JP2000270483A - Charging condition controller of battery set - Google Patents

Charging condition controller of battery set

Info

Publication number
JP2000270483A
JP2000270483A JP11072526A JP7252699A JP2000270483A JP 2000270483 A JP2000270483 A JP 2000270483A JP 11072526 A JP11072526 A JP 11072526A JP 7252699 A JP7252699 A JP 7252699A JP 2000270483 A JP2000270483 A JP 2000270483A
Authority
JP
Japan
Prior art keywords
group
battery
charge level
series
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11072526A
Other languages
Japanese (ja)
Inventor
Hideki Nomura
秀樹 野村
Mitsuo Koide
光男 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11072526A priority Critical patent/JP2000270483A/en
Publication of JP2000270483A publication Critical patent/JP2000270483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent not only overcharging but also overdischarging of a single battery while being small-sized and low-cost, avoiding wasteful consumption of charged energy. SOLUTION: A control circuit 4 shifts charges from a single battery 2A which is the highest in charged level in each group battery 1A to a single battery 2C which is the lowest in charged level via a capacitor 7A to equalize the charged condition of the single batteries 2A-2D within each group battery 1A, by operating a switch circuit 5A. At the same time, it shifts the charge from the single battery 2A the highest in charged level in the group battery 1A the highest in charged level to the single battery 2M which is the lowest in charged level in a group battery 1C which is the lowest in charged level at this time via capacitors 7A, 7B, and 7C to equalize the charged condition between the group batteries 1A and 1C by causing switching circuit 5A, 5B, 5C, 6AB, 6BC, and 6CA to operate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は組電池の充電状態制
御装置に関し、特に、組電池を構成する各単電池の、容
量のバラツキによる過充電や過放電を生じることなく、
組電池の充電および放電を効率的に行うことができる充
電状態制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the state of charge of a battery pack, and more particularly, to an apparatus for controlling the state of charge of each cell constituting a battery pack without causing overcharge or overdischarge due to variations in capacity.
The present invention relates to a charge state control device that can efficiently charge and discharge a battery pack.

【0002】[0002]

【従来の技術】近年、電気自動車等の開発が精力的に行
われるようになり、これに使用される二次電池として、
小型で大容量のリチウムイオン電池等が注目されてい
る。このような二次電池を電気自動車等の電源として使
用する場合には通常、単電池を複数直列に接続して組電
池とすることにより所望の電圧値を得ている。しかし、
リチウムイオン電池等は製造時やその後の使用履歴等に
よって容量にバラツキを生じやすく、組電池を一体とし
て充電あるいは放電させると、容量の小さい単電池が過
充電あるいは過放電となって性能低下を招くという問題
があった。
2. Description of the Related Art In recent years, the development of electric vehicles and the like has been energetically performed.
Attention is being paid to small, large-capacity lithium-ion batteries and the like. When such a secondary battery is used as a power source of an electric vehicle or the like, a desired voltage value is usually obtained by connecting a plurality of cells in series to form an assembled battery. But,
Lithium-ion batteries and the like tend to have variations in capacity due to the manufacturing history and subsequent use history, etc., and when charging or discharging the assembled battery as a single unit, small-capacity cells become overcharged or overdischarged, leading to performance degradation. There was a problem.

【0003】そこで、例えば特開平5−64377号公
報では、各単電池の端子電圧よりその充電状態を検出
し、単電池のうち少なくとも一つが満充電になった場合
には組電池への充電を停止するようにした充電装置が提
案されている。しかし、この充電装置では、容量の小さ
い単電池によって組電池全体の充電が制限されるため
に、容量の大きい他の単電池が十分に充電されず、充電
能力が十分に生かされないという問題がある。
For example, in Japanese Patent Application Laid-Open No. 5-64377, the state of charge is detected from the terminal voltage of each cell, and when at least one of the cells is fully charged, charging of the assembled battery is stopped. There has been proposed a charging device that is stopped. However, in this charging device, the charging of the entire assembled battery is limited by the small-capacity unit cell. Therefore, there is a problem that the other large-capacity unit cell is not sufficiently charged, and the charging capacity is not fully utilized. .

【0004】そこで、例えば特開平8−213055号
公報に記載の充電装置では、各単電池に並列に分流回路
を設け、単電池の一つが満充電になると、これを迂回す
るように分流回路に充電電流を流して、他の単電池への
充電を続行できるようにしている。しかし、この充電装
置では、充電電流の一部を迂回させるための分流回路内
に設けた抵抗で充電エネルギーが無駄に消費されるとい
う問題がある。
Therefore, for example, in the charging device described in JP-A-8-213055, a shunt circuit is provided in parallel with each cell, and when one of the cells is fully charged, the shunt circuit is bypassed so as to bypass this. A charging current is supplied so that charging of other cells can be continued. However, in this charging device, there is a problem that the charging energy is wastefully consumed by the resistor provided in the shunt circuit for bypassing a part of the charging current.

【0005】一方、特開平7−335266号公報に
は、各単電池にスイッチング回路を介してそれぞれ補充
電電池を接続し、単電池が過充電間近になった場合には
当該単電池に補充電電池を接続して過充電を防止するよ
うにした充電装置が提案されている。しかし、この充電
装置では、補充電電池が各単電池にそれぞれ設けられる
から、装置全体の大型化とコストアップが避けられない
という問題がある。
On the other hand, Japanese Patent Application Laid-Open No. Hei 7-335266 discloses that a supplementary rechargeable battery is connected to each unit cell via a switching circuit, and when the unit cell is about to be overcharged, the unit cell is supplementarily charged. A charging device has been proposed in which a battery is connected to prevent overcharging. However, in this charging device, since the auxiliary rechargeable battery is provided for each unit cell, there is a problem that an increase in the size of the entire device and an increase in cost cannot be avoided.

【0006】なお、組電池の放電が進行すると、前述し
たように最も容量の小さい単電池が過放電を生じるおそ
れがあるが、上記各公報に記載の従来の充電装置には、
これの解決を示唆するところはない。
[0006] When the discharge of the assembled battery proceeds, there is a possibility that the single cell having the smallest capacity may be over-discharged as described above.
There is no suggestion for a solution to this.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、以
上の問題点を解決しようとするもので、充電エネルギー
の無駄な消費を避けることができるとともに、小型かつ
低コストで、しかも単電池の過充電のみならず過放電を
も防止して、組電池の効率的な充電並びに放電を可能と
した組電池の充電状態制御装置を提供することを課題と
する。
SUMMARY OF THE INVENTION Accordingly, the present invention is intended to solve the above-mentioned problems, and can avoid wasteful consumption of charging energy, and is small in size and low in cost. An object of the present invention is to provide an assembled battery charge state control device that prevents not only overcharge but also overdischarge and enables efficient charge and discharge of the assembled battery.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本第1発明では、それぞれ複数の単電池(2A〜2
D,2E〜2H)より構成され互いに直列に接続されて
組電池(CB)を構成する複数のグループ電池(1A,
1B)を具備し、各グループ電池(1A,1B)は、直
列に接続された複数の単電池(2A〜2D,2E〜2
H)と、補助充放電器(7A,7B)と、各単電池(2
A〜2H)の充電状態を検出する第1の充電状態検出手
段(3A〜3H)と、最も充電レベルの高い単電池、な
いし当該最も充電レベルの高い単電池を含みこれに隣接
する1個以上の適当数の単電池を第1の直列電池群(2
A,2Bと2E,2F)として選択して、当該第1の直
列電池群を補助充放電器(7A,7B)に並列に接続し
た後、この時点で最も充電レベルの低い単電池(2C,
2G)、ないし当該充電レベルの最も低い単電池を含み
前記第1の直列電池群よりも少ない数の隣接する単電池
を第2の直列電池群として選択して、充電レベルの最も
低い単電池(2C,2G)ないし第2の直列電池群を補
助充放電器(7A,7B)に並列に接続する切換動作を
繰り返す第1の切換接続手段(5A,5B)とを具備
し、かつ、各グループ電池(1A,1B)の充電状態を
検出する第2の充電状態検出手段(4)と、最も充電レ
ベルの高いグループ電池(1A)内で最も充電レベルの
高い単電池、ないし当該最も充電レベルの高い単電池を
含みこれに隣接する1個以上の適当数の単電池を第3の
直列電池群(2A,2B)として選択して、上記最も充
電レベルの高い単電池ないし第3の直列電池群を上記最
も充電レベルの高いグループ電池(1A)の補助充放電
器(7A)に並列に接続した後、この時点で最も充電レ
ベルの低いグループ電池(1B)の補助充放電器(7
B)に上記最も充電レベルの高いグループ電池(1A)
の補助充放電器(7A)を接続し、その後、上記最も充
電レベルの低いグループ電池(1B)内の、この時点で
最も充電レベルの低い単電池(2E)、ないし最も充電
レベルの低い単電池を含み上記第3の直列電池群よりも
少ない数の隣接する単電池を第4の直列電池群として選
択して、上記充電レベルの最も低い単電池(2E)ない
し第4の直列電池群を上記最も充電レベルの低いグルー
プ電池(1B)の補助充放電器(7B)に並列に接続す
る切換動作を繰り返す第2の切換接続手段(5A,5
B,6AB)とを具備している。
According to the first aspect of the present invention, a plurality of single cells (2A to 2A) are provided.
D, 2E to 2H) and a plurality of group batteries (1A, 1A,
1B), and each group battery (1A, 1B) includes a plurality of unit cells (2A to 2D, 2E to 2E) connected in series.
H), auxiliary charge / discharge devices (7A, 7B), and each cell (2
A to 2H), a first state-of-charge detecting means (3A to 3H) for detecting the state of charge, and at least one unit cell including the unit cell having the highest charge level or the unit cell having the highest charge level Of the appropriate number of cells in the first series battery group (2
A, 2B and 2E, 2F), the first series battery group is connected in parallel to the auxiliary charger / discharger (7A, 7B), and then the unit cells (2C, 2C,
2G) or a smaller number of adjacent cells including the cells with the lowest charge level than the first series of cells as the second series of cells, and selecting the cells with the lowest charge level ( 2C, 2G) and first switching connection means (5A, 5B) for repeating a switching operation for connecting the second series battery group to the auxiliary charger / discharger (7A, 7B) in parallel. A second state-of-charge detecting means (4) for detecting the state of charge of the batteries (1A, 1B); a unit cell having the highest charge level in the group battery (1A) having the highest charge level; One or more suitable number of cells including high cells and adjacent thereto is selected as the third series battery group (2A, 2B), and the highest charge level or third series battery group is selected. The above highest charge level After connecting in parallel to the auxiliary discharge vessel loops battery (1A) (7A), the auxiliary discharge vessel of a low group battery the least charge level at this point (1B) (7
B) The group battery with the highest charge level (1A)
Of the group battery (1B) having the lowest charge level, or the cell having the lowest charge level at this time in the group battery (1B) having the lowest charge level. And a smaller number of adjacent cells than the third series battery group is selected as the fourth series battery group, and the cells (2E) to the fourth series battery group having the lowest charge level are selected as the fourth series battery group. Second switching connection means (5A, 5) that repeats the switching operation of connecting in parallel to the auxiliary charger / discharger (7B) of the group battery (1B) with the lowest charge level
B, 6AB).

【0009】本第1発明で、各グループ電池内におい
て、最も充電レベルの高い単電池を含む第1の直列電池
群が補助充放電器に接続されると、第1の直列電池群か
ら補助充放電器へ電流が供給されて最も充電レベルの高
い単電池の電圧が低下する。その後、この時点で充電レ
ベルの最も低い単電池を含み上記第1の直列電池群より
も少ない数の第2の直列電池群が補助充放電器に接続さ
れると、補助充放電器の電流が第2の直列電池群へ放電
供給され、第2の直列電池群が充電される。他の単電池
の充電レベルが最も高くなると、当該他の単電池を含む
新たな第1の直列電池群と補助充放電器との間で同様の
動作が行われて次々に充電レベルが低下させられるとと
もに、補助充放電器から第2の直列電池群へ充電がなさ
れて各単電池の充電レベルが上昇させられ、グループ電
池内の単電池の充電状態が常に均一化される。そして、
グループ電池間で充電状態が不均一であると、最も充電
レベルの高いグループ電池内で最も充電レベルの高い単
電池を含む第3の直列電池群が補助充放電器に接続さ
れ、第3の直列電池群から補助充放電器へ電流が供給さ
れて最も充電レベルの高い単電池の電圧が低下する。続
いて上記補助充放電器が最も充電レベルの低いグループ
電池の補助充放電器に接続されて電荷が移行させられ、
その後、上記最も充電レベルの低いグループ電池内の、
この時点で充電レベルの最も低い単電池を含む第4の直
列電池群が補助充放電器に接続されて、補助充放電器の
電流が第4の直列電池群へ効率的に放電供給され、第4
の直列電池群が充電される。他のグループ電池の充電レ
ベルが最も高くなると、当該グループ電池内の新たな第
3の直列電池群と補助充放電器との間で同様の動作が行
われて次々に充電レベルが低下させられるとともに、補
助充放電器から最も充電レベルの低いグループ電池内の
第4の直列電池群へ充電がなされてその充電レベルが上
昇させられ、この結果、グループ電池間の充電状態が常
に均一化される。本第1発明においては、各グループ電
池間の充電状態の平衡化と同時に、それぞれ各グループ
電池に属する単電池の充電状態の均一化が並行して行な
われるから充電状態の迅速な均一化が可能であり、充放
電時の組電池の全体容量が効率的に利用されるとともに
単電池の過充電や過放電も未然に防止される。
In the first invention, when the first series battery group including the unit cell having the highest charge level in each group battery is connected to the auxiliary charger / discharger, the first series battery group is connected to the auxiliary battery charger. A current is supplied to the discharger, and the voltage of the cell having the highest charge level decreases. Thereafter, when a smaller number of the second series battery groups including the unit cells having the lowest charge level at this time and less than the first series battery group are connected to the auxiliary charger / discharger, the current of the auxiliary charger / discharger is reduced. The second series battery group is discharged and supplied, and the second series battery group is charged. When the charge level of the other cells becomes the highest, the same operation is performed between the new first series battery group including the other cells and the auxiliary charger / discharger, and the charge levels decrease one after another. At the same time, the second series battery group is charged from the auxiliary charger / discharger, the charge level of each unit cell is increased, and the charge state of the unit cells in the group cells is always uniformed. And
If the state of charge is not uniform among the group batteries, the third series battery group including the unit cells having the highest charge level in the group battery having the highest charge level is connected to the auxiliary charger / discharger, and the third series battery is connected. A current is supplied from the battery group to the auxiliary charge / discharge device, and the voltage of the unit cell having the highest charge level decreases. Subsequently, the auxiliary charger / discharger is connected to the auxiliary charger / discharger of the group battery having the lowest charge level to transfer the charge,
Then, in the group battery with the lowest charge level,
At this time, the fourth series battery group including the unit cell with the lowest charge level is connected to the auxiliary charger / discharger, and the current of the auxiliary charger / discharger is efficiently discharged and supplied to the fourth series battery group, 4
Are charged. When the charge level of the other group batteries becomes the highest, the same operation is performed between the new third series battery group and the auxiliary charger / discharger in the group battery, and the charge levels are reduced one after another. Then, charging is performed from the auxiliary charger / discharger to the fourth series battery group in the group battery having the lowest charge level to increase the charge level, and as a result, the state of charge between the group batteries is always equalized. According to the first aspect of the present invention, the charge states of the cells belonging to each group are equalized at the same time as the charge states of the group cells are balanced, so that the charge states can be quickly equalized. In addition, the entire capacity of the battery pack at the time of charging and discharging is efficiently used, and overcharging and overdischarging of the unit cells are also prevented.

【0010】本第2発明では、それぞれ複数の単電池
(2A〜2J,2E〜2H)より構成され互いに直列に
接続されて組電池(CB)を構成する複数のグループ電
池(1A,1B)を具備し、各グループ電池(1A,1
B)は、直列に接続された複数の単電池(2A〜2J,
2E〜2H)と、補助充放電器(7A,7B)と、各単
電池(2A〜2J)の充電状態を検出する第1の充電状
態検出手段(3A〜3J)と、最も充電レベルの高い単
電池、ないし当該最も充電レベルの高い単電池を含みこ
れに隣接する1個以上の適当数の単電池を第1の直列電
池群(2A,2Bと2E,2F)として選択して、当該
第1の直列電池群を補助充放電器(7A,7B)に並列
に接続した後、この時点で最も充電レベルの低い単電池
(2C,2G)、ないし当該最も充電レベルの低い単電
池を含み前記第1の直列電池群よりも少ない数の隣接す
る単電池を第2の直列電池群として選択して、上記最も
充電レベルの低い単電池(2C,2G)ないし第2の直
列電池群を補助充放電器(7A,7B)に並列に接続す
る切換動作を繰り返す第1の切換接続手段(5A,5
B)とを具備し、かつ、各グループ電池(1A,1B)
の充電状態を検出する第2の充電状態検出手段(4)
と、隣接するグループ電池(1A,1B)のうちで相対
的に充電レベルの高いグループ電池(1A)内で最も充
電レベルの高い単電池、ないし当該最も充電レベルの高
い単電池を含みこれに隣接する1個以上の適当数の単電
池を第3の直列電池群(2A,2B)として選択して、
上記最も充電レベルの高い単電池ないし上記第3の直列
電池群を上記相対的に充電レベルの高いグループ電池
(1A)の補助充放電器(7A)に並列に接続した後、
上記隣接するグループ電池のうちの一のグループ電池
(1A)内で他のグループ電池(1B)に隣接する単電
池ないし当該単電池を含みこれに隣接する1個以上の単
電池を第5の直列電池群(2I,2J)として選択する
とともに、これらのうちで最も充電レベルの低い単電池
(2I)、ないし当該最も充電レベルの低い単電池を含
み上記第3の直列電池群より少ない数の隣接する単電池
を第4の直列電池群として選択して、上記最も充電レベ
ルの低い単電池(2I)ないし第4の直列電池群を上記
相対的に充電レベルの高いグループ電池(1A)の補助
充放電器(7A)に並列接続し、その後、上記単電池な
いし第5の直列電池群(2I,2J)を上記相対的に充
電レベルの低いグループ電池(1B)の補助充放電器
(7B)に並列に接続し、さらにその後、上記相対的に
充電レベルの低いグループ電池(1B)内でこの時点で
充電レベルの最も低い単電池(2E)、ないし当該充電
レベルの最も低い単電池(2E)を含み上記第5の直列
電池群(2I,2J)よりも少ない数の隣接する単電池
を第6の直列電池群として選択して、上記充電レベルの
最も低い単電池(2E)ないし第6の直列電池群を上記
相対的に充電レベルの低いグループ電池(1B)の補助
充放電器(7B)に並列に接続する切換動作を繰り返す
第2の切換接続手段(5A,5B)とを具備している。
In the second invention, a plurality of group batteries (1A, 1B) each composed of a plurality of unit cells (2A to 2J, 2E to 2H) and connected in series to each other to form a battery pack (CB) are provided. Equipped, each group battery (1A, 1
B) includes a plurality of unit cells (2A to 2J,
2E to 2H), auxiliary charge / discharge devices (7A, 7B), first charge state detecting means (3A to 3J) for detecting the charge state of each cell (2A to 2J), and the highest charge level. A single cell, or one or more suitable number of cells including the cell with the highest charge level and adjacent thereto is selected as a first series battery group (2A, 2B and 2E, 2F), and After one series battery group is connected in parallel to the auxiliary charger / discharger (7A, 7B), at this time, the cells (2C, 2G) having the lowest charge level or the cells having the lowest charge level are included. A smaller number of adjacent cells than the first series of cells are selected as the second series of cells, and the cells (2C, 2G) or the second series of cells with the lowest charge level are supplementarily charged. The switching operation of connecting the discharger (7A, 7B) in parallel is repeated. To the first switching connection means (5A, 5
B), and each group battery (1A, 1B)
Second state-of-charge detecting means (4) for detecting the state of charge of the battery
And a cell having the highest charge level in the group battery (1A) having a relatively high charge level among the adjacent group batteries (1A, 1B), or a cell including the cell having the highest charge level and being adjacent thereto. One or more suitable cells are selected as a third series battery group (2A, 2B),
After connecting the single battery with the highest charge level or the third series battery group in parallel to the auxiliary charger / discharger (7A) of the group battery (1A) with the relatively high charge level,
A cell connected to one group battery (1A) among the adjacent group batteries (1A) and one or more unit cells including and including the unit cell adjacent to another group battery (1B) is connected in a fifth series. The battery group (2I, 2J) is selected, and the unit cell (2I) having the lowest charge level among these, or a smaller number of adjacent cells than the third series battery group including the unit cell having the lowest charge level. Is selected as the fourth series battery group, and the unit cells (2I) having the lowest charge level through the fourth series battery group are supplementally charged with the group batteries (1A) having the relatively high charge level. The battery is connected in parallel to the discharger (7A), and then the unit cells or the fifth series battery group (2I, 2J) are connected to the auxiliary charger / discharger (7B) of the group battery (1B) having a relatively low charge level. Connect in parallel Further, after that, in the group battery (1B) having the relatively low charge level, the cell (2E) having the lowest charge level at this time or the cell (2E) having the lowest charge level is included in the fifth battery. A smaller number of adjacent unit cells than the series battery group (2I, 2J) are selected as the sixth series battery group, and the unit cells (2E) to the sixth series battery group having the lowest charge level are described above. Second switching connection means (5A, 5B) for repeating a switching operation of connecting the auxiliary battery (7B) of the group battery (1B) having a relatively low charge level in parallel to the auxiliary charging / discharging device (7B).

【0011】本第2発明においては、本第1発明におけ
ると同様の作用によって第1の直列電池群から第2の直
列電池群へ電荷が移行させられて各グループ電池内で単
電池の充電状態の均一化が同時並行的に行なわれるとと
もに、第4および第5の直列電池群を介して第3の直列
電池群から第6の直列電池群へ電荷が移行させられて各
グループ電池間の充電状態の均一化が行なわれ、本第1
発明と同一の効果が得られる。特に、本第2発明ではグ
ループ電池間の電荷移動を補助充放電器により直接行わ
ず、第4、第5の直列電池群を介して行うので、切換接
続手段をすべて必要耐圧の低いFET(電界効果トラン
ジスタ)スイッチで構成することができ、その小型化と
コスト低減が図られるという効果がある。
In the second invention, the charge is transferred from the first series battery group to the second series battery group by the same operation as in the first invention, and the state of charge of the unit cells in each group of batteries is changed. And the electric charge is transferred from the third series battery group to the sixth series battery group via the fourth and fifth series battery groups, so that the charging between the group batteries is performed. The state is made uniform and the first
The same effect as the invention can be obtained. In particular, in the second aspect of the present invention, since the charge transfer between the group batteries is not performed directly by the auxiliary charger / discharger, but is performed via the fourth and fifth series battery groups, all the switching connection means are FETs having a low required withstand voltage. (Effect transistor) switch, which has the effect of reducing the size and cost.

【0012】本第3発明では、それぞれ複数の単電池
(2A〜2D,2I,2Jと2E〜2H,2I,2J)
より構成され、互いに1個以上の単電池(2I,2J)
を共有しつつ互いに直列に接続されて組電池(CB)を
構成する複数のグループ電池(1A,1B)を具備し、
各グループ電池(1A,1B)は、直列に接続された複
数の単電池(2A〜2D,2I,2Jと2E〜2H,2
I,2J)と、補助充放電器(7A,7B)と、各単電
池(2A〜2J)の充電状態を検出する充電状態検出手
段(3A〜3J)と、最も充電レベルの高い単電池、な
いし当該最も充電レベルの高い単電池を含みこれに隣接
する1個以上の適当数の単電池を第1の直列電池群(1
A,1Bと2E,2F)として選択して、当該第1の直
列電池群を補助充放電器(7A,7B)に並列に接続し
た後、この時点で最も充電レベルの低い単電池(2C,
2G)、ないし当該最も充電レベルの低い単電池を含み
上記第1の直列電池群よりも少ない数の隣接する単電池
を第2の直列電池群として選択して、上記充電レベルの
最も低い単電池(2C,2G)ないし第2の直列電池群
を補助充放電器(7A,7B)に並列に接続する切換動
作を繰り返す切換接続手段(5A,5B)とを具備して
いる。
In the third invention, a plurality of cells (2A to 2D, 2I, 2J and 2E to 2H, 2I, 2J) are respectively provided.
Composed of at least one unit cell (2I, 2J)
And a plurality of group batteries (1A, 1B) connected in series with each other to form a battery pack (CB),
Each group battery (1A, 1B) has a plurality of unit cells (2A to 2D, 2I, 2J and 2E to 2H, 2) connected in series.
I, 2J), auxiliary charge / discharge devices (7A, 7B), charge state detection means (3A-3J) for detecting the charge state of each cell (2A-2J), a cell having the highest charge level, Alternatively, one or more appropriate number of cells including the cell having the highest charge level may be connected to the first series cell group (1
A, 1B and 2E, 2F), and after connecting the first series battery group to the auxiliary charger / discharger (7A, 7B) in parallel, the cells (2C, 2C,
2G) or a smaller number of adjacent unit cells including the unit cell with the lowest charge level than the first series cell group as the second series cell group, and selecting the unit cell with the lowest charge level Switching connection means (5A, 5B) for repeating a switching operation of connecting (2C, 2G) or the second series battery group to the auxiliary charger / discharger (7A, 7B) in parallel is provided.

【0013】本第3発明において、各グループ電池内に
おいて、最も充電レベルの高い単電池を含む第1の直列
電池群が補助充放電器に接続されると、第1の直列電池
群から補助充放電器へ電流が供給されて最も充電レベル
の高い単電池の電圧が低下する。その後、この時点で充
電レベルの最も低い単電池を含み上記第1の直列電池群
よりも少ない数の第2の直列電池群が補助充放電器に接
続されると、補助充放電器の電荷が第2の直列電池群へ
放電供給され、第2の直列電池群が充電される。他の単
電池の充電レベルが最も高くなると、当該他の単電池を
含む新たな第1の直列電池群と補助充放電器との間で同
様の動作が行われて次々に充電レベルが低下させられる
とともに、補助充放電器から第2の直列電池群へ充電が
なされて各単電池の充電レベルが上昇させられ、グルー
プ電池内の単電池の充電状態が常に均一化される。この
時、本発明では隣接するグループ電池間で一個以上の単
電池を共有しているから、上述した各グループ電池内の
単電池間での充放電による電荷のやり取りは互いに隣接
するグループ電池にも波及し、これによって、グループ
電池間の充電状態の均一化も同時に行なわれる。
In the third aspect of the present invention, when the first series battery group including the unit cell having the highest charge level in each group battery is connected to the auxiliary charger / discharger, the first series battery group is switched from the first series battery group to the auxiliary battery. A current is supplied to the discharger, and the voltage of the cell having the highest charge level decreases. Thereafter, when a smaller number of second series battery groups including the unit cells having the lowest charge level at this time are connected to the auxiliary charger / discharger, the charge of the auxiliary charger / discharger is reduced. The second series battery group is discharged and supplied, and the second series battery group is charged. When the charge level of the other cells becomes the highest, the same operation is performed between the new first series battery group including the other cells and the auxiliary charger / discharger, and the charge levels decrease one after another. At the same time, the second series battery group is charged from the auxiliary charger / discharger, the charge level of each unit cell is increased, and the charge state of the unit cells in the group cells is always uniformed. At this time, in the present invention, since one or more single cells are shared between adjacent group batteries, the exchange of charge by charge and discharge between the single cells in each of the above-described group batteries is also performed on adjacent group batteries. As a result, the state of charge between the group batteries is also made uniform at the same time.

【0014】なお、上記カッコ内の符号は、後述する実
施形態に記載の具体的手段との対応関係を示すものであ
る。
The reference numerals in parentheses indicate the correspondence with the specific means described in the embodiments described later.

【0015】[0015]

【発明の実施の形態】(第1実施形態)図1には充電状
態制御装置の全体構成を示す。充電状態制御装置は複数
(本実施形態では3つ)のグループ電池1A,1B,1
Cを直列に接続した組電池CBを有し、各グループ電池
1A,1B,1Cは複数(本実施形態では4つ)の、リ
チウムイオン電池等の単電池2A,2B,2C,2Dと
2E,2F,2G,2Hと2M,2N,2O,2Pを直
列接続して構成されている。組電池CBからは充放電線
Lが延び、組電池CBを充電する場合には図略の充電電
源から充放電線Lに電流が供給され、一方、組電池CB
が放電する場合には、充放電線Lから図略の負荷へ電流
が供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows the overall configuration of a charging state control device. The charge state control device includes a plurality (three in this embodiment) of group batteries 1A, 1B, 1
C in series, and each group battery 1A, 1B, 1C has a plurality (four in this embodiment) of unit cells 2A, 2B, 2C, 2D and 2E such as lithium ion batteries. 2F, 2G, 2H and 2M, 2N, 2O, 2P are connected in series. A charge / discharge line L extends from the battery pack CB, and when charging the battery pack CB, a current is supplied to the charge / discharge line L from a charging power supply (not shown).
Is discharged, a current is supplied from the charge / discharge line L to a load (not shown).

【0016】各単電池2A〜2H,2M〜2Pには電圧
計3A,3B,3C,…,3H,3M〜3Pが並列に接
続され、各電圧計3A〜3Pからの電圧信号は制御回路
4に入力している。リチウムイオン電池等では電池の充
電状態と電池電圧がほぼ比例関係にあるから、上記電圧
信号によって制御回路4は各単電池2A〜2Pの充電状
態を簡易かつ正確に知ることができる。もちろん、電圧
計以外によって充電状態を知ることも可能である。各グ
ループ電池1A〜1Cに対応して補助充放電器としての
コンデンサ7A〜7Cが設けられ、コンデンサ7A〜7
Cと各グループ電池1A〜1Cとの間には切換接続手段
たるスイッチング回路5A〜5Cが介設されている。各
スイッチング回路5A〜5Cは制御回路4からの信号に
よって後述のように切換作動させられて、単電池単体あ
るいは互いに隣接する適当数の単電池よりなる直列電池
群を選択してコンデンサ7A〜7Cに切換え接続する。
なお、コンデンサの容量は数千〜一万μF程度である。
また、コンデンサ7A〜7C間には切換接続手段たるス
イッチング回路6AB,6BC,6CAが介設されて、
制御回路4からの信号によって後述のように切換作動さ
せられる。
A voltmeter 3A, 3B, 3C,..., 3H, 3M-3P is connected in parallel to each of the cells 2A-2H, 2M-2P, and a voltage signal from each voltmeter 3A-3P Is being entered. In a lithium ion battery or the like, the charge state of the battery is substantially proportional to the battery voltage, so that the control circuit 4 can easily and accurately know the charge state of each of the cells 2A to 2P by the voltage signal. Of course, it is also possible to know the state of charge by means other than the voltmeter. Capacitors 7A to 7C are provided as auxiliary charge / discharge devices corresponding to the respective group batteries 1A to 1C.
Switching circuits 5A to 5C as switching connection means are interposed between C and each group battery 1A to 1C. Each of the switching circuits 5A to 5C is switched and operated by a signal from the control circuit 4 as described later, and selects a single cell or a series battery group consisting of an appropriate number of cells adjacent to each other and supplies it to the capacitors 7A to 7C. Switch connection.
Note that the capacitance of the capacitor is about several thousand to 10,000 μF.
Switching circuits 6AB, 6BC, and 6CA as switching connection means are interposed between the capacitors 7A to 7C.
Switching operation is performed by a signal from the control circuit 4 as described later.

【0017】各スイッチング回路5A〜5Cは、各単電
池2A〜2D,2E〜2H,2M〜2Pの正極とコンデ
ンサ7A,7B,7Cの正極を結ぶスイッチ51A〜5
1D,51E〜51H,51M〜51Pと、各単電池2
A〜2D,2E〜2H,2M〜2Pの負極とコンデンサ
7A,7B,7Cの負極を結ぶスイッチ52A〜52
D,52E〜52H,52M〜52Pとで構成されてい
る。また、スイッチング回路6AB〜6CAはそれぞれ
コンデンサ7A〜7Cの正極同士を結ぶスイッチ61A
〜61Cと、コンデンサ7A〜7Cの負極同士を結ぶス
イッチ62A〜62Cとで構成されている。これらスイ
ッチ51A〜51P,52A〜52P,61A〜61
C,62A〜62Cとしては例えばFETスイッチが好
適に使用できる。
The switching circuits 5A to 5C are provided with switches 51A to 5C connecting the positive electrodes of the cells 2A to 2D, 2E to 2H and 2M to 2P and the positive electrodes of the capacitors 7A, 7B and 7C.
1D, 51E to 51H, 51M to 51P, and each cell 2
Switches 52A-52 connecting negative electrodes of A-2D, 2E-2H, 2M-2P and negative electrodes of capacitors 7A, 7B, 7C.
D, 52E to 52H and 52M to 52P. The switching circuits 6AB to 6CA are switches 61A connecting the positive electrodes of the capacitors 7A to 7C, respectively.
61C and switches 62A to 62C connecting the negative electrodes of the capacitors 7A to 7C. These switches 51A to 51P, 52A to 52P, 61A to 61
As C and 62A to 62C, for example, an FET switch can be suitably used.

【0018】このような構成の充放電装置の作動を、制
御回路4内のCPUの処理手順を示す図2〜図4のフロ
ーチャートを参照して以下に説明する。図2において、
ステップ100で、各グループ電池1A〜1C内の単電
池の充電状態の均一化が行われる。これは各グループ電
池1A〜1C毎に、これらグループ電池1A〜1Cを構
成する単電池2A〜2D,2E〜2H,2M〜2P間の
充電状態の不均一を解消するもので、その詳細を図3に
示す。
The operation of the charging / discharging device having such a configuration will be described below with reference to the flowcharts of FIGS. In FIG.
In step 100, the state of charge of the cells in each of the group batteries 1A to 1C is equalized. This solves the non-uniform charge state among the cells 2A to 2D, 2E to 2H, and 2M to 2P that constitute the group batteries 1A to 1C for each of the group batteries 1A to 1C. 3 is shown.

【0019】図3において、各グループ電池1A〜1C
を構成する単電池2A〜2D,2E〜2H,2M〜2P
のうち各グループ電池内で最も充電レベルの高い単電池
とこれに隣接する1個以上の適当数の単電池を第1の直
列電池群として選択して(ステップ101)、この第1
の直列電池群をスイッチング回路5A〜5Cによってそ
れぞれコンデンサ7A〜7Cに並列に接続する(ステッ
プ102)。なお、各単電池の充電レベルは既述のよう
に、これら単電池2A〜2Pに並列接続された電圧計3
A〜3Pの値から知ることができる。一定時間経過後に
(ステップ103)、ステップ104で単電池2A〜2
D,2E〜2H,2M〜2Pのうち各グループ電池内で
充電レベルが最も低い単電池、ないし当該充電レベルが
最も低い単電池を含み上記第1の直列電池群よりも少な
い数の隣接する単電池を第2の直列電池群として選択し
て(ステップ104)、充電レベルが最も低い単電池な
いし第2の直列電池群をスイッチング回路5A〜5Cに
よってそれぞれコンデンサ7A〜7Cに一定時間並列に
接続する(ステップ105,106)。ステップ107
では全ての単電池の充電状態の均一化が完了したか確認
し、不均一の場合はステップ101から繰り返す。
In FIG. 3, each of the group batteries 1A to 1C
2A-2D, 2E-2H, 2M-2P
Out of the group batteries, the unit cell having the highest charge level and one or more suitable single cells adjacent thereto are selected as the first series battery group (step 101).
Are connected in parallel to the capacitors 7A to 7C by the switching circuits 5A to 5C, respectively (step 102). The charge level of each cell is, as described above, a voltmeter 3 connected in parallel to these cells 2A to 2P.
It can be known from the values of A to 3P. After a lapse of a predetermined time (step 103), in step 104, the cells 2A to 2A
D, 2E to 2H, and 2M to 2P, the unit cells having the lowest charge level in each group battery, or the number of adjacent cells including the unit cells having the lowest charge level and less than the first series battery group. The battery is selected as the second series battery group (step 104), and the unit cell or the second series battery group having the lowest charge level is connected in parallel to the capacitors 7A to 7C by the switching circuits 5A to 5C for a certain time. (Steps 105 and 106). Step 107
Then, it is confirmed whether or not the uniformity of the charged state of all the cells has been completed.

【0020】例えば図1において、グループ電池1Aの
うちで単電池2Aが最も充電レベルが高く、この時単電
池2Cの充電レベルが最も低いとする。制御回路4は単
電池2Aとこれに隣接する単電池2Bを第1の直列電池
群として選択して、スイッチ51A,52Bを導通作動
させる。これにより、第1の直列電池群2A,2Bから
コンデンサ7Aへ電流が流れ、単電池2A,2Bの電圧
が下降するとともに、コンデンサ7Aが充電される。一
定時間t1 経過後に、制御回路4は今度は充電レベルの
最も低い単電池2Cを選択し、スイッチ51A,52B
に代えてスイッチ51C,52Cを導通作動させる。こ
れにより、コンデンサ7Aから単電池2Cへ電流が流れ
て、単電池2Cが充電される。この時のコンデンサ7A
の電圧は単電池2Cの電圧のほぼ2倍あるから、効率的
かつ確実な充電が速やかになされる。一定時間t2 経過
した後、スイッチ51C,52Cを非導通とする。な
お、上記一定時間t1,t2 は、第1の直列電池群2A,
2Bとコンデンサ7A、ないし単電池2Cとコンデンサ
7Aとの間が均一状態となって電流が流れなくなるのに
十分な時間とする。したがって、実際に電流が流れなく
なったことを検出して次の動作に移るようにしても良
い。同様の操作を他のグループ電池1B,1Cについて
も行う。
For example, in FIG. 1, it is assumed that the cell 2A has the highest charge level among the group batteries 1A, and the cell 2C has the lowest charge level at this time. The control circuit 4 selects the unit cell 2A and the unit cell 2B adjacent to the unit cell as a first series cell group, and makes the switches 51A and 52B conductive. As a result, current flows from the first series battery group 2A, 2B to the capacitor 7A, the voltage of the unit cells 2A, 2B decreases, and the capacitor 7A is charged. After the elapse of the predetermined time t1, the control circuit 4 selects the cell 2C having the lowest charge level and switches 51A and 52B.
, The switches 51C and 52C are turned on. As a result, current flows from the capacitor 7A to the cell 2C, and the cell 2C is charged. The capacitor 7A at this time
Is almost twice the voltage of the unit cell 2C, so that efficient and reliable charging is quickly performed. After a predetermined time t2 has elapsed, the switches 51C and 52C are turned off. The fixed times t1 and t2 correspond to the first series battery group 2A,
The time is set to a time sufficient for a uniform state between the cell 2B and the capacitor 7A or between the cell 2C and the capacitor 7A to stop the current from flowing. Therefore, it may be possible to detect that the current has actually stopped flowing and proceed to the next operation. The same operation is performed for the other group batteries 1B and 1C.

【0021】以上の動作、すなわち図3のステップ10
1〜ステップ107の動作は例えば5Hzで繰り返さ
れ、他の単電池の充電レベルが最も高くなると、当該他
の単電池とこれに隣接する単電池が新たな第1の直列電
池群として選択され、この新たな第1の直列電池群とこ
の時最も充電レベルの低い単電池、ないしこれを含む第
2の直列電池群との間でコンデンサ7A,7B,あるい
は7Cを介して同様の動作が繰り返される。このような
動作が繰り返されることにより、組電池CBの充電中に
は、各グループ電池1A,1B,1Cを構成する全ての
単電池2A〜2D,2E〜2H,2M〜2Pが過充電を
生じることなくその充電レベルが均一化され、この状態
で各単電池2A〜2D,2E〜2H,2M〜2Pは容量
一杯まで充電されて満充電の状態になる。また、組電池
CBの放電中には、全ての単電池2A〜2D,2E〜2
H,2M〜2Pが過放電を生じることなくその放電レベ
ル(充電レベル)が均一化され、放電完了がほぼ同時と
なる。したがって、単電池2A〜2D,2E〜2H,2
M〜2Pの過放電が避けられるとともに、放電作動終了
時に各単電池に残電荷を生じることがないから、残電荷
を生じたまま再充電を行うことによる電池劣化も避ける
ことができる。なお、単電池2A〜2Pの充電状態を確
認するのは、電池の充放電が休止している時にのみ行う
方が良い。その理由は、充放電電流が流れていると単電
池2A〜2Pの端子電圧が変動して、充電状態を正確に
判定できないことがあるからである。なお、上記各グル
ープ電池内の充放電状態の均一化は、組電池の充放電時
のみに行なう必要はなく、常時行なうようにしても良
い。
The above operation, that is, step 10 in FIG.
The operations of 1 to 107 are repeated at, for example, 5 Hz, and when the charge level of the other cell is the highest, the other cell and the cell adjacent thereto are selected as a new first series cell group, A similar operation is repeated between the new first series battery group and the unit cell having the lowest charge level at this time or the second series battery group including the same via the capacitor 7A, 7B or 7C. . By repeating such an operation, all the cells 2A to 2D, 2E to 2H, and 2M to 2P constituting each group battery 1A, 1B, 1C are overcharged during charging of the battery pack CB. In this state, the cells 2A to 2D, 2E to 2H, and 2M to 2P are charged to their full capacity and become fully charged. During the discharge of the assembled battery CB, all the cells 2A to 2D and 2E to 2E
The discharge levels (charge levels) of the H and 2M to 2P are made uniform without causing overdischarge, and the discharge is completed almost simultaneously. Therefore, the cells 2A to 2D, 2E to 2H, 2
Since overdischarge of M to 2P can be avoided, and no residual charge is generated in each unit cell at the end of the discharge operation, battery deterioration due to recharging while generating the residual charge can also be avoided. Note that it is better to check the state of charge of the cells 2A to 2P only when charging and discharging of the cells are suspended. The reason is that when the charge / discharge current is flowing, the terminal voltages of the cells 2A to 2P fluctuate, and the state of charge may not be accurately determined. The uniformity of the charge / discharge state in each of the group batteries does not need to be performed only at the time of charge / discharge of the assembled battery, but may be performed at all times.

【0022】各グループ電池1A〜1C内の単電池2A
〜2D,2E〜2H,2M〜2Pの充電状態を上述の手順
で均一化するとともに、制御装置4は図2のステップ2
00でグループ電池1A〜1C間の充電状態が不均一と
なった場合には以下に詳述するグループ電池1A〜1C
間の充電状態の均一化を行なう(ステップ300)。な
お、各グループ電池1A〜1Cの充電状態は、当該グル
ープ電池1A〜1Cを構成する各単電池2A〜2D,2
E〜2H,2M〜2Pの端子電圧を制御回路4内で加算
することによって知ることができる。グループ電池1A
〜1C間の充電状態均一化の手順を図4に示す。
Cell 2A in each group of batteries 1A-1C
2D, 2E to 2H, and 2M to 2P, the charging state is made uniform by the above-described procedure.
If the state of charge among the group batteries 1A to 1C becomes non-uniform at 00, the group batteries 1A to 1C described in detail below are used.
During this time, the state of charge is made uniform (step 300). The state of charge of each of the group batteries 1A to 1C is determined by the unit cells 2A to 2D, 2 constituting the group batteries 1A to 1C.
It can be known by adding the terminal voltages of E to 2H and 2M to 2P in the control circuit 4. Group battery 1A
FIG. 4 shows the procedure for equalizing the state of charge between 1C and 1C.

【0023】図4において、各グループ電池1A〜1C
のうち最も充電レベルの高いグループ電池、例えばグル
ープ電池1Aを選択し、これを構成する単電池2A〜2
Dのうち、最も充電レベルの高い単電池とこれに隣接す
る1個以上の適当数の単電池を第3の直列電池群として
選択して(ステップ301)、この第3の直列電池群を
スイッチング回路5Aによってコンデンサ7Aに並列に
接続する(ステップ302)。一定時間経過後に(ステ
ップ303)、ステップ304で上記最も充電レベルの
高いグループ電池1Aとこの時点で最も充電レベルの低
いグループ電池、例えばグループ電池1Cのコンデンサ
7Cとをスイッチング回路6CAによって接続して(ス
テップ304)、グループ電池1Cのコンデンサ7Cを
充電する。一定時間経過後(ステップ305)、グルー
プ電池1Cを構成する単電池2M〜2Pのうち充電レベ
ルが最も低い単電池、ないし当該充電レベルが最も低い
単電池を含み上記第3の直列電池群よりも少ない数の隣
接する単電池を第4の直列電池群として選択して(ステ
ップ306)、充電レベルが最も低い単電池ないし第4
の直列電池群をスイッチング回路5Cによってコンデン
サ7Cに一定時間並列に接続する(ステップ307,3
08)。ステップ309では問題となったグループ電池
間の不均一が解消されたかを確認し、不均一が解消され
ていれば図2のステップ100へ戻る。
In FIG. 4, each of the group batteries 1A to 1C
Of the group batteries having the highest charge level, for example, the group battery 1A, and the cells 2A to 2A constituting the same.
Among D, the unit cell having the highest charge level and one or more suitable unit cells adjacent thereto are selected as the third series battery group (step 301), and this third series battery group is switched. The circuit 5A connects the capacitor 7A in parallel (step 302). After a lapse of a predetermined time (step 303), in step 304, the group battery 1A having the highest charge level and the group battery having the lowest charge level at this time, for example, the capacitor 7C of the group battery 1C are connected by the switching circuit 6CA ( Step 304), charging the capacitor 7C of the group battery 1C. After a lapse of a predetermined time (step 305), the cells having the lowest charge level or the cells having the lowest charge level among the cells 2M to 2P constituting the group battery 1C are higher than the third series cell group. A small number of adjacent cells are selected as the fourth series cell group (step 306), and the cell having the lowest charge level or the fourth cell group is selected.
Are connected in parallel to the capacitor 7C by the switching circuit 5C for a predetermined time (steps 307 and 3).
08). In step 309, it is checked whether or not the non-uniformity between the group batteries in question has been resolved. If the non-uniformity has been resolved, the process returns to step 100 in FIG.

【0024】例えば図1において、グループ電池1Aが
最も充電レベルが高く、かつグループ電池1A内では単
電池2Aが最も充電レベルが高いとする。制御回路4は
単電池2Aとこれに隣接する単電池2Bを第3の直列電
池群として選択して、スイッチ51A,52Bを導通作
動させる。これにより、第3の直列電池群2A,2Bか
らコンデンサ7Aへと電流が流れてコンデンサ7Aが充
電される。一定時間t3 経過後に、制御回路4はスイッ
チ51A,52Bに代えてスイッチング回路6CAのス
イッチ61C,62Cを導通作動させて、グループ電池
1Cのコンデンサ7Cと上記コンデンサ7Aを接続し、
前者を後者で充電する。この状態で一定時間t4経過後
に、制御回路4はグループ電池1Cのうちで最も充電レ
ベルの低い単電池2Mを選択し、スイッチ61C,62
Cに代えてスイッチ51M,52Mを導通作動させて、
単電池2Mをコンデンサ7Cに接続する。これにより、
コンデンサ7Cから単電池2Mへ電流が流れて、単電池
2Mが充電される。この時のコンデンサ7Cの電圧は単
電池2Mの電圧のほぼ2倍あるから、効率的かつ確実な
充電が速やかになされる。一定時間t5 経過した後、ス
イッチ51M,52Mを非導通とする。なお、上記一定
時間t3,t4,t5 は、第3の直列電池群2A,2Bとコ
ンデンサ7A、コンデンサ7Aとコンデンサ7C、およ
びコンデンサ7Cと単電池2Mとの間が均一状態となっ
て電流が流れなくなるのに十分な時間とする。したがっ
て、実際に電流が流れなくなったことを検出して次の動
作に移るようにしても良い。
For example, in FIG. 1, it is assumed that the charge level of the group battery 1A is the highest, and the cell 2A has the highest charge level in the group battery 1A. The control circuit 4 selects the unit cell 2A and the unit cell 2B adjacent to the unit cell as a third series cell group, and turns on the switches 51A and 52B. As a result, a current flows from the third series battery group 2A, 2B to the capacitor 7A, and the capacitor 7A is charged. After the elapse of the predetermined time t3, the control circuit 4 conducts the switches 61C and 62C of the switching circuit 6CA in place of the switches 51A and 52B to connect the capacitor 7C of the group battery 1C and the capacitor 7A,
The former is charged by the latter. In this state, after a lapse of a predetermined time t4, the control circuit 4 selects the cell 2M having the lowest charge level from the group batteries 1C, and switches 61C and 62C.
The switches 51M and 52M are turned on in place of C,
The cell 2M is connected to the capacitor 7C. This allows
A current flows from the capacitor 7C to the cell 2M, and the cell 2M is charged. At this time, the voltage of the capacitor 7C is almost twice the voltage of the cell 2M, so that efficient and reliable charging is quickly performed. After a predetermined time t5 has elapsed, the switches 51M and 52M are turned off. During the above-mentioned fixed times t3, t4, t5, a current flows when the third series battery groups 2A, 2B and the capacitor 7A, the capacitor 7A and the capacitor 7C, and the capacitor 7C and the unit cell 2M become uniform. Allow enough time for it to disappear. Therefore, it may be possible to detect that the current has actually stopped flowing and proceed to the next operation.

【0025】以上の動作、すなわち図4のステップ30
1〜ステップ309の動作は例えば5Hzで繰り返さ
れ、他のグループ電池の充電レベルが最も高くなると、
当該他のグループ電池とこの時点で最も充電レベルの低
いグループ電池との間で同様の均一化動作がなされる。
本実施形態によれば、組電池を、所定数の単電池を含む
複数のグループ電池に区画してそれぞれの各グループ電
池内で同時並行的に単電池間の充電状態の均一化を行な
っているから、単電池の充電状態の均一化を速やかに行
なうことができる。したがって、充放電の際に組電池全
体の容量を効率的に利用できるとともに、単電池の過充
電や過放電を未然に防止することができる。さらに、ス
イッチング回路5A,5B,5Cの各スイッチ51A〜
52PとしてFETスイッチを使用するに際して、FE
Tスイッチには各グループ電池内の電圧しか印加され
ず、組電池全体の電圧が印加されることはないから、耐
圧の小さい安価かつ小型のFETスイッチを使用するこ
とができる。なお、図4のステップ304でスイッチン
グ回路6CAに代えて、スイッチ回路6ABと6BCを
順次作動させるようにしても良く、このようにすればス
イッチング回路6CAは不要である。
The above operation, that is, step 30 in FIG.
The operations of 1 to 309 are repeated at, for example, 5 Hz, and when the charge level of the other group batteries becomes the highest,
A similar equalizing operation is performed between the other group battery and the group battery having the lowest charge level at this time.
According to the present embodiment, the assembled battery is divided into a plurality of group batteries including a predetermined number of cells, and the state of charge among the cells is made uniform in each group battery simultaneously and in parallel. Accordingly, the state of charge of the unit cells can be quickly uniformed. Therefore, the capacity of the entire assembled battery can be efficiently used at the time of charging and discharging, and overcharging and overdischarging of the unit cells can be prevented. Further, each of the switches 51A to 51A of the switching circuits 5A, 5B, 5C
When using an FET switch as 52P, FE
Since only the voltage in each group of batteries is applied to the T switch and the voltage of the entire assembled battery is not applied, an inexpensive and small FET switch having a small withstand voltage can be used. In step 304 of FIG. 4, the switching circuits 6AB and 6BC may be sequentially operated instead of the switching circuit 6CA. In this case, the switching circuit 6CA is unnecessary.

【0026】(第2実施形態)本実施形態では理解を容
易にするために、図5に示すように、第1実施形態にお
ける3つのグループ電池のうちの二つのみを示して以下
に説明する。本実施形態ではグループ電池1A,1B間
のスイッチング回路(図1の6AB等)を廃止する一
方、グループ電池1Aに属する単電池2I,2Jを、隣
接するグループ電池1Bに近い位置に新たに設けてい
る。そして、単電池2I,2Jの正極はスイッチング回
路5Aのスイッチ51I,51Jを介してコンデンサ7
Aの正極に接続されるとともに、スイッチング回路5B
のスイッチ51K,51Lを介してグループ電池1Bの
コンデンサ7Bの正極にも接続されている。また、単電
池2I,2Jの負極はスイッチ52I,52Jを介して
コンデンサ7Aの負極に接続されるとともに、スイッチ
ング回路5Bのスイッチ52K,52Lを介してグルー
プ電池1Bのコンデンサ7Bの負極にも接続されてい
る。
(Second Embodiment) In this embodiment, in order to facilitate understanding, as shown in FIG. 5, only two of the three group batteries in the first embodiment are shown and described below. . In the present embodiment, the switching circuit between the group batteries 1A and 1B (such as 6AB in FIG. 1) is abolished, and the cells 2I and 2J belonging to the group battery 1A are newly provided at a position close to the adjacent group battery 1B. I have. The positive electrodes of the cells 2I and 2J are connected to the capacitors 7 through the switches 51I and 51J of the switching circuit 5A.
A is connected to the positive electrode of A and the switching circuit 5B
Are connected to the positive electrode of the capacitor 7B of the group battery 1B via the switches 51K and 51L. The negative electrodes of the cells 2I and 2J are connected to the negative electrode of the capacitor 7A via the switches 52I and 52J, and also connected to the negative electrode of the capacitor 7B of the group battery 1B via the switches 52K and 52L of the switching circuit 5B. ing.

【0027】各グループ電池1A,1B内の単電池2A
〜2J,2E〜2Hの充電状態を均一化させるのは、既
に第1実施形態で説明した手順によって適宜スイッチン
グ回路5A,5B内の各スイッチ51A〜52J,51
E〜52Hを作動させることにより、各グループ電池1
A,1B毎にこれを構成する各単電池ないし直列電池群
とコンデンサ7A,7Bとの間で充放電が繰り返されて
均一化が行なわれる。
Cell 2A in each group of batteries 1A, 1B
2J and 2E to 2H are made uniform by the procedure already described in the first embodiment by appropriately switching the switches 51A to 52J and 51J in the switching circuits 5A and 5B.
By operating E-52H, each group battery 1
The charge and discharge are repeated between the cells 7A and 7B and each unit cell or series battery group constituting the same for each of A and 1B, thereby achieving uniformity.

【0028】グループ電池1A,1B間で不均一が生じ
た場合の、制御回路4によるグループ電池1A,1B間
の均一化手順を以下に説明する。グループ電池1Aが相
対的に充電レベルが高く、かつグループ電池内では単電
池2Aが最も充電レベルが高いとする。制御回路4は単
電池2Aとこれに隣接する単電池2Bを第3の直列電池
群として選択して、スイッチ51A,52Bを導通作動
させる。これにより、第3の直列電池群2A,2Bから
コンデンサ7Aへと電流が流れてコンデンサ7Aが充電
される。一定時間経過後、単電池2I,2Jを第5の直
列電池群として選択して、これら単電池2I,2Jの充
電レベルを比較し、単電池2Iのほうが充電レベルが低
いと、制御回路4はスイッチ51A,52Bに代えてス
イッチ51I,52Iを導通作動させて単電池2Iを充
電する。この状態で一定時間経過後に、スイッチ51
I,52Iに代えてスイッチ51K,52Lを導通作動
させて、第5の直列電池群たる単電池2I,2Jでコン
デンサ7Bを充電する。さらに一定時間経過後に、グル
ープ電池1Bでは単電池2Eが最も充電レベルが低くな
っているとすると、制御回路4はスイッチ51K,52
Lに代えてスイッチ51E,52Eを導通作動させてコ
ンデンサ7Bを単電池2Eに接続する。これにより、コ
ンデンサ7Bから単電池2Eへ電流が流れて、単電池2
Eが充電される。この時のコンデンサ7Bの電圧は単電
池2Eの電圧のほぼ2倍あるから、効率的かつ確実な充
電が速やかになされる。スイッチ51E,52Eは一定
時間経過後に非導通とされる。
The procedure for equalizing between the group batteries 1A and 1B by the control circuit 4 when unevenness occurs between the group batteries 1A and 1B will be described below. It is assumed that the charge level of the group battery 1A is relatively high, and the cell 2A has the highest charge level in the group battery. The control circuit 4 selects the unit cell 2A and the unit cell 2B adjacent to the unit cell as a third series cell group, and turns on the switches 51A and 52B. As a result, a current flows from the third series battery group 2A, 2B to the capacitor 7A, and the capacitor 7A is charged. After a certain period of time, the cells 2I and 2J are selected as a fifth series battery group, and the charge levels of these cells 2I and 2J are compared. If the charge level of the cells 2I is lower, the control circuit 4 The cells 51 are charged by conducting the switches 51I and 52I in place of the switches 51A and 52B. After a certain time has passed in this state, the switch 51
The switches 51K and 52L are turned on in place of I and 52I, and the capacitor 7B is charged by the cells 2I and 2J as the fifth series battery group. Further, assuming that the charge level of the unit cell 2E is the lowest in the group battery 1B after a certain period of time has elapsed, the control circuit 4 switches the switches 51K and 52K.
The switches 51E and 52E are turned on in place of L to connect the capacitor 7B to the cell 2E. As a result, current flows from the capacitor 7B to the cell 2E,
E is charged. At this time, the voltage of the capacitor 7B is almost twice the voltage of the cell 2E, so that efficient and reliable charging is quickly performed. The switches 51E and 52E are turned off after a certain period of time.

【0029】本実施形態においては、第1実施形態にお
けるグループ電池の補助充放電器間の切換接続を行うス
イッチ6AB,6BCを不用としたから、スイッチとし
てFETスイッチを使用した場合に、全てのスイッチの
耐圧を下げることができ、さらにスイッチング回路のコ
スト低減と小型化を図ることができる。
In the present embodiment, the switches 6AB and 6BC for switching between the auxiliary charge / discharge devices of the group battery in the first embodiment are not required. Therefore, when FET switches are used as switches, all switches are used. Of the switching circuit can be reduced, and the cost and size of the switching circuit can be reduced.

【0030】なお、本実施形態では、あるグループ電池
内の第5の直列電池群を2個の単電池で構成して、隣接
するグループ電池内の単電池をコンデンサを介して充電
する場合について説明したが、第5の直列電池群を3個
以上の単電池で構成して、隣接するグループ電池内の第
5の直列電池群より少ない数の第6の直列電池群を充電
するようなものとしても良い。また、単電池2Iを選択
するのに代えてこれを含む上記第3の直列電池群よりも
少ない数の単電池を第4の直列電池群として選択し、上
記第5の直列電池群を第4の直列電池群を含む適当数の
単電池で構成することもできる。さらに、第4および第
5の直列電池群は隣接するいずれのグループ電池内に設
けても良いことはもちろんである。
In the present embodiment, a case will be described in which the fifth series battery group in a certain group of batteries is composed of two single cells, and the single cells in an adjacent group of batteries are charged via a capacitor. However, the fifth series battery group is constituted by three or more unit cells, and a smaller number of sixth series battery groups than the fifth series battery group in the adjacent group batteries are charged. Is also good. Instead of selecting the unit cell 2I, a smaller number of unit cells than the third series battery group including the unit cell are selected as the fourth series battery group, and the fifth series battery group is replaced with the fourth series battery group. And an appropriate number of unit cells including the series battery group. Further, it is needless to say that the fourth and fifth series battery groups may be provided in any adjacent group batteries.

【0031】(第3実施形態)本実施形態においても理
解を容易にするために、第1実施形態における3つのグ
ループ電池のうちの二つのみを示して以下に説明する。
図6において、第2実施形態においてグループ電池1A
のみに属させた単電池2I,2Jを、隣接するグループ
電池1Bにも属させている。そして、既に第1実施形態
で説明したようにスイッチング回路5A,5Bによりコ
ンデンサ7A,7Bを介して各グループ電池1A,1B
内の単電池ないし直列電池群間の電荷移動を行ない、こ
れによって、各グループ電池1A,1B内の各単電池2
A〜2D,2I,2Jと2I,2J,2E〜2Hの充電
状態を均一化する。この際、両グループ電池1A,1B
間で単電池2I,2Jが共有されているため、各グルー
プ電池1A,1B内の直列電池群ないし単電池間での充
放電による電荷のやり取りが互いに隣接するグループ電
池1A,1Bに波及し、これによって、グループ電池1
A,1B間の充電状態の均一化も同時に行なわれる。な
お、本実施形態において、単電池2Jのみを両グループ
電池で共有するようにしても良く、また3個以上の単電
池を両グループ電池で共有するようにもできる。
(Third Embodiment) To facilitate understanding in this embodiment, only two of the three group batteries in the first embodiment will be described below.
In FIG. 6, the group battery 1A in the second embodiment
The cells 2I and 2J belonging only to the group battery 1B belong to the adjacent group battery 1B. Then, as described in the first embodiment, each of the group batteries 1A, 1B is switched by the switching circuits 5A, 5B via the capacitors 7A, 7B.
The electric charge is transferred between the unit cells or the series cell groups in each cell, whereby each cell 2A in each group cell 1A, 1B is transferred.
The charge states of A to 2D, 2I, 2J and 2I, 2J, 2E to 2H are made uniform. At this time, both group batteries 1A, 1B
Since the cells 2I and 2J are shared between the cells, the exchange of charge by charge / discharge between the series cells or the cells in each group cell 1A and 1B spreads to the adjacent group cells 1A and 1B, Thereby, the group battery 1
The charge state between A and 1B is made uniform at the same time. In this embodiment, only the unit cell 2J may be shared by both groups of batteries, or three or more unit cells may be shared by both groups of batteries.

【0032】なお、上記各実施形態において、直列電池
群を選択せず、常に一の単電池から他の単電池への充電
のみを行なうようにしても良い。
In each of the above embodiments, it is possible to always charge only one unit cell to another unit cell without selecting a series cell group.

【0033】[0033]

【発明の効果】以上のように、本発明の組電池の充電状
態制御装置によれば、充電エネルギーの無駄な消費を避
けることができるとともに、小型かつ低コストで、しか
も単電池の過充電のみならず過放電をも防止して、組電
池の効率的な充電並びに放電を実現することができる。
As described above, according to the battery state control apparatus of the present invention, it is possible to avoid wasteful consumption of charging energy, and at the same time, it is small and low-cost, and only overcharges the unit cells. In addition, overdischarging can be prevented, and efficient charging and discharging of the assembled battery can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す、充電状態制御装
置の要部回路図である。
FIG. 1 is a main part circuit diagram of a state-of-charge control device, showing a first embodiment of the present invention.

【図2】制御回路のフローチャートである。FIG. 2 is a flowchart of a control circuit.

【図3】制御回路のフローチャートである。FIG. 3 is a flowchart of a control circuit.

【図4】制御回路のフローチャートである。FIG. 4 is a flowchart of a control circuit.

【図5】本発明の第2実施形態を示す、充電状態制御装
置の要部回路図である。
FIG. 5 is a main part circuit diagram of a state-of-charge control device, showing a second embodiment of the present invention.

【図6】本発明の第3実施形態を示す、充電状態制御装
置の要部回路図である。
FIG. 6 is a main part circuit diagram of a charge state control device showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1A,1B…グループ電池、2A,2B,2C,2D,
2E,2F,2G,2H,2I,2J…単電池、2…コ
ンデンサ、3A,3B,3C,3D,3C,3E,3
F,3G,3H,3I,3J…電圧計、4…制御回路、
5A,5B,6…スイッチング回路、7A,7B…コン
デンサ、電池モジュール、8…短絡防止回路、CB…組
電池。
1A, 1B ... group battery, 2A, 2B, 2C, 2D,
2E, 2F, 2G, 2H, 2I, 2J ... cells, 2 ... capacitors, 3A, 3B, 3C, 3D, 3C, 3E, 3
F, 3G, 3H, 3I, 3J: voltmeter, 4: control circuit,
5A, 5B, 6: switching circuit, 7A, 7B: capacitor, battery module, 8: short circuit prevention circuit, CB: assembled battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G016 CA03 CB11 CB12 CC01 CC04 CC12 CC27 CD10 5G003 AA01 BA03 CA11 CC04 CC08 DA12 DA13 GA01 GC05 5H030 AA03 AA04 AA10 AS08 BB01 BB21 FF43 FF44  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G016 CA03 CB11 CB12 CC01 CC04 CC12 CC27 CD10 5G003 AA01 BA03 CA11 CC04 CC08 DA12 DA13 GA01 GC05 5H030 AA03 AA04 AA10 AS08 BB01 BB21 FF43 FF44

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ複数の単電池より構成され互い
に直列に接続されて組電池を構成する複数のグループ電
池を具備し、 前記各グループ電池は、直列に接続された複数の単電池
と、補助充放電器と、前記各単電池の充電状態を検出す
る第1の充電状態検出手段と、最も充電レベルの高い単
電池、ないし当該最も充電レベルの高い単電池を含みこ
れに隣接する1個以上の適当数の単電池を第1の直列電
池群として選択して、前記最も充電レベルの高い単電池
ないし前記第1の直列電池群を前記補助充放電器に並列
に接続した後、この時点で最も充電レベルの低い単電
池、ないし当該最も充電レベルの低い単電池を含み前記
第1の直列電池群よりも少ない数の隣接する単電池を第
2の直列電池群として選択して、前記最も充電レベルの
低い単電池ないし前記第2の直列電池群を前記補助充放
電器に並列に接続する切換動作を繰り返す第1の切換接
続手段とを具備し、 かつ、前記各グループ電池の充電状態を検出する第2の
充電状態検出手段と、 最も充電レベルの高いグループ電池内で最も充電レベル
の高い単電池、ないし当該最も充電レベルの高い単電池
を含みこれに隣接する1個以上の適当数の単電池を第3
の直列電池群として選択して、前記最も充電レベルの高
い単電池ないし前記第3の直列電池群を前記最も充電レ
ベルの高いグループ電池の補助充放電器に並列に接続し
た後、この時点で最も充電レベルの低いグループ電池の
補助充放電器に前記最も充電レベルの高いグループ電池
の補助充放電器を接続し、その後、前記最も充電レベル
の低いグループ電池内の、この時点で最も充電レベルの
低い単電池、ないし当該最も充電レベルの低い単電池を
含み前記第3の直列電池群よりも少ない数の隣接する単
電池を第4の直列電池群として選択して、前記充電レベ
ルの最も低い単電池ないし前記第4の直列電池群を前記
最も充電レベルの低いグループ電池の補助充放電器に並
列に接続する切換動作を繰り返す第2の切換接続手段と
を具備する組電池の充電状態制御装置。
1. A battery pack comprising a plurality of unit cells each comprising a plurality of unit cells and connected in series to each other to form an assembled battery, wherein each group cell includes a plurality of unit cells connected in series and an auxiliary A charger / discharger, a first state-of-charge detecting means for detecting a state of charge of each of the unit cells, and a unit cell having the highest charge level or one or more cells including the unit cell having the highest charge level After selecting an appropriate number of cells as the first series battery group and connecting the cells having the highest charge level or the first series battery group to the auxiliary charger / discharger in parallel, A cell having the lowest charge level or a smaller number of adjacent cells including the cell having the lowest charge level than the first series battery group is selected as the second series battery group, and the most chargeable battery is selected. Simple low level A first switching connection means for repeating a switching operation of connecting a battery or the second series battery group to the auxiliary charger / discharger in parallel, and a second state detecting a charge state of each group battery. A state-of-charge detection means, and a unit cell having the highest charge level among the group cells having the highest charge level, or one or more suitable cells adjacent to and including the unit cell having the highest charge level.
After selecting the series battery group having the highest charge level or the third series battery group in parallel with the auxiliary charger / discharger of the group battery having the highest charge level, The auxiliary charge / discharger of the group battery with the highest charge level is connected to the auxiliary charge / discharger of the group battery with the lowest charge level, and then the lowest charge level in the group battery with the lowest charge level at this time. A unit cell or a unit cell including the unit cell having the lowest charge level and selecting a smaller number of adjacent unit cells than the third series cell group as the fourth series cell group, and selecting the unit cell having the lowest charge level A second switching connection means for repeating a switching operation of connecting the fourth series battery group in parallel to the auxiliary charger / discharger of the group battery having the lowest charge level. The state of charge control device.
【請求項2】 それぞれ複数の単電池より構成され互い
に直列に接続されて組電池を構成する複数のグループ電
池を具備し、 各グループ電池は、直列に接続された複数の単電池と、
補助充放電器と、各単電池の充電状態を検出する第1の
充電状態検出手段と、最も充電レベルの高い単電池、な
いし当該最も充電レベルの高い単電池を含みこれに隣接
する1個以上の適当数の単電池を第1の直列電池群とし
て選択して、前記最も充電レベルの高い単電池ないし前
記第1の直列電池群を前記補助充放電器に並列に接続し
た後、この時点で最も充電レベルの低い単電池、ないし
当該最も充電レベルの低い単電池を含み前記第1の直列
電池群よりも少ない数の隣接する単電池を第2の直列電
池群として選択して、前記充電レベルの最も低い単電池
ないし第2の直列電池群を前記補助充放電器に並列に接
続する切換動作を繰り返す第1の切換接続手段とを具備
し、 かつ、前記各グループ電池の充電状態を検出する第2の
充電状態検出手段と、隣接するグループ電池のうちで相
対的に充電レベルの高いグループ電池内で最も充電レベ
ルの高い単電池、ないし当該最も充電レベルの高い単電
池を含みこれに隣接する1個以上の適当数の単電池を第
3の直列電池群として選択して、前記最も充電レベルの
高い単電池ないし前記第3の直列電池群を前記相対的に
充電レベルの高いグループ電池の補助充放電器に並列に
接続した後、前記隣接するグループ電池のうちの一のグ
ループ電池内で他のグループ電池に隣接する単電池ない
し当該単電池を含みこれに隣接する1個以上の単電池を
第5の直列電池群として選択するとともに、これらのう
ちで最も充電レベルの低い単電池、ないし当該最も充電
レベルの低い単電池を含み前記第3の直列電池群より少
ない数の隣接する単電池を第4の直列電池群として選択
して、前記最も充電レベルの低い単電池ないし前記第4
の直列電池群を前記相対的に充電レベルの高いグループ
電池の補助充放電器に並列接続し、その後、前記単電池
ないし前記第5の直列電池群を前記相対的に充電レベル
の低いグループ電池の補助充放電器に並列に接続し、さ
らにその後、前記相対的に充電レベルの低いグループ電
池内でこの時点で充電レベルの最も低い単電池、ないし
当該充電レベルの最も低い単電池を含み前記第5の直列
電池群よりも少ない数の隣接する単電池を第6の直列電
池群として選択して、前記充電レベルの最も低い単電池
ないし第6の直列電池群を前記相対的に充電レベルの低
いグループ電池の補助充放電器に並列に接続する切換動
作を繰り返す第2の切換接続手段とを具備する組電池の
充電状態制御装置。
2. A battery comprising a plurality of unit cells each comprising a plurality of unit cells and connected in series to each other to form an assembled battery, wherein each group cell includes a plurality of unit cells connected in series;
Auxiliary charger / discharger, first state-of-charge detecting means for detecting the state of charge of each unit cell, unit cell having the highest charge level, or one or more cells including the unit cell having the highest charge level After selecting an appropriate number of cells as the first series battery group and connecting the cells having the highest charge level or the first series battery group to the auxiliary charger / discharger in parallel, A cell having the lowest charge level or a smaller number of adjacent cells including the cell having the lowest charge level than the first series battery group is selected as the second series battery group, and the charge level is selected. And a first switching connection means for repeating a switching operation of connecting the lowest unit cell or the second series battery group to the auxiliary charger / discharger in parallel, and detecting a state of charge of each of the group batteries. Second state of charge detection Means and a unit cell having the highest charge level in a group battery having a relatively high charge level among adjacent group batteries, or one or more suitable numbers including and adjacent to the unit cell having the highest charge level Is selected as a third series battery group, and the single battery having the highest charge level or the third series battery group is connected in parallel to the auxiliary charger / discharger of the group battery having the relatively high charge level. After the connection, a cell adjacent to another group battery in the one group battery of the adjacent group batteries or one or more cells including the unit cell adjacent thereto is connected to a fifth series battery group. And the unit cell having the lowest charge level among these, or the adjacent unit cell including the unit cell having the lowest charge level and having a smaller number than the third series cell group is referred to as a fourth cell. Select a series battery group, lower the most charge level unit cell to the fourth
Is connected in parallel to the auxiliary charger / discharger of the group battery having a relatively high charge level, and thereafter, the single cell or the fifth series battery group is connected to the group battery having a relatively low charge level. Connected in parallel to the auxiliary charger / discharger, and further including the cell having the lowest charge level at this time in the group battery having the relatively low charge level or the cell having the lowest charge level at this time. A smaller number of adjacent cells than the series battery group of the series are selected as the sixth series battery group, and the cells having the lowest charge level or the sixth series battery group are grouped with the relatively low charge level. And a second switching connection means for repeating a switching operation of connecting the battery in parallel to an auxiliary charger / discharger of the battery.
【請求項3】 それぞれ複数の単電池より構成され、互
いに1個以上の単電池を共有しつつ互いに直列に接続さ
れて組電池を構成する複数のグループ電池を具備し、 各グループ電池は、直列に接続された複数の単電池と、
補助充放電器と、各単電池の充電状態を検出する充電状
態検出手段と、最も充電レベルの高い単電池、ないし当
該最も充電レベルの高い単電池を含みこれに隣接する1
個以上の適当数の単電池を第1の直列電池群として選択
して、前記最も充電レベルの高い単電池ないし前記第1
の直列電池群を前記補助充放電器に並列に接続した後、
この時点で最も充電レベルの低い単電池、ないし当該最
も充電レベルの低い単電池を含み前記第1の直列電池群
よりも少ない数の隣接する単電池を第2の直列電池群と
して選択して、前記充電レベルの最も低い単電池ないし
前記第2の直列電池群を前記補助充放電器に並列に接続
する切換動作を繰り返す切換接続手段とを具備する組電
池の充電状態制御装置。
3. A plurality of group batteries each comprising a plurality of unit cells, connected to each other in series while sharing one or more unit cells, and forming a battery pack, wherein each group battery is connected in series. A plurality of cells connected to
Auxiliary charger / discharger, charge state detecting means for detecting the charge state of each unit cell, unit cell having the highest charge level, or 1 unit including and adjacent to the unit cell having the highest charge level
At least one unit cell is selected as a first series cell group, and the unit cell having the highest charge level or the first cell unit is selected.
After connecting the series battery group in parallel to the auxiliary charger / discharger,
At this point, the unit cell having the lowest charge level, or a smaller number of adjacent unit cells including the unit cell having the lowest charge level than the first series cell group is selected as the second series cell group, A charging state control device for an assembled battery, comprising: switching connection means for repeating a switching operation of connecting the unit cell having the lowest charge level or the second series battery group to the auxiliary charger / discharger in parallel.
JP11072526A 1999-03-17 1999-03-17 Charging condition controller of battery set Pending JP2000270483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11072526A JP2000270483A (en) 1999-03-17 1999-03-17 Charging condition controller of battery set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11072526A JP2000270483A (en) 1999-03-17 1999-03-17 Charging condition controller of battery set

Publications (1)

Publication Number Publication Date
JP2000270483A true JP2000270483A (en) 2000-09-29

Family

ID=13491879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11072526A Pending JP2000270483A (en) 1999-03-17 1999-03-17 Charging condition controller of battery set

Country Status (1)

Country Link
JP (1) JP2000270483A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063353A (en) * 2008-09-05 2010-03-18 O2 Micro Inc Cell balancing system using transformer
WO2010055836A1 (en) * 2008-11-13 2010-05-20 トヨタ自動車株式会社 Secondary cell system
JP2010239713A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Power storage controller, battery pack, vehicle, and power storage control method
JP2013102661A (en) * 2011-10-13 2013-05-23 Nippon Soken Inc Charge and discharge apparatus of assembled battery
JP2013192371A (en) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd Power storage device, charging method, and discharging method
WO2014002789A1 (en) * 2012-06-29 2014-01-03 株式会社豊田自動織機 Voltage equalizing device and voltage equalizing method
KR20140007355A (en) * 2011-01-20 2014-01-17 발렌스 테크놀로지, 인코포레이티드 Rechargeable battery systems and rechargeable battery system operational method
KR20140034132A (en) * 2011-01-20 2014-03-19 발렌스 테크놀로지, 인코포레이티드 Rechargeable battery systems and rechargeable battery system operational methods
JP2014147158A (en) * 2013-01-28 2014-08-14 Nippon Soken Inc Power supply apparatus
WO2014157449A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Charging/discharging device, charging/discharging control method, and program
WO2014156564A1 (en) * 2013-03-28 2014-10-02 日本電気株式会社 Storage battery and storage battery operation method
JP2016029867A (en) * 2014-07-25 2016-03-03 ゼネラル・エレクトリック・カンパニイ Battery management system, and method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063353A (en) * 2008-09-05 2010-03-18 O2 Micro Inc Cell balancing system using transformer
WO2010055836A1 (en) * 2008-11-13 2010-05-20 トヨタ自動車株式会社 Secondary cell system
JP2010118265A (en) * 2008-11-13 2010-05-27 Toyota Motor Corp Secondary battery system
JP4513917B2 (en) * 2008-11-13 2010-07-28 トヨタ自動車株式会社 Secondary battery system
JP2010239713A (en) * 2009-03-30 2010-10-21 Japan Research Institute Ltd Power storage controller, battery pack, vehicle, and power storage control method
KR20140034132A (en) * 2011-01-20 2014-03-19 발렌스 테크놀로지, 인코포레이티드 Rechargeable battery systems and rechargeable battery system operational methods
KR20140007355A (en) * 2011-01-20 2014-01-17 발렌스 테크놀로지, 인코포레이티드 Rechargeable battery systems and rechargeable battery system operational method
KR102149065B1 (en) * 2011-01-20 2020-08-27 리튬 웍스 테크놀로지 비.브이. Rechargeable battery systems and rechargeable battery system operational methods
US11616375B2 (en) 2011-01-20 2023-03-28 Lithion Battery Inc. Rechargeable battery systems and rechargeable battery system operational methods
KR102258364B1 (en) 2011-01-20 2021-06-04 리티온 배터리 인크. Rechargeable battery systems and rechargeable battery system operational method
US10903661B2 (en) 2011-01-20 2021-01-26 Lithium Werks Technology Bv Rechargeable battery systems and rechargeable battery system operational methods
JP2013102661A (en) * 2011-10-13 2013-05-23 Nippon Soken Inc Charge and discharge apparatus of assembled battery
JP2013192371A (en) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd Power storage device, charging method, and discharging method
WO2014002789A1 (en) * 2012-06-29 2014-01-03 株式会社豊田自動織機 Voltage equalizing device and voltage equalizing method
JP2014147158A (en) * 2013-01-28 2014-08-14 Nippon Soken Inc Power supply apparatus
JPWO2014156564A1 (en) * 2013-03-28 2017-02-16 日本電気株式会社 Storage battery and operation method of storage battery
WO2014156564A1 (en) * 2013-03-28 2014-10-02 日本電気株式会社 Storage battery and storage battery operation method
US10263434B2 (en) 2013-03-29 2019-04-16 Nec Corporation Charge and discharge device, charge and discharge control method, and program
JP5975169B2 (en) * 2013-03-29 2016-08-23 日本電気株式会社 Charge / discharge device, charge / discharge control method, and program
WO2014157449A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Charging/discharging device, charging/discharging control method, and program
JP2016029867A (en) * 2014-07-25 2016-03-03 ゼネラル・エレクトリック・カンパニイ Battery management system, and method

Similar Documents

Publication Publication Date Title
JP3869585B2 (en) Discharge method of multiple secondary batteries and assembled battery
US8054044B2 (en) Apparatus and method for balancing of battery cell'S charge capacity
US7193390B2 (en) Apparatus for connecting secondary battery cells in series and method for controlling secondary battery cells connected in series
JP3395601B2 (en) Battery charging / discharging device
KR20160063756A (en) Battery pack and method for controlling the same
JP2003157908A (en) Charging device for lithium ion secondary cell, and charging method of the same
JP3755043B2 (en) Chargeable / dischargeable power supply
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
JPH0974689A (en) Power unit using battery pack
JP2000270483A (en) Charging condition controller of battery set
KR20130013108A (en) Balancing apparatus of secondary battery
JPH10257683A (en) Charging-discharging circuit for combined batteries
JP2000354333A (en) Power unit and battery unit
WO2005076430A1 (en) Combined battery and battery pack
JP3458740B2 (en) Battery charging and discharging devices
JP3796918B2 (en) Battery device
JP2000324703A (en) Battery pack
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
JP2004229391A (en) Battery pack
JPH03173323A (en) Secondary battery charger
KR100815431B1 (en) Uniform energy-backup device of battery cell for hybrid electric vehicle
JPH11146570A (en) Control device of secondary battery, battery pack with the control device of secondary battery and control method of the secondary battery
TWI655120B (en) Active discharge balance extended range device using regenerative energy and method thereof
CN114614514A (en) Circuit for energy balance of series lithium battery pack and control method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216