JP3991620B2 - Control circuit - Google Patents

Control circuit Download PDF

Info

Publication number
JP3991620B2
JP3991620B2 JP2001155366A JP2001155366A JP3991620B2 JP 3991620 B2 JP3991620 B2 JP 3991620B2 JP 2001155366 A JP2001155366 A JP 2001155366A JP 2001155366 A JP2001155366 A JP 2001155366A JP 3991620 B2 JP3991620 B2 JP 3991620B2
Authority
JP
Japan
Prior art keywords
control circuit
power supply
control
bypass
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001155366A
Other languages
Japanese (ja)
Other versions
JP2002354698A (en
Inventor
彰彦 工藤
正樹 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001155366A priority Critical patent/JP3991620B2/en
Publication of JP2002354698A publication Critical patent/JP2002354698A/en
Application granted granted Critical
Publication of JP3991620B2 publication Critical patent/JP3991620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は制御回路に係り、特に、複数個のリチウム二次電池が直列に接続された組電池の制御回路であって、抵抗及びスイッチが組電池を構成する各リチウム二次電池に並列に接続された制御回路に関する。
【0002】
【従来の技術】
従来、リチウム二次電池等の単電池が複数個直列に接続された組電池では、例えば、特開平2000−92732号公報に開示されているように、各単電池に電圧測定回路と、スイッチ及び容量調整用バイパス抵抗からなる容量調整回路とをそれぞれ並列に接続し、開回路電圧が高い単電池のスイッチをオンとすることで当該単電池を放電させ、単電池間の電圧差を少なくする容量調整制御が行われてきた。特に、開回路電圧と残存容量との相関が高い非晶質系炭素を負極活物質に用いたリチウムイオン電池では、単電池電圧のバラツキを少なくして残存容量を揃える制御が行われている。
【0003】
具体的には、システム起動時の組電池に充放電電流が流れていない状態で全単電池の開回路電圧(開放電圧)を測定し、その値から各単電池の残存容量を計算して、最も残存容量の少ない単電池との差分の電気量をバイパス放電量として、当該バイパス放電量に相当する計算された放電時間(以下、バイパス放電時間という。)の間、単電池をバイパス抵抗に放電させる方法が採られている。バイパス抵抗の接続は、制御回路が動作する組電池の充放電中に行われる。充電時にバイパス抵抗を接続すると、バイパス抵抗を接続しないときに比べバイパス抵抗に流れる電流分電池に流れる充電電流が少なくなり、放電時にバイパス抵抗を接続すると、バイパス抵抗を接続しないときに比べバイパス抵抗に流れる電流分電池に流れる放電電流が多くなるだけであり、共に単電池の残存容量の差を揃える容量調整を行うことができる。
【0004】
図6に、このような容量調整制御を行う従来の制御回路の構成例を示す。図6に示すように、4直列の組電池群1を構成する各単電池には、バイパス抵抗2とスイッチ3との直列回路が並列接続されている。また、各単電池の両端は、電圧検出のために、差動増幅器4の入力側に、差動増幅器4の出力側はマルチプレクサ5の入力側にそれぞれ接続されており、マルチプレクサ5の出力側はマイクロコンピュータ6のA/D変換入力に接続されている。マイクロコンピュータ6はマルチプレクサ5の入力指定を出力ポートから行い、かつ、A/D変換することで、指定した単電池の開回路電圧をデジタル値として測定する。マイクロコンピュータ6は、測定電圧データ等について通信インターフェイス9を介して充放電制御を行う上位システムとの通信を行う。マイクロコンピュータ6の出力ポートはスイッチ3にも接続されており、上述したようにバイパス放電時間の間スイッチ3をオンとする。
【0005】
また、マイクロコンピュータ6を含む制御回路全体は、電源部7から電源の供給を受けて作動する。電源部7からの電源供給は上位システムからの動作制御により行われ、ハイレベル信号をフォトカプラ8に入力して電源部7を電源供給状態とし、ローレベル信号をフォトカプラ8に入力して電源部7を電源非供給状態とする。このため、上位システムは、組電池群1を充放電する場合に、ハイレベル信号をフォトカプラ8に送出してマイクロコンピュータ6を含む制御回路全体を作動させ、充放電終了後はローレベル信号をフォトカプラ8に送出して制御回路の消費電流が0となるようなシャットダウン制御を行う。このシャットダウン制御は、組電池群1が長期間放置された場合に各単電池が放電してしまうことを防止するために必要な制御である。上位システムは、組電池群1の全単電池の開回路電圧データを通信により通信インターフェイス9を介してマイクロコンピュータ6から受け取り、上述した残存容量及びバイパス放電量を計算して、バイパス放電量をデータとしてマイクロコンピュータ6に送出する。マイクロコンピュータ6は、バイパス放電量からバイパス放電時間を計算して、バイパス放電時間の間、スイッチ3に接続された出力ポートの信号をハイレベルとしてスイッチ3をオン状態としバイパス抵抗2にバイパス放電を行わせる。なお、図6には4直列の組電池の回路構成を示したが、実際の組電池では単電池が4直列以上接続されており、また、制御回路も複数個存在しこれら制御回路のマイクロコンピュータ6が上位システムと通信によりデータの送受信を行っている。また、図6に示した各スイッチ3は、一般に2個のFET(又はトランジスタ)と複数個の抵抗で構成できることが知られている。
【0006】
このように箇々の単電池の容量調整が必要な理由は、特定の単電池の残存容量が何らかの原因で平均値からずれた場合に、組電池全体の平均電圧値が通常の充放電状態であっても、過充電又は過放電となるためである。過充電又は過放電状態となると、組電池としての放電特性の低下、過充電での安全性の低下、過放電での寿命低下等を招く。残存容量がずれる原因としては、組電池を構成する各単電池の自己放電のバラツキ、充放電時の温度バラツキ、充電効率のバラツキなどが挙げられる。特に、リチウム二次電池では、完全に充電レベルを寿命末期まで揃えるのは困難であり、定期的にやや過充電気味に充電して残存容量を揃えることができる鉛電池やニッケル水素電池とは異なり、容量調整機能が不可欠である。また、リチウム二次電池は高エネルギー密度であり過充電状態に陥ると電池の内圧が極端に上昇するので、制御回路は過充電電圧の高精度検出を行わなければならず、また、単電池の充電レベルが平均値からずれた場合には早期に過充電検出機能が動作することで異常状態との誤判断により充電を停止させてしまうので、リチウム二次電池や制御回路の改良等誤判断に対する研究開発がなされている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の制御回路を用いた場合には、容量調整を行う期間が制御回路が動作している期間、つまり組電池の充放電を行っている場合に制約されているので、短期間の充放電と長期間の放置とを繰り返した場合には、容量調整効果が十分でない、という問題点があった。特に、電気自動車用などで100Ahクラスの大容量リチウム二次電池が組電池を構成する単電池として用いられ、小容量のバイパス抵抗を用いて短期間の使用と比較的短期間の放置とを繰り返す条件下であっても、大容量のバイパス抵抗を用いないと容量調整が有効に動作せず、単電池間電圧のバラツキ、つまり残存容量のバラツキは大きくなり、電池特性と寿命特性の低下を招いてしまう可能性が高かった。
【0008】
この例について図面を参照して具体的に説明する。図7に、従来の容量調整制御により1週間毎に10時間容量調整をかけながら充放電を行った場合の単電池(以下、セルともいう。)電圧の推移を示す。用いた単電池は定格容量90Ahのリチウムイオン電池であり、バイパス抵抗は39Ωである。組電池としての直列数は96セルであり、図6に示した制御回路が用いられている。この制御回路では、充放電中は充放電終了後の組電池の充電率(SOC=残存容量/満充電容量)が50%となるように充放電量が制御される。また、上述したように、システム起動時に充放電電流が流れる前の開回路電圧を測定し、残存容量を計算して最も残存容量の少ないセルとの容量差分バイパス抵抗で放電させる容量調整制御が採られている。図7に示すように、セル電圧のバラツキは経過日数と共に大きくなるが、定期的に容量調整がかかるためにセル電圧のバラツキは抑えられ、平均電圧からの差の最大値である最大偏差も20mV未満に抑えられる。
【0009】
図8に、同一の条件で1週間毎に2時間容量調整をかけながら充放電を行った場合のセル電圧の推移を示す。図8に示すように、容量調整の時間が2hと短い場合には日数の経過に伴いセル電圧のバラツキが大きくなり、90日経過した時点での最大偏差は60mVと大きく、かつ、まだ増加傾向にある。
【0010】
このように、従来の制御回路を用いた容量調整制御では、組電池を充放電する時間が短く、放置期間が長い場合には、セル電圧のバラツキが大きくなり、電池特性、寿命特性が悪化する可能性が大きい。この原因は、容量調整時間で制御可能なバイパス放電量が放置中に自己放電等で起こる残存容量低下のバラツキを補正できないためである。
【0011】
この問題を解決するために、バイパス抵抗を大容量としてバイパス放電量を大きくすることが考えられるが、バイパス抵抗及びスイッチの発熱、容積、コストの点から制約がある。また、常に制御回路を動作させておくことも考えられるが、制御回路の消費電流は無視できない値となるので、放置中にリチウム二次電池が放電しエネルギーロスが発生する、という問題点がある。
【0012】
上記事案に鑑み本発明は、大容量の抵抗を用いることなく組電池を充放電する時間が短く放置期間が長い場合でもリチウム二次電池の残存容量を揃えることができ、放置中の電池の放電を最小限に抑えることができる組電池の制御回路を提供することを課題とする。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明は、複数個のリチウム二次電池が直列に接続された組電池の制御回路であって、抵抗及びスイッチが前記組電池を構成する各リチウム二次電池に並列に接続された制御回路において、前記各リチウム二次電池の開回路電圧を測定する測定手段と、前記測定手段に電源を供給する電源供給手段と、前記組電池の充放電開始前に前記測定手段により測定された開回路電圧から計算され、前記各リチウム二次電池の残存容量値と該残存容量値のうち最小残存容量値との差に相当する放電時間、の間、前記組電池の充放電終了後も継続して前記電源供給手段から作動電源の供給を受けて前記スイッチをオン状態とするバイパス放電制御を前記放電時間の算出後から行い、該バイパス放電制御の終了後、制御回路全体が低消費電力状態となるように前記電源供給手段を制御する制御手段と、を備える。
【0014】
本発明では、制御手段が、組電池の充放電終了後も電源供給手段から作動電源の供給を受けてスイッチをオン状態として計算された放電時間の間バイパス放電を継続させるので、大容量の抵抗を用いることなく各リチウム二次電池の残存容量を同一の値に揃えることができると共に、バイパス放電制御の終了後に制御回路全体が低消費電力状態となるように電源供給手段を制御するので、放置時のリチウム二次電池からの放電を抑えることができる。ここに、低消費電力状態とは、電源供給手段から測定手段及び/又は制御手段への電源の供給が停止される状態をいう。
【0015】
この場合において、制御手段で、組電池の充放電終了後、バイパス放電制御を行う回路部分のみが作動するように電源供給手段からの電源供給を制御するようにすれば、制御回路の他の動作、例えば、過充電・過放電検出機能、上位システムとの通信機能等を行う回路部分への電源供給を停止することができるので、充放電終了後の制御回路の消費電流によるリチウム二次電池からの放電をより少なくすることができる。このとき、バイパス放電制御を行う回路部分の素子の全部又は一部をCMOS型ICで構成するようにすれば、CMOS型ICの低消費電力特性から、充放電終了後の制御回路の消費電流によるリチウム二次電池からの放電を更に少なくすることができる。また、CMOS型ICは作動電圧範囲が広く、リチウム二次電池の両端電圧で作動可能なため、バイパス放電制御を行う回路部分の作動電源をバイパス放電制御の対象となるリチウム二次電池から供給するようにすれば、バイパス放電制御を行う回路部分を簡単にすることができる。
【0016】
【発明の実施の形態】
(第1実施形態)
次に、図面を参照して本発明に係る制御回路の第1の実施の形態について説明する。なお、本実施形態以下の実施形態では、図6に示した従来の制御回路と同一の回路構成要素については同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
【0017】
図1に示すように、本実施形態の制御回路は、図6と比較しても明らかなように、マイクロコンピュータ6の出力ポートが電源部7に接続されていることのみが従来の制御回路と異なっている。この制御回路では、電源部7を、フォトカプラ8を介して外部の上位システムから電源供給状態・電源非供給状態に制御可能であることに加え、マイクロコンピュータ6の出力ポートからのハイレベル信号又はローレベル信号の出力により電源供給状態・電源非供給状態に制御可能な回路構成とされている。
【0018】
本実施形態の制御回路では、従来の制御回路の動作に加え、組電池群1を構成する各リチウムイオン電池(リチウム二次電池)に並列に接続されたバイパス抵抗2による容量調整が行われている場合に、マイクロコンピュータ6の出力ポートからのハイレベル信号の出力により電源部7を電源供給状態に制御し、組電池群1の充放電が終了しフォトカプラ8がオフとなった後でも電源部7から制御回路全体へ電源供給が継続される。このため、スイッチ3にハイレベル信号の送出が継続されバイパス抵抗2によるリチウムイオン電池のバイパス放電は続行されるので、容量調整が中止されることなく最後まで行われる。電源部7からの電源供給が停止されるのは、組電池群1を構成するの全てのリチウムイオン電池のバイパス放電が終了した後である。スイッチ3へのローレベル信号の出力は、バイパス放電時間が経過した後、当該リチウムイオン電池に接続されたスイッチ3毎に個別に行われるが、全てのリチウムイオン電池の容量調整が完了すると、マイクロコンピュータ6の出力ポートからローレベル信号が電源部7に出力される。これにより、本実施形態の制御回路は消費電流がほぼ0のシャットダウン状態となる。
【0019】
本実施形態の制御回路では、組電池群1の充放電が終了した後でもリチウムイオン電池のバイパス放電が続行され容量調整を最後まで行うことができるので、充放電時間が短く放置期間が長いような運転を繰り返した場合でも、組電池群1を構成する各リチウムイオン電池の電池電圧のバラツキを小さく抑えることができる。
【0020】
また、本実施形態の制御回路では、容量調整を行った後、制御回路をシャットダウン状態とし消費電流をほぼ0とするので、放置中のリチウムイオン電池の消費電流を最小限に抑えることができる。
【0021】
更に、本実施形態の制御回路では、大容量のバイパス抵抗を用いることなくバイパス抵抗及びスイッチを従来の制御回路と同様のものを用いることができるので、抵抗及びスイッチ素子の発熱、容量及びコストを抑えることができる。
【0022】
図2に、実際に組電池群1を1週間の放置と2時間の充放電を繰り返した場合のセル電圧と最大偏差との推移を示す。計測条件は、上述した従来の制御回路での条件と同一である。図2から明らかなように、組電池群1を構成する各リチウムイオン電池の電池電圧のバラツキは少なく、90日経過時点でも最大偏差は20mV未満という、従来の制御回路を用いて充放電時間を10時間とした場合と同様の特性が得られており(図7参照)、図8に示したような放置日数の経過による平均偏差の増加やその後の増加傾向は見られない。
【0023】
(第2実施形態)
次に、本発明に係る制御回路の第2の実施の形態について説明する。
【0024】
図3に示すように、本実施形態の制御回路は、電源部7が電源供給系統を2系統有する点で、第1実施形態の制御回路とは異なっている。すなわち、電源部7の一方の電源供給系統はマイクロコンピュタ6及びスイッチ3を含むバイパス放電制御部(バイパス放電制御を行う回路部分)に接続されており、電源供給部7の他方の電源供給系統は差動増幅回路4、マルチプレクサ回路5、通信インターフェイス回路9を含む非バイパス放電制御部に接続されている。
【0025】
このため、本実施形態の制御回路では、充放電終了後の容量調整時にバイパス放電制御部に電源を供給し、バイパス放電制御部以外の非バイパス放電制御部への電源供給を停止して、容量調整時のリチウムイオン電池からの消費電流を少なくすることができる。電源部7の入力電圧は組電池群1の総電圧であるため、電源部7への入力電流は組電池群1内の全リチウムイオン電池から放電される。本実施形態の制御回路の実際の消費電流は、充放電時の消費電流値が55mAであったのに対して、容量調整時のバイパス電流を含まない消費電流値で30mAまで下げることが可能であった。
【0026】
(第3実施形態)
次に、本発明に係る制御回路の第3の実施の形態について説明する。
【0027】
図4に示すように、本実施形態の制御回路は、メインのマイクロコンピュータ6の他にバイパス放電制御用のCMOS型ICで構成される低消費電力のマイクロコンピュータ11と、電源部7の他にマイクロコンピュータ11及びスイッチ3とを含むバイパス放電制御部に電源を供給する電源部10とを有している点で第1実施形態の制御回路と相違している。また、マイクロコンピュータ6は通信用のシリアルポートを2系統有し、うち1系統(シリアルポート2)がマイクロコンピュータ11との通信用に使用される。更に、マイクロコンピュータ11の出力ポートはスイッチ3及び電源部10に接続されており、マイクロコンピュータ11はこれらのオン・オフを制御する。また、電源部10はマイクロコンピュータ6の出力ポートにも接続されており、マイクロコンピュータ6からオン状態に制御される。なお、本実施形態の制御回路は、マイクロコンピュータ6の出力ポートが電源部7やスイッチ3に接続されていない点でも、第1実施形態の制御回路とは異なっている。
【0028】
本実施形態の制御回路は、容量調整時に次の動作をする。マイクロコンピュータ6は上位システムから通信により得られた各リチウムイオン電池のバイパス放電量からバイパス放電時間を計算し、電源部10に接続された出力ポートの信号をハイレベルとし、マイクロコンピュータ11及びスイッチ3に電源を供給させる。電源が供給されマイクロコンピュータ11が起動すると、マイクロコンピュータ6のシリアルポート2からマイクロコンピュータ11のシリアルポートへバイパス放電時間のデータが通信により送出される。マイクロコンピュータ11は、受信したバイパス放電時間のデータに従ってスイッチ3をバイパス放電時間の間だけオンとするバイパス放電制御動作を行う。
【0029】
また、組電池群1の充放電が終了して電源部7からマイクロコンピュータ6、差動増幅器4、マルチプレクサ5及び通信インターフェイス9を含む非バイパス放電制御回路への電源供給が停止し非バイパス放電制御回路の動作が停止しても、マイクロコンピュータ11は電源部10をオン状態に制御し、マイクロコンピュータ11、スイッチ3を含むバイパス放電制御回路は電源部10からの電源供給を受けて動作し、バイパス放電を継続する。組電池群1を構成する全てのリチウムイオン電池のバイパス放電が終了すると、マイクロコンピュータ11が出力ポートから電源部10を制御し電源供給を停止させることにより、本実施形態の制御回路は低消費電力のシャットダウン状態となる。
【0030】
本実施形態のマイクロコンピュータ11には、CMOS型で低消費電力のICが用いられると共に、マイクロコンピュータ6との通信動作時以外は単に設定時間経過後に出力ポートをオフとするだけの機能を有すればよいので、動作クロックを低周波数に切り替え可能なものを使用し、容量調整動作中は低周波数クロック駆動とすれば更に低消費電力とすることができる。実際にCMOS型の32.768kHzのクロックで動作可能な4ビットのマイクロコンピュータを使用することにより、容量調整中のバイパス電流を含まない消費電流を5mA未満とすることができた。
【0031】
(第4実施形態)
次に、本発明に係る制御回路の第4の実施の形態について説明する。
【0032】
図5に示すように、本実施形態の制御回路は、スイッチ3のオン・オフ制御がCMOS型タイマIC12からのハイレベル又はローレベルの出力信号で行われ、マイクロコンピュータ6の出力ポートがタイマIC12に接続されている点で第1実施形態と相違している。また、タイマIC12はリチウムイオン電池から直接電源の供給を受け、電源部7からの供給を受けていない。タイマIC12は、マイクロコンピュータ6とのシリアル通信でタイマの動作時間が設定されるもので、マイクロコンピュータ6からバイパス放電時間を通信により受信すると、設定された動作時間の間スイッチ3にハイレベル信号を出力しスイッチ3をオン状態とさせる。この制御回路の動作では、容量調整開始時にタイマIC12がバイパス放電時間をマイクロコンピュータ6から通信で受信し、設定動作時間の間バイパス放電が行われてバイパス放電が終了し、終了後はタイマIC12毎に低消費電力状態となる。本実施形態の制御回路では、第3実施形態で必要でとした、バイパス制御回路用の電源部10が不要なため、制御回路を簡素化することができる。
【0033】
本実施形態のタイマIC12は、CMOS型ICであり、低消費電力の他に動作電源電圧範囲が広く、特にリチウムイオン電池の充放電電圧である、2.5〜4.2V程度で充分動作できるため、バイパス放電制御を行う作動電源がリチウムイオン電池の両端から供給されても安定動作を行うことが可能である。また、本実施形態では、タイマIC12がバイパス放電時間をマイクロコンピュータ6から通信で受信した後、マイクロコンピュータ6の動作は不要であるので、電源部7からの電源供給を停止するようにしてもよい。
【0034】
なお、上記実施形態では、各リチウムイオン電池の開回路電圧を測定するためにマルチプレクサ5を用いた例を示したが、本発明は、特願平11−79205号公報に開示された技術等を用いることにより高価なマルチプレクサを用いなくても制御回路を構成することができる。また、上記実施形態では、バイパス放電時間の計算をマイクロコンピュータ6が行う例を示したが、バイパス放電時間の計算は上位システム側で行うようにしてもよい。
【0035】
【発明の効果】
以上説明したように、本発明によれば、制御手段が、組電池の充放電終了後も電源供給手段から作動電源の供給を受けてスイッチをオン状態として計算された放電時間の間バイパス放電を継続させるので、各リチウムイオン電池の残存容量を同一の値に揃えることができると共に、バイパス放電制御の終了後に制御回路全体が低消費電力状態となるように電源供給手段を制御するので、放置時のリチウムイオン電池からの放電を抑えることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な第1実施形態の制御回路の概略構成を示すブロック図である。
【図2】第1実施形態の制御回路を用い、1週間の放置と2時間の充放電とを繰り返した場合の各リチウムイオン電池のセル電圧及び最大偏差の推移を示す特性線図である。
【図3】本発明が適用可能な第2実施形態の制御回路の概略構成を示すブロック図である。
【図4】本発明が適用可能な第3実施形態の制御回路の概略構成を示すブロック図である。
【図5】本発明が適用可能な第4実施形態の制御回路の概略構成を示すブロック図である。
【図6】従来の制御回路の概略構成を示すブロック図である。
【図7】従来の制御回路を用い、1週間の放置と10時間の充放電とを繰り返した場合の各リチウムイオン電池のセル電圧及び最大偏差の推移を示す特性線図である。
【図8】従来の制御回路を用い、1週間の放置と2時間の充放電とを繰り返した場合の各リチウムイオン電池のセル電圧及び最大偏差の推移を示す特性線図である。
【符号の説明】
1 組電池群(組電池)
2 抵抗
3 スイッチ(バイパス放電制御を行う回路部分の一部)
4 差動増幅器(測定手段の一部)
5 マルチプレクサ(測定手段の一部)
6、11 マイクロコンピュータ(測定手段の一部、制御手段、バイパス放電制御を行う回路部分の一部)
7、10 電源部(電源供給手段)
8 フォトカプラ
9 通信用インターフェイス
12 CMOS型タイマIC(制御手段の一部、バイパス放電制御を行う回路部分の一部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control circuit, and more particularly to a battery pack control circuit in which a plurality of lithium secondary batteries are connected in series, and a resistor and a switch connected in parallel to each lithium secondary battery constituting the battery pack. Related control circuit.
[0002]
[Prior art]
Conventionally, in an assembled battery in which a plurality of single cells such as lithium secondary batteries are connected in series, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-92732, a voltage measurement circuit, a switch, Capacitance that reduces the voltage difference between the cells by connecting the capacitance adjustment circuit consisting of bypass resistors for capacity adjustment in parallel and turning on the cells of the cells with high open circuit voltage to discharge the cells. Adjustment control has been performed. In particular, in a lithium ion battery using amorphous carbon, which has a high correlation between open circuit voltage and remaining capacity, as a negative electrode active material, control is performed to reduce the variation in unit cell voltage and align the remaining capacity.
[0003]
Specifically, the open circuit voltage (open voltage) of all the cells is measured in a state where the charging / discharging current does not flow in the assembled battery at the time of starting the system, and the remaining capacity of each cell is calculated from the value. Discharge the unit cell to the bypass resistor during the calculated discharge time corresponding to the bypass discharge amount (hereinafter referred to as bypass discharge time), with the amount of electricity that is the difference from the unit cell with the least remaining capacity as the bypass discharge amount. The method to make is taken. The bypass resistor is connected during charging / discharging of the assembled battery in which the control circuit operates. When a bypass resistor is connected during charging, the charging current flowing through the battery is reduced compared to when the bypass resistor is not connected. When a bypass resistor is connected during discharging, the bypass resistor is reduced compared to when the bypass resistor is not connected. Only the discharge current flowing through the battery for the flowing current increases, and the capacity can be adjusted to make the difference in the remaining capacity of the single cells.
[0004]
FIG. 6 shows a configuration example of a conventional control circuit that performs such capacity adjustment control. As shown in FIG. 6, a series circuit of a bypass resistor 2 and a switch 3 is connected in parallel to each single battery constituting the 4-series assembled battery group 1. Further, both ends of each unit cell are connected to the input side of the differential amplifier 4 for voltage detection, the output side of the differential amplifier 4 is connected to the input side of the multiplexer 5, and the output side of the multiplexer 5 is It is connected to the A / D conversion input of the microcomputer 6. The microcomputer 6 performs the input designation of the multiplexer 5 from the output port and performs A / D conversion to measure the open circuit voltage of the designated single cell as a digital value. The microcomputer 6 communicates with the host system that performs charge / discharge control via the communication interface 9 for the measured voltage data and the like. The output port of the microcomputer 6 is also connected to the switch 3, and the switch 3 is turned on during the bypass discharge time as described above.
[0005]
The entire control circuit including the microcomputer 6 operates upon receiving power supply from the power supply unit 7. Power supply from the power supply unit 7 is performed by operation control from the host system. A high level signal is input to the photocoupler 8 to set the power supply unit 7 in a power supply state, and a low level signal is input to the photocoupler 8 to supply power. The unit 7 is brought into a power supply non-supply state. For this reason, when charging and discharging the assembled battery group 1, the host system sends a high level signal to the photocoupler 8 to operate the entire control circuit including the microcomputer 6, and outputs a low level signal after the end of charging and discharging. Shut-down control is performed so that the current consumption of the control circuit is zero when sent to the photocoupler 8. This shutdown control is necessary for preventing each cell from being discharged when the assembled battery group 1 is left for a long period of time. The host system receives open circuit voltage data of all the single cells of the assembled battery group 1 from the microcomputer 6 via the communication interface 9 by communication, calculates the above-described remaining capacity and bypass discharge amount, and calculates the bypass discharge amount as data. To the microcomputer 6. The microcomputer 6 calculates the bypass discharge time from the bypass discharge amount, and during the bypass discharge time, the signal of the output port connected to the switch 3 is set to the high level to turn on the switch 3 and perform the bypass discharge to the bypass resistor 2. Let it be done. 6 shows the circuit configuration of a 4-series assembled battery. In an actual assembled battery, four or more cells are connected in series, and there are a plurality of control circuits. 6 transmits and receives data by communication with the host system. Further, it is known that each switch 3 shown in FIG. 6 can generally be composed of two FETs (or transistors) and a plurality of resistors.
[0006]
The reason for adjusting the capacity of each unit cell in this way is that when the remaining capacity of a specific unit cell deviates from the average value for some reason, the average voltage value of the entire assembled battery is in a normal charge / discharge state. This is because overcharge or overdischarge occurs. When the battery is overcharged or overdischarged, the discharge characteristics of the assembled battery are deteriorated, the safety is reduced by overcharging, the life is shortened by overdischarge, and the like. Causes of the remaining capacity shift include variations in self-discharge of individual cells constituting the assembled battery, temperature variations during charging / discharging, variations in charging efficiency, and the like. In particular, with lithium secondary batteries, it is difficult to completely charge the battery until the end of its life. Unlike lead batteries and nickel metal hydride batteries, which can be recharged periodically to make the remaining capacity uniform. The capacity adjustment function is indispensable. In addition, since the lithium secondary battery has a high energy density and the internal pressure of the battery rises drastically when it falls into an overcharged state, the control circuit must perform high-accuracy detection of the overcharge voltage. When the charge level deviates from the average value, the overcharge detection function operates early, and charging is stopped due to an erroneous determination of an abnormal state. Research and development has been done.
[0007]
[Problems to be solved by the invention]
However, when a conventional control circuit is used, the capacity adjustment period is limited to the period during which the control circuit is operating, that is, when the assembled battery is being charged / discharged. When discharging and leaving for a long period of time are repeated, there is a problem that the capacity adjustment effect is not sufficient. In particular, a large capacity lithium secondary battery of 100 Ah class is used as a unit cell constituting an assembled battery for electric vehicles and the like, and it is repeatedly used for a short time and left for a relatively short time by using a small capacity bypass resistor. Even under these conditions, capacity adjustment will not work effectively unless a large-capacity bypass resistor is used, resulting in large variations in cell-to-cell voltage, that is, variations in remaining capacity, leading to degradation of battery characteristics and life characteristics. There was a high possibility that it would be.
[0008]
This example will be specifically described with reference to the drawings. FIG. 7 shows the transition of the voltage of a single cell (hereinafter also referred to as a cell) when charging / discharging while performing capacity adjustment for 10 hours every week by conventional capacity adjustment control. The unit cell used is a lithium ion battery with a rated capacity of 90 Ah, and the bypass resistance is 39Ω. The number of series as a battery pack is 96 cells, and the control circuit shown in FIG. 6 is used. In this control circuit, during charging / discharging, the charge / discharge amount is controlled so that the charging rate (SOC = residual capacity / full charge capacity) of the assembled battery after completion of charging / discharging is 50%. In addition, as described above, the capacity adjustment control is performed such that the open circuit voltage before the charging / discharging current flows at the time of starting the system is measured, and the remaining capacity is calculated and discharged by the capacity differential bypass resistance with the cell having the smallest remaining capacity. It has been. As shown in FIG. 7, the variation in the cell voltage increases with the number of days elapsed, but since the capacity is periodically adjusted, the variation in the cell voltage is suppressed, and the maximum deviation which is the maximum value of the difference from the average voltage is also 20 mV. Less than.
[0009]
FIG. 8 shows the transition of the cell voltage when charging and discharging are performed while adjusting the capacity for 2 hours every week under the same conditions. As shown in FIG. 8, when the capacity adjustment time is as short as 2h, the variation in the cell voltage increases as the number of days elapses, and the maximum deviation after 90 days is as large as 60 mV and is still increasing. It is in.
[0010]
As described above, in the capacity adjustment control using the conventional control circuit, when the charging / discharging time of the assembled battery is short and the leaving period is long, the variation of the cell voltage becomes large, and the battery characteristics and the life characteristics deteriorate. The potential is great. This is because the amount of bypass discharge that can be controlled by the capacity adjustment time cannot correct the variation in the remaining capacity drop caused by self-discharge or the like while it is left.
[0011]
In order to solve this problem, it is conceivable to increase the amount of bypass discharge by setting the bypass resistor to a large capacity, but there are limitations in terms of heat generation, volume, and cost of the bypass resistor and the switch. Although it is conceivable to always operate the control circuit, the current consumption of the control circuit becomes a value that cannot be ignored, so that there is a problem that the lithium secondary battery is discharged and energy loss occurs while it is left unattended. .
[0012]
In view of the above-mentioned case, the present invention is capable of aligning the remaining capacity of the lithium secondary battery even when the charging / discharging time of the assembled battery is short and the leaving period is long without using a large-capacity resistor. It is an object of the present invention to provide a control circuit for an assembled battery that can minimize the above.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a control circuit for an assembled battery in which a plurality of lithium secondary batteries are connected in series, and a resistor and a switch are provided in each lithium secondary battery constituting the assembled battery. In a control circuit connected in parallel, a measurement means for measuring an open circuit voltage of each lithium secondary battery, a power supply means for supplying power to the measurement means, and the measurement before the start of charging / discharging of the assembled battery Calculated from the open circuit voltage measured by the means and the charging time of the assembled battery during the discharge time corresponding to the difference between the remaining capacity value of each lithium secondary battery and the minimum remaining capacity value of the remaining capacity values. the completion of discharge be continued by receiving the supply of the operating power from the power supply means bypassing the discharge control of the oN state of the switch is performed after the calculation of the discharge time, after the end of the bypass discharge control, the overall control circuit And a control means for controlling said power supply means so that the low power consumption state.
[0014]
In the present invention, the control means receives the supply of the operating power from the power supply means even after the charging / discharging of the assembled battery, and continues the bypass discharge for the calculated discharge time with the switch turned on. The remaining capacity of each lithium secondary battery can be set to the same value without using the power supply, and the power supply means is controlled so that the entire control circuit is in a low power consumption state after the end of the bypass discharge control. The discharge from the lithium secondary battery at the time can be suppressed. Here, the low power consumption state refers to a state where the supply of power from the power supply means to the measurement means and / or the control means is stopped.
[0015]
In this case, if the control means controls the power supply from the power supply means so that only the circuit portion that performs the bypass discharge control is activated after the charging / discharging of the assembled battery, the other operation of the control circuit For example, since it is possible to stop the power supply to the circuit part that performs the overcharge / overdischarge detection function, the communication function with the host system, etc., from the lithium secondary battery due to the consumption current of the control circuit after the completion of charge / discharge Can be reduced. At this time, if all or part of the elements of the circuit portion for performing the bypass discharge control is configured by a CMOS IC, the low power consumption characteristics of the CMOS IC depend on the current consumption of the control circuit after the end of charge / discharge. The discharge from the lithium secondary battery can be further reduced. In addition, since the CMOS type IC has a wide operating voltage range and can be operated by the voltage across the lithium secondary battery, the operating power supply of the circuit portion that performs the bypass discharge control is supplied from the lithium secondary battery that is the target of the bypass discharge control. In this way, the circuit portion that performs bypass discharge control can be simplified.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Next, a first embodiment of a control circuit according to the present invention will be described with reference to the drawings. In the following embodiments, the same reference numerals are given to the same circuit components as those of the conventional control circuit shown in FIG. 6, and the description thereof is omitted, and only different portions will be described.
[0017]
As shown in FIG. 1, the control circuit of the present embodiment is different from that of the conventional control circuit only in that the output port of the microcomputer 6 is connected to the power supply unit 7, as is apparent from comparison with FIG. Is different. In this control circuit, in addition to being able to control the power supply unit 7 from an external host system to a power supply state / power supply non-supply state via a photocoupler 8, a high level signal from an output port of the microcomputer 6 or The circuit configuration can be controlled to a power supply state or a power supply non-supply state by outputting a low level signal.
[0018]
In the control circuit of the present embodiment, in addition to the operation of the conventional control circuit, capacity adjustment is performed by the bypass resistor 2 connected in parallel to each lithium ion battery (lithium secondary battery) constituting the assembled battery group 1. If the power supply unit 7 is controlled to be in a power supply state by the output of the high level signal from the output port of the microcomputer 6, the power supply even after the charging / discharging of the assembled battery group 1 is completed and the photocoupler 8 is turned off. The power supply from the unit 7 to the entire control circuit is continued. For this reason, the high level signal is continuously sent to the switch 3, and the bypass discharge of the lithium ion battery by the bypass resistor 2 is continued, so that the capacity adjustment is performed to the end without being stopped. The power supply from the power supply unit 7 is stopped after the bypass discharge of all the lithium ion batteries constituting the assembled battery group 1 is completed. The output of the low level signal to the switch 3 is performed individually for each switch 3 connected to the lithium ion battery after the bypass discharge time has elapsed. When the capacity adjustment of all the lithium ion batteries is completed, the micro level signal is output. A low level signal is output from the output port of the computer 6 to the power supply unit 7. As a result, the control circuit of the present embodiment enters a shutdown state in which current consumption is substantially zero.
[0019]
In the control circuit of this embodiment, even after the charging / discharging of the assembled battery group 1 is completed, bypass discharge of the lithium ion battery can be continued and capacity adjustment can be performed to the end, so that the charging / discharging time is short and the leaving period is long. Even when the operation is repeated, the variation in the battery voltage of each lithium ion battery constituting the assembled battery group 1 can be kept small.
[0020]
Further, in the control circuit of this embodiment, after the capacity adjustment, the control circuit is shut down and the current consumption is almost zero, so that the current consumption of the lithium ion battery that is left unattended can be minimized.
[0021]
Furthermore, in the control circuit of the present embodiment, the same bypass resistor and switch as in the conventional control circuit can be used without using a large-capacity bypass resistor, so that the heat generation, capacity, and cost of the resistor and switch element can be reduced. Can be suppressed.
[0022]
FIG. 2 shows the transition of the cell voltage and the maximum deviation when the assembled battery group 1 is actually left for 1 week and repeatedly charged and discharged for 2 hours. The measurement conditions are the same as those in the conventional control circuit described above. As is clear from FIG. 2, the battery voltage of each lithium ion battery constituting the assembled battery group 1 is small, and the maximum deviation is less than 20 mV even after 90 days. The same characteristics as in the case of 10 hours were obtained (see FIG. 7), and the increase in average deviation and the subsequent increase tendency as the number of days left as shown in FIG. 8 did not appear.
[0023]
(Second Embodiment)
Next, a second embodiment of the control circuit according to the present invention will be described.
[0024]
As shown in FIG. 3, the control circuit of the present embodiment is different from the control circuit of the first embodiment in that the power supply unit 7 has two power supply systems. That is, one power supply system of the power supply unit 7 is connected to a bypass discharge control unit (a circuit part that performs bypass discharge control) including the microcomputer 6 and the switch 3, and the other power supply system of the power supply unit 7 is The non-bypass discharge controller including the differential amplifier circuit 4, the multiplexer circuit 5, and the communication interface circuit 9 is connected.
[0025]
For this reason, in the control circuit of this embodiment, power is supplied to the bypass discharge control unit at the time of capacity adjustment after the end of charge / discharge, and power supply to the non-bypass discharge control unit other than the bypass discharge control unit is stopped to Current consumption from the lithium ion battery during adjustment can be reduced. Since the input voltage of the power supply unit 7 is the total voltage of the assembled battery group 1, the input current to the power supply unit 7 is discharged from all the lithium ion batteries in the assembled battery group 1. The actual consumption current of the control circuit of this embodiment can be reduced to 30 mA with a consumption current value that does not include the bypass current at the time of capacity adjustment, whereas the consumption current value at the time of charge / discharge is 55 mA. there were.
[0026]
(Third embodiment)
Next, a third embodiment of the control circuit according to the present invention will be described.
[0027]
As shown in FIG. 4, the control circuit according to the present embodiment includes a microcomputer 11 having a low power consumption constituted by a CMOS IC for bypass discharge control in addition to the main microcomputer 6, and a power supply unit 7. The control circuit is different from the control circuit of the first embodiment in that the power supply unit 10 supplies power to a bypass discharge control unit including the microcomputer 11 and the switch 3. The microcomputer 6 has two communication serial ports, one of which is used for communication with the microcomputer 11 (serial port 2). Further, the output port of the microcomputer 11 is connected to the switch 3 and the power supply unit 10, and the microcomputer 11 controls the on / off of these. The power supply unit 10 is also connected to the output port of the microcomputer 6 and is controlled to be turned on by the microcomputer 6. The control circuit of the present embodiment is different from the control circuit of the first embodiment in that the output port of the microcomputer 6 is not connected to the power supply unit 7 or the switch 3.
[0028]
The control circuit of this embodiment performs the following operation when adjusting the capacitance. The microcomputer 6 calculates the bypass discharge time from the bypass discharge amount of each lithium ion battery obtained by communication from the host system, sets the signal of the output port connected to the power supply unit 10 to the high level, the microcomputer 11 and the switch 3 To supply power. When power is supplied and the microcomputer 11 is activated, data on the bypass discharge time is transmitted from the serial port 2 of the microcomputer 6 to the serial port of the microcomputer 11 by communication. The microcomputer 11 performs a bypass discharge control operation in which the switch 3 is turned on only during the bypass discharge time according to the received bypass discharge time data.
[0029]
Further, after charging / discharging of the assembled battery group 1 is completed, power supply from the power supply unit 7 to the non-bypass discharge control circuit including the microcomputer 6, the differential amplifier 4, the multiplexer 5 and the communication interface 9 is stopped, and non-bypass discharge control is performed. Even if the operation of the circuit stops, the microcomputer 11 controls the power supply unit 10 to be in an ON state, and the bypass discharge control circuit including the microcomputer 11 and the switch 3 operates by receiving power supply from the power supply unit 10 and bypasses. Continue discharging. When the bypass discharge of all the lithium ion batteries constituting the assembled battery group 1 is completed, the microcomputer 11 controls the power supply unit 10 from the output port to stop the power supply, whereby the control circuit of this embodiment has low power consumption. It becomes the shutdown state.
[0030]
The microcomputer 11 of the present embodiment uses a CMOS type and low power consumption IC, and has a function of simply turning off the output port after a set time has elapsed except during communication operation with the microcomputer 6. Therefore, it is possible to further reduce power consumption by using an operation clock that can be switched to a low frequency and driving at a low frequency during the capacity adjustment operation. By actually using a 4-bit microcomputer capable of operating with a CMOS type 32.768 kHz clock, the current consumption not including the bypass current during capacity adjustment could be less than 5 mA.
[0031]
(Fourth embodiment)
Next, a fourth embodiment of the control circuit according to the present invention will be described.
[0032]
As shown in FIG. 5, in the control circuit of this embodiment, the on / off control of the switch 3 is performed by a high level or low level output signal from the CMOS type timer IC 12, and the output port of the microcomputer 6 is the timer IC 12 This is different from the first embodiment in that it is connected to. The timer IC 12 is directly supplied with power from the lithium ion battery and is not supplied with power from the power supply unit 7. The timer IC 12 is set with a timer operation time by serial communication with the microcomputer 6. When the timer IC 12 receives the bypass discharge time from the microcomputer 6 by communication, a high level signal is sent to the switch 3 during the set operation time. The output is made to turn on the switch 3. In the operation of this control circuit, the timer IC 12 receives the bypass discharge time by communication from the microcomputer 6 at the start of capacity adjustment, the bypass discharge is performed during the set operation time, and the bypass discharge is terminated. It becomes a low power consumption state. In the control circuit of the present embodiment, the power supply unit 10 for the bypass control circuit, which is necessary in the third embodiment, is unnecessary, and thus the control circuit can be simplified.
[0033]
The timer IC 12 of the present embodiment is a CMOS IC, and has a wide operating power supply voltage range in addition to low power consumption. In particular, the timer IC 12 can sufficiently operate at about 2.5 to 4.2 V, which is a charge / discharge voltage of a lithium ion battery. Therefore, stable operation can be performed even when operating power for performing bypass discharge control is supplied from both ends of the lithium ion battery. Further, in the present embodiment, after the timer IC 12 receives the bypass discharge time from the microcomputer 6 by communication, the operation of the microcomputer 6 is unnecessary, so that the power supply from the power supply unit 7 may be stopped. .
[0034]
In the above embodiment, an example is shown in which the multiplexer 5 is used to measure the open circuit voltage of each lithium ion battery. However, the present invention is based on the technique disclosed in Japanese Patent Application No. 11-79205. By using it, the control circuit can be configured without using an expensive multiplexer. In the above embodiment, the microcomputer 6 calculates the bypass discharge time. However, the bypass discharge time may be calculated on the host system side.
[0035]
【The invention's effect】
As described above, according to the present invention, after the charging and discharging of the assembled battery, the control means receives the operation power from the power supply means and performs the bypass discharge for the discharge time calculated with the switch turned on. Since the remaining capacity of each lithium ion battery can be made to be the same value, the power supply means is controlled so that the entire control circuit is in a low power consumption state after the end of the bypass discharge control. The effect that the discharge from the lithium ion battery can be suppressed can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a control circuit according to a first embodiment to which the present invention is applicable.
FIG. 2 is a characteristic diagram showing the transition of the cell voltage and maximum deviation of each lithium ion battery when the control circuit of the first embodiment is used and repeated for 1 week and charged and discharged for 2 hours.
FIG. 3 is a block diagram showing a schematic configuration of a control circuit according to a second embodiment to which the present invention is applicable.
FIG. 4 is a block diagram showing a schematic configuration of a control circuit according to a third embodiment to which the present invention is applicable.
FIG. 5 is a block diagram showing a schematic configuration of a control circuit according to a fourth embodiment to which the present invention is applicable.
FIG. 6 is a block diagram showing a schematic configuration of a conventional control circuit.
FIG. 7 is a characteristic diagram showing the transition of the cell voltage and maximum deviation of each lithium ion battery when a conventional control circuit is used and the charging and discharging for 10 hours are repeated.
FIG. 8 is a characteristic diagram showing the transition of the cell voltage and maximum deviation of each lithium ion battery when a conventional control circuit is used and the charging and discharging for 2 hours are repeated.
[Explanation of symbols]
1 assembled battery group (assembled battery)
2 Resistor 3 Switch (Part of the circuit that performs bypass discharge control)
4 Differential amplifier (part of measuring means)
5 Multiplexer (part of measuring means)
6, 11 Microcomputer (part of measurement means, control means, part of circuit part performing bypass discharge control)
7, 10 Power supply (Power supply means)
8 Photocoupler 9 Communication interface 12 CMOS timer IC (part of control means, part of circuit part performing bypass discharge control)

Claims (4)

複数個のリチウム二次電池が直列に接続された組電池の制御回路であって、抵抗及びスイッチが前記組電池を構成する各リチウム二次電池に並列に接続された制御回路において、
前記各リチウム二次電池の開回路電圧を測定する測定手段と、
前記測定手段に電源を供給する電源供給手段と、
前記組電池の充放電開始前に前記測定手段により測定された開回路電圧から計算され、前記各リチウム二次電池の残存容量値と該残存容量値のうち最小残存容量値との差に相当する放電時間、の間、前記組電池の充放電終了後も継続して前記電源供給手段から作動電源の供給を受けて前記スイッチをオン状態とするバイパス放電制御を前記放電時間の算出後から行い、該バイパス放電制御の終了後、制御回路全体が低消費電力状態となるように前記電源供給手段を制御する制御手段と、
を備える制御回路。
A control circuit for an assembled battery in which a plurality of lithium secondary batteries are connected in series, wherein a resistance and a switch are connected in parallel to each lithium secondary battery constituting the assembled battery,
Measuring means for measuring the open circuit voltage of each lithium secondary battery;
Power supply means for supplying power to the measurement means;
Calculated from the open circuit voltage measured by the measuring means before the start of charging / discharging of the assembled battery, and corresponds to the difference between the remaining capacity value of each lithium secondary battery and the minimum remaining capacity value of the remaining capacity values During the discharge time, after the calculation of the discharge time, the bypass discharge control that continuously receives the operation power supply from the power supply means and turns on the switch after the charging / discharging of the assembled battery is performed, Control means for controlling the power supply means so that the entire control circuit is in a low power consumption state after the end of the bypass discharge control;
A control circuit comprising:
前記制御手段は、前記組電池の充放電終了後、前記バイパス放電制御を行う回路部分のみが作動するように前記電源供給手段を制御することを特徴とする請求項1に記載の制御回路。  2. The control circuit according to claim 1, wherein the control unit controls the power supply unit so that only a circuit portion that performs the bypass discharge control is activated after charging and discharging of the assembled battery. 前記バイパス放電制御を行う回路部分の素子の全部又は一部がCMOS型ICで構成されていることを特徴とする請求項2に記載の制御回路。  3. The control circuit according to claim 2, wherein all or a part of the elements of the circuit portion that performs the bypass discharge control is configured by a CMOS IC. 前記バイパス放電制御を行う回路部分の作動電源がバイパス放電制御の対象となるリチウム二次電池から供給されていることを特徴とする請求項3に記載の制御回路。  4. The control circuit according to claim 3, wherein operating power of a circuit portion that performs the bypass discharge control is supplied from a lithium secondary battery that is a target of the bypass discharge control. 5.
JP2001155366A 2001-05-24 2001-05-24 Control circuit Expired - Lifetime JP3991620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155366A JP3991620B2 (en) 2001-05-24 2001-05-24 Control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155366A JP3991620B2 (en) 2001-05-24 2001-05-24 Control circuit

Publications (2)

Publication Number Publication Date
JP2002354698A JP2002354698A (en) 2002-12-06
JP3991620B2 true JP3991620B2 (en) 2007-10-17

Family

ID=18999574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155366A Expired - Lifetime JP3991620B2 (en) 2001-05-24 2001-05-24 Control circuit

Country Status (1)

Country Link
JP (1) JP3991620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928282B2 (en) 2010-04-27 2015-01-06 Hitachi Automotive Systems, Ltd. Control system for assembled battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250953B2 (en) * 2006-10-02 2013-07-31 パナソニック株式会社 Power storage circuit
JP4734268B2 (en) 2007-02-13 2011-07-27 プライムアースEvエナジー株式会社 Discharge system and electric vehicle
JP4917494B2 (en) * 2007-07-31 2012-04-18 矢崎総業株式会社 Voltage regulator
JP2011019329A (en) * 2009-07-08 2011-01-27 Toshiba Corp Secondary battery device and vehicle
JP5385719B2 (en) * 2009-07-29 2014-01-08 プライムアースEvエナジー株式会社 Battery management device
JP5453184B2 (en) * 2010-06-28 2014-03-26 日立ビークルエナジー株式会社 Battery control circuit
JP5546370B2 (en) 2010-06-28 2014-07-09 日立ビークルエナジー株式会社 Capacitor control circuit and power storage device
JP6106991B2 (en) 2011-09-09 2017-04-05 株式会社Gsユアサ State management device and method for equalizing storage elements
WO2013089106A1 (en) * 2011-12-13 2013-06-20 新神戸電機株式会社 Capacitor module
US20230006451A1 (en) * 2019-12-13 2023-01-05 Kyocera Corporation Electricity storage device and electricity storage method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299122A (en) * 1998-02-10 1999-10-29 Denso Corp Method and device for charging state control
JP3870577B2 (en) * 1998-09-14 2007-01-17 株式会社デンソー Variation determination method for battery pack and battery device
JP3931446B2 (en) * 1998-09-17 2007-06-13 株式会社デンソー Battery charge state adjustment device
JP3925002B2 (en) * 1999-09-21 2007-06-06 株式会社デンソー Battery voltage regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928282B2 (en) 2010-04-27 2015-01-06 Hitachi Automotive Systems, Ltd. Control system for assembled battery

Also Published As

Publication number Publication date
JP2002354698A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
CN107863789B (en) Power supply system
JP3841001B2 (en) Battery control system
JP3615507B2 (en) Battery charge rate adjustment circuit
JP3503414B2 (en) Battery charging rate adjustment device for assembled batteries
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
JP2000228832A (en) Control method of charging and discharging
US6294894B1 (en) Rechargeable battery arrangement
CN101617456A (en) Battery controller of vehicle
JP3991620B2 (en) Control circuit
JP2003009411A (en) Charging rate adjustment circuit of set battery
US20210399558A1 (en) Battery control unit and battery system
WO2003061093A1 (en) Apparatus and method for controlling output of secondary battery, battery back system, and electric vehicle
US20120032513A1 (en) Battery management circuit, battery module and battery management method
WO2005076430A1 (en) Combined battery and battery pack
JP2009076280A (en) Method for controling battery pack
JP3419115B2 (en) Battery charge / discharge protection device
JP3796918B2 (en) Battery device
JP2000166103A (en) Charging discharging control method
JP3997707B2 (en) Monitoring device, control device and battery module
JPH03173323A (en) Secondary battery charger
CN114552039A (en) Control method for battery constant-charge self-maintenance and constant-charge self-maintenance battery
TW201208228A (en) Battery management circuit, battery module and battery management method
JP2005086867A (en) Charging control system
JP2003274568A (en) Control circuit
JP2001268817A (en) Series secondary cell group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3991620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term