JPH10334951A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH10334951A
JPH10334951A JP9142495A JP14249597A JPH10334951A JP H10334951 A JPH10334951 A JP H10334951A JP 9142495 A JP9142495 A JP 9142495A JP 14249597 A JP14249597 A JP 14249597A JP H10334951 A JPH10334951 A JP H10334951A
Authority
JP
Japan
Prior art keywords
battery
battery group
discharging
charging
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9142495A
Other languages
Japanese (ja)
Other versions
JP3367382B2 (en
Inventor
Yoshiaki Matsumoto
恵明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14249597A priority Critical patent/JP3367382B2/en
Publication of JPH10334951A publication Critical patent/JPH10334951A/en
Application granted granted Critical
Publication of JP3367382B2 publication Critical patent/JP3367382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery, in which overcharging and over discharging can be prevented, and battery temperature can be adjusted without securing gaps for heat radiation. SOLUTION: A battery group A and a battery group B respectively used for charging and discharging are alternately arranged, and the battery capacities (SOC) of the battery group A and the battery group B are respectively controlled, so as to be 20 to 80%. When the SOC of the battery group used for charging exceeds 80% or the SOC of the battery group used for discharging falls below 20% among the battery group A and the battery group B, the battery group for charging and the battery group for discharging are switched mutually, so that the battery groups of the respectively proper SOCs for charging and for discharging are always secured. Since a lithium ion secondary battery has an endothermic characteristic at the charging time and an exothermic heating characteristic at the discharging time, the same are alternately arranged in a closely adhered state so as to maintain the temperature of the battery groups is operation at a proper value without cooling devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン2次
電池、特に充放電のタイミングが最適化されたリチウム
イオン2次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion secondary battery in which charging and discharging timings are optimized.

【0002】[0002]

【従来の技術】一般に、2次電池の劣化を防止するため
には、過充電、過放電を防止する必要がある。図6に
は、ニッケル−水素蓄電池の出力密度と充電状態(St
ateof Charge:SOC)との関係が示され
る。図6において、SOCの低下と共に出力密度も低下
している。なお、図6では、放電終止電圧が8.0V、
9.0V、10.0Vのそれぞれについての出力密度が
示されている。図6からわかるように、ニッケル−水素
蓄電池の使用に適するSOCの範囲には一定の上限、下
限があると考えられ、例えば20%〜80%が好適であ
ると考えられる。この範囲を外れて0%に近い領域及び
100%に近い領域においてはそれぞれ過放電、過充電
によって電池の劣化が生じるおそれがある。
2. Description of the Related Art Generally, in order to prevent deterioration of a secondary battery, it is necessary to prevent overcharge and overdischarge. FIG. 6 shows the output density and the state of charge (St) of the nickel-hydrogen storage battery.
ateof Charge (SOC). In FIG. 6, the output density also decreases as the SOC decreases. In FIG. 6, the discharge end voltage is 8.0 V,
Power densities for each of 9.0V and 10.0V are shown. As can be seen from FIG. 6, the range of the SOC suitable for use of the nickel-metal hydride storage battery is considered to have certain upper and lower limits, and for example, 20% to 80% is considered to be suitable. Outside of this range, there is a possibility that the battery may be deteriorated due to overdischarge and overcharge in a region close to 0% and a region close to 100%, respectively.

