JPH10257683A - Charging-discharging circuit for combined batteries - Google Patents

Charging-discharging circuit for combined batteries

Info

Publication number
JPH10257683A
JPH10257683A JP9053617A JP5361797A JPH10257683A JP H10257683 A JPH10257683 A JP H10257683A JP 9053617 A JP9053617 A JP 9053617A JP 5361797 A JP5361797 A JP 5361797A JP H10257683 A JPH10257683 A JP H10257683A
Authority
JP
Japan
Prior art keywords
cell
charging
choke coil
unit secondary
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9053617A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ueda
清 上田
Hideji Nakamura
秀司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9053617A priority Critical patent/JPH10257683A/en
Publication of JPH10257683A publication Critical patent/JPH10257683A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable effective use of electric energy for unit secondary batteries connected in series. SOLUTION: One end side of a choke coil 16 is connected to an intermediate node 15 which connect cells 10A and 10B of a unit secondary battery in series, and the other end side of the choke coil 16 is connected to both positive and negative output terminals 13 and 14 of the series circuit, through the intermediary of switching circuits 19 and 22. When a terminal voltage of the cell 10A rises, for instance, this is detected by a voltage control circuit 23, a transistor 17 conducts a switching operation at a prescribed period, and a diode 18 also conducts a switching operation later than the transistor. According to this constitution, a current made to flow through the choke coil 16 at the on time of the transistor 17 flows as a charging current of the cell 10B, and a voltage between the two cells 10A and 10B can be standardized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は対をなす単位二次電
池を直列接続してなる組電池の充放電回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging / discharging circuit for a battery pack comprising a pair of unit secondary batteries connected in series.

【0002】[0002]

【従来の技術】例えば電気自動車に組み込まれる動力用
電池は複数個の単位二次電池を直列接続して高電圧を確
保するようになっている。このような組電池を充電する
場合、各単位二次電池の容量や内部インピーダンスのば
らつきによって各電池の充電状態がばらつくことを避け
得ない。ところが、各単位二次電池は直列接続されてい
るから、各電池には同一の大きさの充電電流が流れ、充
電状態のばらつきが端子電圧のばらつきとして現れ、一
部の電池の過充電状態を招いてしまう。
2. Description of the Related Art For example, a power battery incorporated in an electric vehicle is configured to secure a high voltage by connecting a plurality of unit secondary batteries in series. When charging such an assembled battery, it is unavoidable that the charged state of each battery varies due to variations in the capacity and internal impedance of each unit secondary battery. However, since each unit secondary battery is connected in series, a charging current of the same magnitude flows in each battery, and a variation in a charging state appears as a variation in a terminal voltage. I will invite you.

【0003】このような一部の二次電池の過充電を防止
するための一例として、従来より図3に示すようなシャ
ントレギュレータ方式が採用されている。これは、各単
位二次電池1と並列にトランジスタ2を接続して電流i
をトランジスタ2にバイパスさせ得るようにし、電池1
の充電が進んでその端子電圧が上昇すると、これを検出
してバイパス電流ib を増大させることにより電池1へ
の充電電流ic を絞ってその過充電を防止しようとする
ものである。
As an example for preventing such overcharge of some secondary batteries, a shunt regulator system as shown in FIG. 3 has been conventionally employed. This is because the transistor 2 is connected in parallel with each unit secondary battery 1 and the current i
Can be bypassed to the transistor 2 and the battery 1
When the charging of the battery 1 progresses and the terminal voltage rises, this is detected and the bypass current ib is increased to narrow the charging current ic to the battery 1 to prevent overcharging.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記構
成では、各単位二次電池1においてトランジスタ2に流
れ込むバイパス電流ib と端子電圧vc との積が損失と
なるため、充電効率が悪いという欠点がある。また、充
電効率が悪いだけでなく、ある単位二次電池1で満充電
となってトランジスタ2にバイパス電流ib が流れたと
しても、未充電の他の単位二次電池1の充電電流ic は
電流iよりも増大させることができないから(ic ≦
i)、全体の充電完了は充電不足の単位二次電池1の充
電完了を待つしかなく、充電時間の短縮化を図ることが
できない。
However, the above configuration has a drawback that the product of the bypass current ib flowing into the transistor 2 and the terminal voltage vc in each unit secondary battery 1 results in a loss, resulting in poor charging efficiency. . In addition to the poor charging efficiency, even if the unit secondary battery 1 is fully charged and the bypass current ib flows through the transistor 2, the charging current ic of the other uncharged unit secondary battery 1 is equal to the current Since it cannot be increased beyond i (ic ≦
i) In order to complete the entire charging, one has to wait for the completion of the charging of the unit secondary battery 1 that is undercharged, and the charging time cannot be reduced.

【0005】本発明は上記事情に鑑みてなされたもの
で、その目的は、直列接続された各単位二次電池の端子
電圧を平準化でき、特に、充電時に適用した場合には、
充電時間の短縮化を図ることができる組電池の充放電回
路を提供するところにある。
[0005] The present invention has been made in view of the above circumstances, and an object thereof is to level the terminal voltage of each unit secondary battery connected in series.
An object of the present invention is to provide a charge / discharge circuit for an assembled battery that can reduce the charging time.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、対を
なす単位二次電池を正負出力端子間に直列接続して充放
電させる組電池の充放電回路であって、両単位二次電池
の中間接続点にチョークコイルの一端側を接続するとと
もに、そのチョークコイルの他端側をスイッチング回路
を介して前記正負の各出力端子にそれぞれ接続し、前記
単位二次電池対のうちの一方が他方よりも高電圧となっ
たときにその単位二次電池に接続された前記スイッチン
グ回路をオン作動させた後にこれを開いて他方のスイッ
チング回路をオン作動させ、これにより前記チョークコ
イルに蓄えられた電磁エネルギーによって低電圧側の他
方の単位二次電池への充電方向に電流を流すようにした
ところに特徴を有する。
According to the present invention, there is provided a charge / discharge circuit for a battery pack for charging and discharging by connecting a pair of unit secondary batteries in series between positive and negative output terminals. One end of the choke coil is connected to the intermediate connection point of the battery, and the other end of the choke coil is connected to each of the positive and negative output terminals via a switching circuit, and one of the unit secondary battery pairs is connected. When the voltage becomes higher than that of the other, the switching circuit connected to the unit secondary battery is turned on and then opened to turn on the other switching circuit, thereby storing the voltage in the choke coil. It is characterized in that a current is caused to flow in the charging direction to the other unit secondary battery on the low voltage side by the electromagnetic energy.

【0007】[0007]

【発明の作用及び効果】請求項1の発明によれば、一方
の単位二次電池が他方に比べて高電圧となったときに、
その単位二次電池に接続されたスイッチング回路がオン
作動される。これにより、その単位二次電池側から電流
がチョークコイルに流される。この後、そのスイッチン
グ回路はオフ作動され、代わりに低電圧側の他方の単位
二次電池のスイッチング回路がオン作動される。する
と、チョークコイルに蓄えられた電磁エネルギーによっ
て電流を同方向に流そうとする起電力が誘導されること
になるから、その起電力に基づいて低電圧側の単位二次
電池への充電方向に電流が流れる。
According to the first aspect of the present invention, when one of the unit secondary batteries has a higher voltage than the other,
The switching circuit connected to the unit secondary battery is turned on. As a result, current flows from the unit secondary battery to the choke coil. Thereafter, the switching circuit is turned off, and the switching circuit of the other unit secondary battery on the low voltage side is turned on instead. Then, an electromotive force that causes current to flow in the same direction is induced by the electromagnetic energy stored in the choke coil, and, based on the electromotive force, the unit secondary battery on the low voltage side is charged in the charging direction. Electric current flows.

【0008】これにより、一方の単位二次電池の電圧が
上昇した場合には、チョークコイルを介して電圧の低い
単位二次電池側へエネルギーを移動させて高電圧側の単
位二次電池の電圧を下げるとともに低電圧側の単位二次
電池の電圧を上昇させ、もって両単位二次電池をバラン
スさせることができる。
Accordingly, when the voltage of one unit secondary battery rises, energy is transferred to the unit secondary battery having a lower voltage via the choke coil, and the voltage of the unit secondary battery on the higher voltage side is increased. And the voltage of the unit secondary battery on the low voltage side can be increased, so that both unit secondary batteries can be balanced.

【0009】このようにエネルギーの移動によって両単
位二次電池間のバランスをとることができることは、一
部の単位二次電池の過充電や過放電を防止して各単位二
次電池の電気エネルギーを有効利用することができるこ
とを意味する。特に、充電時に、端子電圧が上昇した単
位二次電池について単に電流をバイパスさせてロスとし
ていた従来のシャントレギュレータ方式に比べ,損失を
大幅に減らすことができ、しかも、組電池全体として充
電完了が速まって短時間充電を可能にすることができ
る。
As described above, the balance between the two unit secondary batteries can be balanced by the transfer of energy. This is because overcharging and overdischarging of some unit secondary batteries are prevented and the electric energy of each unit secondary battery is reduced. Means that can be used effectively. In particular, the loss can be greatly reduced compared to the conventional shunt regulator method in which the unit secondary battery whose terminal voltage has risen during charging simply bypasses the current and causes a loss. Faster charging is possible for a short time.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<第1実施形態>以下、本発明の第1実施形態について
図1を参照して説明する。この実施形態では単位二次電
池としてリチウムイオン電池の2個のセル10A,10
Bを両出力端子13,14間に直列接続した組電池を例
示してある。各セル10A,10Bは同一仕様のもので
ある。両セル10A,10Bの中間接続点15にはチョ
ークコイル16の一端側が接続され、その他端側はトラ
ンジスタ17及びダイオード18を並列接続したスイッ
チング回路19を介して正極出力端子13に接続されて
いる。また、チョークコイル16の他端側はトランジス
タ20及びダイオード21を並列接続したスイッチング
回路22を介して負極出力端子14に接続されている。
<First Embodiment> A first embodiment of the present invention will be described below with reference to FIG. In this embodiment, two cells 10A, 10A of a lithium ion battery are used as unit secondary batteries.
B illustrates an assembled battery in which B is connected in series between both output terminals 13 and 14. The cells 10A and 10B have the same specifications. One end of a choke coil 16 is connected to an intermediate connection point 15 between both cells 10A and 10B, and the other end is connected to a positive output terminal 13 via a switching circuit 19 in which a transistor 17 and a diode 18 are connected in parallel. The other end of the choke coil 16 is connected to the negative output terminal 14 via a switching circuit 22 in which a transistor 20 and a diode 21 are connected in parallel.

【0011】スイッチング回路19,22の各トランジ
スタ17,20は、ともに例えばPNP形であり、トラ
ンジスタ17がオン作動したときにはセル10Aからチ
ョークコイル16に図中左向きに電流を流し、トランジ
スタ20がオン作動したときにはセル10Bからチョー
クコイル16に右向きに電流を流す。なお、ダイオード
18,21はアノード側電位がカソード側電位を上回る
ときにオン作動するから、両スイッチング回路19,2
2は図中上向きには電流を自由に流し、下向きにはトラ
ンジスタ17がオンした時にだけ電流を流すようになっ
ている。
Each of the transistors 17 and 20 of the switching circuits 19 and 22 is, for example, a PNP type. When the transistor 17 is turned on, a current flows from the cell 10A to the choke coil 16 to the left in the figure, and the transistor 20 is turned on. Then, a current flows from the cell 10B to the choke coil 16 to the right. Since the diodes 18 and 21 are turned on when the potential on the anode side exceeds the potential on the cathode side, both switching circuits 19 and 2 are turned on.
Reference numeral 2 indicates that current flows freely upward in the figure, and current flows only downward when the transistor 17 is turned on.

【0012】トランジスタ17,20は電圧制御回路2
3によってベース電位が制御される。その電圧制御回路
23はセル10A,10Bの各端子電圧を検出するよう
になっており、セル10Aの電圧がセル10Bよりも高
い場合においてトランジスタ17を所定の周期で間欠的
にオン作動させ、逆に、セル10Bの電圧がセル10A
よりも高い場合には、トランジスタ20を所定の周期で
間欠的にオン作動させるようになっている。
The transistors 17 and 20 are connected to the voltage control circuit 2
3 controls the base potential. The voltage control circuit 23 detects the terminal voltages of the cells 10A and 10B. When the voltage of the cell 10A is higher than that of the cell 10B, the voltage control circuit 23 turns on the transistor 17 intermittently at a predetermined cycle, And the voltage of the cell 10B is
If it is higher, the transistor 20 is turned on intermittently at a predetermined cycle.

【0013】上記構成の作用は次のようである。組電池
の充電時には、出力端子13、14間に充電用電源を接
続して充電電流を流し込む。充電電流は各セル10A,
10Bを直列に流れて各セル10A,10Bの充電が次
第に進行する。ところが、各セル10A,10Bの残容
量や内部インピーダンス等のばらつきによって各セルの
充電状態がばらつき、その端子電圧は同様には上昇しな
いことがある。ここで、例えば上側のセル10Aの端子
電圧が下側のセル10Bよりも所定値以上高くなったと
する。すると、その端子電圧のずれは電圧制御回路23
によって検出され、セル10Aのスイッチング回路19
のトランジスタ17が所定周期で間欠的にオン作動す
る。トランジスタ17がオンした瞬間に、チョークコイ
ル16には図1に示すようにセル10A側から矢印A方
向に電流が流れる。そして、トランジスタ17がオンか
らオフに転ずると、チョークコイル16に蓄えられた電
磁エネルギーによって電流を同じ矢印A方向に流そうと
する起電力が誘導される。すると、今度はスイッチング
回路22のダイオード21が自然にオンするから、低電
圧側のセル10Bにはその起電力に基づいて充電電流が
流れる。そして、上述のようなトランジスタ17とダイ
オード21が交互にオンするスイッチング動作が繰り返
されるから、トランジスタ17のオン時にチョークコイ
ル16に蓄えられた電磁エネルギーがダイオード21の
オンによってセル10B側に移動してその充電に利用さ
れる。このような状態はセル10Bがセル10Aの端子
電圧に達してバランスするまで続く。
The operation of the above configuration is as follows. At the time of charging the assembled battery, a charging power supply is connected between the output terminals 13 and 14 to flow a charging current. The charging current is 10A for each cell,
10B flows in series, and the charging of each cell 10A, 10B gradually progresses. However, the state of charge of each cell varies due to variations in the remaining capacity, internal impedance, and the like of each cell 10A, 10B, and the terminal voltage may not increase similarly. Here, for example, it is assumed that the terminal voltage of the upper cell 10A becomes higher than the lower cell 10B by a predetermined value or more. Then, the deviation of the terminal voltage is corrected by the voltage control circuit 23.
Is detected by the switching circuit 19 of the cell 10A.
Transistor 17 is turned on intermittently at a predetermined cycle. At the moment when the transistor 17 is turned on, a current flows in the choke coil 16 in the direction of arrow A from the cell 10A side as shown in FIG. Then, when the transistor 17 turns from on to off, an electromotive force that causes a current to flow in the same arrow A direction is induced by the electromagnetic energy stored in the choke coil 16. Then, the diode 21 of the switching circuit 22 turns on naturally, so that a charging current flows through the cell 10B on the low voltage side based on the electromotive force. Then, since the switching operation of turning on the transistor 17 and the diode 21 as described above is repeated, the electromagnetic energy stored in the choke coil 16 when the transistor 17 is turned on moves to the cell 10B side by turning on the diode 21. It is used for charging. Such a state continues until the cell 10B reaches the terminal voltage of the cell 10A and becomes balanced.

【0014】上述のようにセル10Aの端子電圧が先に
上昇してトランジスタ17がスイッチング動作すること
は、本来、セル10Aに流れる電流の一部がチョークコ
イル16を介してセル10B側に移され、セル10Bの
充電電流として流れることを意味する。ここで、セル1
0Bには本来の端子13から供給された充電電流が流れ
ているから、これに重畳して余分の充電電流が流れるこ
とになり、セル10Bの充電が促進される。
As described above, the fact that the terminal voltage of the cell 10A rises first and the transistor 17 performs the switching operation originally means that a part of the current flowing through the cell 10A is transferred to the cell 10B via the choke coil 16. , Flows as the charging current of the cell 10B. Here, cell 1
Since the charging current supplied from the original terminal 13 flows through OB, an extra charging current flows superimposed on the current, which promotes the charging of the cell 10B.

【0015】このように本実施形態では、端子電圧が高
い方のセル10A側の電気エネルギーをチョークコイル
16を介して電圧が低い方のセル10Bに移動させてそ
の充電に寄与させることができるから、満充電に至った
セルについて単に電流をバイパスさせてロスとしていた
従来のシャントレギュレータ方式に比べ,損失を大幅に
減らすことができる。しかも、一方のセル10Aの端子
電圧が上昇すると、そこに投入される電気エネルギーを
他方の未充電のセル10B側に移動させるから、未充電
のセル10Bの充電が促進され、組電池全体として充電
完了が速まり、短時間充電が可能となる。
As described above, in this embodiment, the electric energy on the side of the cell 10A having the higher terminal voltage can be transferred to the cell 10B having the lower voltage via the choke coil 16 to contribute to the charging thereof. In addition, the loss can be greatly reduced as compared with the conventional shunt regulator system in which the current is simply bypassed to cause a loss in a fully charged cell. In addition, when the terminal voltage of one cell 10A rises, the electric energy applied thereto is transferred to the other uncharged cell 10B, so that the charging of the uncharged cell 10B is promoted, and the entire battery pack is charged. Completion is accelerated, and short-time charging becomes possible.

【0016】なお、組電池の放電時には、各セル10A
の内部インピーダンスのばらつきによって端子電圧の低
下度合いは必ずしも均等ではないが、端子電圧のずれが
所定値に達すると、上述したと同様に動作する。例え
ば、セル10Aが早期に電圧が低下するようになったと
すると、セル10B側のトランジスタ20が所定周期で
スイッチング動作を行い、セル10A側のダイオード1
8がこれから遅れてスイッチング動作を行う。この結
果、トランジスタ20のオン時にチョークコイル16に
矢印B方向に電流が流れ、トランジスタ20のオフ,ダ
イオード18のオン時に同方向に電流が流れてセル10
Aの充電電流或いは負荷電流として流れる。これによ
り、セル10Aの端子電圧の低下を抑えて過放電を防止
することができる。
When the battery pack is discharged, each cell 10A
Although the degree of decrease in the terminal voltage is not always equal due to the variation in the internal impedance of the device, when the deviation of the terminal voltage reaches a predetermined value, the terminal operates in the same manner as described above. For example, if the voltage of the cell 10A decreases early, the transistor 20 of the cell 10B performs a switching operation at a predetermined cycle, and the diode 1 of the cell 10A.
8 performs a switching operation with a delay. As a result, a current flows through the choke coil 16 in the direction of arrow B when the transistor 20 is turned on, and a current flows in the same direction when the transistor 20 is turned off and the diode 18 is turned on.
A flows as a charging current or a load current of A. As a result, it is possible to suppress a decrease in the terminal voltage of the cell 10A and prevent overdischarge.

【0017】<第2実施形態>図2は本発明の第2実施
形態を示す。前記第1実施形態との相違はセルの直列数
を4とし、隣接する2つのセルについて前記実施形態と
同様な充放電回路をそれぞれ設けたところにある。各セ
ルについては10Aないし10Dの符号を付すが、各ス
イッチング回路については前記第1実施形態と同様な構
成であるから、同一部分に同一符号を付して重複する説
明を省略する。また、同図において電圧制御回路23も
前記第1実施例と同様の構成で各トランジスタ17,2
0のオンオフを制御するようになっているが、図面の簡
略化のために省略してある。
<Second Embodiment> FIG. 2 shows a second embodiment of the present invention. The difference from the first embodiment is that the number of cells in series is 4, and two adjacent cells are provided with the same charge / discharge circuit as in the first embodiment. Each cell is denoted by reference numerals 10A to 10D. However, since each switching circuit has the same configuration as that of the first embodiment, the same portions are denoted by the same reference numerals and redundant description is omitted. Further, in the same figure, the voltage control circuit 23 has the same configuration as that of the first embodiment, and the transistors 17, 2
Although ON / OFF of 0 is controlled, it is omitted for simplification of the drawing.

【0018】この実施形態において、充電中に例えば図
中の最上段のセル10Aが満充電に近付いて端子電圧が
第2段のものより高くなると、そのセル10Aに対応す
るトランジスタ17が所定周期でスイッチング動作を行
い、ダイオード18がこれとはずれたスイッチング動作
を行う。この結果、チョークコイル16を介してセル1
0A側の電流がセル10B側に移動してセル10Bの充
電が促進される。また、この結果、第2段のセル10B
の端子電圧が上昇して第3段のセル10Cよりも高くな
ると、第2段の左側のトランジスタ17が所定周期でス
イッチング動作を行うとともに、これから遅れて第3段
目の左側のダイオード21がスイッチング動作を行うか
ら、結局、第3段目のセル10Cの充電が促進されるこ
とになる
In this embodiment, for example, when the uppermost cell 10A in the figure approaches full charge during charging and the terminal voltage becomes higher than that of the second cell, the transistor 17 corresponding to the cell 10A is turned on at a predetermined cycle. A switching operation is performed, and the diode 18 performs a switching operation deviating therefrom. As a result, the cell 1 is connected via the choke coil 16.
The current on the 0A side moves to the cell 10B side to promote charging of the cell 10B. As a result, the second-stage cell 10B
Is higher than that of the third-stage cell 10C, the second-stage left-side transistor 17 performs a switching operation at a predetermined cycle, and the third-stage left-side diode 21 switches later than this. Since the operation is performed, the charging of the third-stage cell 10C is eventually promoted.

【0019】このように本実施形態によれば、隣り合う
セル10A同士についてチョークコイル16を介して電
気エネルギーの授受を行うことができ、どの位置にある
未充電のセル10Aに対してもエネルギーを移動させる
ことができるから、前記第1実施例と同様に充電時の損
失を大幅に減らすことができ、しかも、組電池全体の短
時間充電が可能となるという効果が得られる。
As described above, according to the present embodiment, electric energy can be transferred between adjacent cells 10A via the choke coil 16, and energy can be transferred to the uncharged cell 10A at any position. Since the battery can be moved, the loss at the time of charging can be greatly reduced as in the first embodiment, and the effect that the entire assembled battery can be charged in a short time can be obtained.

【0020】<他の実施形態><Other Embodiments>

【0021】本発明は上記記述及び図面によって説明し
た実施の形態に限定されるものではなく、例えば次のよ
うな実施の形態も本発明の技術的範囲に含まれ、さら
に、下記以外にも要旨を逸脱しない範囲内で種々変更し
て実施することができる。
The present invention is not limited to the embodiments described with reference to the above description and the drawings. For example, the following embodiments are also included in the technical scope of the present invention. Various changes can be made without departing from the scope of the present invention.

【0022】(1)前記各実施形態ではスイッチング回
路としてトランジスタ17,20及びダイオード18,
21の並列回路を例示したが、これに限らず、FET等
の他のスイッチング素子を利用することもできる。
(1) In each of the above embodiments, the transistors 17, 20 and the diode 18,
Although the 21 parallel circuits have been illustrated, the invention is not limited to this, and other switching elements such as FETs can be used.

【0023】(2)過充電の防止のためにタイマによっ
て充電時間の制限を行ったり、各セルの端子電圧が限界
値に達したときに充電を中止するようにしてもよい。
(2) The charging time may be limited by a timer to prevent overcharging, or charging may be stopped when the terminal voltage of each cell reaches a limit value.

【0024】(3)上記各実施形態では単位二次電池が
リチウムイオン電池のセルである場合を示したが、これ
に限らず、鉛蓄電池やニッケルカドミウム二次電池等の
各種の二次電池であってもよく、また、各単位二次電池
が複数のセルを組み合わせてなる電池モジュールであっ
てもよい。
(3) In each of the above embodiments, the case where the unit secondary battery is a lithium ion battery cell has been described. However, the present invention is not limited to this, and various secondary batteries such as a lead storage battery and a nickel cadmium secondary battery may be used. Alternatively, each unit secondary battery may be a battery module formed by combining a plurality of cells.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】第2実施形態を示す回路図FIG. 2 is a circuit diagram showing a second embodiment.

【図3】従来の二次電池充電回路を示す回路図FIG. 3 is a circuit diagram showing a conventional secondary battery charging circuit.

【符号の説明】[Explanation of symbols]

10A〜10D…セル(単位二次電池) 13…正極出力端子 14…負極出力端子 15…中間接続点 16…チョークコイル 19,22…スイッチング回路 23…電圧制御回路 10A to 10D cells (unit secondary batteries) 13 positive electrode output terminals 14 negative electrode output terminals 15 intermediate connection points 16 choke coils 19 and 22 switching circuits 23 voltage control circuits

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対をなす単位二次電池を正負出力端子
間で直列接続して充放電させる組電池の充放電回路であ
って、両単位二次電池の中間接続点にチョークコイルの
一端側を接続するとともに、そのチョークコイルの他端
側をスイッチング回路を介して前記正負の各端子にそれ
ぞれ接続し、前記単位二次電池対のうちの一方が他方よ
りも高電圧となったときにその単位二次電池に接続され
た前記スイッチング回路をオン作動させた後にこれを開
いて他方のスイッチング回路をオン作動させ、これによ
り前記チョークコイルに蓄えられた電磁エネルギーによ
って低電圧側の他方の単位二次電池への充電方向に電流
を流すようにしたことを特徴とする組電池の充放電回
路。
1. A charging / discharging circuit for a battery pack for connecting and discharging a pair of unit secondary batteries in series between positive and negative output terminals, wherein one end of a choke coil is connected to an intermediate connection point between the two unit secondary batteries. And the other end of the choke coil is connected to each of the positive and negative terminals via a switching circuit, and when one of the unit secondary battery pairs has a higher voltage than the other, the After the switching circuit connected to the unit secondary battery is turned on, it is opened and the other switching circuit is turned on, whereby the other unit on the low voltage side is turned on by the electromagnetic energy stored in the choke coil. A charge / discharge circuit for an assembled battery, wherein a current flows in a charging direction to a secondary battery.
JP9053617A 1997-03-07 1997-03-07 Charging-discharging circuit for combined batteries Pending JPH10257683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9053617A JPH10257683A (en) 1997-03-07 1997-03-07 Charging-discharging circuit for combined batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9053617A JPH10257683A (en) 1997-03-07 1997-03-07 Charging-discharging circuit for combined batteries

Publications (1)

Publication Number Publication Date
JPH10257683A true JPH10257683A (en) 1998-09-25

Family

ID=12947877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9053617A Pending JPH10257683A (en) 1997-03-07 1997-03-07 Charging-discharging circuit for combined batteries

Country Status (1)

Country Link
JP (1) JPH10257683A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148745A1 (en) * 2006-06-22 2007-12-27 Fdk Corporation Multi-series accumulation cell, series accumulation cell device, and series cell voltage balance correction circuit
JP2008035680A (en) * 2006-07-31 2008-02-14 Fdk Corp Multiple series storage cell
JP2008043002A (en) * 2006-08-02 2008-02-21 Fdk Corp Serial storage cell apparatus
JP2009247145A (en) * 2008-03-31 2009-10-22 Japan Aerospace Exploration Agency Power system
EP2135339A1 (en) * 2007-03-20 2009-12-23 EnerDel, Inc. System and method for balancing a state of charge of series connected cells
KR100962097B1 (en) 2008-06-05 2010-06-09 주식회사 네이스코 Recharging Circuit for the Battery of a Vehicle
JP2011015561A (en) * 2009-07-03 2011-01-20 Meidensha Corp Charging/discharging device of lithium ion capacitor cell
CN102340160A (en) * 2010-07-16 2012-02-01 威斯通全球技术公司 Remaining capacity equalizing device and method, and remaining capacity equalizing device set
JP2012217243A (en) * 2011-03-31 2012-11-08 Dendo Sharyo Gijutsu Kaihatsu Kk Balance correction apparatus and power storage system
CN102891508A (en) * 2011-07-19 2013-01-23 株式会社丰田自动织机 Charge and discharge control apparatus
JP2013511944A (en) * 2009-11-19 2013-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for equalizing the voltage of an electrical storage unit
JP2013511943A (en) * 2009-11-19 2013-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for equalizing the voltage of an electrical storage unit
JP2014526864A (en) * 2011-09-09 2014-10-06 景信 丁 Power management device
JP2014528692A (en) * 2011-10-12 2014-10-27 日本テキサス・インスツルメンツ株式会社 Inductor-based active balancing for batteries and other power supplies
JP2015109784A (en) * 2013-12-06 2015-06-11 株式会社豊田自動織機 Charging and discharging power/current-limiting device for cell, charging and discharging power/current-limiting device for battery pack, and battery pack
JP2015528690A (en) * 2012-09-15 2015-09-28 日本テキサス・インスツルメンツ株式会社 System and method for battery pack management using predictive balancing
CN112838624A (en) * 2019-11-22 2021-05-25 圣邦微电子(北京)股份有限公司 Power supply circuit

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148745A1 (en) * 2006-06-22 2007-12-27 Fdk Corporation Multi-series accumulation cell, series accumulation cell device, and series cell voltage balance correction circuit
US8692515B2 (en) 2006-06-22 2014-04-08 Fdk Corporation Series-connected rechargeable cells, series-connected rechargeable cell device, voltage-balance correcting circuit for series-connected cells
JP2008035680A (en) * 2006-07-31 2008-02-14 Fdk Corp Multiple series storage cell
JP2008043002A (en) * 2006-08-02 2008-02-21 Fdk Corp Serial storage cell apparatus
US8581549B2 (en) 2007-03-20 2013-11-12 Ener1, Inc. System and method for balancing a state of charge of series connected cells
EP2135339A1 (en) * 2007-03-20 2009-12-23 EnerDel, Inc. System and method for balancing a state of charge of series connected cells
EP2135339A4 (en) * 2007-03-20 2012-11-07 Enerdel Inc System and method for balancing a state of charge of series connected cells
JP2009247145A (en) * 2008-03-31 2009-10-22 Japan Aerospace Exploration Agency Power system
KR100962097B1 (en) 2008-06-05 2010-06-09 주식회사 네이스코 Recharging Circuit for the Battery of a Vehicle
JP2011015561A (en) * 2009-07-03 2011-01-20 Meidensha Corp Charging/discharging device of lithium ion capacitor cell
US9831690B2 (en) 2009-11-19 2017-11-28 Robert Bosch Gmbh Method and device for balancing electrical voltages in electrical accumulator units
JP2013511943A (en) * 2009-11-19 2013-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for equalizing the voltage of an electrical storage unit
JP2013511944A (en) * 2009-11-19 2013-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for equalizing the voltage of an electrical storage unit
CN102340160A (en) * 2010-07-16 2012-02-01 威斯通全球技术公司 Remaining capacity equalizing device and method, and remaining capacity equalizing device set
JP2012023925A (en) * 2010-07-16 2012-02-02 Visteon Global Technologies Inc Residual capacity equalization device and method, and residual capacity equalization device set
CN103460549A (en) * 2011-03-31 2013-12-18 Evtd株式会社 Balance correcting apparatus and electricity storage system
EP2693595A1 (en) * 2011-03-31 2014-02-05 EVTD Inc. Balance correction apparatus and electrical storage system
JP2012217243A (en) * 2011-03-31 2012-11-08 Dendo Sharyo Gijutsu Kaihatsu Kk Balance correction apparatus and power storage system
EP2693595A4 (en) * 2011-03-31 2014-10-01 Evtd Inc Balance correction apparatus and electrical storage system
US9083188B2 (en) 2011-03-31 2015-07-14 Evtd Inc. Balance correcting apparatus and electricity storage system
CN102891508A (en) * 2011-07-19 2013-01-23 株式会社丰田自动织机 Charge and discharge control apparatus
US9653943B2 (en) 2011-09-09 2017-05-16 Ghing-Hsin Dien Power management apparatus
JP2014526864A (en) * 2011-09-09 2014-10-06 景信 丁 Power management device
JP2014528692A (en) * 2011-10-12 2014-10-27 日本テキサス・インスツルメンツ株式会社 Inductor-based active balancing for batteries and other power supplies
JP2015528690A (en) * 2012-09-15 2015-09-28 日本テキサス・インスツルメンツ株式会社 System and method for battery pack management using predictive balancing
JP2018050466A (en) * 2012-09-15 2018-03-29 日本テキサス・インスツルメンツ株式会社 Battery pack management using prediction equilibration, system, and method
JP2015109784A (en) * 2013-12-06 2015-06-11 株式会社豊田自動織機 Charging and discharging power/current-limiting device for cell, charging and discharging power/current-limiting device for battery pack, and battery pack
CN112838624A (en) * 2019-11-22 2021-05-25 圣邦微电子(北京)股份有限公司 Power supply circuit
CN112838624B (en) * 2019-11-22 2024-02-06 圣邦微电子(北京)股份有限公司 Power supply circuit

Similar Documents

Publication Publication Date Title
US7061207B2 (en) Cell equalizing circuit
US8159191B2 (en) Advanced rechargeable battery system
JP3389670B2 (en) Series connection circuit of secondary battery
KR101124803B1 (en) Charge Equalization Apparatus and Method
US8269455B2 (en) Charge balancing system
JP2001045672A (en) Discharging of a plurality of secondary cells and battery
JPH10257683A (en) Charging-discharging circuit for combined batteries
JP2010528576A (en) Storage battery assembly and power system using the same
JP2003333762A (en) Voltage level equalization device for battery pack
JP3629791B2 (en) Charge control device for battery pack
JP3249261B2 (en) Battery pack
JP3458740B2 (en) Battery charging and discharging devices
JP2001178010A (en) Charging control system for battery of electric storage cells, particularly for battery of lithium cells
JPH10257682A (en) Method of operating combined batteries and charging-discharging circuit for combined batteries
JP3419115B2 (en) Battery charge / discharge protection device
JP2000270483A (en) Charging condition controller of battery set
JP3796918B2 (en) Battery device
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
JP2002142375A (en) Power storage system and control method therefor
JP3473193B2 (en) Battery charging control device
JP3481037B2 (en) Multiple rechargeable battery chargers
JP2003153460A (en) Charging/discharging controller of storage battery
JPH03173323A (en) Secondary battery charger
JP3806639B2 (en) Battery pack with protection circuit
JPH11185824A (en) Primary battery compatible battery pack