JP2003284251A - Power supply device - Google Patents

Power supply device

Info

Publication number
JP2003284251A
JP2003284251A JP2002076518A JP2002076518A JP2003284251A JP 2003284251 A JP2003284251 A JP 2003284251A JP 2002076518 A JP2002076518 A JP 2002076518A JP 2002076518 A JP2002076518 A JP 2002076518A JP 2003284251 A JP2003284251 A JP 2003284251A
Authority
JP
Japan
Prior art keywords
parallel
unit
battery
series
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002076518A
Other languages
Japanese (ja)
Inventor
Takeshi Miyamoto
丈司 宮本
Shinya Ogata
慎也 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002076518A priority Critical patent/JP2003284251A/en
Publication of JP2003284251A publication Critical patent/JP2003284251A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a desired battery voltage using inexpensive general-purpose battery capable of keeping each unit batteries within the desired range of charging rate. <P>SOLUTION: A power supply device is provided with a series connection section 11 in which unit batteries 1 having a correlation between an output voltage and a charging rate are connected in series, and a parallel connection section 12 which is connected to the series connection section 11 and in which parallel sections 13 for connecting at least two unit batteries 1 in parallel are connected in series. A voltage within the desired output voltage range is designed to be outputted by adjusting the number of the parallel sections 13 to be connected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば車両に搭載
された電装部品に電源を供給する電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for supplying power to electric components mounted on a vehicle, for example.

【0002】[0002]

【従来の技術】従来、複数の単位電池を直列に接続する
ことで組電池を構成し、この組電池を電源とする電源装
置が、特開2001−218376号公報に開示されて
いる。
2. Description of the Related Art Conventionally, Japanese Patent Application Laid-Open No. 2001-218376 discloses a power supply device which constitutes a battery pack by connecting a plurality of unit batteries in series and uses the battery pack as a power source.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の技
術においては、単位電池が過充電又は過放電になること
を回避するために、単位電池が所定の充電率になるよう
に制御しているが、電源として所望する電圧範囲を維持
しながら、所望の充電率の範囲にすることが難しい場合
がある。
However, in the prior art, in order to prevent the unit battery from being overcharged or overdischarged, the unit battery is controlled to have a predetermined charging rate. It may be difficult to maintain a desired charging rate range while maintaining a desired voltage range as a power source.

【0004】そこで、本発明は、上述した実情に鑑みて
提案されたものであり、安価な汎用電池を用いて所望と
する電池電圧を得ることができ、各単位電池を所望の充
電率範囲内に維持することが可能な電源装置を提供する
ものである。
Therefore, the present invention has been proposed in view of the above-mentioned circumstances, and a desired battery voltage can be obtained by using an inexpensive general-purpose battery, and each unit battery is within a desired charging rate range. It is intended to provide a power supply device that can be maintained.

【0005】[0005]

【課題を解決するための手段】請求項1に係る電源装置
では、出力電圧と充電率とに相関関係を有する単位電池
を直列接続した直列接続部と、上記直列接続部と接続さ
れ、少なくとも2つの上記単位電池を並列接続した並列
部を直列接続した並列接続部とを備え、上記並列部の接
続数を調整して所望の出力電圧範囲の電圧を出力するよ
うにした。
According to a first aspect of the present invention, there is provided a power supply device, wherein a series connection part in which unit batteries having a correlation between an output voltage and a charging rate are connected in series, and the series connection part is connected to at least 2 units. A parallel connection part in which a parallel part in which the two unit batteries are connected in parallel is connected in series is provided, and the number of connections in the parallel part is adjusted to output a voltage in a desired output voltage range.

【0006】請求項2に係る電源装置では、請求項1に
記載の電源装置であって、上記直列接続部の単位電池
と、並列接続部の単位電池とで充電率を異なる範囲にし
たことを特徴とする。
According to a second aspect of the present invention, in the power source apparatus according to the first aspect, the unit batteries of the series connection section and the unit cells of the parallel connection section have different charging rates. Characterize.

【0007】請求項3に係る電源装置では、請求項1又
は請求項2に記載の電源装置であって、各単位電池とし
て、負極活性物質に非晶質炭素を含むリチウムイオン電
池、正極材料にリチウムマンガン酸化物を用いた電池、
又は正極材料にリチウムニッケル酸化物を用いた電池を
使用したことを特徴とする。
A power supply device according to claim 3 is the power supply device according to claim 1 or 2, wherein each unit cell is a lithium ion battery containing an amorphous carbon in a negative electrode active material, and a positive electrode material. Battery using lithium manganese oxide,
Alternatively, a battery using lithium nickel oxide as a positive electrode material is used.

【0008】請求項4に係る電源装置では、請求項1〜
請求項3の何れかに記載の電源装置であって、単位電池
の配列構成を、K個の単位電池からなる並列部をL個直
列接続し、更にM個の単位電池からなる並列部をN個直
列接続した場合に、K個の並列部の充電率範囲を、M個
の並列部の充電率範囲のK/M倍に設定したことを特徴
とする。
According to the fourth aspect of the power supply device,
4. The power supply device according to claim 3, wherein the unit cells are arranged in an arrangement in which L parallel units each including K unit batteries are connected in series, and N parallel units each including M unit batteries are connected. When they are connected in series, the charging rate range of the K parallel sections is set to K / M times the charging rate range of the M parallel sections.

【0009】[0009]

【発明の効果】本発明によれば、所定範囲の出力電圧を
維持すると共に、所定範囲の充電率を維持することがで
きる。
According to the present invention, it is possible to maintain an output voltage in a predetermined range and a charge rate in a predetermined range.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明は、例えば図1に構成図を示し、図
2に回路図をに示すように構成された電源装置に適用さ
れる。
The present invention is applied to, for example, a power supply device having a configuration diagram shown in FIG. 1 and a circuit diagram shown in FIG.

【0012】[電源装置の構成]なお本実施の形態で
は、電源装置を電気自動車の電源として、利用するもの
とする。
[Structure of Power Supply Device] In this embodiment, the power supply device is used as a power supply for an electric vehicle.

【0013】この電源装置は、図1に示すように、2つ
の単位電池1が並列に接続された並列部13が、3つ直
列に接続されることで並列群12を構成し、この並列群
12と、複数の単位電池1が直列に接続された直列部1
1とが、直列に接続されて、電源装置を構成している。
As shown in FIG. 1, this power supply unit forms a parallel group 12 by connecting three parallel units 13 in each of which two unit batteries 1 are connected in parallel, in series. 12 and a series unit 1 in which a plurality of unit batteries 1 are connected in series
1 and 1 are connected in series to form a power supply device.

【0014】直列部11は、単位電池1の正極1aと隣
接して配置される単位電池1の負極1bとが接続端子2
1によって接続され、この接続端子21による接続が複
数の単位電池1で行われることで、直列に接続された直
列部11を構成している。なお、図1に示す実施の形態
では、8つの単位電池1が直列に接続されている。
In the serial portion 11, the positive electrode 1a of the unit battery 1 and the negative electrode 1b of the unit battery 1 arranged adjacent to each other are connected to each other by a connection terminal 2
1 and the connection terminal 21 is connected by the plurality of unit batteries 1 to form the series section 11 connected in series. In the embodiment shown in FIG. 1, eight unit batteries 1 are connected in series.

【0015】並列部13を構成する2つの単位電池1
は、2つの正極1a同士が接続端子21で接続されると
共に、2つの負極1b同士が接続端子21で接続され、
並列部13を構成している。更に、隣接する並列部13
の正極1aと負極1bとが、接続端子21で接続される
ことによって、並列群12を構成している。
Two unit batteries 1 constituting the parallel section 13
Indicates that the two positive electrodes 1a are connected to each other at the connection terminal 21 and the two negative electrodes 1b are connected to each other at the connection terminal 21.
The parallel section 13 is configured. Furthermore, the adjacent parallel part 13
The positive electrode 1 a and the negative electrode 1 b are connected by the connection terminal 21 to form the parallel group 12.

【0016】なお、直列部11と並列群12とが隣接す
る部分においては、直列部11の単位電池1の負極1b
と並列部13の正極1aとが接続端子21で接続されて
いる。
In the portion where the series portion 11 and the parallel group 12 are adjacent to each other, the negative electrode 1b of the unit battery 1 of the series portion 11 is arranged.
And the positive electrode 1a of the parallel portion 13 are connected by the connection terminal 21.

【0017】図2は、図1に示した電源装置の回路図で
あって、直列部11の一端の接続端子21が正端子31
に接続され、並列群12の一端の接続端子21が負端子
41へと接続されて、この正端子31と負端子41との
間に図示しない車両の電装部品や発電機などの負荷が接
続されて、電源装置から電装部品へ電力が供給(放電)
され、または、発電機から電源装置へと電力が供給(充
電)される。
FIG. 2 is a circuit diagram of the power supply device shown in FIG. 1, in which the connection terminal 21 at one end of the series portion 11 is a positive terminal 31.
And a connection terminal 21 at one end of the parallel group 12 is connected to a negative terminal 41, and a load such as an electric component of a vehicle or a generator (not shown) is connected between the positive terminal 31 and the negative terminal 41. Power is supplied from the power supply unit to electrical components (discharge)
Alternatively, electric power is supplied (charged) from the generator to the power supply device.

【0018】各単位電池1としては、負極活性物質に非
晶質炭素を含むリチウムイオン電池や、正極材料にリチ
ウムマンガン酸化物を用いたもの、又は正極材料にリチ
ウムニッケル酸化物を用いたものが使用され、出力電圧
と充電率(SOC)とに相関関係を有する。各単位電池
1は、電源装置の使用時における充電率(SOC)範囲
が予め規定されている。図示しない電源装置の制御部
は、単位電池1の保護のために、直列部11の各単位電
池1を上限単位SOC〜下限SOCの間で制御する。こ
こで、制御部は、単一の単位電池1のSOCを制御する
処理と、並列部13のSOCを制御する処理とを同様に
して行う。結果的に、各単位電池1を上限単位SOC〜
下限SOCの間で制御し、上限SOCの1/2〜下限S
OCの1/2の間で並列群12の各単位電池1を制御す
ることになる。
As each unit battery 1, a lithium ion battery containing amorphous carbon as a negative electrode active material, a lithium manganese oxide as a positive electrode material, or a lithium nickel oxide as a positive electrode material is used. Used to correlate output voltage with state of charge (SOC). A charge rate (SOC) range of each unit battery 1 when the power supply device is used is defined in advance. The control unit of the power supply device (not shown) controls each unit battery 1 of the series unit 11 between the upper limit unit SOC and the lower limit SOC in order to protect the unit battery 1. Here, the control unit similarly performs the process of controlling the SOC of the single unit battery 1 and the process of controlling the SOC of the parallel unit 13. As a result, the upper limit unit SOC
Control between the lower limit SOC, 1/2 of the upper limit SOC to the lower limit S
Each unit battery 1 of the parallel group 12 is controlled within 1/2 of OC.

【0019】そして、この電源装置では、各単位電池1
がSOCと相関した出力電圧を出力するので、各単位電
池1のSOCを制御することで正端子31及び負端子3
2を介した出力電圧を常用電圧範囲内にて制御する。
In this power supply device, each unit battery 1
Outputs an output voltage that is correlated with the SOC, so by controlling the SOC of each unit battery 1, the positive terminal 31 and the negative terminal 3 are controlled.
The output voltage via 2 is controlled within the normal voltage range.

【0020】[電源装置の具体的な説明]本例において
は、図1に示すように直列部11を8個の単位電池1に
て構成し、並列群12を3つの並列部13にて構成した
場合について説明し、各単位電池1の容量が10Ah、
内部抵抗が2mΩ、動作電圧範囲が2.5V〜4.1V
のものを使用した場合について説明する。
[Specific Description of Power Supply Device] In this example, as shown in FIG. 1, the serial section 11 is composed of eight unit batteries 1, and the parallel group 12 is composed of three parallel sections 13. When the unit battery 1 has a capacity of 10 Ah,
Internal resistance 2mΩ, operating voltage range 2.5V-4.1V
The case of using the one will be described.

【0021】図3に、予め設定されている常用電圧範囲
に対する電源装置全体でのSOC[%]と出力電圧
[V]との関係を示す。
FIG. 3 shows the relationship between the SOC [%] and the output voltage [V] of the entire power supply device with respect to a preset normal voltage range.

【0022】この図3では、12個の単位電池1を直列
接続した場合(図中:△)、11個の単位電池1を直列
接続した場合(図中:+)、10個の単位電池1を直列
接続した場合(図中:●)、9個の単位電池1を直列接
続した場合(図中:×)を示すと共に、8個の単位電池
1の直列部11と3個の並列部13の並列群12とを接
続した場合(図中:■)を示す。
In FIG. 3, when 12 unit batteries 1 are connected in series (in the figure: Δ), 11 unit batteries 1 are connected in series (in the figure: +), 10 unit cells 1 Shows a case where 9 unit batteries 1 are connected in series (in the figure: ●), and a case where 9 unit batteries 1 are connected in series (in the figure: ×), the series portion 11 of the eight unit batteries 1 and the three parallel portions 13 are shown. When the parallel group 12 of is connected (in the figure: ▪).

【0023】これによれば、全体の出力電圧を36V
(常用電圧下限)〜44V(常用電圧上限)の範囲内
(常用電圧範囲)で制御する場合に、12個の直列接続
ではSOCが20%〜45%となり常用可能なSOC範
囲が狭くなる。また、11個の直列接続では、SOCが
20%〜80%となり、例えばSOCが80%のときに
急激に充電する必要が発生した場合に充電をすることが
困難となる。更に、10個の直列接続では、SOCが4
0%〜100%となり、充電性能が不足し、また常に満
充電に近い状態で使用されるので耐久性が低下する。更
に、9個の直列接続では、SOCが80%〜100%と
なり、全常用動作範囲の出力電圧が得られない上に、使
用可能なSOC範囲が限られる。
According to this, the total output voltage is 36V.
When controlling within the range of (usual voltage lower limit) to 44 V (usual voltage upper limit) (usual voltage range), 12 series-connected SOCs are 20% to 45%, and the normally usable SOC range is narrowed. Further, in the case of 11 pieces connected in series, the SOC becomes 20% to 80%, and it becomes difficult to charge the battery when it is necessary to rapidly charge the battery when the SOC is 80%, for example. Furthermore, when 10 units are connected in series, the SOC is 4
It becomes 0% to 100%, the charging performance is insufficient, and the durability is lowered because it is always used in a state close to full charge. Further, in the case of connecting nine batteries in series, the SOC becomes 80% to 100%, the output voltage in the entire normal operation range cannot be obtained, and the usable SOC range is limited.

【0024】これに対し、本発明を適用した電源装置で
は、直列部11を構成する単位電池1数及び並列群12
を構成する単位電池1の数を調整して、所望とする常用
電圧範囲を所望とするSOC範囲で得ることができる。
On the other hand, in the power supply device to which the present invention is applied, the number of unit batteries 1 constituting the series section 11 and the parallel group 12
By adjusting the number of the unit batteries 1 constituting the above, a desired normal voltage range can be obtained within a desired SOC range.

【0025】図4に、直列部11のSOC範囲を80%
〜20%にし、並列群12のSOC範囲を40%〜10
%としたときの電源装置全体の放電容量[Wh]と端子
電圧[V]との関係(図中:△)、直列部11のSOC
範囲を80%〜20%にしたときの直列部11の放電容
量[Wh]とセル電圧[V]との関係(図中:◆)、並
列群12のSOC範囲を40%〜10%としたときの並
列群12の放電容量[Wh]とセル電圧[V]との関係
(図中:■)を示す。
In FIG. 4, the SOC range of the series section 11 is 80%.
To 20%, and the SOC range of the parallel group 12 is 40% to 10%.
%, The relationship between the discharge capacity [Wh] of the entire power supply device and the terminal voltage [V] (in the figure: Δ), the SOC of the series portion 11
The relationship between the discharge capacity [Wh] of the series part 11 and the cell voltage [V] when the range is set to 80% to 20% (in the figure: ◆), the SOC range of the parallel group 12 is set to 40% to 10%. The relationship between the discharge capacity [Wh] and the cell voltage [V] of the parallel group 12 at this time (in the figure: ▪) is shown.

【0026】ここで、電源装置全体での総電圧範囲は、
36V〜42.65Vである。電源装置の充放電による
電流値は総電圧と電源装置の抵抗で決定されるが、並列
群12の単位電池1には常に直列部11の1/2の電流
が流れるため、並列群12のSOC変化が常に直列部1
1のSOC変化の1/2となる。
Here, the total voltage range of the entire power supply device is
36V to 42.65V. The current value due to charging / discharging of the power supply device is determined by the total voltage and the resistance of the power supply device, but since half the current of the series portion 11 always flows through the unit battery 1 of the parallel group 12, the SOC of the parallel group 12 is Change is always series 1
It becomes 1/2 of the SOC change of 1.

【0027】したがって、並列群12のSOC範囲は、
直列部11のSOC範囲の1/2となるように設定す
る。また、直並列数を任意の数とし、単位電池1の配列
構成をK個の単位電池1からなる並列部をL個直列接続
し、更にM個の単位電池1からなる並列部をN個直列接
続した場合に、 K並列×L直列+M並列×N直列(K,L,M,Nは任
意の整数) と表現し、K並列部のSOC範囲を、M並列部のSOC
範囲のK/M倍に設定する。
Therefore, the SOC range of the parallel group 12 is
It is set to be 1/2 of the SOC range of the serial section 11. In addition, the number of series-parallel connections is arbitrary, and the arrangement configuration of the unit cells 1 is such that L parallel sections of K unit cells 1 are connected in series, and N parallel sections of M unit cells 1 are connected in series. When connected, it is expressed as K parallel × L series + M parallel × N series (K, L, M, and N are arbitrary integers), and the SOC range of the K parallel part is the SOC of the M parallel part.
Set to K / M times the range.

【0028】また、直列部11の単位電池1及び並列群
12の単位電池1は、SOCに応じて動作電圧が変動す
る。
The operating voltage of the unit battery 1 of the series section 11 and the unit battery 1 of the parallel group 12 varies depending on the SOC.

【0029】例えば電源装置のSOCが80%のとき
に、5kWの出力電力を供給する場合、電源装置の開放
電圧が42.65V、内部抵抗が 2mΩ×8直列+(2mΩ/2並列)×3直列=19m
Ω となるから、電源装置の出力時動作電圧は [42.65+{42.65−(4×5kW×19/100
0)}1/2]/2=40.3V となり、各単位電池1に流れる電流値は 5kW÷40.3V=124.1A となる。このとき、直列部11の単位電池1の電圧は、
開放電圧が3.985Vであるから、 3.985−0.0019×124.1=3.75V となり、並列群12の単位電池1の電圧は、開放電圧が
3.595V、電流値が直列部11の1/2となるか
ら、 3.595−0.0022×62.05=3.46V となる。
For example, when the output power of 5 kW is supplied when the SOC of the power supply is 80%, the open-circuit voltage of the power supply is 42.65 V and the internal resistance is 2 mΩ × 8 series + (2 mΩ / 2 parallel) × 3. Series = 19m
Therefore, the operating voltage at the output of the power supply is [42.65 + {42.65 2 − (4 × 5 kW × 19/100
0)} 1/2 ] /2=40.3V, and the current value flowing through each unit battery 1 is 5 kW / 40.3V = 124.1A. At this time, the voltage of the unit battery 1 of the series section 11 is
Since the open circuit voltage is 3.985V, it becomes 3.985-0.0019 × 124.1 = 3.75V, and the voltage of the unit battery 1 of the parallel group 12 has an open circuit voltage of 3.595V and a current value of the series part. Since it is 1/2 of 11, 3.595−0.0022 × 62.05 = 3.46V.

【0030】一方、電源装置のSOCが20%のときに
5kWの出力電力を供給する場合、電源装置の開放電圧
が35.9V、内部抵抗が27.5mΩとなるから、電
源装置の出力時動作電圧は [35.9+{35.9−(4×5kW×27.5/100
0)}1/2]/2=31.5V となり、各単位電池1に流れる電流値は 5kW÷31.5V=158.5A となる。このとき、直列部11の単位電池1の電圧は、
開放電圧が3.308V、内部抵抗が2.56mΩであ
るから、 3.308−0.00256×158.5=2.90V となり、並列群12の単位電池1の電圧は、開放電圧が
3.238V、内部抵抗が4.65mΩとなるから、 3.238−0.00465/2×158.5=2.8
7V となる。
On the other hand, when the output power of 5 kW is supplied when the SOC of the power supply device is 20%, the open-circuit voltage of the power supply device becomes 35.9 V and the internal resistance becomes 27.5 mΩ. The voltage is [35.9 + {35.9 2 − (4 × 5 kW × 27.5 / 100
0)} 1/2 ] /2=31.5V, and the value of the current flowing through each unit battery 1 is 5 kW / 31.5V = 158.5A. At this time, the voltage of the unit battery 1 of the series section 11 is
Since the open circuit voltage is 3.308 V and the internal resistance is 2.56 mΩ, 3.308−0.00256 × 158.5 = 2.90 V, and the unit cell 1 of the parallel group 12 has an open circuit voltage of 3. Since 238V and the internal resistance are 4.65 mΩ, 3.238−0.00465 / 2 × 158.5 = 2.8.
It becomes 7V.

【0031】ここで、SOC:80%時の直列部11と
並列群12との開放電圧差は、 3.985−3.595=0.39V となり、SOC:20%時の開放電圧差は、 3.308−3.238=0.07V となる。
Here, the open circuit voltage difference between the series section 11 and the parallel group 12 when SOC: 80% is 3.985-3.595 = 0.39V, and the open circuit voltage difference when SOC: 20% is: It becomes 3.308-3.238 = 0.07V.

【0032】また、SOC:80%時の直列部11と並
列群12との5kW出力時電圧差は、 3.74−3.47=0.27V となり、SOC:20%時の5kW出力時電圧差は、 2.90−2.87=0.03V となる。
Further, the voltage difference at the time of 5 kW output between the series section 11 and the parallel group 12 at SOC: 80% is 3.74-3.47 = 0.27 V, and the voltage at 5 kW output at SOC: 20%. The difference is 2.90-2.87 = 0.03V.

【0033】以上の計算より、SOC範囲の全域(SO
C:20%〜SOC:80%)において、開放電圧差よ
り出力電圧差が小さくなる。したがって、直列部11と
並列群12とでは、SOCが低くなるほど出力電圧差が
小さくなるので、出力電圧範囲を開放電圧範囲よりも狭
い範囲とすることができる。
From the above calculation, the entire SOC range (SO
C: 20% to SOC: 80%), the output voltage difference becomes smaller than the open circuit voltage difference. Therefore, the output voltage difference between the series portion 11 and the parallel group 12 becomes smaller as the SOC becomes lower, so that the output voltage range can be made narrower than the open circuit voltage range.

【0034】このようにSOCの変化に応じて開放電圧
値及び出力電圧値が変化する電源装置を使用して、所定
の運転がなされたときにおける出力電力[W]の時間的
変化を図5、電流値の時間的変化を図6、直列部11の
SOC及び並列群12のSOC、直列部11の動作電
圧、並列群12の動作電圧、電源装置の動作電圧の時間
的変化を図7に示す。
As shown in FIG. 5, the temporal change of the output power [W] when a predetermined operation is performed using the power supply device in which the open circuit voltage value and the output voltage value change according to the change of the SOC as described above, FIG. 6 shows the time change of the current value, and FIG. 7 shows the time change of the SOC of the series unit 11 and the SOC of the parallel group 12, the operating voltage of the series unit 11, the operating voltage of the parallel group 12, and the operating voltage of the power supply device. .

【0035】電源装置は、図5に示すように、0sec
から運転が開始されたときに、10sec及び30se
cにて要求電力値が低下し、更に50secにて要求電
力値が上昇すると、これに対応して、図6に示す直列部
11の各単位電池1に流れる放充電電流が低下又は上昇
し、図7に示す直列部11の動作電圧、並列群12の動
作電圧、電源装置の動作電圧が上昇又は下降する。これ
に対し、直列部11の各単位電池1のSOC及び並列群
12の各単位電池1のSOCは、図7に示すように、運
転開始時には80%であり0secから30secまで
下降し、30sec以降では上昇する。ここで、並列群
12のSOCは、常に直列部11のSOCの1/2とな
って変化する。
The power supply unit, as shown in FIG.
When the operation is started from 10sec and 30se
When the required power value decreases at c and further increases at 50 seconds, the discharge current flowing through each unit battery 1 of the series unit 11 shown in FIG. 6 decreases or rises, correspondingly. The operating voltage of the series unit 11, the operating voltage of the parallel group 12, and the operating voltage of the power supply device shown in FIG. 7 rise or fall. On the other hand, as shown in FIG. 7, the SOC of each unit battery 1 of the serial section 11 and the SOC of each unit battery 1 of the parallel group 12 are 80% at the start of operation, and fall from 0 sec to 30 sec, and after 30 sec. Then rise. Here, the SOC of the parallel group 12 always changes to 1/2 of the SOC of the series unit 11.

【0036】[実施の形態の効果]以上詳細に説明した
ように、この電源装置によれば、単位電池1を直列接続
した直列部11と、直列部11と接続され、少なくとも
2つの単位電池1を並列接続した並列部13を直列接続
した並列群12とを備え、並列群12の接続数を調整し
て所望の出力電圧範囲の電圧を出力するようにしたの
で、単位電池1の動作電圧範囲と直列数によらず、任意
の動作電圧範囲を取ることができ、安価な汎用電池を用
いて所望とする電池電圧を得ることができ、各単位電池
1を所望の充電率範囲内に維持することができる。
[Effects of the Embodiment] As described in detail above, according to this power supply device, the series section 11 in which the unit cells 1 are connected in series, and at least two unit cells 1 connected to the series section 11 are connected. And the parallel group 12 in which the parallel units 13 connected in parallel are connected in series, and the number of connections of the parallel group 12 is adjusted to output a voltage in a desired output voltage range. And an arbitrary operating voltage range can be set regardless of the number of series, and a desired battery voltage can be obtained using an inexpensive general-purpose battery, and each unit battery 1 is maintained within a desired charging rate range. be able to.

【0037】また、電源装置によれば、直列部11及び
並列群12で同じ汎用の単位電池1として、出力電圧と
充電率とに相関関係を有する単位電池1を使用したの
で、直列部11の単位電池1と並列群12の単位電池1
とで充電率を異なる範囲にして出力電圧の制御をするこ
とができる。
Further, according to the power supply device, since the unit battery 1 having the correlation between the output voltage and the charging rate is used as the same general-purpose unit battery 1 in the series section 11 and the parallel group 12, the series section 11 has Unit battery 1 and unit battery 1 of parallel group 12
With, it is possible to control the output voltage by setting the charging rate to different ranges.

【0038】更に、この電源装置では、各単位電池1と
しては、負極活性物質に非晶質炭素を含むリチウムイオ
ン電池や、正極材料にリチウムマンガン酸化物を用いた
もの、又は正極材料にリチウムニッケル酸化物を用いた
ものを使用したので、各電池が高充電状態におかれるこ
とを防止し、耐久性を向上可能とすることができ、更
に、負荷からの回生電力受け入れ性、放電出力を広い容
量範囲で満足することが可能となる。
Furthermore, in this power supply device, each unit battery 1 is a lithium ion battery containing amorphous carbon as a negative electrode active material, a lithium manganese oxide is used as a positive electrode material, or lithium nickel is used as a positive electrode material. Since an oxide is used, it is possible to prevent each battery from being placed in a highly charged state and improve durability, and further, accept regenerative power from a load and wide discharge output. It is possible to satisfy the capacity range.

【0039】更にまた、この電源装置では、単位電池1
の配列構成をK個の単位電池1からなる並列部をL個直
列接続し、更にM個の単位電池1からなる並列部をN個
直列接続した場合に、K並列部のSOC範囲を、M並列
部のSOC範囲のK/M倍に設定することができ、直列
部11及び並列群12の単位電池1の数を調整して、並
列群12のSOCを制御することができる。
Furthermore, in this power supply device, the unit battery 1
When the parallel configuration of K unit batteries 1 is connected in series with L parallel units and the parallel unit of M unit batteries 1 is connected in series with N, the SOC range of the K parallel unit is M It can be set to K / M times the SOC range of the parallel section, and the SOC of the parallel group 12 can be controlled by adjusting the number of the unit batteries 1 of the series section 11 and the parallel group 12.

【0040】なお、上述の実施の形態は本発明の一例で
ある。このため、本発明は、上述の実施形態に限定され
ることはなく、この実施の形態以外であっても、本発明
に係る技術的思想を逸脱しない範囲であれば、設計等に
応じて種々の変更が可能であることは勿論である。
The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and other than this embodiment, as long as it does not deviate from the technical idea of the present invention, various types according to the design etc. Of course, it is possible to change.

【0041】すなわち、上述した一例では、並列群12
を2つの単位電池1を並列接続した並列部13を使用し
た場合について説明したが、これに限らず、3個以上の
単位電池1を並列接続した並列群12も使用可能である
ことは勿論である。
That is, in the above example, the parallel group 12
Although the case where the parallel unit 13 in which two unit batteries 1 are connected in parallel is used has been described, the present invention is not limited to this, and it goes without saying that a parallel group 12 in which three or more unit batteries 1 are connected in parallel can also be used. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した電源装置の構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a configuration of a power supply device to which the present invention is applied.

【図2】本発明を適用した電源装置の回路図である。FIG. 2 is a circuit diagram of a power supply device to which the present invention is applied.

【図3】常用電圧範囲に対する電源装置全体でのSOC
[%]と出力電圧[V]との関係を示す図である。
[Fig. 3] SOC of the entire power supply device with respect to a common voltage range
It is a figure which shows the relationship between [%] and output voltage [V].

【図4】一直列部のSOC範囲を80%〜20%にし、
並列部のSOC範囲を40%〜10%としたときの電源
装置全体の放電容量[Wh]と端子電圧[V]との関
係、直列部11のSOC範囲を80%〜20%にしたと
きの直列部11の放電容量[Wh]とセル電圧[V]と
の関係、並列部のSOC範囲を40%〜10%としたと
きの並列群12の放電容量[Wh]とセル電圧[V]と
の関係を示す図である。
FIG. 4 shows that the SOC range of one series part is set to 80% to 20%,
The relationship between the discharge capacity [Wh] and the terminal voltage [V] of the entire power supply device when the SOC range of the parallel part is 40% to 10%, and the SOC range of the series part 11 is 80% to 20% The relationship between the discharge capacity [Wh] of the series part 11 and the cell voltage [V], and the discharge capacity [Wh] and the cell voltage [V] of the parallel group 12 when the SOC range of the parallel part is 40% to 10%. It is a figure which shows the relationship of.

【図5】所定の運転がなされたときにおける出力電力
[W]の時間的変化を示す図である。
FIG. 5 is a diagram showing a temporal change in output power [W] when a predetermined operation is performed.

【図6】図5に示すように出力電力が変化したときの電
流値の時間的変化を示す図である。
FIG. 6 is a diagram showing a temporal change of a current value when the output power changes as shown in FIG.

【図7】一直列部のSOC及び並列部のSOC、直列部
11の動作電圧、並列部の動作電圧、電源装置の動作電
圧の時間的変化を示す図である。
FIG. 7 is a diagram showing temporal changes in the SOC of one series part and the SOC of the parallel part, the operating voltage of the series part 11, the operating voltage of the parallel part, and the operating voltage of the power supply device.

【符号の説明】[Explanation of symbols]

1 単位電池 11 直列部 12 並列群 13 並列部 21 接続端子 31 正端子 32 負端子 1 unit battery 11 series section 12 parallel groups 13 Parallel part 21 Connection terminal 31 Positive terminal 32 Negative terminal

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 BA03 BA04 DA15 5H029 AJ12 AJ14 AK03 AL06 BJ06 5H030 AA01 AA09 AS08 BB01 BB21 5H040 AA03 AS04 AY06 DD03    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5G003 BA03 BA04 DA15                 5H029 AJ12 AJ14 AK03 AL06 BJ06                 5H030 AA01 AA09 AS08 BB01 BB21                 5H040 AA03 AS04 AY06 DD03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 単位電池を少なくとも2つ直列に接続し
た直列接続電池と、 単位電池を少なくとも2つ並列に接続した並列接続電池
と、 前記直列接続電池と前記並列接続電池とを、直列に接続
する接続端子とを備え、 前記直列接続電池と並列接続電池とによって、所定範囲
の出力電圧を維持すると共に、所定範囲の充電率を維持
することを特徴とする電源装置。
1. A series connection battery in which at least two unit batteries are connected in series, a parallel connection battery in which at least two unit batteries are connected in parallel, and the series connection battery and the parallel connection battery are connected in series. A power supply device comprising: a connection terminal for connecting a battery, and a battery connected in series and a battery connected in parallel to maintain an output voltage in a predetermined range and a charge rate in a predetermined range.
【請求項2】 前記単位電池は、出力電圧と充電率に相
関関係を有する電池であることを特徴とする請求項1記
載の電源装置。
2. The power supply device according to claim 1, wherein the unit battery is a battery having a correlation between an output voltage and a charging rate.
【請求項3】 請求項1又は請求項2に記載の電源装置
において、 前記直列接続電池を構成する単位電池と、前記並列接続
電池を構成する単位電池とは、前記充電率が異なること
を特徴とする電源装置。
3. The power supply device according to claim 1, wherein the unit batteries forming the series-connected batteries and the unit batteries forming the parallel-connected batteries have different charging rates. And power supply.
【請求項4】 請求項1乃至請求項3の何れかに記載の
電源装置において、 前記並列接続電池が、前記単位電池をK個並列に接続さ
れると共に、このK個並列がL個直列に接続された第1
並列接続電池部と、前記単位電池がM個並列に接続され
ると共に、このM個並列がN個直列に接続された第2並
列接続電池部から構成され、且つ前記第1並列接続電池
部と第2並列接続電池部とが直列に接続されている場合
には、第1並列接続電池部の充電率範囲を、第2並列接
続電池部の充電率範囲のK/M倍にしたことを特徴とす
る電源装置。
4. The power supply device according to claim 1, wherein the parallel-connected batteries are K units of the unit batteries connected in parallel, and the K-units of parallel are L in series. First connected
A parallel-connected battery unit and a second parallel-connected battery unit in which the M unit batteries are connected in parallel and the M parallel units are connected in N units; and the first parallel-connected battery unit. When the second parallel-connected battery unit is connected in series, the charging rate range of the first parallel-connected battery unit is set to K / M times the charging rate range of the second parallel-connected battery unit. And power supply.
【請求項5】 請求項1乃至請求項4の何れかに記載の
電源装置において、 前記単位電池は、負極活性物質に非晶質炭素を含むリチ
ウムイオン電池であることを特徴とする電源装置。
5. The power supply device according to claim 1, wherein the unit battery is a lithium ion battery containing amorphous carbon as a negative electrode active material.
【請求項6】 請求項1乃至請求項5の何れかに記載の
電源装置において、 前記単位電池は、正極材料にリチウムマンガン酸化物を
用いたことを特徴とする電源装置。
6. The power supply device according to claim 1, wherein the unit battery uses lithium manganese oxide as a positive electrode material.
【請求項7】 請求項1乃至請求項5の何れかに記載の
電源装置において、 前記単位電池は、正極材料にリチウムニッケル酸化物を
用いたことを特徴とする電源装置。
7. The power supply device according to claim 1, wherein the unit battery uses lithium nickel oxide as a positive electrode material.
JP2002076518A 2002-03-19 2002-03-19 Power supply device Pending JP2003284251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076518A JP2003284251A (en) 2002-03-19 2002-03-19 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076518A JP2003284251A (en) 2002-03-19 2002-03-19 Power supply device

Publications (1)

Publication Number Publication Date
JP2003284251A true JP2003284251A (en) 2003-10-03

Family

ID=29227787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076518A Pending JP2003284251A (en) 2002-03-19 2002-03-19 Power supply device

Country Status (1)

Country Link
JP (1) JP2003284251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
WO2011104792A1 (en) * 2010-02-24 2011-09-01 パナソニック株式会社 Battery pack
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9112236B2 (en) 2005-10-20 2015-08-18 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
WO2011104792A1 (en) * 2010-02-24 2011-09-01 パナソニック株式会社 Battery pack
CN102473871A (en) * 2010-02-24 2012-05-23 松下电器产业株式会社 Battery pack
JP5296884B2 (en) * 2010-02-24 2013-09-25 パナソニック株式会社 Battery pack
KR101325354B1 (en) 2010-02-24 2013-11-08 파나소닉 주식회사 Battery pack
US9077015B2 (en) 2010-02-24 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Battery pack
CN102473871B (en) * 2010-02-24 2015-11-25 松下知识产权经营株式会社 Battery pack
US9444083B2 (en) 2010-02-24 2016-09-13 Panasonic Intellectual Property Management Co., Ltd. Battery pack

Similar Documents

Publication Publication Date Title
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
JP6260106B2 (en) Power storage device
JP2010528576A (en) Storage battery assembly and power system using the same
JP2013201890A (en) Battery pack
CN110268594A (en) Battery pack and the method for the charging for controlling battery pack
KR20060093343A (en) Electric charger
EP2187498A1 (en) Assembled battery and battery system
US20140159664A1 (en) Method of manufacturing battery pack and battery pack
JP2005151683A (en) Battery pack charger
JP3755043B2 (en) Chargeable / dischargeable power supply
EP2073302A1 (en) Discharge controller
JP3367382B2 (en) Lithium ion secondary battery
JP2022001006A (en) Battery control unit and battery system
JPH10257683A (en) Charging-discharging circuit for combined batteries
JP2022001007A (en) Battery control unit and battery system
JP2010045963A (en) Battery circuit and battery pack
US11316352B2 (en) Battery management
JP2002034166A (en) Protective device for secondary battery
JP3991620B2 (en) Control circuit
JP3419115B2 (en) Battery charge / discharge protection device
JP2005185060A (en) Lithium-ion battery charging method
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
JP6271585B2 (en) Electrochemical cell or battery with reduced impedance and method for producing the same
JP2003284251A (en) Power supply device
JPH03173323A (en) Secondary battery charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104