of a Si 3 N 4 plate, The lower clad material 5 having a two-layer structure having a thickness of 150 μm is interposed by rolling and welding the Cu material, and the thickness of the junction between the metal circuit board 2 and the semiconductor element 3 made of SiC is also thick. A configuration in which a 200 μm Cu layer 6b is in contact with the element 3 and an annular upper clad material 6 having a structure in which the Mo layer 6a is press-contacted to the outer peripheral side of the Cu layer 6b immediately below the element 3 is employed.

セラミック基板1上に厚み50μmのCu系ろう材(2Sn-Cu)箔を配置して、上記2層構造の下側クラッド材5を載置し、さらに厚み50μmのCu系ろう材(2Sn-Cu)箔を配置して、厚みが300μmのCu箔材を載置してこれらを同時に接合積層した後、エッチングにより所要パターンを形成して金属回路基板2となした。   A Cu-based brazing material (2Sn-Cu) foil having a thickness of 50 μm is disposed on the ceramic substrate 1, and the lower clad material 5 of the two-layer structure is placed thereon, and a Cu-based brazing material (2Sn-Cu) having a thickness of 50 μm is further placed. ) A foil was placed, a 300 μm thick Cu foil material was placed, and these were simultaneously bonded and laminated. Then, a required pattern was formed by etching to form a metal circuit board 2.

次に、この金属回路基板2の所要位置に半導体素子3を載置すべく上記環状上側クラッド材6を介在させて接合した。金属回路基板2と環状上側クラッド材6の環状Mo層6a及びCu層6bとの間に、厚み50μmのCu系ろう材(2Sn-Cu)箔を配置して環状上側クラッド材6を積層した。さらに、環状上側クラッド材6のCu層6b上に、厚み50μmのろう材箔(80Au-Sn)を配置して半導体素子3を載置して接合した。   Next, in order to place the semiconductor element 3 at a required position on the metal circuit board 2, the annular upper clad material 6 was interposed and joined. Between the metal circuit board 2 and the annular Mo layer 6a and the Cu layer 6b of the annular upper cladding member 6, a Cu-based brazing filler metal (2Sn—Cu) foil having a thickness of 50 μm was disposed and the annular upper cladding member 6 was laminated. Furthermore, a brazing material foil (80Au—Sn) having a thickness of 50 μm was placed on the Cu layer 6b of the annular upper clad material 6, and the semiconductor element 3 was placed and bonded thereto.

得られた図1Bに示す構成の半導体装置を用いて、実施例1のヒートサイクル試験に供した。その結果、A試験、B試験ともに全ての接合部に剥離などの欠陥は認められなかった。   The obtained semiconductor device shown in FIG. 1B was used for the heat cycle test of Example 1. As a result, no defects such as peeling were observed in all the joints in both the A test and the B test.

この発明による半導体装置は、電気自動車や内燃機関とモーターを用いたハイブリッド車、燃料電池自動車などのインバーター制御に用いられるIGBT、スイッチング電源などの各種パワーモジュール等において、例えば氷点下から120℃あるいは350℃のヒートサイクルを繰り返す高負荷熱試験にも耐える高耐熱性を発揮する。   The semiconductor device according to the present invention is used in various power modules such as IGBTs and switching power supplies used for inverter control of electric vehicles, hybrid vehicles using internal combustion engines and motors, fuel cell vehicles, etc., for example, 120 ° C. or 350 ° C. from below freezing point. Demonstrates high heat resistance to withstand high-load thermal tests that repeat the heat cycle.

図1Aは、この発明の半導体装置の2層構造の上側クラッド材を用いる実施例、図1Bは、2層構造の上側クラッド材と下側クラッド材を用いる実施例の構成を示す説明図である。FIG. 1A is an explanatory diagram showing a configuration of an embodiment using an upper clad material having a two-layer structure of a semiconductor device of the present invention, and FIG. 1B is an explanatory diagram showing a configuration of an embodiment using an upper clad material and a lower clad material having a two-layer structure. . 図2Aは、この発明の半導体装置の環状上側クラッド材を用いる実施例、図2Bは、環状上側クラッド材と2層下側クラッド材を用いる実施例の構成を示す説明図である。FIG. 2A is an explanatory view showing a configuration of an embodiment using an annular upper cladding material of the semiconductor device of the present invention, and FIG. 2B is an explanatory diagram showing a configuration of an embodiment using an annular upper cladding material and a two-layer lower cladding material.

符号の説明Explanation of symbols

1 セラミック基板
2 金属回路基板
3 半導体素子
4 上側クラッド材
4a,6a Mo層
4b,6b Cu層
5 下側クラッド材
6 環状上側クラッド材
1 Ceramic substrate
2 Metal circuit board
3 Semiconductor elements
4 Upper cladding material
4a, 6a Mo layer
4b, 6b Cu layer
5 Lower clad material
6 Annular upper clad material

Claims (8)

セラミックス基板上に金属回路基板を接合し、該金属回路基板の所要箇所に半導体素子を着設する構成の半導体装置であり、前記金属回路基板と半導体素子との間に、Cu層が前記素子側と接しMo層が該回路基板と接するようMo層とCu層との板状の2層上側クラッド材を、前記Cu層が前記素子と接するように介在固着させた半導体装置。 A semiconductor device having a structure in which a metal circuit board is bonded onto a ceramic substrate and a semiconductor element is attached to a required portion of the metal circuit board, and a Cu layer is disposed between the metal circuit board and the semiconductor element on the element side A semiconductor device in which a two-layer upper clad material of a Mo layer and a Cu layer is interposed and fixed so that the Cu layer is in contact with the element so that the Mo layer is in contact with the circuit board. セラミックス基板上に金属回路基板を接合し、該金属回路基板の所要箇所に半導体素子を着設する構成の半導体装置であり、前記金属回路基板と半導体素子との間に、Cu層が前記素子側と接しMo層が前記素子直下のCu層外周側に接する環状上側クラッド材を配置固着した半導体装置。 A semiconductor device having a structure in which a metal circuit board is bonded onto a ceramic substrate and a semiconductor element is attached to a required portion of the metal circuit board, and a Cu layer is disposed between the metal circuit board and the semiconductor element on the element side Device in which an annular upper clad material is disposed and fixed so that the Mo layer is in contact with the outer peripheral side of the Cu layer directly below the element. 半導体素子の直下のセラミックス基板と金属回路基板との接合部に、Cu層が前記セラミックス基板と接しMo層が該回路基板と接するようMo層とCu層の2層下側クラッド材を配置固着した請求項1又は請求項2に記載の半導体装置。 At the joint between the ceramic substrate directly below the semiconductor element and the metal circuit board, a two-layer lower clad material of the Mo layer and the Cu layer is disposed and fixed so that the Cu layer is in contact with the ceramic substrate and the Mo layer is in contact with the circuit board. The semiconductor device according to claim 1 or 2. 上側クラッド材は、半導体素子の接合箇所にのみ介在固着させた請求項1から請求項3のいずれかに記載の半導体装置。 4. The semiconductor device according to claim 1, wherein the upper clad material is interposed and fixed only at a joint portion of the semiconductor element. 2層の上側クラッド材又は下側クラッド材は、圧接又はろう材で接合している請求項1又は請求項3に記載の半導体装置。 4. The semiconductor device according to claim 1, wherein the two layers of the upper clad material or the lower clad material are joined by pressure welding or brazing material. セラミックス基板、金属回路基板、半導体素子、上側クラッド材、下側クラッド材のそれぞれの接合箇所のいずれか又は複数箇所あるいは全て箇所がろう材で接合された請求項1から請求項3のいずれかに記載の半導体装置。 4. The ceramic substrate, the metal circuit board, the semiconductor element, the upper clad material, and the lower clad material, any one or a plurality of or all of them are joined with a brazing material. The semiconductor device described. ろう材は、Sn-Cu系ろう材である請求項5又は請求項6に記載の半導体装置。 7. The semiconductor device according to claim 5, wherein the brazing material is an Sn—Cu based brazing material. Sn-Cu系ろう材は、1〜13質量%Sn-Cuである請求項7に記載の半導体装置。 8. The semiconductor device according to claim 7, wherein the Sn—Cu-based brazing material is 1 to 13 mass% Sn—Cu.
JP2006096356A 2006-03-31 2006-03-31 Semiconductor device Pending JP2007273661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096356A JP2007273661A (en) 2006-03-31 2006-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096356A JP2007273661A (en) 2006-03-31 2006-03-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007273661A true JP2007273661A (en) 2007-10-18

Family

ID=38676163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096356A Pending JP2007273661A (en) 2006-03-31 2006-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007273661A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105124A1 (en) * 2014-01-08 2015-07-16 三菱マテリアル株式会社 Resistor and production method for resistor
JP2016139732A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Resistor and method of manufacturing resistor
CN111524862A (en) * 2020-04-30 2020-08-11 全球能源互联网研究院有限公司 Chip packaging electrode, preparation method thereof and chip packaging structure
WO2022220191A1 (en) * 2021-04-14 2022-10-20 三菱電機株式会社 Substrate manufacturing method, method for manufacturing power semiconductor device, and substrate
CN115693080A (en) * 2023-01-03 2023-02-03 四川斯艾普电子科技有限公司 High-power synthesizer implementation method based on thick-film circuit substrate
US11996347B2 (en) 2021-05-24 2024-05-28 Fuji Electric Co., Ltd. Semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10037837B2 (en) * 2014-01-08 2018-07-31 Mitsubishi Materials Corporation Resistor and method for manufacturing resistor
JP6086150B2 (en) * 2014-01-08 2017-03-01 三菱マテリアル株式会社 Resistor and manufacturing method of resistor
US20160336099A1 (en) * 2014-01-08 2016-11-17 Mitsubishi Material Corporation Resistor and method for manufacturing resistor
CN105900189A (en) * 2014-01-08 2016-08-24 三菱综合材料株式会社 Resistor and production method for resistor
WO2015105124A1 (en) * 2014-01-08 2015-07-16 三菱マテリアル株式会社 Resistor and production method for resistor
CN107112100A (en) * 2015-01-28 2017-08-29 三菱综合材料株式会社 The manufacture method of resistor and resistor
JP2016139732A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Resistor and method of manufacturing resistor
KR20170104994A (en) * 2015-01-28 2017-09-18 미쓰비시 마테리알 가부시키가이샤 Resistor device and method for producing resistor device
WO2016121838A1 (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Resistor device and method for producing resistor device
US10121574B2 (en) 2015-01-28 2018-11-06 Mitsubishi Materials Corporation Resistor and method for manufacturing resistor
TWI695390B (en) * 2015-01-28 2020-06-01 日商三菱綜合材料股份有限公司 Resistor and method for producing resistor
KR102359146B1 (en) * 2015-01-28 2022-02-04 미쓰비시 마테리알 가부시키가이샤 Resistor device and method for producing resistor device
CN111524862A (en) * 2020-04-30 2020-08-11 全球能源互联网研究院有限公司 Chip packaging electrode, preparation method thereof and chip packaging structure
WO2022220191A1 (en) * 2021-04-14 2022-10-20 三菱電機株式会社 Substrate manufacturing method, method for manufacturing power semiconductor device, and substrate
US11996347B2 (en) 2021-05-24 2024-05-28 Fuji Electric Co., Ltd. Semiconductor device
CN115693080A (en) * 2023-01-03 2023-02-03 四川斯艾普电子科技有限公司 High-power synthesizer implementation method based on thick-film circuit substrate

Similar Documents

Publication Publication Date Title
KR102170623B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JP5705506B2 (en) Clad material for insulating substrate
JP4998404B2 (en) Power module substrate, manufacturing method thereof, and power module
TW201626519A (en) Substrate with cooler for power modules and method for producing same
KR20150133191A (en) Method for manufacturing power-module substrate
JPWO2015029511A1 (en) Semiconductor device and manufacturing method thereof
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
JP2007273661A (en) Semiconductor device
TW201836093A (en) Power module substrate with heat sink
JP2019081690A (en) Joint body and insulating circuit substrate
JP5141566B2 (en) Insulated circuit board manufacturing method, insulated circuit board, and power module substrate
JP6904094B2 (en) Manufacturing method of insulated circuit board
JP2005236276A (en) Insulated heat transfer structure and substrate for power module
JP2002064169A (en) Heat radiating structure
JP6028497B2 (en) Power module substrate and manufacturing method thereof
JP6750422B2 (en) Method for manufacturing insulated circuit board, insulated circuit board, power module, LED module, and thermoelectric module
JP6020496B2 (en) Junction structure and manufacturing method thereof
JP4917375B2 (en) Power semiconductor module manufacturing method
JP2005019694A (en) Power module
JP6780561B2 (en) Manufacturing method of joint, manufacturing method of insulated circuit board, and joint, insulated circuit board
JP2006156975A (en) Juncture, power module substrate and power module and manufacturing method of juncture
JP7039933B2 (en) Bond, Insulated Circuit Board, Insulated Circuit Board with Heat Sink, Heat Sink, and Joined Body Manufacturing Method, Insulated Circuit Board Manufacturing Method, Heat Sinked Insulated Circuit Board Manufacturing Method, Heat Sink Manufacturing Method
JP2010147398A (en) Substrate for power module and method of manufacturing the same
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP5666372B2 (en) Laminated material for insulating substrates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070713