【0003】このような事情はリチウムイオン2次電池
においても同様である。特開平4−331425号公報
には、リチウムイオン2次電池の過充電、過放電を防止
するための装置が開示されている。本従来例では、各リ
チウムイオン2次電池の端子間電圧を監視し、この電圧
に応じて充電及び放電の続行停止を制御することにより
電池の過充電、過放電を防止している。
[0003] Such a situation is the same in a lithium ion secondary battery. Japanese Patent Application Laid-Open No. 4-331425 discloses an apparatus for preventing overcharge and overdischarge of a lithium ion secondary battery. In this conventional example, overvoltage and overdischarge of the battery are prevented by monitoring the voltage between the terminals of each lithium ion secondary battery and controlling the continuation of charging and discharging in accordance with the voltage.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来のリ
チウムイオン2次電池においては、充電用電池及び放電
用電池の区別がなく、充電放電を電池の使用条件の変化
に応じて切り替えていた。従って、例えば電気自動車等
に使用する場合に、回生電力をリチウムイオン2次電池
に受け入れる際に、電池の容量(SOC)が高い場合に
は回生電力を回収できず、これを捨ててしまわなければ
ならなかった。このため回生効率が悪化するという問題
があった。また、このような回生効率の悪化を防止する
ために、無理に回収しようとすると、過充電のおそれが
あった。また、電池の使用条件によっては、SOCの低
くなった状態でもさらに負荷に電力を供給しなければな
らない場合も生じ、これによって過放電となるおそれも
あった。
However, in the above-mentioned conventional lithium ion secondary battery, there is no distinction between a charging battery and a discharging battery, and the charging and discharging are switched according to a change in the use condition of the battery. Therefore, for example, when the regenerative power is received by the lithium ion secondary battery when used in an electric vehicle or the like, the regenerative power cannot be recovered if the battery has a high capacity (SOC) and must be discarded. did not become. For this reason, there was a problem that the regeneration efficiency deteriorated. Further, if the recovery is forcibly performed in order to prevent such deterioration of the regenerative efficiency, there is a risk of overcharging. Further, depending on the use condition of the battery, there is a case where the power must be further supplied to the load even in a state where the SOC is low, which may cause overdischarge.

【0005】さらに、リチウムイオン2次電池等につい
ては、放電の際に発熱するので、これを冷却する必要が
あった。例えば、円筒型電池の場合には各電池缶に隙間
を与え放熱を確保したり、角形電池の場合、電池同士を
離してモジュール化する必要があった。この場合、確保
された隙間に、電池の冷却のための気体あるいは液体を
流す必要があった。このため、余分な電池スペースを確
保する必要があるという問題があった。
Further, lithium ion secondary batteries and the like generate heat during discharge, and thus need to be cooled. For example, in the case of a cylindrical battery, it is necessary to provide a gap to each battery can to ensure heat dissipation, and in the case of a rectangular battery, it is necessary to separate the batteries to form a module. In this case, it is necessary to flow gas or liquid for cooling the battery through the secured gap. For this reason, there is a problem that extra battery space needs to be secured.

【0006】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は、過充電、過放電を防止でき、放
熱用の隙間を確保しなくても電池の温度調整をすること
ができるリチウムイオン2次電池を提供することにあ
る。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to prevent overcharging and overdischarging, and to control the temperature of a battery without securing a heat radiation gap. An object of the present invention is to provide a lithium ion secondary battery.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、リチウムイオン2次電池であって、充電
用として使用される電池群と、放電用として使用される
電池群とを含み、これらの電池群の電池の充電状態が所
定範囲を外れた場合に、充電用の電池群と放電用の電池
群とを切り替えることを特徴とする。
In order to achieve the above object, the present invention relates to a lithium ion secondary battery comprising a battery group used for charging and a battery group used for discharging. When the state of charge of the batteries of these battery groups is out of the predetermined range, the battery group for charging and the battery group for discharging are switched.

【0008】また、上記発明において、充電用の電池群
と放電用の電池群とが交互に配置されていることを特徴
とする。
Further, in the above invention, a battery group for charging and a battery group for discharging are alternately arranged.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0010】図1には、本発明に係るリチウムイオン2
次電池の構成例が示される。図1において、複数の電池
が直列又は並列又はその両方で接続され、これを電池A
群とする。同様にして、他の複数の電池が直列又は並列
又はその両方で接続され、これを電池B群とする。電池
A群に属する電池と電池B群に属する電池とは、図1に
示されるように、交互に配置されている。このとき、各
電池は密着した状態で配置される。なお、図1において
は、電池A群に属する電池と電池B群に属する電池とが
千鳥状に配置されているが、必ずしもこれに限られるも
のではなく、電池A群、電池B群に属するそれぞれの電
池が互いに隣接するように配置されるものであればよ
い。
FIG. 1 shows a lithium ion 2 according to the present invention.
A configuration example of a secondary battery is shown. In FIG. 1, a plurality of batteries are connected in series or in parallel or both, and
Group. Similarly, a plurality of other batteries are connected in series or in parallel or both, and this is referred to as a battery B group. The batteries belonging to battery group A and the batteries belonging to battery group B are arranged alternately as shown in FIG. At this time, the batteries are arranged in close contact. In FIG. 1, the batteries belonging to the battery group A and the batteries belonging to the battery group B are arranged in a zigzag pattern. However, the present invention is not limited to this. Batteries may be arranged so as to be adjacent to each other.

【0011】以上のような構成において、例えば、電池
A群を充電用、電池B群を放電用として電気自動車等に
使用する場合、充電用である電池A群は充電状態(SO
C)が20%〜80%の範囲で使用され、放電用である
電池B群はSOC80%〜20%の範囲で使用される。
これにより、例えば電気自動車等においてブレーキ時の
回生エネルギを回収する際に、常に回収先の電池群が確
保されることになり、電池のSOCが高くて回収できな
いということを防止できる。これにより、回生エネルギ
を捨てなければならない状態をなくすことができ、回生
エネルギの回収効率を向上できる。また、放電用の電池
B群には、他の発電源例えば太陽電池や燃料電池等から
充電し、放電用の電池群として常に適切なSOCを保持
することが可能である。なお、走行中に充電用の電池群
がSOC80%に到達したりあるいは放電用の電池群が
SOC20%に低下した場合には、充電用の電池A群と
放電用の電池B群とを電気的に切り替える構成としてお
けば、各電池群のSOCに応じて用途を柔軟に変更する
ことが可能となる。
In the above-mentioned configuration, for example, when the battery group A is used for charging and the battery group B is used for discharging in an electric vehicle or the like, the battery group A for charging is charged (SO
C) is used in the range of 20% to 80%, and the battery group B for discharging is used in the range of SOC 80% to 20%.
Thus, for example, when recovering the regenerative energy at the time of braking in an electric vehicle or the like, the battery group at the recovery destination is always secured, and it is possible to prevent the battery from having a high SOC and cannot be recovered. As a result, the state in which the regenerative energy must be discarded can be eliminated, and the recovery efficiency of the regenerative energy can be improved. The discharge battery group B can be charged from another power source, for example, a solar cell or a fuel cell, and can always maintain an appropriate SOC as the discharge battery group. When the battery group for charging reaches 80% SOC or the battery group for discharging decreases to 20% SOC during traveling, the battery group A for charging and the battery group B for discharging are electrically connected. In this case, the usage can be flexibly changed according to the SOC of each battery group.

【0012】電池A群、電池B群のSOCの範囲を20
〜80%とするのは、過充電、過放電を防止するためで
ある。すなわち、SOCが80%を超えた場合には、回
生エネルギが大きいときにこれを充電しきれなくなり、
あるいは無理に回収しようとして過充電となるおそれが
ある。また、SOCが20%より小さい場合には、十分
な放電能力が確保されず、無理に放電させれば過放電と
なるおそれがある。さらに、SOCを低くしすぎると、
負極側の電極材料の表面に発生しているLi2CO3等を
成分とする被膜が消失し、再度充電された時にこの被膜
が形成されるので、その分充放電効率が低下するという
問題がある。また、この場合電解液の分解を伴うためリ
チウムイオンが消費され、電池の劣化が生じるという問
題もある。以上のような理由から各電池群のSOCを2
0〜80%の範囲で管理するのが好適である。
The SOC range of the battery group A and the battery group B is 20
The reason for setting it to 80% is to prevent overcharge and overdischarge. That is, when the SOC exceeds 80%, the battery cannot be fully charged when the regenerative energy is large,
Alternatively, there is a possibility that the battery may be overcharged in an attempt to recover it. If the SOC is less than 20%, sufficient discharge capacity is not secured, and if discharge is forcibly performed, overdischarge may occur. Furthermore, if the SOC is set too low,
Since the film containing Li 2 CO 3 and the like generated on the surface of the electrode material on the negative electrode side disappears, and this film is formed when the battery is charged again, there is a problem that the charge / discharge efficiency is reduced accordingly. is there. Further, in this case, there is a problem that lithium ions are consumed because the electrolytic solution is decomposed, and the battery is deteriorated. For the above reasons, the SOC of each battery group is set to 2
It is preferable to manage within the range of 0 to 80%.

【0013】図2には、放電用として使用される電池群
に対して急速充電を行う動作のフロー図が示される。図
2において、電池A群及び電池B群の電圧が比較され、
電圧の高い方の電池群が放電用として使用される(S
1)。なお、リチウムイオン2次電池の電池特性は、図
3に示されるように、SOCと電池の電圧との間に一定
の関係がある。すなわち、SOCの増加と共に電圧も高
くなる。従って、電池群の電圧をみることによりその電
池群のSOCを知ることができる。本実施形態におい
て、電池A群、電池B群のうち電圧の高い方を放電用の
電池群として使用するのは、その方がSOC80%まで
の充電を短時間で実施することができるからである。
FIG. 2 is a flowchart showing the operation of performing rapid charging of a battery group used for discharging. In FIG. 2, the voltages of the battery group A and the battery group B are compared,
The battery group with the higher voltage is used for discharging (S
1). Note that the battery characteristics of the lithium ion secondary battery have a certain relationship between the SOC and the voltage of the battery as shown in FIG. That is, the voltage increases as the SOC increases. Therefore, the SOC of the battery group can be known by checking the voltage of the battery group. In the present embodiment, the higher voltage of the battery group A and the battery group B is used as the battery group for discharging, because it can charge up to SOC 80% in a shorter time. .

【0014】S1において電池A群の電圧が高い場合に
は、電池A群を充電用の電池群として使用し、電池A群
に対して充電を行う(S2)。また、S1において電池
B群の電圧が高い場合には、電池B群に対して充電を行
う(S3)。
If the voltage of the battery group A is high in S1, the battery group A is used as a battery group for charging, and the battery group A is charged (S2). If the voltage of the battery group B is high in S1, the battery group B is charged (S3).

【0015】上記のようにして充電を行い、SOC80
%に相当する充電終止電圧に到達したか否かが判定され
(S4)、充電終止電圧に到達したところで充電動作が
終了する(S5)。
The charging is performed as described above, and the SOC 80
It is determined whether or not the charging end voltage corresponding to% has been reached (S4), and when the charging end voltage has been reached, the charging operation ends (S5).

【0016】本実施形態では、電池A群、電池B群のう
ち電圧の高い方を充電して放電用に使用し、なおかつ充
電はSOC80%までであるので、急速充電動作を短時
間で終了させることができる。
In the present embodiment, the higher voltage of the battery group A and the battery group B is charged and used for discharging, and the charging is up to 80% SOC, so that the quick charging operation is completed in a short time. be able to.

【0017】図4には、本発明に係るリチウムイオン2
次電池を電気自動車に使用した場合の、始動時および走
行中における充放電動作のフローが示される。図4にお
いて、始動時に電池A群及び電池B群の電圧が比較さ
れ、電圧の高い電池群を放電用として使用する(S1
1)。
FIG. 4 shows a lithium ion 2 according to the present invention.
The flow of the charging / discharging operation at the time of starting and during traveling when the secondary battery is used in the electric vehicle is shown. In FIG. 4, the voltages of the battery group A and the battery group B are compared at the time of starting, and the battery group having a higher voltage is used for discharging (S1).
1).

【0018】電池A群の電圧が高い場合には、電池A群
を放電用として使用し(S12)、電池A群のSOCが
20%以上であるか否かが監視される(S13)。電池
A群のSOCが20%以上である場合には、電池B群の
SOCが80%以上であるか否かが監視される(S1
4)。
When the voltage of the battery group A is high, the battery group A is used for discharging (S12), and it is monitored whether or not the SOC of the battery group A is 20% or more (S13). When the SOC of the battery group A is 20% or more, it is monitored whether the SOC of the battery group B is 80% or more (S1).
4).

【0019】S13及びS14において、電池A群のS
OCが20%より小さいかあるいは電池B群のSOCが
80%以上である場合には、電池A群、電池B群を切り
替える(S15)。これは、電池A群のSOCが20%
より低くなった場合には、放電用として十分な放電能力
が確保できず、かつ過放電のおそれがあるからである。
また、電池B群のSOCが80%以上である場合には、
回生エネルギの回収能力が十分でなく、かつ過充電とな
るおそれがあるからである。従って、いずれか一方の条
件が成立した場合には、電池A群、電池B群を切り替
え、充電用及び放電用の電池群を切り替える。
In steps S13 and S14, the S
When the OC is less than 20% or the SOC of the battery B group is 80% or more, the battery group A and the battery B group are switched (S15). This is because the SOC of battery group A is 20%
This is because if the voltage becomes lower, it is not possible to secure a sufficient discharge capacity for discharging and there is a risk of overdischarging.
When the SOC of the battery group B is 80% or more,
This is because the regenerative energy recovery capability is not sufficient, and the battery may be overcharged. Therefore, when either one of the conditions is satisfied, the battery group A and the battery group B are switched, and the battery group for charging and the battery group for discharging are switched.

【0020】他方、S11において電池B群の電圧が高
い場合には、電池B群を放電用として使用し(S1
6)、電池B群のSOCが20%以上であるか否かが監
視される(S17)。電池B群のSOCが20%以上で
ある場合には、電池A群のSOCが80%以上であるか
否かが確認される(S18)。
On the other hand, when the voltage of the battery group B is high in S11, the battery group B is used for discharging (S1).
6) It is monitored whether the SOC of the battery group B is 20% or more (S17). When the SOC of the battery group B is 20% or more, it is confirmed whether or not the SOC of the battery group A is 80% or more (S18).

【0021】電池A群を放電用として使用した場合と同
様に、S17、S18において電池B群のSOCが20
%より小さいかあるいは電池A群のSOCが80%以上
となった場合には電池A群、電池B群を切り替える(S
19)。
As in the case where the battery group A is used for discharging, the SOC of the battery group B becomes 20 in S17 and S18.
% Or the SOC of the battery A group is 80% or more, the battery A group and the battery B group are switched (S
19).

【0022】以上の動作により、電池A群及び電池B群
のSOCに応じて適宜これらの電池群を充電用及び放電
用として使用し、必要に応じてこれらを切り替えること
ができる。これにより、充電用、放電用として適正なS
OCの電池群が常に確保され、適正な放電能力を確保で
きるとともに、回生電力の回収先を常に確保することが
できる。
With the above operation, these battery groups can be used for charging and discharging as appropriate according to the SOC of the battery group A and the battery group B, and these can be switched as needed. As a result, the proper S for charging and discharging
An OC battery group is always ensured, and an appropriate discharge capacity can be ensured, and a recovery destination of regenerative power can always be ensured.

【0023】上述したように、図3には、リチウムイオ
ン2次電池の電池特性が示される。図3に示されるよう
に、リチウムイオン2次電池はSOCが0%〜80%で
充電される際に吸熱特性を示し、80%〜100%の充
電及び100%〜0%までの放電時には発熱特性を示
す。従って、図1に示されるように、電池A群、電池B
群をそれぞれ交互にかつ密着した状態で配置しておき、
これらの電池群のSOCを適切な範囲で管理することに
より、充電側の吸熱と放電側の発熱とをバランスさせる
ことができる。これにより、特に冷却装置等を設けなく
ても、電池群の温度を所定レベルに維持することが可能
となる。なお、図3からわかるように、吸熱特性と発熱
特性の境目は、SOC80%の点であるので、これから
も電池群のSOCの管理範囲を80%以下とすることは
重要な意味を有する。
As described above, FIG. 3 shows the battery characteristics of the lithium ion secondary battery. As shown in FIG. 3, the lithium ion secondary battery exhibits endothermic characteristics when charged at an SOC of 0% to 80%, and generates heat during charging from 80% to 100% and discharging from 100% to 0%. Show characteristics. Therefore, as shown in FIG.
Arrange the groups alternately and in close contact with each other,
By managing the SOC of these battery groups within an appropriate range, it is possible to balance heat absorption on the charging side and heat generation on the discharging side. Thus, the temperature of the battery group can be maintained at a predetermined level without providing a cooling device or the like. As can be seen from FIG. 3, the boundary between the heat absorption characteristics and the heat generation characteristics is the point at which the SOC is 80%. Therefore, it is important to keep the SOC management range of the battery group at 80% or less.

【0024】図5には、図1のように配置した電池群を
使用して、ダイナミックストレス試験すなわち電気自動
車の実車走行を想定した充放電の繰り返し試験の結果が
示される。なお、図5においては、放電側の電池群の電
圧のみが示されているが、充電側の電池も同時に動作さ
せている。
FIG. 5 shows the results of a dynamic stress test, that is, a repeated charge / discharge test assuming that an electric vehicle runs on an actual vehicle, using the battery group arranged as shown in FIG. Although FIG. 5 shows only the voltage of the battery group on the discharging side, the battery on the charging side is operated at the same time.

【0025】図5からわかるように、電池群全体の温度
は、おおよそ22℃〜23℃の範囲に保たれている。従
って、図1に示されるような構成によって電池A群、電
池B群を配置しておけば、冷却装置が必要なくなるとい
うことがわかる。これにより、例えば電池間に放熱用の
隙間を設ける必要等がなくなるので、電池をコンパクト
に設計することができる。
As can be seen from FIG. 5, the temperature of the whole battery group is kept in a range of about 22 ° C. to 23 ° C. Therefore, it is understood that if the battery group A and the battery group B are arranged by the configuration as shown in FIG. 1, a cooling device is not required. Thus, for example, there is no need to provide a gap for heat dissipation between the batteries, and the battery can be designed compact.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
電池群の充放電の切り替えタイミングを最適化すること
ができ、放電用電池のSOC及び充電用電池のSOCを
それぞれ適切な範囲に維持することができる。この結
果、回生エネルギを無駄にすることがなくなる。また、
充電用電池群と放電用電池群の吸熱特性及び発熱特性を
組み合わせることにより、冷却装置を設けなくても電池
群の温度調整をすることが可能となる。
As described above, according to the present invention,
The timing of switching between charging and discharging of the battery group can be optimized, and the SOC of the discharging battery and the SOC of the charging battery can be maintained in appropriate ranges. As a result, regenerative energy is not wasted. Also,
By combining the heat absorption characteristics and the heat generation characteristics of the charging battery group and the discharging battery group, the temperature of the battery group can be adjusted without providing a cooling device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るリチウムイオン2次電池の構成
例を示す図である。
FIG. 1 is a diagram showing a configuration example of a lithium ion secondary battery according to the present invention.

【図2】 本発明に係るリチウムイオン2次電池の放電
用の電池群を急速充電する動作のフロー図である。
FIG. 2 is a flowchart of an operation of rapidly charging a battery group for discharging a lithium ion secondary battery according to the present invention.

【図3】 リチウムイオン2次電池の電池特性を示す図
である。
FIG. 3 is a diagram showing battery characteristics of a lithium ion secondary battery.

【図4】 本発明に係るリチウムイオン2次電池の通常
使用時における充放電動作のフロー図である。
FIG. 4 is a flowchart of a charge / discharge operation during normal use of the lithium ion secondary battery according to the present invention.

【図5】 図1に示された実施形態の充放電動作時の電
池群の温度を示す図である。
FIG. 5 is a diagram showing a temperature of a battery group during a charge / discharge operation of the embodiment shown in FIG. 1;

【図6】 従来におけるニッケル−水素蓄電池の出力密
度とSOCとの関係を示す図である。
FIG. 6 is a diagram showing the relationship between the output density and SOC of a conventional nickel-hydrogen storage battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 充電用として使用される電池群と、放電
用として使用される電池群とを含み、これらの電池群の
電池の充電状態が所定範囲を外れた場合に、充電用の電
池群と放電用の電池群とを切り替えることを特徴とする
リチウムイオン2次電池。
1. A battery group comprising: a battery group used for charging; and a battery group used for discharging. When the state of charge of the batteries in these battery groups is out of a predetermined range, the battery group for charging is used. And a battery group for discharging.
【請求項2】 請求項1記載のリチウムイオン2次電池
において、前記充電用の電池群と放電用の電池群とが交
互に配置されていることを特徴とするリチウムイオン2
次電池。
2. The lithium ion secondary battery according to claim 1, wherein the battery group for charging and the battery group for discharging are alternately arranged.
Next battery.
JP14249597A 1997-05-30 1997-05-30 Lithium ion secondary battery Expired - Fee Related JP3367382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14249597A JP3367382B2 (en) 1997-05-30 1997-05-30 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14249597A JP3367382B2 (en) 1997-05-30 1997-05-30 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH10334951A true JPH10334951A (en) 1998-12-18
JP3367382B2 JP3367382B2 (en) 2003-01-14

Family

ID=15316666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14249597A Expired - Fee Related JP3367382B2 (en) 1997-05-30 1997-05-30 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3367382B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339868A (en) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd Control method for charge/discharge of battery
JP2006324163A (en) * 2005-05-20 2006-11-30 Toyota Motor Corp Assembly method of battery pack
JP2008084691A (en) * 2006-09-27 2008-04-10 Toyota Motor Corp Battery unit and vehicle
US7795844B2 (en) 2006-07-10 2010-09-14 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same and temperature managing method
DE102009039375A1 (en) * 2009-08-29 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft Method for operating energy storage of vehicle, involves operating energy storage in exothermic and endothermic manner alternatively
JP2011078147A (en) * 2009-09-29 2011-04-14 Denso Corp Onboard power supply device
WO2011093110A1 (en) * 2010-02-01 2011-08-04 パナソニック株式会社 Electric storage apparatus
JP2011188613A (en) * 2010-03-08 2011-09-22 Konica Minolta Business Technologies Inc Power system
WO2013057821A1 (en) 2011-10-20 2013-04-25 東芝三菱電機産業システム株式会社 Electricity storage device control system
JP2013128354A (en) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp Power transmission/reception device, power transmission/reception system and power transmission/reception method
JP2015211532A (en) * 2014-04-25 2015-11-24 コニカミノルタ株式会社 Charge control device, and image forming apparatus with the same packaged therein
US20160190821A1 (en) * 2014-12-29 2016-06-30 Lg Cns Co., Ltd. Energy storage system, method and apparatus for controlling charging and discharging of the same
JP2016167912A (en) * 2015-03-09 2016-09-15 Fdk株式会社 Power storage system
CN114204161A (en) * 2021-12-13 2022-03-18 国网山东省电力公司禹城市供电公司 Novel uninterrupted power source for transformer substation
WO2023037991A1 (en) * 2021-09-07 2023-03-16 ソフトバンク株式会社 System, program, and management method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463981A4 (en) 2009-08-04 2017-09-20 Nec Corporation Energy system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339868A (en) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd Control method for charge/discharge of battery
JP2006324163A (en) * 2005-05-20 2006-11-30 Toyota Motor Corp Assembly method of battery pack
US7795844B2 (en) 2006-07-10 2010-09-14 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same and temperature managing method
JP2008084691A (en) * 2006-09-27 2008-04-10 Toyota Motor Corp Battery unit and vehicle
DE102009039375A1 (en) * 2009-08-29 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft Method for operating energy storage of vehicle, involves operating energy storage in exothermic and endothermic manner alternatively
JP2011078147A (en) * 2009-09-29 2011-04-14 Denso Corp Onboard power supply device
WO2011093110A1 (en) * 2010-02-01 2011-08-04 パナソニック株式会社 Electric storage apparatus
JP2011188613A (en) * 2010-03-08 2011-09-22 Konica Minolta Business Technologies Inc Power system
US9391465B2 (en) 2011-10-20 2016-07-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electrical storage device management system
WO2013057821A1 (en) 2011-10-20 2013-04-25 東芝三菱電機産業システム株式会社 Electricity storage device control system
JP2013128354A (en) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp Power transmission/reception device, power transmission/reception system and power transmission/reception method
JP2015211532A (en) * 2014-04-25 2015-11-24 コニカミノルタ株式会社 Charge control device, and image forming apparatus with the same packaged therein
US20160190821A1 (en) * 2014-12-29 2016-06-30 Lg Cns Co., Ltd. Energy storage system, method and apparatus for controlling charging and discharging of the same
US9899856B2 (en) * 2014-12-29 2018-02-20 Lg Cns Co., Ltd. Energy storage system, method and apparatus for controlling charging and discharging of the same
JP2016167912A (en) * 2015-03-09 2016-09-15 Fdk株式会社 Power storage system
KR20170120681A (en) * 2015-03-09 2017-10-31 에프디케이 가부시키가이샤 Power storage system
CN107431368A (en) * 2015-03-09 2017-12-01 Fdk株式会社 Accumulating system
US20180062217A1 (en) * 2015-03-09 2018-03-01 Fdk Corporation Power storage system
EP3270485A4 (en) * 2015-03-09 2018-09-19 FDK Corporation Electricity storage system
WO2023037991A1 (en) * 2021-09-07 2023-03-16 ソフトバンク株式会社 System, program, and management method
JP2023038638A (en) * 2021-09-07 2023-03-17 ソフトバンク株式会社 System, program and management method
CN114204161A (en) * 2021-12-13 2022-03-18 国网山东省电力公司禹城市供电公司 Novel uninterrupted power source for transformer substation

Also Published As

Publication number Publication date
JP3367382B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
KR100749838B1 (en) Secondary battery replacement method
JP3367382B2 (en) Lithium ion secondary battery
US4303877A (en) Circuit for protecting storage cells
US6781343B1 (en) Hybrid power supply device
US8760118B2 (en) System and method for charging and discharging a Li-ion battery
JP2022532120A (en) Operation control device and method for secondary batteries using the relative degree of electrode degradation
Valeriote et al. Fast charging of lead-acid batteries
KR20060102667A (en) Secondary battery module
JP3796918B2 (en) Battery device
JP3721690B2 (en) Secondary battery protection device
JP2000270483A (en) Charging condition controller of battery set
JP2002135989A (en) Control method for charging and discharging storage battery
KR100815431B1 (en) Uniform energy-backup device of battery cell for hybrid electric vehicle
KR101572923B1 (en) Battery system
JPH11146570A (en) Control device of secondary battery, battery pack with the control device of secondary battery and control method of the secondary battery
JP2016144367A (en) Control device for battery pack
JP4615771B2 (en) Assembled battery
JPH11191932A (en) Quick charger for battery pack
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
US20230133126A1 (en) Battery system and method for controlling a battery system
JP2003109670A (en) Method of replacing defective battery
JP2003284251A (en) Power supply device
JP2022087447A (en) Battery pack
KR100649658B1 (en) Charge and discharge voltage control module and method of high capacity storage battery
JP2000082448A (en) Pack battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees