WO2005076430A1 - Combined battery and battery pack - Google Patents

Combined battery and battery pack Download PDF

Info

Publication number
WO2005076430A1
WO2005076430A1 PCT/JP2005/001616 JP2005001616W WO2005076430A1 WO 2005076430 A1 WO2005076430 A1 WO 2005076430A1 JP 2005001616 W JP2005001616 W JP 2005001616W WO 2005076430 A1 WO2005076430 A1 WO 2005076430A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
charging
difference
battery cell
Prior art date
Application number
PCT/JP2005/001616
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Sakakibara
Masaaki Fukumoto
Original Assignee
Makita Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corporation filed Critical Makita Corporation
Publication of WO2005076430A1 publication Critical patent/WO2005076430A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for effectively dealing with an adverse effect caused by a difference in charging efficiency between battery cells in an assembled battery and a battery pack including a plurality of battery cells.
  • a charging device for charging an assembled battery in which a plurality of lithium-ion battery cells are connected in series is disclosed in Japanese Patent Application Laid-Open No. 6-165399.
  • a bypass circuit and a voltage detector connected in parallel to the lithium-ion battery cell are provided.
  • a voltage detector detects that a predetermined lithium ion battery cell has reached a charge stop voltage (full charge)
  • a no-pass circuit provided in the lithium ion battery cell is connected in parallel with the battery cell.
  • the battery cell is prevented from being overcharged by supplying a charging current to the binos circuit thereafter.
  • An object of the present invention is to prevent a difference in charging efficiency between battery cells from affecting a battery pack.
  • the object is to provide an assembled battery having a plurality of battery cells, based on a difference in charging efficiency between a first battery cell and a second battery cell constituting the assembled battery!
  • the charging current for charging the first battery cell is shunted, and the charging current is divided by the assembled battery according to the present invention. Is decided.
  • an assembled battery having a plurality of battery cells is configured.
  • the battery cell typically, a lithium ion battery cell, a nickel hydride battery cell, or a nickel cadmium battery cell is used.
  • a battery pack can be composed of the same type of battery cells (for example, lithium-ion battery cells only) or different types of battery cells (for example, lithium-ion battery cells and nickel-metal hydride battery cells). Good.
  • each battery cell in the assembled battery may be connected in series with each other, or may be connected in parallel.
  • the specification of the output voltage of the assembled battery is generally called a nominal voltage, and is determined by the type, number, connection mode, and the like of the battery cells constituting the assembled battery.
  • the nominal voltage of an assembled battery in which a plurality of battery cells are connected in series can be set as a value obtained by adding the nominal voltage of each battery cell.
  • assembled batteries having a nominal voltage of approximately 9.6V, 12V, 14.4V, 18V, 24V, etc. are frequently used in devices such as electric tools.
  • battery packs for power tools in addition to momentary high power, continuous high power is often required, and it is necessary to maintain the performance of the battery as high as possible.
  • battery packs for power tools are often used in situations where they consume a large amount of battery, so they are used while being repeatedly charged with a charger, so high durability is easily required! /.
  • the charging efficiency may differ depending on the type of the battery cell, the remaining capacity, the temperature, the magnitude of the charging current and the like.
  • the charging efficiency is referred to as ampere-hour efficiency, and is represented by a ratio (%) of the amount of discharged electricity (Ah) of the battery cell to the amount of charged electricity (Ah).
  • the amount of discharged electricity (Ah) of the battery cell that is, the amount of electricity (Ah) that can be taken out when the battery cell is discharged, indicates the amount of electricity (Ah) actually charged to the battery cell.
  • lithium-ion battery cells and nickel-metal hydride battery cells have smaller charge loss than lithium-ion battery cells, and therefore have the same effect factors such as remaining battery cell capacity, temperature, and charging current. If so, the lithium ion battery cell has higher charging efficiency. If the remaining capacity difference occurs between the battery cells due to the difference in the charging efficiency of the battery cells, it may be difficult to sufficiently extract the performance of each battery cell, as described in the above-described conventional technology.
  • charging for charging the first battery cell is performed based on a difference in charging efficiency between the first battery cell and the second battery cell constituting the battery pack.
  • the current is shunted.
  • the “first battery cell” may be the same type of battery cell as the “second battery cell” or a different type of battery cell! /.
  • the path through which the charging current of the first battery cell is diverted is provided separately for one or more first battery cells in the battery group, and provided in common for the plurality of first battery cells. Therefore, the present invention encompasses all of the embodiments described above, and the cases in which these embodiments are mixed.
  • the charging current for charging the first battery cell may have a charging efficiency corresponding to each battery cell set in advance, and may be divided based on the difference in charging efficiency.
  • an index related to the difference in charging efficiency may be detected, and the flow may be divided based on the detected index related to the difference in charging efficiency.
  • both may be used in combination.
  • charging current is diverted broadly includes a case where all or a part of the charge electricity (Ah) of the charging current for charging the battery cell is diverted.
  • This charge amount (Ah) is indicated by the integrated value of the charge current value (A) and time (h), so when determining the charge amount (Ah) to be divided, the divided current value (Ah) A mode for determining the time (h) for shunting while fixing A), a mode for determining the current value (A) for shunting while fixing the time (h) for shunting, the current value (A) for shunting and the shunting All embodiments for determining the time (h) are included.
  • the battery pack is charged while a part of the charging current of the first battery cell having a higher charging efficiency than the second battery cell is shunted at a predetermined timing.
  • the difference between the charging efficiencies of the first battery cell and the second battery cell is so large that the amount of charge electricity (Ah) shunted from the charging current of the first battery cell increases.
  • the mode in which the charging current is shunted includes the mode in which the charging current is bypassed.
  • the battery pack of the present invention is configured such that the charging current for charging the second battery cell is divided as long as the charging current for charging at least the first battery cell is divided. Such a case is preferably included.
  • a path (circuit) through which the charging current of the first battery cell is shunted may be incorporated in the configuration of the assembled battery, or may be provided outside the configuration of the assembled battery. . For example, it may be provided on the side of the battery pack into which the assembled battery is incorporated.
  • a typical charging current for charging the first battery cell is shunted while shunting. Therefore, each battery cell can be charged in a well-balanced manner while preventing a difference in remaining capacity between the first battery cell and the second battery cell due to a difference in charging efficiency.
  • the assembled battery of the present invention is also suitably applied to an assembled battery of an electric tool that requires the performance of the assembled battery to be as high as possible and requires high durability.
  • FIG. 1 shows a battery pack 100 as a first embodiment.
  • FIG. 1 also shows a configuration of an example of a charger 200 for charging the battery pack 100.
  • Battery pack 100 has an assembled battery in which a lithium-ion battery group and a nickel-metal hydride battery group are connected in series, and a shunt circuit for shunting the charging current of the lithium-ion battery group is provided. Further, the battery pack 100 has a circuit configuration in which the battery pack is charged using an external device such as the charger 200, a circuit configuration in which the battery pack is discharged when a device such as a power tool is connected, and a battery charger. It has a printed circuit board on which terminals TE1 to TE6 that can be connected to the terminals of devices such as 200 and power tools are mounted.
  • the battery pack 100 includes a housing for accommodating the battery pack printed board, and is configured to be detachable from devices such as the charger 200 and the power tool.
  • the terminals TE1 and TE6 of the battery pack 100 are connected to the corresponding terminals TE11 and TE16 of the charger 200, and the battery pack 100 is assembled using the charger 200.
  • the battery can be charged.
  • the terminals TE1 and TE6 of the battery pack 100 are connected to the terminals of the corresponding device, and the battery pack 100 of the battery pack 100 is connected. Then, power can be supplied to the device.
  • the above-described battery pack 100 housing houses a battery pack in which a lithium-ion battery group 110 and a nickel-metal hydride battery group 120 are connected in series.
  • the circuit configuration mounted on the printed circuit board includes a battery control unit 130 having a CPU and controlling the operation of the battery pack 100, a ROM 140 storing a charge control program and parameters for charging the assembled battery, and a ROM 140. Equipped with a thermistor TM arranged near the Kel-Hydrogen battery group 120, terminals TE1 to TE6 for connecting the charger 200 or the charged battery pack 100 to the device, a switch SW1 switched by the battery control unit 130, and a resistor R1. .
  • the lithium ion battery group 110 is an element corresponding to the “battery group in which a plurality of first battery cells are connected” in the present invention.
  • the battery control unit 130 is an element corresponding to the “control unit” in the present invention.
  • lithium ion battery group 110 and nickel hydride battery group 120 are connected in series.
  • the lithium ion battery cells 111 to 113 constituting the lithium ion battery group 110 are connected in series within the lithium ion battery group 110.
  • the nickel hydride battery group 120 includes one nickel hydride battery cell 121.
  • the nominal voltage of one lithium-ion battery cell is set to about 3.6 V, and the nominal voltage of one nickel-metal hydride battery cell is set to about 1.2 V, so three lithium-ion battery cells connected in series
  • the lithium ion battery cells 111-113 correspond to the "first battery cell” of the present invention
  • the nickel hydrogen battery cell 121 corresponds to the "second battery cell” of the present invention.
  • the positive side (upper side shown in FIG. 1) of the lithium ion battery group 110 of the battery pack thus configured is connected to the terminal TE1 of the battery pack 100, and the negative side (FIG. 1) of the nickel hydride battery group 120. Is connected to the terminal TE2 of the battery pack 100.
  • the terminals TE1 and TE2 are connected to terminals TE11 and TE12 of the charger 200 described later, respectively, and the lithium ion battery group 110 and the nickel hydride battery group 120 are charged. Is done.
  • the terminal T El and TE2 are connected to corresponding terminals of the device, and the lithium ion battery group 110 and the nickel hydrogen battery group 120 discharge to supply power to the device.
  • a main body of an NTC thermistor TM having a negative temperature characteristic is arranged near the nickel-metal hydride battery group 120.
  • the impedance of the thermistor TM decreases. T! /
  • One end of the thermistor TM is connected to the terminal TE4 and the ground terminal 135 of the battery control unit 130, and the other end of the thermistor TM is connected to the terminal TE5 and the terminal 136 of the battery control unit 130.
  • the battery pack 100 is attached to the charger 200, and the terminal TE5 of the battery pack 100 is connected to the terminal TE15 of the S charger 200, and the terminal TE4 of the battery pack 100 is connected to the terminal TE14 of the charger 200.
  • the control unit 230 of the charger 200 detects the voltage value between both ends of the thermistor TM every predetermined time. Based on this, it is possible to determine a change in the impedance value of the thermistor TM and, consequently, whether the temperature of the nickel-metal hydride battery group 120 is high or not.
  • the battery control unit 130 of the battery pack 100 can also determine whether the temperature of the nickel-metal hydride battery group 120 is high based on the potential difference between the ground terminals 135 and 136 (the voltage value at both ends of the thermistor TM). it can.
  • ROM 140 is connected to terminal TE6, and when battery pack 100 is mounted on charger 200, terminal TE6 is connected to terminal TE16 of charger 200 described later.
  • the control unit 230 of the charger 200 which will be described later, can read the charge control program of the battery pack 100 and the unique parameters of the battery pack 100 stored in the ROM 140 in advance from the ROM 140 via the terminals TE6 and TE16. it can.
  • a connection point P is provided between the minus terminal of the lithium-ion battery cell 113 and the plus terminal of the nickel-metal hydride battery cell 121.
  • the connection point P is connected to a terminal 132 of the battery control unit 130.
  • the plus side of the lithium ion battery group 110 is connected to a terminal 131 of the battery control unit 130, and the minus side of the nickel hydride battery group 120 is connected to a terminal 133 of the battery control unit 130.
  • battery control unit 130 can detect the voltage value of lithium ion battery group 110 and the voltage value of nickel hydrogen battery group 120, respectively.
  • connection point P is connected to one end of the switch SW1.
  • the other end of switch SW1 And one end of the resistor Rl.
  • the other end of the resistor R1 is connected to the positive side of the lithium ion battery group 110.
  • the terminal TE1 the plus side of the lithium ion battery group 110, one end of the resistor R1 (the other end described above), and the terminal 131 of the battery control unit 130 are connected.
  • the terminal TE2 the negative side of the nickel-metal hydride battery group 120, and the terminal 133 of the battery control unit 130 are connected.
  • the terminal TE3 is connected to the power supply terminal 134 of the battery control unit 130, and thereby, the operation power supply of the battery control unit 130 (the output of the second power supply circuit 250 of the charger 200 described later, ) Is supplied from the charger 200.
  • terminal TE4 is connected to the ground terminal 135 of the battery control unit 130, whereby the ground terminal 135 of the battery control unit 130 is grounded.
  • the switch SW1 can be set to an open state (off) or a closed state (on) by the battery control unit 130.
  • the switch SW1 When the switch SW1 is in the open state (OFF), the charging current of the assembled battery flows from the terminal TE1 to the lithium-ion battery group 110 to the nickel-metal hydride battery group 120 to the terminal TE2.
  • the nickel hydrogen battery group 120 is charged.
  • the switch SW1 When the switch SW1 is closed (ON), a part of the charging current of the lithium-ion battery group 110 (for example, 1Z100 of charging current) 1S terminal TE1 ⁇ resistance Rl ⁇ switch SW1 ⁇ -hydrogen battery group 120 ⁇ terminal Flow to TE2.
  • the amount of charge (Ah) supplied to the lithium ion battery group 110 is relatively smaller than the amount of charge (Ah) supplied to the nickel hydrogen battery group 120.
  • the circuit provided with the resistor Rl and the switch SW1 and connected in parallel to the lithium ion battery cell when the switch SW1 is turned on corresponds to the "shunt circuit" of the present invention.
  • the resistor R1 when the switch SW1 is turned on, a resistance element having a resistance value calculated based on the amount of charging current flowing in the shunt circuit is selected.
  • Battery control unit 130 has a storage unit. The storage unit previously stores a program for determining a ratio (duty ratio) for turning on / off the switch SW1 based on the charging efficiency difference from the temperature and voltage value of the nickel-metal hydride battery group 120 detected by the detection unit. You.
  • the charger 200 includes a power supply circuit 210 that converts AC input power into a DC power supply for charging the battery pack 100, a charge control unit 220 that controls the power supply circuit 210, and a control unit 230 that controls the operation of the charger 200. , A storage unit 240 in which parameters for charging operation of the charger 200 (depending on the type of the charger 200, etc.) are stored, and a second power supply circuit for converting DC power output from the power supply circuit 210 to control power.
  • shunt resistor Rl l for charging current detection
  • thermistor TM for battery pack 100
  • Voltage dividing resistor R12 for voltage detection at both ends
  • terminals for connection to battery pack 100 TE11-TE16 AC input power supply connected Input terminals SE11 and SE12 are provided.
  • the input side of the power supply circuit 210 is connected to input terminals SE11 and SE12 to which AC input power can be connected.
  • the output side of the power supply circuit 210 is connected to a power supply terminal TE11 of a DC power supply that is converted from an AC input power supply by the power supply circuit 210 and charges the battery pack 100 under the control of the charge control unit 220. ing. Also, it is connected to the ground terminal TE12 via the resistor R11.
  • the input side of the second power supply circuit 250 that supplies control power of approximately 5 V to the battery pack 100 and the ICs in the charger 200 is connected to the power supply circuit 210.
  • the output side of the second power supply circuit 250 is connected to the output terminal TE13 of the control power supply and the ground terminal TE14 of the control power supply, respectively.
  • the output terminal TE13 is connected to the terminal TE15 and the control unit 230 via a voltage value detecting voltage dividing resistor R12 of the thermistor TM.
  • a storage unit 240 terminals TE12 and TE16, and a charge control unit 220 are connected to the control unit 230.
  • AC input power is connected to input terminals SE11 and SE12 of charger 200.
  • the DC power obtained by converting the AC input power in the power circuit 210 is input to the second power circuit 250,
  • the DC power input to the second power supply circuit 250 is converted into a control power supply by the second power supply circuit 250.
  • the control power is supplied to the control unit 230, the charge control unit 220, and the storage unit 240 in the charger 200, whereby the charger 200 starts operating.
  • terminals TE11-TE16 of charger 200 are connected to terminals TE1-6 of battery pack 100, respectively.
  • the battery control unit 130 of the battery pack 100 is connected to the terminal TE3 of the battery pack 100 from the second power supply circuit 250 of the charger 200 via the output terminal TE13 of the control power supply, and the ground terminal of the control power supply.
  • the control power is supplied to the terminal TE4 of the battery pack 100 via the TE, and the control power is supplied to the battery control unit.
  • the switch SW1 of the battery pack 100 is opened (turned off) as an initial state.
  • the control unit 230 of the charger 200 reads the charge control program and the unique parameters of the battery pack 100 stored in the ROM 140 of the battery pack 100 via the terminals TE4 and TE14.
  • the control unit 230 calculates a suitable charge current value at the start of charging the battery pack 100 by using the charge control program read from the ROM 140 and information such as parameters, and instructs the charge control unit 220 of the charge current value. Output a signal.
  • the charging control unit 220 controls the power supply circuit 210 to output the charging current value based on the signal output from the control unit 230. In this way, charging of the lithium ion battery group 110 and the nickel hydride battery group 120 of the battery pack 100 is started.
  • the control unit 230 monitors the charging current value using the shunt resistor R11. If the charging current value becomes equal to or less than the set value, for example, the battery pack (the lithium ion battery group 110 and the nickel hydrogen It is determined that the charging of the battery group 120) has been completed, and the charging operation ends.
  • the control unit 230 receives the output signal of the thermistor TM via the terminals TE5 and TE15.
  • the control unit 230 monitors the voltage value across the thermistor TM by detecting the potential at the terminal TE15 by dividing the control power supply voltage of approximately 5 V using the resistor R12. Then, the control unit 230 reduces the impedance when the temperature rises. Based on the characteristics of the thermistor TM, the temperature of the nickel-metal hydride battery group 120 becomes lower than the set temperature. It monitors whether or not. When detecting that the temperature of the nickel hydrogen battery group 120 is equal to or higher than the set temperature, the control unit 230 A signal for stopping the charging operation is output to 220.
  • the temperature of a nickel-metal hydride battery cell tends to rise due to a charging operation as compared with a lithium-ion battery cell, and at least the temperature of each battery group is monitored by monitoring the temperature of the nickel-metal hydride battery group 120. Problems can be prevented.
  • the lithium ion battery group 110 and the nickel hydride battery group 120 of the battery pack 100 are charged.
  • FIG. 2 is a flowchart of a program executed by the CPU of the battery control unit 130 to prevent the remaining capacity difference between the battery groups
  • FIG. 3 is an example of duty ratio mapping data
  • FIG. Fig. 4 is a timing chart showing a state in which is turned on and off (the shunt circuit repeats the connection Z non-connection state).
  • the battery control unit 130 of the battery pack 100 controls the shunt of the charging current (the connection Z of the shunt circuit is not connected).
  • lithium-ion battery cells have higher charging efficiency than nickel-metal hydride battery cells. That is, when charging is performed while the switch SW1 is turned off (in a state where the shunt circuit is not connected), the lithium ion battery group 110 is likely to be fully charged first. Further, particularly during charging, the remaining capacity of the lithium-ion battery group 110 tends to be larger than that of the nickel-metal hydride battery group 120.
  • the CPU of the battery control unit 130 controls the lithium-ion battery group 11 of the shunt circuit.
  • the battery control unit 130 determines whether or not the battery is in a fully charged state. Specifically, the remaining capacity is calculated from the voltage value at both ends of the battery pack (the potential difference between the terminals 131 and 133 of the battery control unit 130 shown in FIG. 1). In general, a method for calculating the remaining voltage capacity of a battery is known, and a detailed description thereof will be omitted. Abbreviate. Then, when determining that the battery pack is fully charged (YES in step S10), battery control unit 130 proceeds to the process in step S16. If it is determined that the battery pack is not fully charged (NO in step S10), battery control unit 130 proceeds to the processing in step SI2.
  • step S12 charging of the assembled battery is started under the control of the battery control unit 130.
  • the initial value of the duty ratio at which the shunt circuit is connected to the lithium ion battery group 110 and not connected is set to "dl" shown in the mapping data of FIG.
  • battery control unit 130 proceeds to the process of step S14.
  • step S14 battery control unit 130 detects the voltage value and temperature of nickel-metal hydride battery group 120 at a predetermined timing as an index relating to the difference in charging efficiency.
  • V (V) of the nickel-metal hydride battery group 120 a potential difference between the terminals 132 and 133 of the battery control unit 130 is detected.
  • T (degrees) of the nickel-metal hydride battery group 120 the potential difference between the terminals 135 and 136 of the battery control unit 130 (the voltage value at both ends of the thermistor TM) is detected, and the impedance value of the thermistor TM and the temperature are measured. Relevance can be calculated by the method described above. Then, battery control unit 130 proceeds to the process of step S15.
  • step S15 the battery control unit 130 determines the mapping data shown in Fig. 3 based on the voltage value V (V) and the temperature T (degrees) of the nickel hydrogen battery group 120 detected in step S14. Connect the power shunt circuit to the lithium-ion battery component 110. Extract the duty ratio for non-connection. Then, battery control unit 130 returns to the process of step S10.
  • the voltage value (V (V) —V (V)) of the nickel-metal hydride battery group 120 as a parameter in the horizontal direction, and the temperature (T (Degree)-1 T (degree)) indicates the duty ratio extracted by the battery control unit 130 between each voltage and temperature.
  • the temperature T (degrees) of the nickel-metal hydride battery group 120 is between the temperatures T and T (degrees)
  • the voltage value V (V) is between the voltage values V-V (V).
  • the duty ratio is set to have a relationship of dl ⁇ d2 ' ⁇ ddlO.
  • the duty ratio for connecting the shunt circuit to the lithium-ion battery group 110 is extracted, and the duty ratio is updated at a predetermined timing until the battery is fully charged. Charged.
  • step S10 when the processing power of step S10 also proceeds to the processing of step S16, the battery control unit 130 ends the charging and turns off the switch SW1 (disconnects the lithium ion battery group 110 and the shunt circuit from each other). And exit.
  • the temperature T (degrees) and the voltage value V (V) force temperature T (degrees) of the nickel-metal hydride battery group 120 detected in step S14 are determined in step S15 of the flowchart shown in FIG.
  • the temperature is less than ⁇ (degrees) and the voltage value V (V) is between the voltage values V--V (V).
  • the temperature T (degree) of the nickel-metal hydride battery group 120 and the voltage value V (V) force The temperature T (degree) is between the temperature T and T (degree), and the voltage value V (V) is the voltage. Between values V -V (V)
  • the temperature T (degrees) and the voltage value V (V) force of the nickel-metal hydride battery group 120 become the temperature T (degrees).
  • the shunt circuit is connected to lithium ion battery group 110.
  • the connection time ratio is increased, and the amount of charge electricity (Ah) supplied to the lithium ion battery group 110 is reduced. That is, the temperature of the battery cell
  • the ratio is configured to be large to avoid this.
  • the values of the duty ratio mapping data shown in Fig. 3 are arbitrarily set based on the characteristics of the battery cell for detecting the temperature and the voltage value and the characteristics of the battery cell to which the shunt circuit is connected. be able to. For example, in the case of a battery cell whose charging efficiency changes from 80% to 99% y to 85% as the remaining capacity of the battery cell changes from small to medium to large, the duty ratio shown in Fig. 3 Is set to have a relationship of d2 ⁇ d3′′dl ⁇ dlO ⁇ dl.
  • the shunt circuit is provided on the lithium ion battery cell side having relatively high charging efficiency, and the duty ratio is updated and the connection Z disconnection of the shunt circuit to the lithium ion battery group 110 is repeated.
  • the duty ratio is updated and the connection Z disconnection of the shunt circuit to the lithium ion battery group 110 is repeated.
  • the temperature T (degrees) and voltage value V (V) of nickel-metal hydride battery group 120 are detected as indices relating to the difference in charging efficiency, and the charging current of lithium-ion battery group 110 is A case has been described where the duty ratio for shunting is determined, but the type of index relating to the difference in charging efficiency is not limited to the present embodiment.
  • a charge current value of the assembled battery, the remaining capacity of the lithium ion battery group 110, or the like may be used as an index relating to the difference in charge efficiency.
  • a battery pack 101 according to a second embodiment in which a shunt circuit is also provided on the nickel-metal hydride battery group 120 side is schematically shown in the block diagram of FIG.
  • components substantially equivalent to those of the battery pack 100 according to the first embodiment shown in FIG. 1 are denoted by the same reference numerals.
  • the difference between the battery pack 101 and the battery pack 100 according to the first embodiment is that the nickel hydrogen battery group 120 is also provided with a shunt circuit (see also FIG. 1). so Has a connection point Q between the positive terminal of the nickel-metal hydride battery cell 121 and the connection point P.
  • the connection point Q is connected to one end of the resistor R2.
  • the other end of the resistor R2 is connected to one end of the switch SW2.
  • the other end of the switch SW2 is connected to the negative side of the nickel hydride battery group 120.
  • the switches SW1 and SW2 can be opened (off) or closed (on) by the battery control unit 130.
  • the circuit provided with the resistor R2 and the switch SW2 and connected in parallel to the nickel-metal hydride battery cell when the switch SW2 is turned on also corresponds to the “shunt circuit” of the present invention.
  • the resistance values of the resistors Rl and R2 of the shunt circuit are selected such that when the switches SW1 and SW2 are turned on, approximately 1Z5 of the charging current flows through each shunt circuit.
  • FIG. 6 shows a flowchart of a program executed by the CPU of the battery control unit 130 of the battery pack 101 to prevent the remaining capacity difference between the battery groups from occurring.
  • step S20 battery control unit 130 determines whether or not the battery pack is fully charged. Then, when determining that the battery pack is fully charged (YES in step S20), battery control unit 130 proceeds to the process in step S34. If it is determined that the battery pack is not fully charged (NO in step S20), battery control unit 130 proceeds to the process in step S22.
  • step S22 charging of the assembled battery is started under the control of the battery control unit 130. Note that an initial value is set as the duty ratio at which the shunt circuit is connected to each of the battery groups 110 and 120 and Z is not connected. Then, battery control unit 130 proceeds to the process of step S24.
  • step S24 battery control unit 130 detects the voltages of nickel hydrogen battery group 120 and lithium ion battery group 110, and proceeds to step S26.
  • step S26 the voltage value of the lithium ion battery cell of the lithium ion battery group 110 is calculated.
  • the lithium ion battery group 110 is composed of three lithium ion battery cells. Therefore, the value obtained by dividing the voltage value of the lithium ion battery group 110 by 3 by 3 is The voltage value.
  • the nickel-metal hydride battery group 120 includes one nickel-metal hydride battery cell, the voltage value of the nickel-metal hydride battery group 120 becomes the voltage value of the nickel-metal hydride battery cell.
  • the voltage value of a nickel-metal hydride battery cell is about 1Z3 of a lithium-ion battery cell (a lithium-ion battery cell has a nominal voltage of 3.6 V, whereas a nickel-metal hydride battery cell has a nominal voltage of 1 V). .2V) 0
  • the battery control unit 130 calculates the voltage value of one lithium-ion battery cell by dividing it by three (hereinafter, referred to as a lithium-ion battery cell comparison value). It is determined whether or not the value obtained by subtracting the cell voltage value is equal to or greater than the set value S1.
  • step S26 If the value is equal to or greater than the set value S1 (YES in step S26), the battery control unit 130 proceeds to the process in step S28, and if the value is less than the set value S1 (NO in step S26), the process proceeds to step S3. Proceed to processing of 0.
  • step S28 the duty ratio of each shunt circuit is updated.
  • the battery control unit 130 increases the duty ratio of the shunt circuit provided in the lithium-ion battery group 110 by a predetermined ratio, and increases the duty ratio of the shunt circuit provided in the nickel-metal hydride battery group 120. Lower by a specified percentage. Then, the battery control unit 130 returns.
  • step S26 when it is determined in step S26 that the value obtained by subtracting the voltage value of the nickel-metal hydride battery cell from the comparison value of the lithium ion battery cell is smaller than the set value S1, the process proceeds to step S30.
  • step S30 it is determined whether or not a value obtained by subtracting the comparison value of the lithium ion battery cell from the voltage value of the nickel hydrogen battery cell is equal to or greater than the set value S2. If this value is equal to or greater than set value S2 (YES in step S30), battery control unit 130 proceeds to the process in step S58. If the value is less than the set value S2 (NO in step S30), the process returns.
  • step S32 the duty ratio of each shunt circuit is updated.
  • the battery control unit 130 sets the duty ratio of the shunt circuit provided in the lithium-ion battery group 110 as the duty ratio. Extract something smaller than before. The duty ratio of the shunt circuit provided in the nickel-metal hydride battery group 120 is extracted to be larger than before. Then, the battery control unit 130 returns.
  • the battery control unit 130 detects the voltage values of the lithium-ion battery group 110 and the nickel-metal hydride battery group 120 at a predetermined timing, and uses the detected values to control the respective battery groups 110 and 120. The charging is continued while updating the duty ratio of the shunt circuit that can be connected in parallel.
  • the set values SI and S2 are preferably set to be smaller and closer to the full charge so that each battery cell can be controlled more densely as it approaches full charge.
  • battery control section 130 provides a shunt circuit in lithium-ion battery group 110 and nickel-metal hydride battery group 120, and updates the duty ratio of connection Z disconnection of each shunt circuit to each battery group. By doing so, it is possible to prevent a remaining capacity difference due to a difference in charging efficiency from occurring. As a result, even if charging is stopped during charging, The capacity difference is unlikely to occur. In addition, it is possible to prevent a situation in which some battery cells are fully charged first and overcharge occurs.
  • the shunt circuit provided with the nickel-metal hydride battery group 120 is controlled by the battery.
  • the charge amount difference (remaining capacity difference) in the initial state can be reduced, and charging can be performed with good tolerance.
  • the charging current of the battery pack may be detected and used.
  • a current detection resistor in series with the battery pack.
  • the voltage drop across the resistance element is configured to be detectable by the battery control unit 130, whereby the battery control unit 130 calculates the charging current. Further, if this configuration is further added to the battery packs 100 and 101 of the embodiment, more reliable charging control can be performed.
  • a shunt circuit is provided in the lithium-ion battery group 110 collectively.
  • the shunt circuit is individually provided for each of the lithium-ion battery cells 111 to 113 described above. It may be provided.
  • whether to divide the charging current to the shunt circuit provided in each of the lithium ion battery cells 111 to 113 is determined based on the difference in the charging efficiency of each of the lithium ion battery cells 111 to 113.
  • each battery cell can be charged in a well-balanced manner.
  • the duty ratio for connecting the shunt circuit to the lithium ion battery group 110 while determining the index regarding the difference in charging efficiency as needed is described.
  • the predicted value of the change of the difference in the charging efficiency of the battery cells constituting the assembled battery from the start of charging is stored in advance, and based on this, the estimated value from the start of charging is stored.
  • the configuration may be such that the duty ratio for connecting the shunt circuit to the Z-disconnected state is determined according to the passage of time.
  • battery control unit 130 determines the duty ratio for connecting a shunt circuit having a predetermined impedance value to lithium-ion battery group 110.
  • a plurality of impedance circuits that can be connected in parallel to the lithium ion battery group 110 are provided, and the impedance circuits are selectively connected in accordance with the amount of charge (Ah) of the divided charging current. May be adopted.
  • the amount of charge (Ah) of the shunted charging current can be easily adjusted.
  • a circuit that shunts the charging current of lithium ion battery group 110 is incorporated in battery pack 100.
  • the shunt circuit may be configured as an adapter-shaped separate body independent of the battery pack 100. In this case, by arranging the adapter-shaped separate body in the battery packs 100 and 101 or the charger 200, the battery cells constituting the assembled battery can be charged in a well-balanced manner.
  • FIG. 7 shows an example of an electric tool in a state where the battery packs 100 to 101 used as the above embodiments are mounted as a drive power supply.
  • FIG. 1 shows a block diagram of a battery pack 100 according to a first embodiment, together with a block diagram of a charger 200 that charges the battery pack 100.
  • FIG. 2 A process for preventing the occurrence of a remaining capacity difference based on the charging efficiency difference between the battery groups 110 and 120 in the battery control unit 130 of the battery pack 100 and charging the battery cells constituting the assembled battery in a well-balanced manner. , As a flowchart.
  • FIG. 3 shows duty ratio mapping data used when the battery control unit 130 determines a duty ratio for connecting / disconnecting the shunt circuit to the lithium ion battery group 110.
  • FIG. 4 is a timing chart showing a state in which switch SW1 is turned on and off by battery control unit 130, and a shunt circuit provided in lithium ion battery group 110 repeatedly connects and disconnects to lithium ion battery group 110. Show.
  • FIG. 5 shows a block diagram of a battery pack 101 according to a second embodiment.
  • FIG. 6 A battery pack 101 according to the second embodiment is used to prevent the occurrence of a remaining capacity difference based on the charging efficiency difference between the battery groups 110 and 120 to charge the battery cells constituting the assembled battery in a well-balanced manner.
  • the process executed by the battery control unit 130 is shown in a flowchart.
  • FIG. 7 shows an example of a power tool with battery packs 100 to 101 attached. Explanation of reference numerals

Abstract

It is an object of the invention to prevent the difference in charge efficiency between battery cells from adversely affecting the combined battery. According to the invention, in a combined battery including a plurality of battery cells, based on the difference in charge efficiency between first battery cells (lithium-ion battery cells 111-113) and a second battery cell (nickel metal hydride battery cell 121) that constitute the combined battery, the charging current for charging the first battery cells is diverted.

Description

明 細 書  Specification
組電池及び電池パック  Battery pack and battery pack
技術分野  Technical field
[0001] 本発明は、複数の電池セルで構成された組電池及び電池パックにおいて、電池セ ル間での充電効率の差に起因する悪影響に効果的に対処する技術に関する。 背景技術  The present invention relates to a technique for effectively dealing with an adverse effect caused by a difference in charging efficiency between battery cells in an assembled battery and a battery pack including a plurality of battery cells. Background art
[0002] 複数のリチウムイオン電池セルを直列に接続した組電池を充電する充電装置の一 例力 特開平 6— 165399号公報に開示されている。この充電装置では、リチウムィォ ン電池セルに並列接続されるバイパス回路と電圧検出器が設けられて 、る。そして、 電圧検出器で所定のリチウムイオン電池セルが充電停止電圧 (満充電)に達したこと を検出した場合に、当該リチウムイオン電池セルに設けられているノ ィパス回路を当 該電池セルに並列に接続し、以降、充電電流を当該バイノ ス回路へ流すことにより 当該電池セルが過充電になることを防止している。  [0002] One example of a charging device for charging an assembled battery in which a plurality of lithium-ion battery cells are connected in series is disclosed in Japanese Patent Application Laid-Open No. 6-165399. In this charging device, a bypass circuit and a voltage detector connected in parallel to the lithium-ion battery cell are provided. When a voltage detector detects that a predetermined lithium ion battery cell has reached a charge stop voltage (full charge), a no-pass circuit provided in the lithium ion battery cell is connected in parallel with the battery cell. The battery cell is prevented from being overcharged by supplying a charging current to the binos circuit thereafter.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] この充電装置では、充電完了まで充電した場合に、各電池セルが過充電になること が防止できる。ところで充電途中で充電を停止した場合には、各電池セルの残容量 に差が生じやす!/、。電池セル間に残容量差が発生して!/、る状態で組電池を放電さ せると、残容量が少ない電池セルの残容量が先にゼロになるため、他の電池セルに 残容量があるにもかかわらず組電池として使用できない状態となり、各電池セルの性 能を十分に活用することができなくなる。 [0003] With this charging device, it is possible to prevent each battery cell from being overcharged when charging is performed until charging is completed. By the way, if charging is stopped during charging, the remaining capacity of each battery cell is likely to differ! When the battery pack is discharged in a state where the remaining capacity difference occurs between the battery cells! /, The remaining capacity of the battery cell with the lowest remaining capacity becomes zero first, so the remaining capacity of the other battery cells becomes zero. Despite the presence, the battery cannot be used as an assembled battery, and the performance of each battery cell cannot be fully utilized.
本発明は、電池セル間での充電効率差が組電池に悪影響を及ぼさな 、ようにする ことをその目的とする。  An object of the present invention is to prevent a difference in charging efficiency between battery cells from affecting a battery pack.
課題を解決するための手段  Means for solving the problem
[0004] 上記課題は、複数の電池セルを有する組電池であって、前記組電池を構成する第 1の電池セルと第 2の電池セルとの充電効率の差に基づ!/、て、前記第 1の電池セル を充電する充電電流が分流されることを特徴とする本発明に係る組電池によって解 決される。 [0004] The object is to provide an assembled battery having a plurality of battery cells, based on a difference in charging efficiency between a first battery cell and a second battery cell constituting the assembled battery! The charging current for charging the first battery cell is shunted, and the charging current is divided by the assembled battery according to the present invention. Is decided.
本発明によれば、複数の電池セルを有する組電池が構成される。電池セルとしては 、典型的には、リチウムイオン電池セルやニッケル水素電池セルやニッケルカドミウム 電池セルが用いられる。組電池は、同じ種類の電池セル(例えば、リチウムイオン電 池セルのみ)で構成されてもよぐまた異なる種類の電池セル (例えば、リチウムイオン 電池セルとニッケル水素電池セル)で構成されてもよい。また、組電池中の各電池セ ルは相互に直列に接続してもよぐある 、は並列に接続してもよ 、。  According to the present invention, an assembled battery having a plurality of battery cells is configured. As the battery cell, typically, a lithium ion battery cell, a nickel hydride battery cell, or a nickel cadmium battery cell is used. A battery pack can be composed of the same type of battery cells (for example, lithium-ion battery cells only) or different types of battery cells (for example, lithium-ion battery cells and nickel-metal hydride battery cells). Good. Also, each battery cell in the assembled battery may be connected in series with each other, or may be connected in parallel.
[0005] 組電池の出力電圧の仕様は、一般的に公称電圧と称呼され、組電池を構成する電 池セルの種類、数、接続態様等によって決定される。典型的には、複数の電池セル を直列に接続した組電池の公称電圧は、各電池セルの公称電圧を加算した値として 設定することができる。組電池の中でも、公称電圧が概ね 9. 6V, 12V, 14. 4V, 18 V, 24V等の組電池は電動工具等の機器で多用されている。特に電動工具用の組 電池では、瞬間的な大出力に加え、継続的な大出力が要求される場合が多ぐでき る限り組電池の性能を高く維持する必要がある。また、電動工具用の組電池は、概し て電池の消費量が多い使用状況にある場合が多ぐ充電器で繰り返し充電しつつ使 用するので高!、耐久性が要求されやす!/、。  [0005] The specification of the output voltage of the assembled battery is generally called a nominal voltage, and is determined by the type, number, connection mode, and the like of the battery cells constituting the assembled battery. Typically, the nominal voltage of an assembled battery in which a plurality of battery cells are connected in series can be set as a value obtained by adding the nominal voltage of each battery cell. Among assembled batteries, assembled batteries having a nominal voltage of approximately 9.6V, 12V, 14.4V, 18V, 24V, etc. are frequently used in devices such as electric tools. Particularly in battery packs for power tools, in addition to momentary high power, continuous high power is often required, and it is necessary to maintain the performance of the battery as high as possible. In addition, battery packs for power tools are often used in situations where they consume a large amount of battery, so they are used while being repeatedly charged with a charger, so high durability is easily required! /.
[0006] 複数の電池セルでは、電池セルの種類、残容量、温度、充電電流の大きさ等により 、充電効率に差が生じる場合がある。充電効率は、アンペア 'アワー効率と称呼され 、電池セルの放電電気量 (Ah)の充電電気量 (Ah)に対する比率(%)で示される。 電池セルの放電電気量 (Ah)、すなわち当該電池セルを放電した時に取り出せる電 気量 (Ah)は、当該電池セルに実際に充電された電気量 (Ah)を示す。例えば、リチ ゥムイオン電池セルとニッケル水素電池セルとでは、リチウムイオン電池セルの方が 充電のロスが小さいので、電池セルの残容量、温度、充電電流の大きさ等といった影 響因子が同等とであれば、リチウムイオン電池セルの方が、充電効率が高くなる。電 池セルの充電効率差に起因して電池セル間に残容量差が生じると、上記従来の技 術において説明したように、各電池セルの性能を十分に引き出し難い場合がある。  [0006] In a plurality of battery cells, the charging efficiency may differ depending on the type of the battery cell, the remaining capacity, the temperature, the magnitude of the charging current and the like. The charging efficiency is referred to as ampere-hour efficiency, and is represented by a ratio (%) of the amount of discharged electricity (Ah) of the battery cell to the amount of charged electricity (Ah). The amount of discharged electricity (Ah) of the battery cell, that is, the amount of electricity (Ah) that can be taken out when the battery cell is discharged, indicates the amount of electricity (Ah) actually charged to the battery cell. For example, lithium-ion battery cells and nickel-metal hydride battery cells have smaller charge loss than lithium-ion battery cells, and therefore have the same effect factors such as remaining battery cell capacity, temperature, and charging current. If so, the lithium ion battery cell has higher charging efficiency. If the remaining capacity difference occurs between the battery cells due to the difference in the charging efficiency of the battery cells, it may be difficult to sufficiently extract the performance of each battery cell, as described in the above-described conventional technology.
[0007] 本発明に係る組電池では、組電池を構成する第 1の電池セルと第 2の電池セルとの 充電効率の差に基づ!/、て、第 1の電池セルを充電する充電電流が分流される。 「第 1の電池セル」は、「第 2の電池セル」と同じ種類の電池セル、異なる種類の電池 セルである場合の!/、ずれでもよ!/、。 [0007] In the battery pack according to the present invention, charging for charging the first battery cell is performed based on a difference in charging efficiency between the first battery cell and the second battery cell constituting the battery pack. The current is shunted. The “first battery cell” may be the same type of battery cell as the “second battery cell” or a different type of battery cell! /.
第 1の電池セルの充電電流が分流される経路は、電池群中の 1又は複数の第 1の 電池セルに個別に設けられている態様、複数の第 1の電池セルに共通して設けられ て 、る態様、これらの態様が混在して 、る場合等を全て包含する。  The path through which the charging current of the first battery cell is diverted is provided separately for one or more first battery cells in the battery group, and provided in common for the plurality of first battery cells. Therefore, the present invention encompasses all of the embodiments described above, and the cases in which these embodiments are mixed.
[0008] 第 1の電池セルを充電する充電電流は、予め各電池セルに対応する充電効率が 設定されており、この充電効率の差に基づいて分流されてもよい。あるいは、充電効 率の差に関する指標を検出し、検出された充電効率の差に関する指標に基づいて 分流されてもよい。あるいは両方を併用してもよい。充電効率の差に関する指標を検 出する場合、該指標として、電池セルの残容量指標 (典型的には、電圧値等)、温度 指標、充電電流の大きさ等の中から少なくとも 1つが適宜選択されるのが好ましい。  [0008] The charging current for charging the first battery cell may have a charging efficiency corresponding to each battery cell set in advance, and may be divided based on the difference in charging efficiency. Alternatively, an index related to the difference in charging efficiency may be detected, and the flow may be divided based on the detected index related to the difference in charging efficiency. Alternatively, both may be used in combination. When detecting an index related to a difference in charging efficiency, at least one of the remaining capacity index (typically, a voltage value, etc.), a temperature index, and a magnitude of a charging current of the battery cell is appropriately selected as the index. Preferably.
[0009] また、「充電電流が分流される」とは、電池セルを充電する充電電流の充電電気量( Ah)の全部、一部を分流する場合を広く包含する。この充電電気量 (Ah)は、充電電 流の電流値 (A)と時間(h)の積算値で示されるので、分流する充電電気量 (Ah)を 決定する場合に、分流する電流値 (A)を固定しつつ分流する時間 (h)を決定する態 様、分流する時間 (h)を固定しつつ分流する電流値 (A)を決定する態様、分流する 電流値 (A)及び分流する時間 (h)を決定する態様を全て包含する。典型的には、第 2の電池セルと比較して充電効率の高い第 1の電池セルの充電電流の一部が所定 のタイミングで分流されつつ組電池の充電が行われる。また、第 1の電池セルと第 2 の電池セルの充電効率の差が大き!/、ほど、第 1の電池セルの充電電流から分流され る充電電気量 (Ah)は多くなるように構成されるのが好ましい。また、充電電流が分流 される態様は、充電電流がバイパスされる態様を包含する。  [0009] The phrase "charging current is diverted" broadly includes a case where all or a part of the charge electricity (Ah) of the charging current for charging the battery cell is diverted. This charge amount (Ah) is indicated by the integrated value of the charge current value (A) and time (h), so when determining the charge amount (Ah) to be divided, the divided current value (Ah) A mode for determining the time (h) for shunting while fixing A), a mode for determining the current value (A) for shunting while fixing the time (h) for shunting, the current value (A) for shunting and the shunting All embodiments for determining the time (h) are included. Typically, the battery pack is charged while a part of the charging current of the first battery cell having a higher charging efficiency than the second battery cell is shunted at a predetermined timing. In addition, the difference between the charging efficiencies of the first battery cell and the second battery cell is so large that the amount of charge electricity (Ah) shunted from the charging current of the first battery cell increases. Preferably. The mode in which the charging current is shunted includes the mode in which the charging current is bypassed.
[0010] また、本発明の組電池は、少なくとも第 1の電池セルを充電する充電電流が分流さ れる構成となっていればよぐ第 2の電池セルを充電する充電電流も分流されるような 構成となっている場合も好適に包含する。  [0010] Further, the battery pack of the present invention is configured such that the charging current for charging the second battery cell is divided as long as the charging current for charging at least the first battery cell is divided. Such a case is preferably included.
[0011] また、第 1の電池セルの充電電流が分流される経路(回路)は、組電池の構成に組 み込まれていても良いし、組電池の構成外に設けられていてもよい。例えば、組電池 が組み込まれる電池パック側等に設けられて 、てもよ 、。 [0012] 本発明の組電池によれば、第 1の電池セルと第 2の電池セルとの充電効率の差に 基づいて、第 1の電池セルを充電する充電電流を分流しつつ、典型的には、充電効 率の差による第 1の電池セルと第 2の電池セルとの残容量差の発生を防止しつつ各 電池セルをバランス良く充電することができる。また、既に電池セル間に残容量差が 発生している場合には、残容量差を縮小することができる。これにより、充電時には充 電効率の高い電池セルに過放電が発生し難ぐ放電時には充電効率の低い電池セ ルに過放電が発生し難い。また、組電池の充電を途中で停止して放電をした場合で も、上記従来の技術に記載した問題が発生する可能性が低減され、これによつて、 各電池セルの性能を十分に活用することが可能となった。 [0011] Further, a path (circuit) through which the charging current of the first battery cell is shunted may be incorporated in the configuration of the assembled battery, or may be provided outside the configuration of the assembled battery. . For example, it may be provided on the side of the battery pack into which the assembled battery is incorporated. [0012] According to the battery pack of the present invention, based on a difference in charging efficiency between the first battery cell and the second battery cell, a typical charging current for charging the first battery cell is shunted while shunting. Therefore, each battery cell can be charged in a well-balanced manner while preventing a difference in remaining capacity between the first battery cell and the second battery cell due to a difference in charging efficiency. Further, when a remaining capacity difference has already occurred between the battery cells, the remaining capacity difference can be reduced. This makes it difficult for battery cells with high charging efficiency to overdischarge during charging, and hardly causes battery cells with low charging efficiency to overdischarge during discharging. Further, even when the battery pack is stopped in the middle and discharged, the possibility of the problems described in the prior art described above is reduced, thereby making full use of the performance of each battery cell. It became possible to do.
また、本発明の組電池は、前述したように、でき得る限り組電池の性能を高くしてお く必要性及び高 ヽ耐久性が要求される電動工具の組電池にも好適に適用される。 発明を実施するための最良の形態  Further, as described above, the assembled battery of the present invention is also suitably applied to an assembled battery of an electric tool that requires the performance of the assembled battery to be as high as possible and requires high durability. . BEST MODE FOR CARRYING OUT THE INVENTION
[0013] (第 1の実施の形態) [0013] (First embodiment)
第 1の実施の形態として電池パック 100が図 1に示される。図 1では、電池パック 10 0を充電する充電器 200の一例の構成も併せて示す。  FIG. 1 shows a battery pack 100 as a first embodiment. FIG. 1 also shows a configuration of an example of a charger 200 for charging the battery pack 100.
電池パック 100は、リチウムイオン電池群とニッケル水素電池群を直列に接続し、リ チウムイオン電池群の充電電流を分流する分流回路を設けた組電池を有する。さら に電池パック 100は、充電器 200等の外部機器を用いて組電池が充電される回路構 成、及び電動工具等の機器が接続された時に組電池が放電される回路構成、及び 充電器 200や電動工具等の機器の端子に接続可能な端子 TE1— TE6が実装され たプリント基板を有する。電池パック 100は、図示は省略しているものの、組電池ゃプ リント基板が収容される筐体を備え、充電器 200や電動工具等の機器に着脱可能な 構成となっている。電池パック 100が充電器 200に装着された場合、電池パック 100 の端子 TE 1一 TE6が対応する充電器 200の端子 TE 11一 TE 16に接続され、充電 器 200を用いて電池パック 100の組電池を充電可能な状態となる。一方、図示省略 しているものの、電池パック 100が電動工具等の機器に装着されると、電池パック 10 0の端子 TE 1一 TE6が対応する機器の端子に接続され、電池パック 100の組電池で 機器に電源を供給可能な状態となる。 [0014] 上記した電池パック 100の筐体には、リチウムイオン電池群 110とニッケル水素電 池群 120が直列に接続された組電池が収容されている。プリント基板に実装されてい る回路構成は、 CPUを有し電池パック 100の動作を制御する電池制御部 130、組電 池を充電する充電制御プログラムやパラメータ等が記憶されて 、る ROM140、 -ッ ケル水素電池群 120の近傍に配置されたサーミスタ TM、充電器 200ないしは充電 後の電池パック 100を機器に接続する端子 TE1— TE6、電池制御部 130によって 切り換えられるスィッチ SW1、抵抗 R1を備えている。 Battery pack 100 has an assembled battery in which a lithium-ion battery group and a nickel-metal hydride battery group are connected in series, and a shunt circuit for shunting the charging current of the lithium-ion battery group is provided. Further, the battery pack 100 has a circuit configuration in which the battery pack is charged using an external device such as the charger 200, a circuit configuration in which the battery pack is discharged when a device such as a power tool is connected, and a battery charger. It has a printed circuit board on which terminals TE1 to TE6 that can be connected to the terminals of devices such as 200 and power tools are mounted. Although not shown, the battery pack 100 includes a housing for accommodating the battery pack printed board, and is configured to be detachable from devices such as the charger 200 and the power tool. When the battery pack 100 is mounted on the charger 200, the terminals TE1 and TE6 of the battery pack 100 are connected to the corresponding terminals TE11 and TE16 of the charger 200, and the battery pack 100 is assembled using the charger 200. The battery can be charged. On the other hand, although not shown, when the battery pack 100 is attached to a device such as a power tool, the terminals TE1 and TE6 of the battery pack 100 are connected to the terminals of the corresponding device, and the battery pack 100 of the battery pack 100 is connected. Then, power can be supplied to the device. [0014] The above-described battery pack 100 housing houses a battery pack in which a lithium-ion battery group 110 and a nickel-metal hydride battery group 120 are connected in series. The circuit configuration mounted on the printed circuit board includes a battery control unit 130 having a CPU and controlling the operation of the battery pack 100, a ROM 140 storing a charge control program and parameters for charging the assembled battery, and a ROM 140. Equipped with a thermistor TM arranged near the Kel-Hydrogen battery group 120, terminals TE1 to TE6 for connecting the charger 200 or the charged battery pack 100 to the device, a switch SW1 switched by the battery control unit 130, and a resistor R1. .
リチウムイオン電池群 110は、本発明における「第 1の電池セルが複数個接続され た電池群」に対応する要素である。また、電池制御部 130は本発明における「制御部 」に対応する要素である。  The lithium ion battery group 110 is an element corresponding to the “battery group in which a plurality of first battery cells are connected” in the present invention. The battery control unit 130 is an element corresponding to the “control unit” in the present invention.
[0015] 本実施の形態における組電池では、リチウムイオン電池群 110とニッケル水素電池 群 120は直列に接続されている。また、リチウムイオン電池群 110を構成するリチウム イオン電池セル 111一 113は、リチウムイオン電池群 110内で直列に接続されて!、る 。一方、ニッケル水素電池群 120は、 1個のニッケル水素電池セル 121によって構成 されている。  [0015] In the battery pack according to the present embodiment, lithium ion battery group 110 and nickel hydride battery group 120 are connected in series. In addition, the lithium ion battery cells 111 to 113 constituting the lithium ion battery group 110 are connected in series within the lithium ion battery group 110. On the other hand, the nickel hydride battery group 120 includes one nickel hydride battery cell 121.
1本のリチウムイオン電池セルの公称電圧は約 3. 6V、 1本のニッケル水素電池セ ルの公称電圧は約 1. 2Vに設定されているため、直列に接続した 3本のリチウムィォ ン電池セル 111一 113でリチウムイオン電池群 110と、 1本のニッケル水素電池セル 121でニッケル水素電池群 120とを直列に接続することで、電池パック 100の公称電 圧を 12V (3. 6V X 3 + 1. 2V= 12V)に設定することができる。  The nominal voltage of one lithium-ion battery cell is set to about 3.6 V, and the nominal voltage of one nickel-metal hydride battery cell is set to about 1.2 V, so three lithium-ion battery cells connected in series By connecting the lithium-ion battery group 110 with 111-113 and the nickel-metal hydride battery group 120 with one nickel-metal hydride battery cell 121 in series, the nominal voltage of the battery pack 100 becomes 12V (3.6V X 3 + 1. 2V = 12V) can be set.
リチウムイオン電池セル 111一 113は、本発明の「第 1の電池セル」、ニッケル水素 電池セル 121は、本発明の「第 2の電池セル」に対応する。  The lithium ion battery cells 111-113 correspond to the "first battery cell" of the present invention, and the nickel hydrogen battery cell 121 corresponds to the "second battery cell" of the present invention.
[0016] このように構成された組電池のリチウムイオン電池群 110のプラス側(図 1に示す上 側)は電池パック 100の端子 TE1と接続され、ニッケル水素電池群 120のマイナス側 (図 1に示す下側)は電池パック 100の端子 TE2と接続されている。電池パック 100が 充電器 200に装着されると、端子 TE1, TE2は、後述する充電器 200の端子 TE 11 , TE 12にそれぞれ接続され、リチウムイオン電池群 110及びニッケル水素電池群 1 20が充電される。また、電池パック 100が電動工具等の機器に装着されると、端子 T El, TE2は、機器の対応する端子に接続され、リチウムイオン電池群 110及び-ッ ケル水素電池群 120が放電をして機器に電源を供給する。 The positive side (upper side shown in FIG. 1) of the lithium ion battery group 110 of the battery pack thus configured is connected to the terminal TE1 of the battery pack 100, and the negative side (FIG. 1) of the nickel hydride battery group 120. Is connected to the terminal TE2 of the battery pack 100. When the battery pack 100 is mounted on the charger 200, the terminals TE1 and TE2 are connected to terminals TE11 and TE12 of the charger 200 described later, respectively, and the lithium ion battery group 110 and the nickel hydride battery group 120 are charged. Is done. When the battery pack 100 is attached to a device such as a power tool, the terminal T El and TE2 are connected to corresponding terminals of the device, and the lithium ion battery group 110 and the nickel hydrogen battery group 120 discharge to supply power to the device.
[0017] ニッケル水素電池群 120の近傍には、負の温度特性を有する NTCサーミスタ TM の本体が配置されており、ニッケル水素電池群 120の温度が上昇するとサーミスタ T Mのインピーダンスが低下する構成となって!/、る。サーミスタ TMの一端は端子 TE4 及び電池制御部 130の接地端子 135に、サーミスタ TMの他端は端子 TE5及び電 池制御部 130の端子 136に接続されて 、る。 [0017] A main body of an NTC thermistor TM having a negative temperature characteristic is arranged near the nickel-metal hydride battery group 120. When the temperature of the nickel-metal hydride battery group 120 increases, the impedance of the thermistor TM decreases. T! / One end of the thermistor TM is connected to the terminal TE4 and the ground terminal 135 of the battery control unit 130, and the other end of the thermistor TM is connected to the terminal TE5 and the terminal 136 of the battery control unit 130.
これにより、電池パック 100が充電器 200に装着されて、電池パック 100の端子 TE 5力 S充電器 200の端子 TE15に、又電池パック 100の端子 TE4が充電器 200の端子 TE14に接続されると、充電器 200の制御部 230は、サーミスタ TMの両端の電圧値 を所定時間毎に検出する。これに基づき、サーミスタ TMのインピーダンス値の変化、 ひいては、ニッケル水素電池群 120の温度が高温状態である力否かを判別すること ができる。  As a result, the battery pack 100 is attached to the charger 200, and the terminal TE5 of the battery pack 100 is connected to the terminal TE15 of the S charger 200, and the terminal TE4 of the battery pack 100 is connected to the terminal TE14 of the charger 200. Then, the control unit 230 of the charger 200 detects the voltage value between both ends of the thermistor TM every predetermined time. Based on this, it is possible to determine a change in the impedance value of the thermistor TM and, consequently, whether the temperature of the nickel-metal hydride battery group 120 is high or not.
電池パック 100の電池制御部 130でも、接地端子 135, 136間の電位差(サーミス タ TMの両端の電圧値)から、ニッケル水素電池群 120の温度が高温状態であるか 否かを判別することができる。  The battery control unit 130 of the battery pack 100 can also determine whether the temperature of the nickel-metal hydride battery group 120 is high based on the potential difference between the ground terminals 135 and 136 (the voltage value at both ends of the thermistor TM). it can.
[0018] また、 ROM140は端子 TE6に接続されており、電池パック 100が充電器 200に装 着されると、端子 TE6が後述する充電器 200の端子 TE16に接続される。後述する 充電器 200の制御部 230は、 ROM140から端子 TE6、端子 TE16を介して、予め R OM140に記憶されて!、る電池パック 100の充電制御プログラムや電池パック 100の 固有パラメータを読み取ることができる。  Further, ROM 140 is connected to terminal TE6, and when battery pack 100 is mounted on charger 200, terminal TE6 is connected to terminal TE16 of charger 200 described later. The control unit 230 of the charger 200, which will be described later, can read the charge control program of the battery pack 100 and the unique parameters of the battery pack 100 stored in the ROM 140 in advance from the ROM 140 via the terminals TE6 and TE16. it can.
[0019] また、リチウムイオン電池セル 113のマイナス端子とニッケル水素電池セル 121の プラス端子の間には接続点 Pが設けられている。接続点 Pは、電池制御部 130の端 子 132に接続されている。また、リチウムイオン電池群 110のプラス側は、電池制御 部 130の端子 131に、ニッケル水素電池群 120のマイナス側は電池制御部 130の端 子 133に接続されている。これにより、電池制御部 130は、リチウムイオン電池群 110 の電圧値とニッケル水素電池群 120の電圧値をそれぞれ検出することができる。  A connection point P is provided between the minus terminal of the lithium-ion battery cell 113 and the plus terminal of the nickel-metal hydride battery cell 121. The connection point P is connected to a terminal 132 of the battery control unit 130. The plus side of the lithium ion battery group 110 is connected to a terminal 131 of the battery control unit 130, and the minus side of the nickel hydride battery group 120 is connected to a terminal 133 of the battery control unit 130. Thereby, battery control unit 130 can detect the voltage value of lithium ion battery group 110 and the voltage value of nickel hydrogen battery group 120, respectively.
[0020] また、接続点 Pは、スィッチ SW1の一端に接続されている。スィッチ SW1の他端は 、抵抗 Rlの一端に接続されている。そして、抵抗 R1の他端は、リチウムイオン電池 群 110のプラス側に接続されている。これにより、端子 TE1、リチウムイオン電池群 11 0のプラス側、抵抗 R1の一方端 (前記した他端)、電池制御部 130の端子 131が接 続されている。 [0020] The connection point P is connected to one end of the switch SW1. The other end of switch SW1 , And one end of the resistor Rl. The other end of the resistor R1 is connected to the positive side of the lithium ion battery group 110. Thus, the terminal TE1, the plus side of the lithium ion battery group 110, one end of the resistor R1 (the other end described above), and the terminal 131 of the battery control unit 130 are connected.
また、端子 TE2、ニッケル水素電池群 120のマイナス側、電池制御部 130の端子 1 33が接続されている。  The terminal TE2, the negative side of the nickel-metal hydride battery group 120, and the terminal 133 of the battery control unit 130 are connected.
また、端子 TE3は電池制御部 130の電源端子 134と接続され、これにより、電池制 御部 130の作動電源 (後述する充電器 200の第 2電源回路 250の出力であり、概ね 5Vの制御電源)が充電器 200より供給されている。  Further, the terminal TE3 is connected to the power supply terminal 134 of the battery control unit 130, and thereby, the operation power supply of the battery control unit 130 (the output of the second power supply circuit 250 of the charger 200 described later, ) Is supplied from the charger 200.
また、端子 TE4は電池制御部 130の接地端子 135と接続され、これにより、電池制 御部 130の接地端子 135が接地されて 、る。  Further, the terminal TE4 is connected to the ground terminal 135 of the battery control unit 130, whereby the ground terminal 135 of the battery control unit 130 is grounded.
そして、スィッチ SW1は電池制御部 130により開状態 (オフ)もしくは閉状態 (オン) とすることができる。  The switch SW1 can be set to an open state (off) or a closed state (on) by the battery control unit 130.
スィッチ SW1が開状態 (オフ)の場合には、端子 TE1→リチウムイオン電池群 110 →ニッケル水素電池群 120→端子 TE2に組電池の充電電流が流れ、これによつて、 リチウムイオン電池群 110及びニッケル水素電池群 120が充電される。  When the switch SW1 is in the open state (OFF), the charging current of the assembled battery flows from the terminal TE1 to the lithium-ion battery group 110 to the nickel-metal hydride battery group 120 to the terminal TE2. The nickel hydrogen battery group 120 is charged.
スィッチ SW1が閉状態 (オン)の場合には、リチウムイオン電池群 110の充電電流 の一部(例えば、充電電流の 1Z100) 1S 端子 TE1→抵抗 Rl→スィッチ SW1→- ッケル水素電池群 120→端子 TE2に流れる。これによつて、リチウムイオン電池群 11 0に供給される充電電気量 (Ah)が、ニッケル水素電池群 120に供給される充電電 気量 (Ah)と比較して相対的に少なくなる。  When the switch SW1 is closed (ON), a part of the charging current of the lithium-ion battery group 110 (for example, 1Z100 of charging current) 1S terminal TE1 → resistance Rl → switch SW1 →-hydrogen battery group 120 → terminal Flow to TE2. As a result, the amount of charge (Ah) supplied to the lithium ion battery group 110 is relatively smaller than the amount of charge (Ah) supplied to the nickel hydrogen battery group 120.
このように抵抗 Rl、スィッチ SW1が設けられ、スィッチ SW1がオンすることでリチウ ムイオン電池セルに並列接続される回路が、本発明の「分流回路」に対応する。 ここで、抵抗 R1は、スィッチ SW1がオンした場合に、分流回路に流す充電電流の 量に基づいて算出した抵抗値の抵抗素子を選択する。上記したように各部品を接続 することにより、電池制御部 130が、端子 132及び端子 133間の電位差を検出して 算出したニッケル水素電池群 120の電圧値が、本発明の「残容量指標」に対応する [0022] 電池制御部 130は記憶部を有している。記憶部には、予め、検出部により検出した ニッケル水素電池群 120の温度と電圧値から充電効率差に基づいてスィッチ SW1 をオン Zオフする比率 (デューティー比)を決定するプログラムが記憶されて 、る。 Thus, the circuit provided with the resistor Rl and the switch SW1 and connected in parallel to the lithium ion battery cell when the switch SW1 is turned on corresponds to the "shunt circuit" of the present invention. Here, as the resistor R1, when the switch SW1 is turned on, a resistance element having a resistance value calculated based on the amount of charging current flowing in the shunt circuit is selected. By connecting the components as described above, the voltage value of the nickel-metal hydride battery group 120 calculated by the battery control unit 130 by detecting the potential difference between the terminal 132 and the terminal 133 becomes the “remaining capacity index” of the present invention. Corresponding to [0022] Battery control unit 130 has a storage unit. The storage unit previously stores a program for determining a ratio (duty ratio) for turning on / off the switch SW1 based on the charging efficiency difference from the temperature and voltage value of the nickel-metal hydride battery group 120 detected by the detection unit. You.
[0023] 充電器 200は、 AC入力電源を電池パック 100充電用の直流電源に変換する電源 回路 210、電源回路 210を制御する充電制御部 220、充電器 200の動作を制御す る制御部 230、充電器 200が充電動作を行うためのパラメータ等(充電器 200の型式 等による)が記憶された記憶部 240、電源回路 210が出力する直流電源を制御用電 源に変換する第 2電源回路 250、充電電流検出用のシャント抵抗 Rl l、電池パック 1 00のサーミスタ TM両端の電圧値検出用の分圧抵抗 R12、電池パック 100との接続 のための端子 TE11— TE16、 AC入力電源を接続する入力端子 SE11, SE12を備 えている。  The charger 200 includes a power supply circuit 210 that converts AC input power into a DC power supply for charging the battery pack 100, a charge control unit 220 that controls the power supply circuit 210, and a control unit 230 that controls the operation of the charger 200. , A storage unit 240 in which parameters for charging operation of the charger 200 (depending on the type of the charger 200, etc.) are stored, and a second power supply circuit for converting DC power output from the power supply circuit 210 to control power. 250, shunt resistor Rl l for charging current detection, thermistor TM for battery pack 100 Voltage dividing resistor R12 for voltage detection at both ends, terminals for connection to battery pack 100 TE11-TE16, AC input power supply connected Input terminals SE11 and SE12 are provided.
[0024] 電源回路 210の入力側は、 AC入力電源を接続可能な入力端子 SE11, SE12に 接続されている。また、電源回路 210の出力側は、充電制御部 220の制御のもとに、 電源回路 210で AC入力電源カゝら変換され電池パック 100を充電する直流電源の電 源供給端子 TE11に接続されている。また、抵抗 R11を介して接地端子 TE12に接 続されている。  [0024] The input side of the power supply circuit 210 is connected to input terminals SE11 and SE12 to which AC input power can be connected. The output side of the power supply circuit 210 is connected to a power supply terminal TE11 of a DC power supply that is converted from an AC input power supply by the power supply circuit 210 and charges the battery pack 100 under the control of the charge control unit 220. ing. Also, it is connected to the ground terminal TE12 via the resistor R11.
電池パック 100や充電器 200内の IC等に概ね 5 Vの制御用電源を供給する第 2電 源回路 250の入力側は、電源回路 210と接続されている。また、第 2電源回路 250の 出力側は、制御用電源の出力端子 TE13、制御用電源の接地端子 TE14に其々接 続されている。  The input side of the second power supply circuit 250 that supplies control power of approximately 5 V to the battery pack 100 and the ICs in the charger 200 is connected to the power supply circuit 210. The output side of the second power supply circuit 250 is connected to the output terminal TE13 of the control power supply and the ground terminal TE14 of the control power supply, respectively.
出力端子 TE 13は、サーミスタ TMの電圧値検出用分圧抵抗 R12を介して端子 TE 15、及び制御部 230に接続されている。  The output terminal TE13 is connected to the terminal TE15 and the control unit 230 via a voltage value detecting voltage dividing resistor R12 of the thermistor TM.
さらに、制御部 230には、記憶部 240、端子 TE12, TE16、及び充電制御部 220 が接続されている。  Further, a storage unit 240, terminals TE12 and TE16, and a charge control unit 220 are connected to the control unit 230.
[0025] 次に、図 1に基づき、電池パック 100 (リチウムイオン電池群 110及びニッケル水素 電池群 120)を充電器 200で充電する一般的な動作を説明する。  Next, a general operation of charging the battery pack 100 (the lithium ion battery group 110 and the nickel hydride battery group 120) by the charger 200 will be described with reference to FIG.
充電器 200の入力端子 SE11, SE12に AC入力電源が接続される。これにより、電 源回路 210で AC入力電源が変換された直流電源が第 2電源回路 250に入力され、 第 2電源回路 250に入力された直流電源は第 2電源回路 250で制御用電源に変換 される。制御用電源は、充電器 200内の制御部 230、充電制御部 220、記憶部 240 に供給され、これによつて充電器 200は動作を開始する。 AC input power is connected to input terminals SE11 and SE12 of charger 200. As a result, the DC power obtained by converting the AC input power in the power circuit 210 is input to the second power circuit 250, The DC power input to the second power supply circuit 250 is converted into a control power supply by the second power supply circuit 250. The control power is supplied to the control unit 230, the charge control unit 220, and the storage unit 240 in the charger 200, whereby the charger 200 starts operating.
[0026] 電池パック 100が充電器 200に装着されると、充電器 200の各端子 TE 11— TE 16 が電池パック 100の端子 TE1— 6にそれぞれ接続される。これにより、電池パック 10 0の電池制御部 130は、充電器 200の第 2電源回路 250から制御用電源の出力端 子 TE 13を介して電池パック 100の端子 TE3、及び制御用電源の接地端子 TE 14を 介して電池パック 100の端子 TE4に制御用電源が供給され、電池制御部 130に制 御用電源が供給される。この際、電池パック 100のスィッチ SW1は、初期状態として 開状態となって 、る(オフして 、る)。  When battery pack 100 is mounted on charger 200, terminals TE11-TE16 of charger 200 are connected to terminals TE1-6 of battery pack 100, respectively. Thus, the battery control unit 130 of the battery pack 100 is connected to the terminal TE3 of the battery pack 100 from the second power supply circuit 250 of the charger 200 via the output terminal TE13 of the control power supply, and the ground terminal of the control power supply. The control power is supplied to the terminal TE4 of the battery pack 100 via the TE, and the control power is supplied to the battery control unit. At this time, the switch SW1 of the battery pack 100 is opened (turned off) as an initial state.
[0027] すると、充電器 200の制御部 230は、電池パック 100の ROM140に記憶されてい る充電制御プログラムや電池パック 100の固有パラメータを端子 TE4、端子 TE14を 介して読み取る。制御部 230は、 ROM140から読み取った充電制御プログラムとパ ラメータ等の情報を用いて、電池パック 100の充電開始時の好適な充電電流値を算 出し、充電制御部 220に当該充電電流値を指示する信号を出力する。充電制御部 2 20は、制御部 230から出力された信号に基づいて、電源回路 210が当該充電電流 値を出力するように制御する。このようにして電池パック 100のリチウムイオン電池群 1 10と、ニッケル水素電池群 120に対して充電が開始される。  Then, the control unit 230 of the charger 200 reads the charge control program and the unique parameters of the battery pack 100 stored in the ROM 140 of the battery pack 100 via the terminals TE4 and TE14. The control unit 230 calculates a suitable charge current value at the start of charging the battery pack 100 by using the charge control program read from the ROM 140 and information such as parameters, and instructs the charge control unit 220 of the charge current value. Output a signal. The charging control unit 220 controls the power supply circuit 210 to output the charging current value based on the signal output from the control unit 230. In this way, charging of the lithium ion battery group 110 and the nickel hydride battery group 120 of the battery pack 100 is started.
また、制御部 230は、シャント抵抗 R11を用いて充電電流値を監視していて、充電 電流値が設定値以下になった場合等には、組電池(リチウムイオン電池群 110と、二 ッケル水素電池群 120)の充電が完了したことを判別し、充電動作を終了する。  The control unit 230 monitors the charging current value using the shunt resistor R11. If the charging current value becomes equal to or less than the set value, for example, the battery pack (the lithium ion battery group 110 and the nickel hydrogen It is determined that the charging of the battery group 120) has been completed, and the charging operation ends.
[0028] また、充電動作中、制御部 230は、端子 TE5、端子 TE 15を介してサーミスタ TM の出力信号を受信している。制御部 230は、抵抗 R12を用いて概ね 5Vの制御用電 源電圧を分圧した、端子 TE15の電位を検出してサーミスタ TMの両端の電圧値を 監視している。そして、制御部 230は、温度が上昇するとインピーダンスが低下する サーミスタ TMの特性に基づ!/、て、サーミスタ TMが近傍に配置されて!、るニッケル 水素電池群 120の温度が設定温度未満力否かを監視している。制御部 230は、 -ッ ケル水素電池群 120の温度が設定温度以上であることを検出した場合、充電制御部 220に充電動作を停止する信号を出力する。一般的に、ニッケル水素電池セルはリ チウムイオン電池セルと比較して充電動作により温度が上昇し易ぐ然るに、少なくと もニッケル水素電池群 120の温度を監視することにより各電池群の温度上昇による 不具合を防止することができる。 [0028] Further, during the charging operation, the control unit 230 receives the output signal of the thermistor TM via the terminals TE5 and TE15. The control unit 230 monitors the voltage value across the thermistor TM by detecting the potential at the terminal TE15 by dividing the control power supply voltage of approximately 5 V using the resistor R12. Then, the control unit 230 reduces the impedance when the temperature rises. Based on the characteristics of the thermistor TM, the temperature of the nickel-metal hydride battery group 120 becomes lower than the set temperature. It monitors whether or not. When detecting that the temperature of the nickel hydrogen battery group 120 is equal to or higher than the set temperature, the control unit 230 A signal for stopping the charging operation is output to 220. Generally, the temperature of a nickel-metal hydride battery cell tends to rise due to a charging operation as compared with a lithium-ion battery cell, and at least the temperature of each battery group is monitored by monitoring the temperature of the nickel-metal hydride battery group 120. Problems can be prevented.
このようにして、充電器 200を用いて、電池パック 100のリチウムイオン電池群 110と ニッケル水素電池群 120が充電される。  In this way, using the charger 200, the lithium ion battery group 110 and the nickel hydride battery group 120 of the battery pack 100 are charged.
[0029] 次に、本発明の電池パック 100にっき、充電効率に起因するリチウムイオン電池群 110とニッケル水素電池群 120間の残容量差の発生を防止しつつ組電池を充電す る動作を、図 2—図 4を用いて説明する。電池制御部 130の CPUが実行する、電池 群間の残容量差の発生を防止するためのプログラムのフローチャート図を図 2に、ま た、デューティー比のマッピングデータの一例を図 3に、スィッチ SW1がオン Zオフ する(分流回路が接続 Z非接続状態を繰り返して ヽる)状態を示すタイミングチャート 図を図 4に示す。 Next, with respect to the battery pack 100 of the present invention, the operation of charging the assembled battery while preventing the occurrence of the remaining capacity difference between the lithium ion battery group 110 and the nickel hydride battery group 120 due to charging efficiency will be described. This will be described with reference to FIGS. FIG. 2 is a flowchart of a program executed by the CPU of the battery control unit 130 to prevent the remaining capacity difference between the battery groups, FIG. 3 is an example of duty ratio mapping data, and FIG. Fig. 4 is a timing chart showing a state in which is turned on and off (the shunt circuit repeats the connection Z non-connection state).
[0030] 充電器 200に電池パック 100が接続されると、電池パック 100の電池制御部 130に よって、充電電流の分流 (分流回路の接続 Z非接続)が制御される。  When the battery pack 100 is connected to the charger 200, the battery control unit 130 of the battery pack 100 controls the shunt of the charging current (the connection Z of the shunt circuit is not connected).
実質的に同等の環境下においては、リチウムイオン電池セルはニッケル水素電池 セルよりも充電効率が高い。すなわち、スィッチ SW1がオフのまま (分流回路を非接 続状態で)充電をすると、先にリチウムイオン電池群 110が満充電となりやすい。また 、特に充電途中では、リチウムイオン電池群 110の方がニッケル水素電池群 120より も残容量が多くなりやすい。  Under substantially the same environment, lithium-ion battery cells have higher charging efficiency than nickel-metal hydride battery cells. That is, when charging is performed while the switch SW1 is turned off (in a state where the shunt circuit is not connected), the lithium ion battery group 110 is likely to be fully charged first. Further, particularly during charging, the remaining capacity of the lithium-ion battery group 110 tends to be larger than that of the nickel-metal hydride battery group 120.
そこで、電池制御部 130の CPUは、充電中に分流回路のリチウムイオン電池群 11 Therefore, during charging, the CPU of the battery control unit 130 controls the lithium-ion battery group 11 of the shunt circuit.
0への接続 Z非接続を所定のデューティー比で繰り返し、リチウムイオン電池群 110 に供給される充電電気量 (Ah)を制御しながら、リチウムイオン電池群 110とニッケル 水素電池群 120に残容量差が発生することを防止する。 0 Connection Z Disconnection is repeated at a predetermined duty ratio, and while controlling the amount of charge (Ah) supplied to the lithium-ion battery group 110, the remaining capacity difference between the lithium-ion battery group 110 and the nickel-metal hydride battery group 120 is controlled. Is prevented from occurring.
[0031] 図 2に示すフローチャート図のステップ S10の処理では、電池制御部 130は、組電 池が満充電状態である力否かを判別する。具体的には、組電池の両端の電圧値(図 1に示す電池制御部 130の端子 131, 133間の電位差)から残容量を算出する。一 般的に、電池の電圧力 残容量を算出する方法は公知であるので、詳細な説明は省 略する。そして、電池制御部 130は、組電池が満充電であることを判別したら (ステツ プ S10で YES)、ステップ S16の処理に進む。組電池が満充電ではないことを判別し たら(ステップ S 10で NO)、電池制御部 130はステップ SI 2の処理に進む。 In the process of step S10 in the flowchart shown in FIG. 2, the battery control unit 130 determines whether or not the battery is in a fully charged state. Specifically, the remaining capacity is calculated from the voltage value at both ends of the battery pack (the potential difference between the terminals 131 and 133 of the battery control unit 130 shown in FIG. 1). In general, a method for calculating the remaining voltage capacity of a battery is known, and a detailed description thereof will be omitted. Abbreviate. Then, when determining that the battery pack is fully charged (YES in step S10), battery control unit 130 proceeds to the process in step S16. If it is determined that the battery pack is not fully charged (NO in step S10), battery control unit 130 proceeds to the processing in step SI2.
[0032] ステップ S 12の処理では、電池制御部 130の制御により組電池に充電が開始され る。なお、分流回路をリチウムイオン電池群 110に接続 Z非接続するデューティー比 の初期値は、図 3のマッピングデータに示す" dl"とする。そして、電池制御部 130は ステップ S 14の処理に進む。  [0032] In the process of step S12, charging of the assembled battery is started under the control of the battery control unit 130. The initial value of the duty ratio at which the shunt circuit is connected to the lithium ion battery group 110 and not connected is set to "dl" shown in the mapping data of FIG. Then, battery control unit 130 proceeds to the process of step S14.
[0033] ステップ S 14の処理では、電池制御部 130は、充電効率の差に関する指標として、 所定のタイミングでニッケル水素電池群 120の電圧値と温度とを検出する。ニッケル 水素電池群 120の電圧値 V (V)としては、電池制御部 130の端子 132, 133の間の 電位差を検出する。また、ニッケル水素電池群 120の温度 T (度)としては、電池制御 部 130の端子 135, 136間の電位差 (サーミスタ TMの両端の電圧値)を検出し、サ 一ミスタ TMのインピーダンス値と温度との関連力 前述した方法で算出することがで きる。そして、電池制御部 130は、ステップ S 15の処理に進む。  [0033] In the process of step S14, battery control unit 130 detects the voltage value and temperature of nickel-metal hydride battery group 120 at a predetermined timing as an index relating to the difference in charging efficiency. As the voltage value V (V) of the nickel-metal hydride battery group 120, a potential difference between the terminals 132 and 133 of the battery control unit 130 is detected. As the temperature T (degrees) of the nickel-metal hydride battery group 120, the potential difference between the terminals 135 and 136 of the battery control unit 130 (the voltage value at both ends of the thermistor TM) is detected, and the impedance value of the thermistor TM and the temperature are measured. Relevance can be calculated by the method described above. Then, battery control unit 130 proceeds to the process of step S15.
[0034] ステップ S15の処理では、電池制御部 130は、ステップ S 14で検出したニッケル水 素電池群 120の電圧値 V (V)と温度 T (度)に基づいて、図 3に示すマッピングデータ 力 分流回路をリチウムイオン電池分 110へ接続 Z非接続するデューティー比を抽 出する。そして、電池制御部 130は、ステップ S 10の処理に戻る。  [0034] In the process of step S15, the battery control unit 130 determines the mapping data shown in Fig. 3 based on the voltage value V (V) and the temperature T (degrees) of the nickel hydrogen battery group 120 detected in step S14. Connect the power shunt circuit to the lithium-ion battery component 110. Extract the duty ratio for non-connection. Then, battery control unit 130 returns to the process of step S10.
ここで、図 3に示す表では、横方向のパラメータとしてニッケル水素電池群 120の電 圧値 (V (V)— V (V) )、縦方向のパラメータとしてニッケル水素電池群 120の温度( T (度)一 T (度))を用いて、各電圧及び温度間において電池制御部 130が抽出す るデューティー比を示している。例えば、ニッケル水素電池群 120の温度 T (度)が温 度 T一 T (度)の間であり、なおかつ電圧値 V(V)が電圧値 V -V (V)の間であるこ Here, in the table shown in FIG. 3, the voltage value (V (V) —V (V)) of the nickel-metal hydride battery group 120 as a parameter in the horizontal direction, and the temperature (T (Degree)-1 T (degree)) indicates the duty ratio extracted by the battery control unit 130 between each voltage and temperature. For example, the temperature T (degrees) of the nickel-metal hydride battery group 120 is between the temperatures T and T (degrees), and the voltage value V (V) is between the voltage values V-V (V).
2 3 1 2 2 3 1 2
とが判別されたら、デューティー比として" d5"が抽出される。  Is determined, "d5" is extracted as the duty ratio.
また、本実施の形態では、デューティー比は、 dl < d2' ·く dlOの関係を有するよう に設定されている。  Further, in the present embodiment, the duty ratio is set to have a relationship of dl <d2 '· ddlO.
このようにして、分流回路をリチウムイオン電池群 110へ接続 Z非接続するデュー ティー比が抽出され、満充電まで所定のタイミングでデューティー比が更新されつつ 充電される。 In this way, the duty ratio for connecting the shunt circuit to the lithium-ion battery group 110 is extracted, and the duty ratio is updated at a predetermined timing until the battery is fully charged. Charged.
[0035] 一方、ステップ S10の処理力もステップ S16の処理に進んだ場合には、電池制御 部 130は充電を終了し、スィッチ SW1をオフして(リチウムイオン電池群 110と分流回 路を非接続状態にして)終了する。  [0035] On the other hand, when the processing power of step S10 also proceeds to the processing of step S16, the battery control unit 130 ends the charging and turns off the switch SW1 (disconnects the lithium ion battery group 110 and the shunt circuit from each other). And exit.
[0036] 図 4に示す、スィッチ SW1がオン Zオフする状態 (分流回路のリチウムイオン電池 群 110への接続 Z非接続を繰り返して 、る状態)の一例では、時刻 toで充電が開始 され、時刻 tO— tlでは、ニッケル水素電池群 120の温度 T (度)が温度 T (度)未満 であり、なおかつ電圧値 V (V)が電圧値 V (V)未満であり、デューティー比は初期値 の" dl"のまま充電が継続される。  In an example shown in FIG. 4, in a state where the switch SW1 is turned on and turned off (a state in which the connection / disconnection of the shunt circuit to the lithium-ion battery group 110 is repeated), charging is started at time to. At time tO—tl, the temperature T (degrees) of the nickel-metal hydride battery group 120 is lower than the temperature T (degrees), the voltage value V (V) is lower than the voltage value V (V), and the duty ratio is the initial value. Charging is continued with "dl".
そして、時刻 tlでは、図 2に示すフローチャート図のステップ S15の処理で、ステツ プ S14で検出したニッケル水素電池群 120の温度 T (度)と電圧値 V(V)力 温度 T( 度)が温度 Τ (度)未満であり、なおかつ電圧値 V(V)が電圧値 V— V (V)の間であ  Then, at time tl, the temperature T (degrees) and the voltage value V (V) force temperature T (degrees) of the nickel-metal hydride battery group 120 detected in step S14 are determined in step S15 of the flowchart shown in FIG. The temperature is less than Τ (degrees) and the voltage value V (V) is between the voltage values V--V (V).
1 1 2  1 1 2
ることが判別される。そこで、分流回路のデューティー比として、図 3に示すマッピング データから" d2"が抽出され設定されて 、る。  Is determined. Therefore, “d2” is extracted from the mapping data shown in FIG. 3 and set as the duty ratio of the shunt circuit.
時刻 t2では、ニッケル水素電池群 120の温度 T (度)と電圧値 V(V)力 温度 T (度) が温度 T一 T (度)の間であり、なおかつ電圧値 V (V)が電圧値 V -V (V)の間で  At time t2, the temperature T (degree) of the nickel-metal hydride battery group 120 and the voltage value V (V) force The temperature T (degree) is between the temperature T and T (degree), and the voltage value V (V) is the voltage. Between values V -V (V)
1 2 2 3  1 2 2 3
あることが判別される。そこで、分流回路のデューティー比として、図 3に示すマツピン グデータから" d5"が抽出され設定されている。  It is determined that there is. Therefore, “d5” is extracted and set from the mapping data shown in FIG. 3 as the duty ratio of the shunt circuit.
時刻 t3では、ニッケル水素電池群 120の温度 T (度)と電圧値 V(V)力 温度 T (度) が温度 T  At time t3, the temperature T (degrees) and the voltage value V (V) force of the nickel-metal hydride battery group 120 become the temperature T (degrees).
2一 T (度)の間であり、なおかつ電圧値 V (V)が電圧値 V -V (V)の間で 3 3 4  2 Between T (degrees) and when the voltage value V (V) is between the voltage values V-V (V) 3 3 4
あることが判別される。そこで、分流回路のデューティー比として、図 3に示すマツピン グデータから" d9"が抽出され設定されている。  It is determined that there is. Therefore, "d9" is extracted from the mapping data shown in Fig. 3 and set as the duty ratio of the shunt circuit.
そして、時刻 t4では、ステップ S10の処理で満充電が検出され充電が停止されて いる。  At time t4, full charge is detected in the process of step S10, and charging is stopped.
[0037] このように、本実施の形態では、ニッケル水素電池群 120の電圧値が大きくなるに つれ、また、ニッケル水素電池群 120の温度が高くなるにつれ、分流回路がリチウム イオン電池群 110に接続している時間比が大きくなり、リチウムイオン電池群 110に 供給する充電電気量 (Ah)が少なくなるように構成される。すなわち、電池セルの温 度が高くなるにつれ、電池セルの残容量が多くなるにつれ、リチウムイオン電池セル とニッケル水素電池セルの充電効率の差が広がることに基づく影響を、リチウムィォ ン電池群 110に分流回路を接続するデューティー比が大きくなるように構成して回避 している。 As described above, in the present embodiment, as the voltage value of nickel-metal hydride battery group 120 increases, and as the temperature of nickel-metal hydride battery group 120 increases, the shunt circuit is connected to lithium ion battery group 110. The connection time ratio is increased, and the amount of charge electricity (Ah) supplied to the lithium ion battery group 110 is reduced. That is, the temperature of the battery cell As the battery capacity increases, the effect of the difference in charging efficiency between the lithium-ion battery cells and nickel-metal hydride battery cells increases as the remaining capacity of the battery cells increases. The ratio is configured to be large to avoid this.
[0038] なお、図 3に示す、デューティー比のマッピングデータの値は、温度や電圧値を検 出する電池セルの特性や、分流回路を接続する電池セルの特性に基づいて、任意 に設定することができる。例えば、充電により電池セルの残容量が少→中→大と変化 するにつれ、充電効率が 80%→99%y→85%と変化する特性の電池セルの場合に は、図 3に示すデューティー比は、 d2く d3 ' 'dl < dlOく dlの関係を有するように設 定される。  [0038] The values of the duty ratio mapping data shown in Fig. 3 are arbitrarily set based on the characteristics of the battery cell for detecting the temperature and the voltage value and the characteristics of the battery cell to which the shunt circuit is connected. be able to. For example, in the case of a battery cell whose charging efficiency changes from 80% to 99% y to 85% as the remaining capacity of the battery cell changes from small to medium to large, the duty ratio shown in Fig. 3 Is set to have a relationship of d2 <d3′′dl <dlO <dl.
[0039] このようにして、充電効率が比較的高いリチウムイオン電池セル側に分流回路を設 け、デューティー比を更新させつつ、分流回路のリチウムイオン電池群 110への接続 Z非接続を繰り返すことで、充電効率の差に起因するニッケル水素電池セルとの残 容量差が生じることを防止しつつ、組電池をバランス良く充電を制御することができる  [0039] In this way, the shunt circuit is provided on the lithium ion battery cell side having relatively high charging efficiency, and the duty ratio is updated and the connection Z disconnection of the shunt circuit to the lithium ion battery group 110 is repeated. Thus, it is possible to control charging of the assembled battery in a well-balanced manner while preventing a remaining capacity difference from the nickel-metal hydride battery cell due to a difference in charging efficiency.
[0040] 第 1の実施の形態では、充電効率の差に関する指標として、ニッケル水素電池群 1 20の温度 T (度)と電圧値 V (V)を検出し、リチウムイオン電池群 110の充電電流を分 流するデューティー比を決定する場合について説明したが、充電効率の差に関する 指標の種類は本実施の形態に限定されるものではない。例えば、充電効率の差に関 する指標として、組電池の充電電流値、リチウムイオン電池群 110の残容量等を用い ても良い。 In the first embodiment, the temperature T (degrees) and voltage value V (V) of nickel-metal hydride battery group 120 are detected as indices relating to the difference in charging efficiency, and the charging current of lithium-ion battery group 110 is A case has been described where the duty ratio for shunting is determined, but the type of index relating to the difference in charging efficiency is not limited to the present embodiment. For example, a charge current value of the assembled battery, the remaining capacity of the lithium ion battery group 110, or the like may be used as an index relating to the difference in charge efficiency.
[0041] (第 2の実施の形態)  (Second Embodiment)
分流回路をニッケル水素電池群 120側にも設けた第 2の実施形態に係る電池パッ ク 101が図 5のブロック図に模式的に示される。図 5では、図 1に示す第 1の実施の形 態の電池パック 100と実質的に同等の構成要素につ ヽては同一符号が付されて 、 る。  A battery pack 101 according to a second embodiment in which a shunt circuit is also provided on the nickel-metal hydride battery group 120 side is schematically shown in the block diagram of FIG. In FIG. 5, components substantially equivalent to those of the battery pack 100 according to the first embodiment shown in FIG. 1 are denoted by the same reference numerals.
[0042] 電池パック 101と第 1の実施の形態の電池パック 100の相違点は、ニッケル水素電 池群 120にも分流回路が設けられる構成であり(併せて図 1参照)、本実施の形態で は、ニッケル水素電池セル 121のプラス側端子と接続点 Pとの間に接続点 Qが設けら れている。そして、接続点 Qは抵抗 R2の一端に接続されている。抵抗 R2に他端は、 スィッチ SW2の一端に接続されている。また、スィッチ SW2の他端は、ニッケル水素 電池群 120のマイナス側に接続されている。スィッチ SW1, SW2は、電池制御部 13 0により開状態 (オフ)もしくは閉状態 (オン)とすることができる。 The difference between the battery pack 101 and the battery pack 100 according to the first embodiment is that the nickel hydrogen battery group 120 is also provided with a shunt circuit (see also FIG. 1). so Has a connection point Q between the positive terminal of the nickel-metal hydride battery cell 121 and the connection point P. The connection point Q is connected to one end of the resistor R2. The other end of the resistor R2 is connected to one end of the switch SW2. The other end of the switch SW2 is connected to the negative side of the nickel hydride battery group 120. The switches SW1 and SW2 can be opened (off) or closed (on) by the battery control unit 130.
[0043] スィッチ SW1, SW2ともが開状態 (オフ)の場合には、端子 TE1→リチウムイオン電 池群 110→ニッケル水素電池群 120→端子 TE2に組電池の充電電流が流れ、これ によって、リチウムイオン電池群 110及びニッケル水素電池群 120が充電される。 スィッチ SW1が閉状態 (オン)、及びスィッチ SW2が開状態 (オフ)の場合には、リ チウムイオン電池群 110の充電電流の一部力 端子 TE1→抵抗 Rl→スィッチ SW1 →接続点 P, Q→ニッケル水素電池群 120→端子 TE2に流れ、これによつて、 -ッケ ル水素電池群 120の充電電気量 (Ah)の方がリチウムイオン電池群 110と比較して 相対的に多くなる。 When both the switches SW1 and SW2 are open (off), the charging current of the assembled battery flows from the terminal TE1 to the lithium-ion battery group 110 to the nickel-metal hydride battery group 120 to the terminal TE2. The ion battery group 110 and the nickel hydride battery group 120 are charged. When switch SW1 is closed (on) and switch SW2 is open (off), a part of the charging current of lithium ion battery group 110 Terminal TE1 → resistance Rl → switch SW1 → connection point P, Q → The nickel-hydrogen battery group 120 flows from the terminal TE2 to the terminal TE2, whereby the amount of charge electricity (Ah) of the nickel-hydrogen battery group 120 is relatively larger than that of the lithium-ion battery group 110.
スィッチ SW1が開状態 (オフ)、及びスィッチ SW2が閉状態 (オン)の場合には、二 ッケル水素電池群 120の充電電流の一部力 端子 TE1→リチウムイオン電池群 110 →接続点 P, Q→抵抗 R2→スィッチ SW2→端子 TE2に流れ、これによつて、リチウム イオン電池群 110充電電気量 (Ah)の方がニッケル水素電池群 120と比較して相対 的に多くなる。  When switch SW1 is open (off) and switch SW2 is closed (on), a part of the charging current of nickel hydrogen battery group 120 Terminal TE1 → lithium ion battery group 110 → connection points P, Q → Resistance R2 → Switch SW2 → Terminal TE2, whereby the charge amount (Ah) of the lithium ion battery group 110 is relatively larger than that of the nickel hydrogen battery group 120.
この抵抗 R2、スィッチ SW2が設けられ、スィッチ SW2がオンすることでニッケル水 素電池セルに並列接続される回路も、本発明の「分流回路」に対応する。  The circuit provided with the resistor R2 and the switch SW2 and connected in parallel to the nickel-metal hydride battery cell when the switch SW2 is turned on also corresponds to the “shunt circuit” of the present invention.
ここで、分流回路の抵抗 Rl, R2の抵抗値は、各スィッチ SW1, SW2がオンしたら 、充電電流の概ね 1Z5が各分流回路に流れるような値が選択される。  Here, the resistance values of the resistors Rl and R2 of the shunt circuit are selected such that when the switches SW1 and SW2 are turned on, approximately 1Z5 of the charging current flows through each shunt circuit.
[0044] このように構成された電池パック 101にっき、充電器 200に電池パック 101が装着さ れると充電が開始される。この際、電池制御部 130の CPUは、リチウムイオン電池群 110に設けられた分流回路、及びニッケル水素電池群 120に設けられた分流回路の 各電池群への接続 Z非接続を所定のデューティー比で繰り返し、各電池群に供給さ れる充電電気量 (Ah)を制御する。これにより、各電池群に残容量差が発生すること を防止しつつ充電を行うことができる。 [0045] 電池パック 101の電池制御部 130の CPUが実行する電池群間の残容量差の発生 を防止するプログラムのフローチャート図を図 6に示す。 When the battery pack 101 is attached to the battery pack 101 configured as described above and the charger 200 is mounted, charging starts. At this time, the CPU of the battery control unit 130 connects the shunt circuit provided in the lithium-ion battery group 110 and the shunt circuit provided in the nickel-metal hydride battery group 120 to each battery group. To control the amount of charge electricity (Ah) supplied to each battery group. As a result, charging can be performed while preventing a remaining capacity difference from occurring in each battery group. FIG. 6 shows a flowchart of a program executed by the CPU of the battery control unit 130 of the battery pack 101 to prevent the remaining capacity difference between the battery groups from occurring.
まず、図 6に示すステップ S20の処理では、電池制御部 130は、組電池が満充電 状態であるか否かを判別する。そして、電池制御部 130は、組電池が満充電であるこ とを判別したら (ステップ S20で YES)、ステップ S34の処理に進む。組電池が満充 電ではないことを判別したら(ステップ S20で NO)、電池制御部 130はステップ S22 の処理に進む。  First, in the process of step S20 shown in FIG. 6, battery control unit 130 determines whether or not the battery pack is fully charged. Then, when determining that the battery pack is fully charged (YES in step S20), battery control unit 130 proceeds to the process in step S34. If it is determined that the battery pack is not fully charged (NO in step S20), battery control unit 130 proceeds to the process in step S22.
[0046] ステップ S22の処理では、電池制御部 130の制御により組電池に充電が開始され る。なお、分流回路を各電池群 110, 120に接続 Z非接続するデューティー比として は初期値が設定されている。そして、電池制御部 130はステップ S24の処理に進む。  In the process of step S22, charging of the assembled battery is started under the control of the battery control unit 130. Note that an initial value is set as the duty ratio at which the shunt circuit is connected to each of the battery groups 110 and 120 and Z is not connected. Then, battery control unit 130 proceeds to the process of step S24.
[0047] ステップ S24の処理では、電池制御部 130は、ニッケル水素電池群 120及びリチウ ムイオン電池群 110の電圧を検出してステップ S 26〖こ進む。  In the process of step S24, battery control unit 130 detects the voltages of nickel hydrogen battery group 120 and lithium ion battery group 110, and proceeds to step S26.
ステップ S26の処理では、まず、リチウムイオン電池群 110のリチウムイオン電池セ ルの電圧値が算出される。図 5に示す電池パック 101では、リチウムイオン電池群 11 0は、 3つのリチウムイオン電池セルで構成されているので、リチウムイオン電池群 11 0の電圧値を 3で除した値をリチウム電池セルの電圧値とする。また、ニッケル水素電 池群 120は 1つのニッケル水素電池セルで構成されているので、ニッケル水素電池 群 120の電圧値がニッケル水素電池セルの電圧値となる。さらに、ニッケル水素電池 セルの電圧値は、リチウムイオン電池セルの 1Z3程度であることが知られている(リチ ゥムイオン電池セルは公称電圧 3. 6V、これに対してニッケル水素電池セルは公称 電圧 1. 2V) 0そこで、電池制御部 130は、リチウムイオン電池セル 1つの電圧値を、 さらに 3で除した値 (以降、リチウムイオン電池セルの比較値と称呼する。)から-ッケ ル水素電池セルの電圧値を減じた値が設定値 S1以上であるカゝ否かを判別する。そ して、この値が設定値 S1以上であれば (ステップ S26で YES)、電池制御部 130はス テツプ S28の処理に進み、設定値 S1未満であれば (ステップ S 26で NO)ステップ S3 0の処理に進む。 In the process of step S26, first, the voltage value of the lithium ion battery cell of the lithium ion battery group 110 is calculated. In the battery pack 101 shown in FIG. 5, the lithium ion battery group 110 is composed of three lithium ion battery cells. Therefore, the value obtained by dividing the voltage value of the lithium ion battery group 110 by 3 by 3 is The voltage value. In addition, since the nickel-metal hydride battery group 120 includes one nickel-metal hydride battery cell, the voltage value of the nickel-metal hydride battery group 120 becomes the voltage value of the nickel-metal hydride battery cell. Further, it is known that the voltage value of a nickel-metal hydride battery cell is about 1Z3 of a lithium-ion battery cell (a lithium-ion battery cell has a nominal voltage of 3.6 V, whereas a nickel-metal hydride battery cell has a nominal voltage of 1 V). .2V) 0 The battery control unit 130 calculates the voltage value of one lithium-ion battery cell by dividing it by three (hereinafter, referred to as a lithium-ion battery cell comparison value). It is determined whether or not the value obtained by subtracting the cell voltage value is equal to or greater than the set value S1. If the value is equal to or greater than the set value S1 (YES in step S26), the battery control unit 130 proceeds to the process in step S28, and if the value is less than the set value S1 (NO in step S26), the process proceeds to step S3. Proceed to processing of 0.
[0048] ステップ S28の処理では、各分流回路のデューティー比が更新される。ここでは、リ チウムイオン電池セルの方がニッケル水素電池セルよりも満充電に近い割合で充電 されているので、電池制御部 130は、リチウムイオン電池群 110に設けられている分 流回路のデューティー比を所定の割合上げるとともに、ニッケル水素電池群 120に 設けられている分流回路のデューティー比を所定の割合下げる。そして、電池制御 部 130はリターンする。 [0048] In the process of step S28, the duty ratio of each shunt circuit is updated. Here, lithium-ion battery cells are charged at a rate closer to full charge than nickel-metal hydride battery cells. Therefore, the battery control unit 130 increases the duty ratio of the shunt circuit provided in the lithium-ion battery group 110 by a predetermined ratio, and increases the duty ratio of the shunt circuit provided in the nickel-metal hydride battery group 120. Lower by a specified percentage. Then, the battery control unit 130 returns.
[0049] 一方、ステップ S26の処理で、リチウムイオン電池セルの比較値からニッケル水素 電池セルの電圧値を減じた値が設定値 S1未満であることが判別された場合の、ステ ップ S30の処理では、ニッケル水素電池セルの電圧値からリチウムイオン電池セルの 比較値を減じた値が設定値 S2以上であるカゝ否かを判別する。そして、この値が設定 値 S 2以上であれば (ステップ S 30で YES)、電池制御部 130はステップ S58の処理 に進む。また、設定値 S2未満であれば (ステップ S30で NO)リターンする。これは、リ チウムイオン電池セルとニッケル水素電池セルのそれぞれの満充電に対する残容量 の割合が同じ程度と判別され (バランス良く充電されていることが判別され)、デュー ティー比を更新せずにそのまま充電を継続する場合を示す。  On the other hand, when it is determined in step S26 that the value obtained by subtracting the voltage value of the nickel-metal hydride battery cell from the comparison value of the lithium ion battery cell is smaller than the set value S1, the process proceeds to step S30. In the process, it is determined whether or not a value obtained by subtracting the comparison value of the lithium ion battery cell from the voltage value of the nickel hydrogen battery cell is equal to or greater than the set value S2. If this value is equal to or greater than set value S2 (YES in step S30), battery control unit 130 proceeds to the process in step S58. If the value is less than the set value S2 (NO in step S30), the process returns. This is because the ratio of the remaining capacity to the full charge of the lithium ion battery cell and the ratio of the remaining capacity to the full charge of the nickel metal hydride battery cell are determined to be the same (it is determined that the battery is charged in a well-balanced state), and the duty ratio is not updated without updating This shows the case where charging is continued.
[0050] 一方、ステップ S32の処理では、各分流回路のデューティー比が更新される。ここ では、ニッケル水素電池セルの方がリチウムイオン電池セルよりも満充電に近い割合 で充電されているので、電池制御部 130は、リチウムイオン電池群 110に設けられて いる分流回路のデューティー比として以前より小さいものを抽出する。ニッケル水素 電池群 120に設けられている分流回路のデューティー比として以前より大きいものを 抽出する。そして、電池制御部 130はリターンする。  [0050] On the other hand, in the process of step S32, the duty ratio of each shunt circuit is updated. Here, since the nickel-metal hydride battery cell is charged at a rate closer to full charge than the lithium-ion battery cell, the battery control unit 130 sets the duty ratio of the shunt circuit provided in the lithium-ion battery group 110 as the duty ratio. Extract something smaller than before. The duty ratio of the shunt circuit provided in the nickel-metal hydride battery group 120 is extracted to be larger than before. Then, the battery control unit 130 returns.
[0051] このように、電池制御部 130は、リチウムイオン電池群 110とニッケル水素電池群 1 20の電圧値を所定のタイミングで検出し、検出した値を用いて、各電池群 110, 120 に並列接続可能な分流回路のデューティー比を更新しつつ充電を継続する。なお 設定値 SI, S2は、各電池セルが満充電に近づく程密に制御できるように、満充電に 近づく程小さ 、値になるように設定されるのが好ま U、。  As described above, the battery control unit 130 detects the voltage values of the lithium-ion battery group 110 and the nickel-metal hydride battery group 120 at a predetermined timing, and uses the detected values to control the respective battery groups 110 and 120. The charging is continued while updating the duty ratio of the shunt circuit that can be connected in parallel. Note that the set values SI and S2 are preferably set to be smaller and closer to the full charge so that each battery cell can be controlled more densely as it approaches full charge.
[0052] このようにして、電池制御部 130は、リチウムイオン電池群 110とニッケル水素電池 群 120に分流回路を設け、各分流回路の各電池群への接続 Z非接続をデューティ 一比を更新させつつ行うことで、充電効率の差に起因する残容量差が生じることを防 止することができる。これにより、充電途中で充電を停止した場合にも、各電池群の残 容量差が生じ難い。また、一部の電池セルが先に満充電となり過充電が発生すること をも防止することができる。さら〖こは、電池パック 100に各電池セルを組み込んだ時 に、例えば、ニッケル水素電池セルに相当の残容量があった場合でも、ニッケル水素 電池群 120の設けられている分流回路を電池制御部 130で決定するデューティー比 でオン Zオフしつつ充電することで、初期状態の充電量差 (残容量差)を低減させ、 ノランス良く充電を行うことが可能となった。 [0052] In this way, battery control section 130 provides a shunt circuit in lithium-ion battery group 110 and nickel-metal hydride battery group 120, and updates the duty ratio of connection Z disconnection of each shunt circuit to each battery group. By doing so, it is possible to prevent a remaining capacity difference due to a difference in charging efficiency from occurring. As a result, even if charging is stopped during charging, The capacity difference is unlikely to occur. In addition, it is possible to prevent a situation in which some battery cells are fully charged first and overcharge occurs. Furthermore, when each battery cell is incorporated into the battery pack 100, for example, even if the nickel-metal hydride battery cell has a considerable remaining capacity, the shunt circuit provided with the nickel-metal hydride battery group 120 is controlled by the battery. By charging while turning on and off at the duty ratio determined by the unit 130, the charge amount difference (remaining capacity difference) in the initial state can be reduced, and charging can be performed with good tolerance.
[0053] 上記した各実施の形態では、充電効率の差に関する指標として、ニッケル水素電 池群 120の温度 T (度)、ニッケル水素電池群 120の電圧値 V (V)、リチウムイオン電 池群 110を検出する場合について説明したが、組電池の充電電流を検出して用 ヽて もよい。組電池の充電電流を検出する場合には、組電池に直列に電流検出用の抵 抗素子を接続する。そして、この抵抗素子の両端の電圧降下を電池制御部 130で検 出可能な構成とし、これによつて、電池制御部 130で充電電流を算出する。また、実 施の形態の電池パック 100, 101に、さらに、この構成を付加すれば、一層確実な充 電制御を行うことができる。  In each of the above-described embodiments, as an index relating to the difference in charging efficiency, the temperature T (degrees) of nickel-metal hydride battery group 120, the voltage value V (V) of nickel-metal hydride battery group 120, the lithium ion battery group Although the case where 110 is detected has been described, the charging current of the battery pack may be detected and used. To detect the charging current of the battery pack, connect a current detection resistor in series with the battery pack. The voltage drop across the resistance element is configured to be detectable by the battery control unit 130, whereby the battery control unit 130 calculates the charging current. Further, if this configuration is further added to the battery packs 100 and 101 of the embodiment, more reliable charging control can be performed.
[0054] また各実施の形態では、リチウムイオン電池群 110に一括して分流回路が設けられ て 、る場合にっ 、て説明した力 各リチウムイオン電池セル 111—113に個別に分 流回路が設けられていても良い。この場合、各リチウムイオン電池セル 111一 113に 設けられた分流回路に充電電流を分流するかを、各リチウムイオン電池セル 111一 1 13の充電効率の差に基づいて決定すれば、一層、確実に各電池セルをバランス良 く充電することがでさる。  In each embodiment, a shunt circuit is provided in the lithium-ion battery group 110 collectively. In this case, the shunt circuit is individually provided for each of the lithium-ion battery cells 111 to 113 described above. It may be provided. In this case, whether to divide the charging current to the shunt circuit provided in each of the lithium ion battery cells 111 to 113 is determined based on the difference in the charging efficiency of each of the lithium ion battery cells 111 to 113. In addition, each battery cell can be charged in a well-balanced manner.
[0055] また、各実施の形態では、充電効率の差に関する指標を随時検出しつつ分流回路 をリチウムイオン電池群 110に接続するデューティー比を決定する場合にっ 、て説 明した。し力しながら、電池制御部 130に、予め充電開始時からの組電池を構成する 電池セルの充電効率の差の推移の予測値が記憶されて 、て、これに基づき充電開 始時からの時間経過に対応して分流回路を接続 Z非接続状態とするデューティー 比が決定される構成としてもょ ヽ。  Further, in each of the embodiments, the case where the duty ratio for connecting the shunt circuit to the lithium ion battery group 110 while determining the index regarding the difference in charging efficiency as needed is described. In the battery control unit 130, the predicted value of the change of the difference in the charging efficiency of the battery cells constituting the assembled battery from the start of charging is stored in advance, and based on this, the estimated value from the start of charging is stored. The configuration may be such that the duty ratio for connecting the shunt circuit to the Z-disconnected state is determined according to the passage of time.
[0056] また、各実施の形態では、電池制御部 130が所定のインピーダンス値の分流回路 をリチウムイオン電池群 110に接続するデューティー比を決定する場合にっ 、て説 明した。し力しながら、例えば、リチウムイオン電池群 110に並列接続可能な複数のィ ンピーダンス回路が設けられていて、分流する充電電流の充電電気量 (Ah)に応じ て、インピーダンス回路が選択的に接続される構成としてもよい。この場合、第 1の電 池セルから分流される電流値 (A)が調節されることで、分流する充電電流の充電電 気量 (Ah)の調節を容易に行うことができる。 Further, in each embodiment, the case where battery control unit 130 determines the duty ratio for connecting a shunt circuit having a predetermined impedance value to lithium-ion battery group 110 will be described. I am clear. For example, a plurality of impedance circuits that can be connected in parallel to the lithium ion battery group 110 are provided, and the impedance circuits are selectively connected in accordance with the amount of charge (Ah) of the divided charging current. May be adopted. In this case, by adjusting the current value (A) shunted from the first battery cell, the amount of charge (Ah) of the shunted charging current can be easily adjusted.
[0057] また、実施の形態では、リチウムイオン電池群 110の充電電流を分流する回路 (分 流回路、電池制御部 130が実行する処理の所定のステップ等)力 電池パック 100に 組み込まれている場合について説明した力 例えば、分流回路は、電池パック 100と は独立したアダプタ状の別体として構成されていてもよい。この場合には、該ァダブ タ状の別体を電池パック 100, 101もしくは充電器 200に配置することで組電池を構 成する電池セルをバランス良く充電することができる構成とする。  In the embodiment, a circuit (shunt circuit, predetermined steps of processing executed by battery control unit 130, etc.) that shunts the charging current of lithium ion battery group 110 is incorporated in battery pack 100. Force described in the case For example, the shunt circuit may be configured as an adapter-shaped separate body independent of the battery pack 100. In this case, by arranging the adapter-shaped separate body in the battery packs 100 and 101 or the charger 200, the battery cells constituting the assembled battery can be charged in a well-balanced manner.
[0058] なお、上記実施形態として用いられた電池パック 100ないし 101が駆動電源として 取付けられた状態の電動工具の一例が、図 7に示されている。  FIG. 7 shows an example of an electric tool in a state where the battery packs 100 to 101 used as the above embodiments are mounted as a drive power supply.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]第 1の実施の形態に係る電池パック 100のブロック図を、電池パック 100を充電 する充電器 200のブロック図とともに示す。  FIG. 1 shows a block diagram of a battery pack 100 according to a first embodiment, together with a block diagram of a charger 200 that charges the battery pack 100.
[図 2]電池パック 100にっき、電池制御部 130における電池群 110, 120間の充電効 率差に基づく残容量差の発生を防止し、組電池を構成する電池セルをバランス良く 充電する処理を、フローチャートとして示す。  [FIG. 2] A process for preventing the occurrence of a remaining capacity difference based on the charging efficiency difference between the battery groups 110 and 120 in the battery control unit 130 of the battery pack 100 and charging the battery cells constituting the assembled battery in a well-balanced manner. , As a flowchart.
[図 3]電池制御部 130が、分流回路をリチウムイオン電池群 110へ接続 Z非接続す るデューティー比を決定する際に用いるデューティー比のマッピングデータを示す。  FIG. 3 shows duty ratio mapping data used when the battery control unit 130 determines a duty ratio for connecting / disconnecting the shunt circuit to the lithium ion battery group 110.
[図 4]電池制御部 130によりスィッチ SW1がオン Zオフ制御され、リチウムイオン電池 群 110に備えられた分流回路が、リチウムイオン電池群 110に接続 Z非接続を繰り 返す状態をタイミングチャート図で示す。  [FIG. 4] FIG. 4 is a timing chart showing a state in which switch SW1 is turned on and off by battery control unit 130, and a shunt circuit provided in lithium ion battery group 110 repeatedly connects and disconnects to lithium ion battery group 110. Show.
[図 5]第 2の実施の形態に係る電池パック 101のブロック図を示す。  FIG. 5 shows a block diagram of a battery pack 101 according to a second embodiment.
[図 6]第 2の実施の形態の電池パック 101にっき、電池群 110, 120間の充電効率差 に基づく残容量差の発生を防止して組電池を構成する電池セルをバランス良く充電 する、電池制御部 130が実行する処理をフローチャート図で示す。 [図 7]電池パック 100ないし 101が取付けられた状態の電動工具の一例を示す。 符号の説明 [FIG. 6] A battery pack 101 according to the second embodiment is used to prevent the occurrence of a remaining capacity difference based on the charging efficiency difference between the battery groups 110 and 120 to charge the battery cells constituting the assembled battery in a well-balanced manner. The process executed by the battery control unit 130 is shown in a flowchart. FIG. 7 shows an example of a power tool with battery packs 100 to 101 attached. Explanation of reference numerals
100 電池パック  100 Battery pack
110 リチウムイオン電池群  110 Lithium-ion battery group
111, 112, 113 リチウムイオン電池セル  111, 112, 113 Lithium-ion battery cells
120 ニッケル水素電池群  120 Nickel-metal hydride battery group
121 ニッケル水素電池セル  121 Nickel metal hydride battery cell
130 電池制御部  130 Battery control unit
200 充電器  200 charger
SW1, SW2 スィッチ  SW1, SW2 switch
TM サーミスタ  TM thermistor
Rl, R2 抵抗  Rl, R2 resistance

Claims

請求の範囲 The scope of the claims
[1] 複数の電池セルを有する組電池であって、  [1] An assembled battery having a plurality of battery cells,
前記組電池を構成する第 1の電池セルと第 2の電池セルとの充電効率の差に基づ V、て、前記第 1の電池セルを充電する充電電流が分流されることを特徴とする組電池  The charging current for charging the first battery cell is divided based on V based on the difference in charging efficiency between the first battery cell and the second battery cell that constitute the battery pack. Battery pack
[2] 請求項 1に記載の組電池であって、 [2] The battery pack according to claim 1, wherein
前記第 1の電池セルは、前記第 2の電池セルとは種類が異なっていることを特徴と する組電池。  The battery pack according to claim 1, wherein the first battery cell is different in type from the second battery cell.
[3] 請求項 1または 2に記載の組電池であって、  [3] The battery pack according to claim 1 or 2,
前記第 1の電池セルは、当該第 1の電池セルが複数個接続された電池群を形成す るとともに、前記充電効率の差に基づいて、前記電池群中の 1又は複数の電池セル を充電する充電電流が分流されることを特徴とする組電池。  The first battery cells form a battery group in which a plurality of the first battery cells are connected, and charge one or more battery cells in the battery group based on the difference in the charging efficiency. Wherein the charging current is divided.
[4] 請求項 1または 2の 、ずれかに記載の組電池であって、 [4] The battery pack according to any one of claims 1 and 2,
前記第 1の電池セルに、当該電池セルを充電する充電電流が分流される分流回路 を並列接続可能であり、前記充電効率の差に基づいて、前記分流回路に分流される 充電電流の量が決定される組電池。  A shunt circuit that shunts a charging current for charging the battery cell can be connected in parallel to the first battery cell, and the amount of charging current shunted to the shunt circuit is based on the difference in charging efficiency. Assembled battery determined.
[5] 請求項 4に記載の組電池であって、 [5] The battery pack according to claim 4, wherein
前記充電効率の差に基づいて、前記分流回路を第 1の電池セルへ接続状態とする 時間と非接続状態とする時間の比率が決定され、決定された比率に基づいて前記接 続状態と前記非接続状態とが繰り返される組電池。  Based on the difference in the charging efficiency, a ratio of a time in which the shunt circuit is connected to the first battery cell and a time in which the shunt circuit is not connected is determined, and the connection state and the connection time are determined based on the determined ratio. A battery pack that repeats a disconnected state.
[6] 請求項 1一 5の 、ずれかに記載の組電池を備えた電池パックであって、 [6] A battery pack comprising the battery pack according to any one of claims 1 to 5,
前記充電効率の差に関する指標を検出する検出部と、当該充電効率の差に関す る指標力 前記第 1の電池セルを充電する充電電流を分流するタイミングを決定する 制御部を有して 、ることを特徴とする電池パック。  A detecting unit that detects an index related to the difference in charging efficiency, and a control unit that determines a timing of shunting a charging current for charging the first battery cell, and an index force related to the difference in charging efficiency. A battery pack characterized in that:
[7] 請求項 6に記載の電池パックであって、 [7] The battery pack according to claim 6, wherein
前記検出部で検出する前記充電効率の差に関する指標は、残容量指標、温度指 標、充電電流のうちの少なくとも 1つである電池パック。  The battery pack, wherein the index regarding the difference in charging efficiency detected by the detection unit is at least one of a remaining capacity index, a temperature index, and a charging current.
[8] 請求項 6または 7に記載の電池パックであって、 前記制御部は、所定の検出タイミングで、前記検出部で検出した充電効率の差に 関する指標に基づいて前記糸且電池が有する前記分流回路を前記第 1の電池セルへ 接続状態とする時間と非接続状態とする時間の比率を決定し、決定した比率が以前 の検出タイミングで決定した比率と相違する場合には、当該比率を更新する比率更 新部を備えて 、る電池パック。 [8] The battery pack according to claim 6 or 7, The control unit is configured to determine, at a predetermined detection timing, a time required to connect the shunt circuit included in the Ito battery to the first battery cell based on an index regarding a difference in charging efficiency detected by the detection unit. A battery pack that includes a ratio update unit that determines a ratio of time to be in a non-connection state and, when the determined ratio is different from a ratio determined at a previous detection timing, updates the ratio.
[9] 請求項 6— 8の!、ずれかに記載の電池パックであって、  [9] The battery pack according to any one of claims 6 to 8, wherein:
前記組電池を構成する各電池セルの公称電圧に基づく前記組電池の公称電圧が、 前記組電池で作動される機器に対応する所定の電圧値であることを特徴とする電池 ノック。  A battery knock, wherein a nominal voltage of the battery pack based on a nominal voltage of each battery cell constituting the battery pack is a predetermined voltage value corresponding to a device operated by the battery pack.
[10] 請求項 1一 5のいずれか記載の組電池、または請求項 6— 9のいずれか記載の電 池パックが駆動電源として用いられて 、る電動工具。  [10] An electric tool, wherein the battery pack according to any one of claims 11 to 5 or the battery pack according to any one of claims 6 to 9 is used as a driving power source.
PCT/JP2005/001616 2004-02-05 2005-02-03 Combined battery and battery pack WO2005076430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-029939 2004-02-05
JP2004029939A JP2005224024A (en) 2004-02-05 2004-02-05 Combined battery set and battery pack

Publications (1)

Publication Number Publication Date
WO2005076430A1 true WO2005076430A1 (en) 2005-08-18

Family

ID=34835974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001616 WO2005076430A1 (en) 2004-02-05 2005-02-03 Combined battery and battery pack

Country Status (2)

Country Link
JP (1) JP2005224024A (en)
WO (1) WO2005076430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114465304A (en) * 2022-01-12 2022-05-10 浙江霖润新能源科技有限公司 Vehicle-mounted hybrid power supply system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867734B2 (en) * 2007-03-19 2012-02-01 日立工機株式会社 Lithium battery pack and combination of battery pack and power tool
JP5423429B2 (en) * 2010-01-27 2014-02-19 パナソニック株式会社 Power storage device
US9472976B2 (en) 2011-12-22 2016-10-18 Nec Corporation Storage battery device and charging control method
JP6146663B2 (en) * 2013-07-02 2017-06-14 岩崎電気株式会社 Charging circuit and flash discharge lamp lighting device
JP2016052182A (en) * 2014-08-29 2016-04-11 ヤマハ発動機株式会社 Charger
KR102316436B1 (en) * 2014-11-17 2021-10-22 삼성전자주식회사 Method for controlling different kind of battery cells and electronic device thereof
JP6668944B2 (en) * 2016-05-25 2020-03-18 トヨタ自動車株式会社 Power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819188A (en) * 1994-06-29 1996-01-19 Nissan Motor Co Ltd Charging apparatus of combined battery
JPH08339829A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Monitor device for battery set
JPH0928042A (en) * 1995-07-13 1997-01-28 Nissan Motor Co Ltd Device for controlling charging of battery assembly
JP2000500320A (en) * 1996-09-10 2000-01-11 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Battery-powered electrical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819188A (en) * 1994-06-29 1996-01-19 Nissan Motor Co Ltd Charging apparatus of combined battery
JPH08339829A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Monitor device for battery set
JPH0928042A (en) * 1995-07-13 1997-01-28 Nissan Motor Co Ltd Device for controlling charging of battery assembly
JP2000500320A (en) * 1996-09-10 2000-01-11 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Battery-powered electrical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114465304A (en) * 2022-01-12 2022-05-10 浙江霖润新能源科技有限公司 Vehicle-mounted hybrid power supply system

Also Published As

Publication number Publication date
JP2005224024A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
Bergveld et al. Battery management systems
US6642692B2 (en) Charge equalizing device for power storage unit
US7535201B2 (en) Uninterruptible power supply system
JP3615507B2 (en) Battery charge rate adjustment circuit
JP3279071B2 (en) Battery pack charging device
US6504344B1 (en) Monitoring battery packs
KR100885291B1 (en) Electric charger
JP4499164B2 (en) Charging apparatus and charging method
US20090267565A1 (en) Method and system for cell equalization with charging sources and shunt regulators
WO2005076430A1 (en) Combined battery and battery pack
EP2421113A2 (en) Power supply device for detecting disconnection of voltage detection lines
JP2000228832A (en) Control method of charging and discharging
KR20090046775A (en) Power supply for charging
JP2002044878A (en) Battery charging apparatus and battery charging method
US5994874A (en) Battery charging system with battery pack of different charging voltages using common a battery charger
JP2008011657A (en) Power supply unit
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
CN112384405B (en) Method of controlling battery system in vehicle
JP3991620B2 (en) Control circuit
JPH11341694A (en) Charging method of secondary battery
JP3458740B2 (en) Battery charging and discharging devices
JP2000270483A (en) Charging condition controller of battery set
JP5489779B2 (en) Lithium-ion battery charging system and charging method
JP4206348B2 (en) Battery pack and power tool
JP2000166103A (en) Charging discharging control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase