JP4108339B2 - Lithium ion secondary battery charging method and apparatus - Google Patents

Lithium ion secondary battery charging method and apparatus Download PDF

Info

Publication number
JP4108339B2
JP4108339B2 JP2002014401A JP2002014401A JP4108339B2 JP 4108339 B2 JP4108339 B2 JP 4108339B2 JP 2002014401 A JP2002014401 A JP 2002014401A JP 2002014401 A JP2002014401 A JP 2002014401A JP 4108339 B2 JP4108339 B2 JP 4108339B2
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
charging
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002014401A
Other languages
Japanese (ja)
Other versions
JP2003217675A (en
Inventor
晋也 高木
敏雄 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2002014401A priority Critical patent/JP4108339B2/en
Publication of JP2003217675A publication Critical patent/JP2003217675A/en
Application granted granted Critical
Publication of JP4108339B2 publication Critical patent/JP4108339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、複数個のリチウムイオン二次電池が直列状態に接続された組電池において各単電池の充電をバランス良く実行させるリチウムイオン二次電池の充電方法及び装置に関する。
【0002】
【従来の技術】
一般に携帯電話機やコードレス電話機などの移動無線通信機をはじめ、ビデオカメラやノート型パソコンなどでは、体積エネルギー密度および重量エネルギー密度が高いリチウムイオン二次電池が多く使われている。このリチウムイオン二次電池は、通常、単セル(単電池)を複数個、直列接続して上記の電子機器の電源として使用される。
【0003】
従来、リチウムイオン二次電他の充電は、単セル当たり4.1Vまたは4.2Vという一定値に充電電圧を設定し、電池電圧がこれらの充電完了電圧に到達するまでは一定電流値で充電し、充電完了電圧に達した以後は、定電圧充電に移行する定電流・定電圧充電方式が採用されている。
一方、直列接続されたリチウムイオン二次電池の充電は、例えば単セル当たりの充電完了電圧を4.1Vとするとセルがn個、直列接続された組電池はn×4.1Vになるまで定電流充電をすることになる(図3参照)。
【0004】
しかし、上述した定電流・定電圧充電方式では、各セルの端子電圧を個別に監視していないので、充電時に各セルの端子電圧にばらつきがあると、任意のセルが充電完了電圧に達しても他の電池が充電完了電圧に達していないために充電が継続して行われ、一番初めに充電完了電圧に到達したセルは過充電になってしまう。
【0005】
【発明が解決しようとする課題】
直列接続された複数個のリチウムイオン二次電池をトリクル充電方式で使用する場合、全ての電池の容量あるいは内部抵抗が常に同じであればバランス良く充電できる。
しかしながら、実際には、電池の容量あるいは内部抵抗には若干のばらつきが存在する。更に、初期において同じ内部抵抗であったとしてもトリクル充電により、時間が経過していくと電池の内部特性が変化し、電池の容量および内部抵抗も変化する。その結果、各電池のバランスが崩れ、特定の電池が過充電状態になることもある。
【0006】
一方、他の電池は満充電に達しない状態で充電が終わってしまうので、電池の保有している能力を十分に取り出すことができなくなる。このように従来の充電方式では、各電池を確実に満充電状態まで充電することができない場合がある。
本発明はこのような事情に鑑みてなされたものであり、直列接続された複数個のリチウムイオン二次電池についてトリクル充電方式で待機している組電池の充電を、安価かつ効率的に行うことを可能とするリチウムイオン二次電池の充電装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、直流負荷に電力を供給する直流電源の出力に、前記直流負荷と並列に、複数のリチウムイオン二次電池が直列接続されてなる組電池が接続されて使用される前記各リチウムイオン二次電池の充電を行うリチウムイオン二次電池の充電方法であって、前記組電池を構成する各リチウムイオン二次電池を充電し、かつ前記組電池を構成する各リチウムイオン二次電池の端子間電圧を検出すると共に、前記組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡して充電電流をバイパスし、前記組電池を構成する全てのリチウムイオン二次電池が充電完了電圧に達した後に前記組電池を構成する各リチウムイオン二次電池に対してトリクル充電を行うことを特徴とする。
【0008】
請求項2に記載の発明は、直流負荷に電力を供給する直流電源の出力に、前記直流負荷と並列に、複数のリチウムイオン二次電池が直列接続されてなる組電池が接続されて使用される前記各リチウムイオン二次電池の充電を行うリチウムイオン二次電池の充電装置であって、前記組電池の端子間に接続され前記組電池を構成する各リチウムイオン二次電池を充電する充電手段と、前記組電池を構成する各リチウムイオン二次電池の端子間電圧を検出する電圧検出手段と、前記組電池を構成する各リチウムイオン二次電池の端子間に接続され、入力される制御信号に基づいて該接続されたリチウムイオン二次電池の端子間を短絡するバイパス手段と、前記電圧検出手段の検出出力を取り込み、前記組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡するように前記バイパス手段を制御する制御手段と、前記組電池の正極性端子側と、直流負荷及び直流電源との間に、該直流負荷及び直流電源に対して前記組電池を構成する各リチウムイオン二次電池の放電を許容する極性となるように接続されるダイオードとを有することを特徴とする。
【0009】
請求項3に記載の発明は、請求項1に記載のリチウムイオン二次電池の充電装置において、前記制御手段は、前記組電池を構成する全てのリチウムイオン二次電池が充電完了電圧に達した後に前記バイパス手段を非動作状態にすることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明の実施形態に係るリチウムイオン二次電池の充電装置の構成を図1に示す。本実施形態に係るリチウムイオン二次電池の充電装置は、直流負荷に電力を供給する直流電源の出力に、前記直流負荷と並列に、複数のリチウムイオン二次電池が直列接続されてなる組電池が接続されて使用される前記各リチウムイオン二次電池の充電を行うリチウムイオン二次電池の充電方法であって、前記組電池を構成する各リチウムイオン二次電池を充電し、かつ前記組電池を構成する各リチウムイオン二次電池の端子間電圧を検出すると共に、前記組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡して充電電流をバイパスし、前記組電池を構成する全てのリチウムイオン二次電池が充電完了電圧に達した後に前記組電池を構成する各リチウムイオン二次電池に対してトリクル充電を行うことを特徴とするリチウムイオン二次電池の充電方法を実施するための装置である。
【0011】
図1において、本実施形態に係るリチウムイオン二次電池の充電装置は、直流負荷2に電力を供給する直流電源3の出力に、直流負荷2と並列に、複数のリチウムイオン二次電池(セル)1−1、1−2、1−3、…、1−nが直列接続されてなる組電池が接続されて使用される各リチウムイオン二次電池の充電を行うリチウムイオン二次電池の充電装置である。
【0012】
本実施形態に係るリチウムイオン二次電池の充電装置は、上記組電池の端子間に接続され上記組電池を構成する各リチウムイオン二次電池1−1、1−2、1−3、…、1−nを充電するリチウムイオン二次電池専用充電器(以下、単に充電器と記す。)5と、各リチウムイオン二次電池1−1、1−2、1−3、…、1−nの端子間電圧を検出する電圧プローブ6−1、6−2、6−3、…、6−nと、各リチウムイオン二次電池1−1、1−2、1−3、…、1−nの端子間に接続され、入力される制御信号に基づいて該接続されたリチウムイオン二次電池の端子間を短絡するバイパス回路4−1、4−2、4−3、…、4−nと、電圧プローブ6−1、6−2、6−3、…、6−nの検出出力を取り込み、各リチウムイオン二次電池1−1、1−2、1−3、…、1−nのうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡するようにバイパス回路4−1、4−2、4−3、…、4−nを制御する制御部7と、上記組電池の正極性端子側と、直流負荷2及び直流電源3との間に、該直流負荷2及び直流電源3に対して上記組電池を構成する各リチウムイオン二次電池1−1、1−2、1−3、…、1−nの放電を許容する極性となるように接続されるダイオード10とを有している。
【0013】
また、各バイパス回路4−1、4−2、4−3、…、4−nは、各リチウムイオン二次電池の両端間に接続される第1のIGBT(Insulated Gate Bipolar Transistor)と第2のIGBTとの直列回路と、第1のIGBTのエミッタ−コレクタ間に図1に示す極性で接続されるダイオードとから構成されている。例えば、バイパス回路4−1は、IGBT:P1とIGBT:Q1の直列回路と、IGBT:P1のエミッタ−コレクタ間に接続されるダイオードD1とからなる。
ここで、リチウムイオン二次電池1−1の正極にはIGBT:P1のコレクタが接続され、IGBT:P1のエミッタはIGBT:Q1のコレクタに、IGBT:Q1のエミッタはリチウムイオン二次電池1−1の負極に、それぞれ接続されている。
【0014】
直流電源3は交流の商用電力(図では省略)を直流電力に変換して直流負荷2に供給している。
一方、停電時に無瞬断で直流負荷2に電力を供給できるように直列接続された複数個のリチウムイオン二次電池1−1、1−2、1−3、…、1−nからなる組電池が、バイパス回路4−1、4−2、4−3、…、4−n、ダイオード10を介して直流負荷2の両端間に接続されている。
【0015】
また、各セル(リチウムイオン二次電池)の端子電圧を検出する電圧プローブ6−1、6−2、6−3、…、6−nが制御部7に接続されている。
さらに、制御部7はバイパス回路4−1、4−2、4−3、…、4−nに対して充電電流のバイパスの実行、または停止を指示する制御信号を供給するためのIGBT制御線8−1、8−2、8−3、…、8−nを介してバイパス回路4−1、4−2、4−3、…、4−nに接続されており、制御部7は充電制御を行うための制御信号を出力する充電制御線9を介して充電器5に接続されている。
【0016】
制御部7は、電圧プローブ6−1、6−2、6−3、…、6−nの検出出力を取り込み、各リチウムイオン二次電池のいずれかの電池電圧、すなわち端子間電圧が予め設定した状態を検出すると、該検出されたリチウムイオン二次電池に対応するIGBT制御線8−1、8−2、8−3、…、8−nのいずれかを介して充電電流をバイパスさせるための制御信号を出力し、該当するバイパス回路4(4−1、4−2、4−3、…、4−nのいずれか)のIGBTを動作させ充電完了電圧に達したに対する充電電流をバイパスさせる機能を有している。
【0017】
次に、上記構成からなる本発明の実施形態に係るリチウムイオン二次電池の充電装置の動作を図2及び図5を参照して説明する。
放電が終了した組電池の充電は、制御部7の制御下にバイパス回路4−1、4−2、4−3、…、4−nにおけるすべてのIGBTをOFFした状態で充電器5により行われる。充電は、定電流−定電圧制御で行われ、単セル当たりの充電完了電圧を4.1Vとすると単セル(リチウムイオン二次電池)がn個直列接続された組電池の充電完了電圧はn×4.1Vであり、この電圧まで定電流で充電を行うことになる。
【0018】
充電を行った際に、各リチウムイオン二次電池(セル)1−1、1−2、1−3、…、1−nの端子電圧が同じ充電時間で4.1Vになるのが理想だが、実際には、各電池の内部特性か容量にアンバランスが生じるため、例えば図4に示すように従来の充電方法ではセル1−nの充電電圧V1-nだけが時刻t0において充電完了電圧の4.1Vになり、他のセルは充電完了電圧に到達しない。このように、セル1−nが充電完了電圧に達した後にも継続して充電すると、既に充電完了電圧に達したセル1−nが過充電となり危険である。
【0019】
本発明では、制御部7は、電圧プローブ6−1、6−2、6−3、…、6−nの検出出力を取り込み、各リチウムイオン二次電池のいずれかの電池電圧、すなわち端子間電圧が予め設定した充電完了電圧に達した場合には、該端子間電圧が充電完了電圧に達したリチウムイオン二次電池に対応するIGBT制御線8−1、8−2、8−3、…、8−nのいずれかを介して充電電流をバイパスさせるための制御信号を上記充電完了電圧に達したリチウムイオン二次電池に対応するバイパス回路に出力する。
【0020】
例えば、制御部7により図2に示すような順番で各リチウムイオン二次電池1−1、1−2、1−3、…、1−nに付加したIGBT:P1,P2,P3,…,Pn,Q1,Q2,Q3,…,Qnを制御して充電完了電圧に達したリチウムイオン二次電池の端子間に設けられたバイパス回路4(4−1、4−2、4−3、…、4−nのいずれか)に充電電流をバイパスさせることにより図5に示すように、既に充電完了電圧に達したリチウムイオン二次電池の過充電を防止し、各リチウムイオン二次電池の充電電圧を均一化することができる。
【0021】
図5の例で説明すると時刻t0で制御部7は、最初に充電完了電圧に到達したセル1−nの端子間に設けられたバイパス回路4−nにおけるIGBT:QnをONにして充電電流をバイパスさせる。この動作を充電完了電圧に到達したセルから順番に行い、全セルについて完了するまで継続して行う。各セルが充電完了電圧に達した後は、バイパス回路4−1、4−2、4−3、…、4−nにおけるすべてのIGBTをQFFにし、制御部7から充電制御線9を介して制御信号を受けた充電器5は、直ちに組電池トリクル充電に移行することにより、全セルを満充電状態で非常時の電池放電に備えることができる。
【0022】
また、本発明の実施形態では、ダイオード10がリチウムイオン二次電池1−1、1−2、1−3、…、1−nからなる組電池の正極性端子側と、直流負荷2及び直流電源3との間に直流負荷2及び直流電源3に対して各リチウムイオン二次電池1−1、1−2、1−3、…、1−nの放電を許容する極性となるように接続されているので、直流電源3からの充電を防止した上で、各リチウムイオン二次電池1−1、1−2、1−3、…、1−nに対して充電器5により充電を行うことができる。
なお、電池の充電中に、直流負荷2の消費電力に増加があった場合にはリチウムイオン二次電池1−1、1−2、1−3、…、1−nからなる組電池もしくは充電器5から直流負荷2に対して電力供給を行うこともできる。
【0023】
本発明の実施形態に係るリチウムイオン二次電池の充電装置によれば、直列接続された複数個の各リチウムイオン二次電池(セル)の電池電圧を検出し、いずれか一つのセルが充電完了電圧に到達するまで充電し、いずれか一つのセルが充電完了電圧に到連した後は、充電完了したセルに対応して設けられたバイパス回路を構成するIGBTを制御して充電電流をバイパスし、その他のセルが充電完了電圧に到達するまで順番に一セルずつ充電していくことにより、セル間の端子電圧のアンバランスを容易に解消できる。
【0024】
【発明の効果】
以上、説明したように、本発明によれば、前記組電池を構成する各リチウムイオン二次電池を充電し、かつ前記組電池を構成する各リチウムイオン二次電池の端子間電圧を検出すると共に、前記組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡して充電電流をバイパスし、前記組電池を構成する全てのリチウムイオン二次電池が充電完了電圧に達した後に前記組電池を構成する各リチウムイオン二次電池に対してトリクル充電を行うようにしたので、直列接続された複数個のリチウムイオン二次電池についてトリクル充電方式で待機している組電池の充電を、安価かつ効率的に行うことを可能となる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係るリチウムイオン二次電池の充電装置の構成を示すブロック図。
【図2】 図1に示した本発明の実施形態に係るリチウムイオン二次電池の充電装置におけるバイパス回路を構成するIGBTの開閉タイミングを示す説明図。
【図3】 従来のリチウムイオン二次電池の組電池充電時の電圧、電流特性を示す説明図。
【図4】 従来のリチウムイオン二次電池の単電池充電時の電圧、電流特性を示す説明図。
【図5】 本発明の実施形態に係るリチウムイオン二次電池の充電装置におけるリチウムイオン二次電池の単電池充電時の電圧、電流特性を示す説明図。
【符号の説明】
1−1、1−2、1−3、…、1−n…リチウムイオン二次電池
2…直流負荷
3…直流電源
4−1、4−2、4−3、…、4−n…バイパス回路
5…リチウムイオン二次電池専用充電器
6−1、6−2、6−3、…、6−n…電圧プローブ
7…制御部
8−1、8−2、8−3、…、8−n…IGBT制御線
9…充電制御線
10…ダイオード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for charging a lithium ion secondary battery in which charging of each cell is performed in a balanced manner in an assembled battery in which a plurality of lithium ion secondary batteries are connected in series.
[0002]
[Prior art]
In general, lithium ion secondary batteries having a high volumetric energy density and a high weight energy density are used in mobile wireless communication devices such as mobile phones and cordless phones, as well as video cameras and laptop computers. This lithium ion secondary battery is usually used as a power source for the electronic device by connecting a plurality of single cells (single cells) in series.
[0003]
Conventionally, charging of lithium-ion secondary batteries and other batteries is performed by setting the charging voltage to a constant value of 4.1 V or 4.2 V per unit cell, and charging at a constant current value until the battery voltage reaches these charging completion voltages. Then, after reaching the charging completion voltage, a constant current / constant voltage charging method is adopted that shifts to constant voltage charging.
On the other hand, the charging of the lithium ion secondary batteries connected in series is fixed until, for example, the charging completion voltage per unit cell is 4.1 V, and the number of cells connected in series is n × 4.1 V. Current charging is performed (see FIG. 3).
[0004]
However, in the constant current / constant voltage charging method described above, since the terminal voltage of each cell is not individually monitored, if there is a variation in the terminal voltage of each cell during charging, any cell reaches the charge completion voltage. However, since the other batteries have not reached the charging completion voltage, charging is continued, and the cell that has reached the charging completion voltage first is overcharged.
[0005]
[Problems to be solved by the invention]
When a plurality of lithium ion secondary batteries connected in series are used in a trickle charging method, charging can be performed with a good balance if the capacity or internal resistance of all the batteries is always the same.
In practice, however, there is some variation in battery capacity or internal resistance. Furthermore, even if the internal resistance is the same at the initial stage, the internal characteristics of the battery change as time passes due to trickle charging, and the capacity and internal resistance of the battery also change. As a result, the balance of each battery is lost, and a specific battery may be overcharged.
[0006]
On the other hand, since the other batteries are charged in a state where they do not reach full charge, it is impossible to sufficiently take out the capacity of the batteries. Thus, in the conventional charging method, there are cases where each battery cannot be reliably charged to a fully charged state.
This invention is made | formed in view of such a situation, and charge of the assembled battery which is waiting by the trickle charge system about the some lithium ion secondary battery connected in series is performed cheaply and efficiently. An object of the present invention is to provide a charging device for a lithium ion secondary battery that enables the above.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of lithium ion secondary batteries are connected in series with an output of a DC power supply that supplies power to a DC load in parallel with the DC load. A method of charging a lithium ion secondary battery that charges each lithium ion secondary battery that is used by being connected to an assembled battery, wherein the lithium ion secondary battery that constitutes the assembled battery is charged, and A voltage between terminals of each lithium ion secondary battery constituting the assembled battery is detected, and among the lithium ion secondary batteries constituting the assembled battery, a lithium ion secondary battery that has reached a preset charge completion voltage In contrast, the both ends of the lithium ion secondary battery are short-circuited to bypass the charging current, and after all the lithium ion secondary batteries constituting the assembled battery have reached the charge completion voltage, And performing a trickle charge for each lithium-ion secondary batteries constituting the battery.
[0008]
The invention according to claim 2 is used by connecting a battery pack in which a plurality of lithium ion secondary batteries are connected in series to the output of a DC power supply for supplying power to the DC load in parallel with the DC load. A charging device for charging each lithium ion secondary battery that is connected between terminals of the assembled battery and that constitutes the assembled battery. A voltage detection means for detecting a voltage between terminals of each lithium ion secondary battery constituting the assembled battery; and a control signal connected between and input to terminals of each lithium ion secondary battery constituting the assembled battery The bypass means for short-circuiting the terminals of the connected lithium ion secondary battery based on the above, and the detection output of the voltage detection means is taken in, and each lithium ion secondary battery constituting the assembled battery A control means for controlling the bypass means so as to short-circuit both ends of the lithium ion secondary battery sequentially with respect to the lithium ion secondary battery that has reached a preset charge completion voltage; and a positive electrode of the assembled battery The diode is connected between the positive terminal side and the DC load and the DC power supply so as to have a polarity that allows the discharge of each lithium ion secondary battery constituting the assembled battery with respect to the DC load and the DC power supply. It is characterized by having.
[0009]
According to a third aspect of the present invention, in the charging device for a lithium ion secondary battery according to the first aspect, the control means is configured such that all the lithium ion secondary batteries constituting the assembled battery have reached a charging completion voltage. The bypass means is set in a non-operating state later.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration of a charging device for a lithium ion secondary battery according to an embodiment of the present invention. The lithium-ion secondary battery charging apparatus according to the present embodiment is an assembled battery in which a plurality of lithium-ion secondary batteries are connected in series to the output of a DC power supply that supplies power to a DC load in parallel with the DC load. A method of charging a lithium ion secondary battery that charges each of the lithium ion secondary batteries used by being connected to the battery, charging each lithium ion secondary battery constituting the assembled battery, and the assembled battery The lithium ion secondary battery that detects a voltage between terminals of each lithium ion secondary battery that constitutes the battery and reaches a preset charge completion voltage among the lithium ion secondary batteries that constitute the assembled battery Sequentially, the both ends of the lithium ion secondary battery are short-circuited to bypass the charging current, and before all the lithium ion secondary batteries constituting the assembled battery reach the charging completion voltage, A device for carrying out the method of charging a lithium ion secondary battery and performing a trickle charge for each lithium-ion secondary batteries constituting the battery pack.
[0011]
In FIG. 1, a charging device for a lithium ion secondary battery according to this embodiment includes a plurality of lithium ion secondary batteries (cells) connected in parallel to the DC load 2 at the output of a DC power supply 3 that supplies power to the DC load 2. ) Charging of a lithium ion secondary battery that charges each lithium ion secondary battery that is used by being connected to an assembled battery in which 1-1, 1-2, 1-3,..., 1-n are connected in series Device.
[0012]
The lithium ion secondary battery charging device according to the present embodiment is connected between the terminals of the assembled battery, and each of the lithium ion secondary batteries 1-1, 1-2, 1-3,. 1-n lithium ion secondary battery charger (hereinafter simply referred to as a charger) 5 and each lithium ion secondary battery 1-1, 1-2, 1-3,..., 1-n , 6-n and the lithium ion secondary batteries 1-1, 1-2, 1-3,..., 1-, and the voltage probes 6-1, 6-2, 6-3,. Bypass circuits 4-1, 4-2, 4-3,..., 4-n that are connected between n terminals and short-circuit between the terminals of the connected lithium ion secondary batteries based on an input control signal. , 6-n of the voltage probes 6-1, 6-2, 6-3,. 1, 1-2, 1-3,..., 1-n are sequentially short-circuited between both ends of the lithium ion secondary battery that has reached a preset charge completion voltage. Between the control circuit 7 for controlling the bypass circuits 4-1, 4-2, 4-3,..., 4-n, the positive terminal side of the assembled battery, the DC load 2 and the DC power source 3, The lithium ion secondary batteries 1-1, 1-2, 1-3,..., 1-n constituting the assembled battery with respect to the DC load 2 and the DC power supply 3 have a polarity that allows discharging. And a diode 10 to be connected.
[0013]
Each of the bypass circuits 4-1, 4-2, 4-3,..., 4-n includes a first IGBT (Insulated Gate Bipolar Transistor) and a second IGBT connected between both ends of each lithium ion secondary battery. 1 and a diode connected between the emitter and collector of the first IGBT with the polarity shown in FIG. For example, the bypass circuit 4-1 includes a series circuit of IGBT: P1 and IGBT: Q1, and a diode D1 connected between the emitter and collector of IGBT: P1.
Here, the collector of IGBT: P1 is connected to the positive electrode of the lithium ion secondary battery 1-1, the emitter of IGBT: P1 is connected to the collector of IGBT: Q1, and the emitter of IGBT: Q1 is the lithium ion secondary battery 1- 1 are respectively connected to the negative electrode.
[0014]
The DC power source 3 converts AC commercial power (not shown in the figure) into DC power and supplies it to the DC load 2.
On the other hand, a set of a plurality of lithium ion secondary batteries 1-1, 1-2, 1-3,..., 1-n connected in series so that power can be supplied to the DC load 2 without interruption in the event of a power failure. A battery is connected between both ends of the DC load 2 via bypass circuits 4-1, 4-2, 4-3,.
[0015]
Further, voltage probes 6-1, 6-2, 6-3,..., 6 -n that detect terminal voltages of the respective cells (lithium ion secondary batteries) are connected to the control unit 7.
Further, the control unit 7 supplies an IGBT control line for supplying a control signal instructing the bypass circuit 4-1, 4-2, 4-3,. , 8-2, 8-3,..., 8-n are connected to the bypass circuits 4-1, 4-2, 4-3,. It is connected to the charger 5 through a charge control line 9 that outputs a control signal for performing control.
[0016]
The control unit 7 takes in the detection outputs of the voltage probes 6-1, 6-2, 6-3,..., 6-n, and the battery voltage of each lithium ion secondary battery, that is, the voltage between terminals is set in advance. When the detected state is detected, the charging current is bypassed via any of the IGBT control lines 8-1, 8-2, 8-3,..., 8-n corresponding to the detected lithium ion secondary battery. The control signal is output, and the IGBT of the corresponding bypass circuit 4 (4-1, 4-2, 4-3,..., 4-n) is operated to bypass the charging current when the charging completion voltage is reached. It has a function to make it.
[0017]
Next, the operation of the charging apparatus for a lithium ion secondary battery according to the embodiment of the present invention having the above-described configuration will be described with reference to FIGS.
The battery pack that has been discharged is charged by the charger 5 under the control of the control unit 7 with all the IGBTs in the bypass circuits 4-1, 4-2, 4-3,. Is called. Charging is performed by constant current-constant voltage control. When the charging completion voltage per unit cell is 4.1 V, the charging completion voltage of an assembled battery in which n single cells (lithium ion secondary batteries) are connected in series is n. X4.1V, and charging is performed at a constant current up to this voltage.
[0018]
Ideally, when charging, the terminal voltage of each lithium ion secondary battery (cell) 1-1, 1-2, 1-3,..., 1-n is 4.1 V in the same charging time. Actually, since the internal characteristics or capacities of the batteries are imbalanced, for example, as shown in FIG. 4, in the conventional charging method, only the charging voltage V 1-n of the cell 1-n is the charging completion voltage at time t0. 4.1V, and other cells do not reach the charge completion voltage. As described above, if the cell 1-n continues to be charged after reaching the charge completion voltage, the cell 1-n that has already reached the charge completion voltage is overcharged, which is dangerous.
[0019]
In the present invention, the control unit 7 takes in the detection output of the voltage probes 6-1, 6-2, 6-3,..., 6-n, and the battery voltage of each lithium ion secondary battery, that is, between the terminals. When the voltage reaches a preset charging completion voltage, the IGBT control lines 8-1, 8-2, 8-3,... Corresponding to the lithium ion secondary battery whose inter-terminal voltage has reached the charging completion voltage. , 8-n, a control signal for bypassing the charging current is output to a bypass circuit corresponding to the lithium ion secondary battery that has reached the charging completion voltage.
[0020]
For example, IGBTs P1, P2, P3,..., Added to the lithium ion secondary batteries 1-1, 1-2, 1-3,. Bypass circuits 4 (4-1, 4-2, 4-3,...) Provided between terminals of the lithium ion secondary batteries that have reached the charge completion voltage by controlling Pn, Q1, Q2, Q3,. , 4-n), by bypassing the charging current, as shown in FIG. 5, the overcharging of the lithium ion secondary battery that has already reached the charging completion voltage is prevented, and the charging of each lithium ion secondary battery is performed. The voltage can be made uniform.
[0021]
Referring to the example of FIG. 5, at time t0, the control unit 7 turns on IGBT: Qn in the bypass circuit 4-n provided between the terminals of the cell 1-n that first reaches the charge completion voltage and turns on the charging current. Bypass. This operation is performed in order from the cell that has reached the charging completion voltage, and is continued until all cells are completed. After each cell reaches the charge completion voltage, all IGBTs in the bypass circuits 4-1, 4-2, 4-3,..., 4-n are set to QFF, and the control unit 7 passes the charge control line 9 Upon receiving the control signal, the charger 5 immediately shifts to the assembled battery trickle charging, so that all cells can be prepared for emergency battery discharge in a fully charged state.
[0022]
In the embodiment of the present invention, the diode 10 includes the positive terminal side of the assembled battery including the lithium ion secondary batteries 1-1, 1-2, 1-3,. Connected to the power source 3 so as to have a polarity allowing the discharge of the lithium ion secondary batteries 1-1, 1-2, 1-3,..., 1-n to the DC load 2 and the DC power source 3. Therefore, the lithium ion secondary batteries 1-1, 1-2, 1-3,..., 1-n are charged by the charger 5 while preventing charging from the DC power source 3. be able to.
In addition, when the power consumption of the DC load 2 is increased during the charging of the battery, the assembled battery or the charging including the lithium ion secondary batteries 1-1, 1-2, 1-3,. It is also possible to supply power to the DC load 2 from the device 5.
[0023]
According to the lithium ion secondary battery charging apparatus according to the embodiment of the present invention, the battery voltage of each of the plurality of lithium ion secondary batteries (cells) connected in series is detected, and any one cell is completely charged. The battery is charged until it reaches the voltage, and after any one cell reaches the charge completion voltage, the charge current is bypassed by controlling the IGBT that constitutes the bypass circuit provided for the charged cell. By charging one cell at a time until the other cells reach the charge completion voltage, the terminal voltage imbalance between the cells can be easily eliminated.
[0024]
【The invention's effect】
As described above, according to the present invention, each lithium ion secondary battery constituting the assembled battery is charged, and the terminal voltage of each lithium ion secondary battery constituting the assembled battery is detected. The lithium ion secondary battery that has reached a preset charge completion voltage among the lithium ion secondary batteries constituting the assembled battery is sequentially shorted between both ends of the lithium ion secondary battery to charge current. The trickle charging is performed on each lithium ion secondary battery constituting the assembled battery after all the lithium ion secondary batteries constituting the assembled battery reach the charging completion voltage. It becomes possible to charge the assembled battery that is waiting in the trickle charging method for a plurality of connected lithium ion secondary batteries at low cost and efficiently.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a charging device for a lithium ion secondary battery according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing opening / closing timings of IGBTs constituting a bypass circuit in the lithium ion secondary battery charging apparatus according to the embodiment of the present invention shown in FIG. 1;
FIG. 3 is an explanatory diagram showing voltage and current characteristics when charging a battery pack of a conventional lithium ion secondary battery.
FIG. 4 is an explanatory diagram showing voltage and current characteristics when charging a single lithium ion secondary battery.
FIG. 5 is an explanatory diagram showing voltage and current characteristics when charging a single cell of a lithium ion secondary battery in a lithium ion secondary battery charging apparatus according to an embodiment of the present invention.
[Explanation of symbols]
1-1, 1-2, 1-3,..., 1-n Lithium ion secondary battery 2 DC load 3 DC power sources 4-1, 4-2, 4-3,. Circuit 5 ... Lithium ion secondary battery chargers 6-1, 6-2, 6-3, ..., 6-n ... Voltage probe 7 ... Control units 8-1, 8-2, 8-3, ..., 8 -N ... IGBT control line 9 ... charge control line 10 ... diode

Claims (3)

直流負荷に電力を供給する直流電源の出力に、前記直流負荷と並列に、複数のリチウムイオン二次電池が直列接続されてなる組電池が接続されて使用される前記各リチウムイオン二次電池の充電を行うリチウムイオン二次電池の充電装置であって、
前記組電池の端子間に接続され前記組電池を構成する各リチウムイオン二次電池に充電電流を流して充電を行う充電手段と、
該充電手段の前記直流電源の正極性端子側と、前記直流電源の正極性端子側との間に、該直流負荷及び直流電源に対して前記組電池及び前記充電手段からの放電を許容する極性となるように接続されるダイオードと、
前記組電池を構成する各リチウムイオン二次電池の端子間電圧を検出する電圧検出手段と、
前記組電池を構成する各リチウムイオン二次電池の端子間に接続され、入力される制御信号に基づいて該接続されたリチウムイオン二次電池の端子間を短絡するバイパス手段と、
前記電圧検出手段の検出出力を取り込み、前記組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡するように前記バイパス手段を制御する制御手段と、
を有することを特徴とするリチウムイオン二次電池の充電装置。
Each of the lithium ion secondary batteries used is connected to an output of a direct current power source that supplies power to the direct current load, and a plurality of lithium ion secondary batteries are connected in parallel with the direct current load. A charging device for a lithium ion secondary battery that performs charging,
The battery pack is connected between the terminals of a charging means for charging by supplying a charging current to each of the lithium ion secondary batteries constituting the battery pack,
Between the positive terminal side of the DC power source of the charging unit and the positive terminal side of the DC power source, the polarity allowing discharge from the assembled battery and the charging unit to the DC load and DC power source A diode connected to be
Voltage detecting means for detecting a voltage between terminals of each lithium ion secondary battery constituting the assembled battery;
And bypass means for short-circuiting between the battery pack is connected to each between terminals of the lithium ion secondary batteries constituting the, of the connected lithium ion secondary battery based on the control signal input terminal,
The detection output of the voltage detection means is captured, and the lithium ion secondary battery is sequentially applied to the lithium ion secondary batteries that have reached a preset charge completion voltage among the lithium ion secondary batteries constituting the assembled battery. Control means for controlling the bypass means so as to short-circuit both ends of
A charging device for a lithium ion secondary battery, comprising:
前記組電池を構成する各リチウムイオン二次電池を充電し、かつ前記組電池を構成する各リチウムイオン二次電池の端子間電圧を検出すると共に、前記組電池を構成する各リチウムイオン二次電池のうち予め設定された充電完了電圧に達したリチウムイオン二次電池に対して順次、該リチウムイオン二次電池の両端間を短絡して充電電流をバイパスし、前記組電池を構成する全てのリチウムイオン二次電池が充電完了電圧に達した後に前記組電池を構成する各リチウムイオン二次電池に対してトリクル充電を行うことを特徴とする請求項1に記載のリチウムイオン二次電池の充電装置Recharge each lithium ion secondary battery constituting the assembled battery, and detect a voltage between terminals of each lithium ion secondary battery constituting the assembled battery, and each lithium ion secondary battery constituting the assembled battery Among the lithium-ion secondary batteries that have reached a preset charging completion voltage, by short-circuiting both ends of the lithium-ion secondary battery to bypass the charging current, and all the lithium constituting the assembled battery 2. The charging device for a lithium ion secondary battery according to claim 1, wherein trickle charging is performed on each lithium ion secondary battery constituting the assembled battery after the ion secondary battery reaches a charging completion voltage. . 前記バイパス手段は、
前記リチウムイオン二次電池に直列に接続され、ダイオードと第1のスイッチ素子とが並列接続された回路と、
該回路及び前記リチウムイオン二次電池の直列接続に対して並列に接続された第2のスイッチ素子と
から構成されていることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池の充電装置
The bypass means includes
A circuit connected in series to the lithium ion secondary battery, in which a diode and a first switch element are connected in parallel;
A second switch element connected in parallel to the series connection of the circuit and the lithium ion secondary battery;
The charging device for a lithium ion secondary battery according to claim 1 or 2, wherein
JP2002014401A 2002-01-23 2002-01-23 Lithium ion secondary battery charging method and apparatus Expired - Fee Related JP4108339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014401A JP4108339B2 (en) 2002-01-23 2002-01-23 Lithium ion secondary battery charging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014401A JP4108339B2 (en) 2002-01-23 2002-01-23 Lithium ion secondary battery charging method and apparatus

Publications (2)

Publication Number Publication Date
JP2003217675A JP2003217675A (en) 2003-07-31
JP4108339B2 true JP4108339B2 (en) 2008-06-25

Family

ID=27651095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014401A Expired - Fee Related JP4108339B2 (en) 2002-01-23 2002-01-23 Lithium ion secondary battery charging method and apparatus

Country Status (1)

Country Link
JP (1) JP4108339B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641862B2 (en) * 2005-05-16 2011-03-02 東芝三菱電機産業システム株式会社 Lithium-ion secondary battery charge / discharge circuit
WO2008129698A1 (en) * 2007-04-12 2008-10-30 Panasonic Corporation Power system and method for charging battery pack
JP5187040B2 (en) * 2008-07-16 2013-04-24 東芝三菱電機産業システム株式会社 Rechargeable battery charger
KR102258826B1 (en) * 2017-04-25 2021-06-07 주식회사 엘지에너지솔루션 Apparatus and method for preventing overcharge
KR102268681B1 (en) * 2017-06-13 2021-06-22 주식회사 엘지에너지솔루션 Apparatus and method for preventing over-voltage
KR102268682B1 (en) * 2017-06-13 2021-06-22 주식회사 엘지에너지솔루션 Apparatus and method for preventing over-voltage
GB2576182B (en) 2018-08-08 2022-04-06 Renewable Energy Dynamics Tech Ltd Flow battery
JP6970136B2 (en) * 2019-04-04 2021-11-24 矢崎総業株式会社 Battery control unit and battery system

Also Published As

Publication number Publication date
JP2003217675A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
US9276422B2 (en) Battery pack and electric power consuming apparatus
US8487581B2 (en) Battery pack burn-in test system and method
US8164305B2 (en) Battery management system with energy balance among multiple battery cells
US20090267565A1 (en) Method and system for cell equalization with charging sources and shunt regulators
US7821230B2 (en) Method and system for cell equalization with switched charging sources
KR20160099357A (en) Battery pack and battery system including the same
JP2003157908A (en) Charging device for lithium ion secondary cell, and charging method of the same
JPH11150884A (en) Charging control for secondary battery and charger therefor
KR20150107032A (en) Battery pack
JPH10257683A (en) Charging-discharging circuit for combined batteries
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
JP2010045963A (en) Battery circuit and battery pack
JP3249261B2 (en) Battery pack
JP3458740B2 (en) Battery charging and discharging devices
US20200006960A1 (en) Charging device and method thereof
JP2000270483A (en) Charging condition controller of battery set
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
JP5541682B2 (en) Lithium-ion battery charging system and charging method
JP2004229391A (en) Battery pack
JP2023522463A (en) Battery management system, battery pack, energy storage system and battery management method
KR100694062B1 (en) Apparatus and control method for charging multi-battery
JP2005020866A (en) Battery charger
JPH03173323A (en) Secondary battery charger
JP2003023736A (en) Charger for combined battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees