JPH10318271A - Manufacture of dynamic pressure bearing device - Google Patents

Manufacture of dynamic pressure bearing device

Info

Publication number
JPH10318271A
JPH10318271A JP13095197A JP13095197A JPH10318271A JP H10318271 A JPH10318271 A JP H10318271A JP 13095197 A JP13095197 A JP 13095197A JP 13095197 A JP13095197 A JP 13095197A JP H10318271 A JPH10318271 A JP H10318271A
Authority
JP
Japan
Prior art keywords
shaft
cylindrical hole
lubricating fluid
diameter
shaft body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13095197A
Other languages
Japanese (ja)
Inventor
Hiromitsu Asai
拡光 浅井
Katsuhiko Tanaka
克彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP13095197A priority Critical patent/JPH10318271A/en
Publication of JPH10318271A publication Critical patent/JPH10318271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the bubbles inside of the lubricating fluid by filling the lubricating fluid in a bottom surface inside a cylindrical hole of a bearing member, and inserting a shaft body having a shrunken diameter part into the cylindrical hole so that a specified diameter part of the shrunken diameter part firstly contacts with the lubricating fluid. SOLUTION: When the lubricating fluid 27 is filled in a bottom surface of a cylindrical hole 20 of a bearing member 22, a recessed spherical surface is formed in the surface by the surface tension. A radius R of a projecting spherical surface 21a of a shrunken diameter end of a shaft body 21 is smaller than the radius (r) of a recessed spherical surface of the fluid 27, and axial length L thereof is larger than the recessed spherical surface depth H. The shrunken diameter end has a diameter (d) at 3/4 or less of the diameter D of the shaft body 21. When the shaft body 21 is inserted into the cylindrical hole 20 in the condition that the shrunken diameter part thereof is headed, the diameter (d) part firstly contacts with the fluid 27, and the fluid 27 is transmitted through the spherical projecting surface 21a for raising without sealing the air in the end surface of the shaft body 21. When the shaft body 21 is inserted more, the fluid fills a radial bearing clearance, discharging air, and the end surface of the shaft body 21 contacts with a bottom surface of the cylindrical hole 20 of the thrust bearing. Assembling is thereby facilitated, and the assembling man-hours can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、レーザープリン
タ、光ディスク装置、磁気ディスク装置などの情報機器
あるいは音響、映像機器などに用いられる動圧軸受装置
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a dynamic pressure bearing device used for information equipment such as a laser printer, an optical disk device, and a magnetic disk device, or acoustic and video equipment.

【0002】[0002]

【従来の技術】従来、前述のような装置には、玉軸受な
どを使用した軸受装置が用いられていたが、近年、デー
タの高密度化、高速転送化、低コスト化の要求から動圧
軸受装置を使用したスピンドルモータが検討されるよう
になってきた。スピンドルモータは概略縦断面図を図1
に示すように、軸受部材2に固定したステータ5の回り
を回転するロータ6は軸体1に固定され、この軸体1は
動圧軸受装置を構成する。軸体1は軸受部材2の円筒状
孔100に挿入され、この円筒状孔100はラジアル動
圧軸受4を構成する円筒形状内表面と、軸体のアキシア
ル荷重を支持する凸球面が形成されたスラスト軸受3を
構成する底面とを有する。また、軸受部材の円筒状孔1
00に形成される軸体1と軸受部材2の間の隙間には、
油、液状グリース等の潤滑流体が注入されており、スピ
ンドルモータ回転時に軸回転の安定化及び耐久性の向上
を図っている。
2. Description of the Related Art Conventionally, a bearing device using a ball bearing or the like has been used as the above-mentioned device. However, in recent years, dynamic pressure has been increased due to demands for higher data density, higher speed transfer, and lower cost. A spindle motor using a bearing device has been studied. Fig. 1 shows a schematic longitudinal sectional view of the spindle motor
As shown in FIG. 1, a rotor 6 rotating around a stator 5 fixed to a bearing member 2 is fixed to a shaft 1, and the shaft 1 constitutes a dynamic pressure bearing device. The shaft 1 is inserted into a cylindrical hole 100 of the bearing member 2. The cylindrical hole 100 has a cylindrical inner surface constituting the radial dynamic pressure bearing 4 and a convex spherical surface for supporting the axial load of the shaft. And a bottom surface constituting the thrust bearing 3. In addition, the cylindrical hole 1 of the bearing member
In the gap between the shaft body 1 and the bearing member 2 formed at 00,
A lubricating fluid such as oil or liquid grease is injected to stabilize shaft rotation and improve durability when the spindle motor rotates.

【0003】[0003]

【発明が解決しようとする課題】図2(a)、(b)、
(c)、(d)に従来例における動圧軸受装置製造時
の、軸受部材12に設けられたラジアル動圧軸受を構成
する円筒形状内表面及びスラスト軸受を構成する底面と
よりなる円筒状孔10への円柱形状の軸体11挿入時の
工程について、動圧軸受装置の概略縦断面図を用いて示
す(なお、以下従来例及び実施例の説明に用いる図2〜
図7においては本発明に直接関与しない軸体及び軸受部
材以外のステータ、ロータ等は図中から省略してい
る)。
FIG. 2 (a), (b),
(C) and (d) show a cylindrical hole having a cylindrical inner surface forming the radial dynamic pressure bearing provided on the bearing member 12 and a bottom surface forming the thrust bearing when the conventional hydrodynamic bearing device is manufactured. The process of inserting the cylindrical shaft 11 into the shaft 10 will be described with reference to a schematic longitudinal sectional view of a hydrodynamic bearing device (note that FIGS.
In FIG. 7, stators, rotors, and the like other than the shaft body and the bearing member that are not directly involved in the present invention are omitted from the drawing.

【0004】まず、前記円筒状孔10の内部に潤滑流体
17が注入されるが、潤滑流体17は表面張力のために
図2(a)に示すように、その表面は円筒状孔10の円
筒形状内表面に沿って盛り上がり潤滑流体表面は凹形状
を形成する。次に軸体11を軸受部材12に設けられた
円筒状孔10に挿入していくが、図2に示すような軸体
11の軸体端面11a(ここに述べた軸体端面は、軸受
部材に設けられた底面に相対する軸体の端面を指し、以
下実施例を含めて軸体端面と記述の場合は同じ面を意味
する。)が軸心に対して直角な平面を形成する構造の場
合には、図2(b)に示すように軸体端面11aの外周
部が最も早く潤滑流体17と接触する。そのため、軸体
端面11aと潤滑流体17により形成された空間18に
空気が多量に閉じこめられる。
[0004] First, a lubricating fluid 17 is injected into the cylindrical hole 10. The surface of the lubricating fluid 17 has a cylindrical shape as shown in FIG. The lubricating fluid surface rises along the inner surface of the shape to form a concave shape. Next, the shaft body 11 is inserted into the cylindrical hole 10 provided in the bearing member 12, and the shaft body end face 11a of the shaft body 11 as shown in FIG. Refers to the end surface of the shaft body facing the bottom surface provided in the following. In the following description, including the embodiment, the shaft body end surface means the same surface.) Forms a plane perpendicular to the axis. In this case, the outer peripheral portion of the shaft end face 11a comes into contact with the lubricating fluid 17 first as shown in FIG. Therefore, a large amount of air is trapped in the space 18 formed by the shaft end face 11a and the lubricating fluid 17.

【0005】その結果軸体11の挿入をさらに続け、図
2(c)に示す軸体端面11aが円筒状孔10の底面の
スラスト軸受面と接触するまで挿入された状態において
も気泡19が潤滑流体17内部に多量に残ってしまう。
図2(d)にスラスト軸受近傍の気泡の状態についての
概略図を示す。軸受部材12に形成された円筒状孔10
の円筒形状内表面と軸体11外周面の間に存在する潤滑
流体17内部に残った気泡19は、軸体11の回転に伴
い多少排出されるが完全には排出されない。軸体11の
挿入工程の終了後に気泡の真空引きを行う工程を加える
と、気泡19は排出されるが、完全に排出はされず、軸
体端面11aの近傍即ちスラスト軸受近傍の気泡19
は、ほとんど排出されない。
As a result, the insertion of the shaft body 11 is further continued, and the bubbles 19 are lubricated even when the shaft body end face 11a shown in FIG. 2C is inserted until it comes into contact with the thrust bearing surface on the bottom surface of the cylindrical hole 10. A large amount remains in the fluid 17.
FIG. 2D is a schematic view showing the state of bubbles near the thrust bearing. Cylindrical hole 10 formed in bearing member 12
The bubbles 19 remaining in the lubricating fluid 17 existing between the cylindrical inner surface and the outer peripheral surface of the shaft 11 are slightly discharged as the shaft 11 rotates, but are not completely discharged. If a step of evacuating air bubbles is added after the end of the insertion step of the shaft 11, the air bubbles 19 are discharged but not completely discharged, and the air bubbles 19 near the shaft end face 11a, that is, near the thrust bearing are added.
Is hardly emitted.

【0006】その結果、スピンドルモータ回転時に、気
泡19の存在に起因する不安定回転による振れ回りの発
生、負荷容量の低下などが起こりその性能を著しく低下
させるという問題があった。本発明は、潤滑流体17の
内部の気泡19をスピンドルモータの性能に悪影響を及
ぼさない程度まで減少させ、さらに組立が容易で高性能
な動圧軸受装置を提供することを目的としている。
As a result, during rotation of the spindle motor, whirling occurs due to unstable rotation due to the presence of the air bubbles 19, the load capacity is reduced, and the performance thereof is significantly reduced. An object of the present invention is to provide a high-performance hydrodynamic bearing device in which bubbles 19 inside the lubricating fluid 17 are reduced to such an extent that the performance of the spindle motor is not adversely affected, and which is easy to assemble.

【0007】[0007]

【問題を解決するための手段】動圧軸受装置の製造方法
について、ラジアル軸受面を構成するための円筒形状内
表面とスラスト軸受面を構成するための底面とを有する
円筒状孔が設けられた軸受部材の前記円筒状孔内の底面
に潤滑流体を注入する注入工程と、前記注入工程の後
に、円筒状の本体と前記本体から先端に向かって直径が
減少してゆく部分を外周部に有する縮径端部とを有する
軸体を前記縮径端部から前記円筒状孔内に挿入する挿入
工程とからなり、前記挿入工程では、前記縮径端部は本
体の直径の3/4以下の直径を有する軸心を中心とする
円の内側の部分が最初に前記潤滑流体に接触することを
特徴とする動圧軸受装置の製造方法とした。
According to a method of manufacturing a dynamic pressure bearing device, a cylindrical hole having a cylindrical inner surface for forming a radial bearing surface and a bottom surface for forming a thrust bearing surface is provided. An injecting step of injecting a lubricating fluid into a bottom surface in the cylindrical hole of the bearing member, and after the injecting step, the outer peripheral portion has a cylindrical main body and a portion whose diameter decreases from the main body toward the tip. Inserting a shaft having a reduced diameter end into the cylindrical hole from the reduced diameter end. In the inserting step, the reduced diameter end is less than or equal to / of the diameter of the main body. A method for manufacturing a hydrodynamic bearing device, characterized in that a portion inside a circle centered on a shaft center having a diameter comes into contact with the lubricating fluid first.

【0008】これにより油、液状グリース等の潤滑流体
中の気泡の量をスピンドルモータの性能に悪影響を及ぼ
さない程度まで減少させ、さらに組立が容易で高性能な
動圧軸受装置を提供することが可能となる。具体的に
は、前記本体の縮径端部の形状を球面状にすると良く、
又縮径端部は前記本体から先端に向かって直径が減少し
てゆく円すい面の部分を外周部に有するとともに、縮径
端部の軸方向の長さを、軸体の円筒状孔への挿入前に前
記潤滑流体が表面張力により前記円筒形状内表面に沿っ
て盛り上がることにより形成された前記潤滑流体表面の
凹形状面の深さよりも長くするとよい。
Accordingly, the amount of bubbles in a lubricating fluid such as oil or liquid grease can be reduced to a level that does not adversely affect the performance of the spindle motor, and a high-performance hydrodynamic bearing device that is easy to assemble and can be provided. It becomes possible. Specifically, the shape of the reduced diameter end of the main body may be spherical.
Also, the reduced diameter end has a conical surface portion whose diameter decreases from the main body toward the distal end on the outer periphery, and the axial length of the reduced diameter end is adjusted to the cylindrical hole of the shaft body. Before the insertion, the lubricating fluid may be longer than the concave surface of the lubricating fluid formed by swelling along the inner surface of the cylindrical shape due to surface tension.

【0009】その結果、前記縮径端部は本体の直径の3
/4以下の直径を有する軸心を中心とする円の内側の部
分が最初に前記潤滑流体に接触することを可能とした。
これにより、軸体の挿入工程において、前記軸体の縮径
端部と前記潤滑流体との間に形成される空間を無くすあ
るいは非常に小さくすることを可能とした。その結果、
真空引き等の気泡の排出工程を経ること無しに、潤滑流
体中の気泡の量を従来技術によるものに対して大幅に減
少することが可能となった。
As a result, the reduced-diameter end is 3 mm of the diameter of the main body.
The portion inside the circle centered on the axis having a diameter of 以下 or less allowed the first contact with the lubricating fluid.
This makes it possible to eliminate or extremely reduce the space formed between the reduced diameter end of the shaft and the lubricating fluid in the shaft body inserting step. as a result,
Without going through a bubble discharging step such as vacuuming, the amount of bubbles in the lubricating fluid can be significantly reduced as compared with the prior art.

【0010】[0010]

【実施例】以下に本発明の実施例を図を用いて説明す
る。図3(a)、(b)、(c)は、本発明の第1実施
例における動圧軸受装置製造時の、軸受部材22に設け
られたラジアル動圧軸受を構成する円筒形状内表面及び
スラスト軸受を構成する底面とよりなる円筒状孔20へ
の円柱形状の軸体21の挿入工程について、動圧軸受装
置の概略縦断面図を示している。まず、円筒状孔20の
底面に潤滑流体27が注入され、その潤滑流体27は表
面張力のために図3(a)に示すように、その表面が円
筒状孔20の円筒形状内表面に沿って盛り上がるほぼ凹
形球面の凹形状面を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIGS. 3A, 3B, and 3C show a cylindrical inner surface and a radial dynamic pressure bearing provided on the bearing member 22 when the hydrodynamic bearing device is manufactured according to the first embodiment of the present invention. FIG. 3 is a schematic longitudinal sectional view of a hydrodynamic bearing device in a process of inserting a cylindrical shaft body 21 into a cylindrical hole 20 having a bottom surface forming a thrust bearing. First, a lubricating fluid 27 is injected into the bottom surface of the cylindrical hole 20, and the surface of the lubricating fluid 27 extends along the inner surface of the cylindrical hole 20 as shown in FIG. A concave surface of a substantially concave spherical surface is formed.

【0011】次に軸体21を軸受部材22に設けられた
円筒状孔20に挿入していくが、軸体21は円筒状の本
体21bと本体21bに接続する凸球面21aの縮径端
部を有する。図3(a)に示すように軸体21の端面の
半径Rの凸球面21aは潤滑流体27の表面が形成して
いるほぼ凹形球面の半径rよりも小さくなるように形成
されている。同時に凸球面21a部の軸方向の長さL
は、潤滑流体27表面上に形成されたほぼ凹形球面の深
さHより大きくなるように設定されている。縮径端部は
本体21bから先端に向かって直径が減少してゆく部分
を外周部に有し、また縮径端部は軸体の本体の直径Dの
3/4以下の直径dを有する軸心を中心とする円の内側
の部分が最初に潤滑流体表面の凹形状球面に接触するこ
ととなる。
Next, the shaft body 21 is inserted into a cylindrical hole 20 provided in the bearing member 22. The shaft body 21 has a reduced diameter end portion of a cylindrical main body 21b and a convex spherical surface 21a connected to the main body 21b. Having. As shown in FIG. 3A, the convex spherical surface 21 a having the radius R of the end face of the shaft 21 is formed to be smaller than the radius r of the substantially concave spherical surface formed by the surface of the lubricating fluid 27. At the same time, the axial length L of the convex spherical surface 21a portion
Is set to be larger than the depth H of the substantially concave spherical surface formed on the surface of the lubricating fluid 27. The reduced-diameter end portion has a portion on the outer peripheral portion whose diameter decreases from the main body 21b toward the distal end, and the reduced-diameter end portion has a diameter d that is 3/4 or less of the diameter D of the main body of the shaft body. The inner part of the circle about the center will first contact the concave spherical surface of the lubricating fluid surface.

【0012】従って、図3(b)に示すように軸体21
を縮径端部から円筒状孔20に挿入していくと、軸体2
1の端面は直径dを有する軸心を中心とする円の内側の
部分(この場合、球面の先端)が最初に潤滑流体27に
接触し、さらに軸体21の挿入を続けるにつれて潤滑流
体27は軸体21の凸球面21aを伝わりながらその表
面を上昇させ、軸受部材22に形成された円筒状孔20
の円筒形状内表面と軸体21の本体の外周面の間のラジ
アル軸受を形成するラジアル軸受すきまの下部に達し、
結果として軸体21の端面にはほとんど空気は閉じこめ
られない。
Therefore, as shown in FIG.
Is inserted into the cylindrical hole 20 from the reduced diameter end, the shaft 2
The first end face of the inner surface of the circle (in this case, the tip of the spherical surface) centered on the axis having the diameter d comes into contact with the lubricating fluid 27 first, and as the insertion of the shaft 21 continues, the lubricating fluid 27 The surface of the shaft 21 is raised while traveling along the convex spherical surface 21 a of the shaft 21, and the cylindrical hole 20 formed in the bearing member 22 is formed.
Reaching the lower portion of the radial bearing clearance forming a radial bearing between the cylindrical inner surface of the shaft member and the outer peripheral surface of the main body of the shaft body 21;
As a result, almost no air is trapped on the end face of the shaft 21.

【0013】さらに軸体21の挿入を続けるにつれて、
前記ラジアル軸受を形成するラジアル軸受すきまに達し
た潤滑流体27は空気を排出しながらラジアル軸受すき
まを充満し、図3(c)に示すように軸体21の端面が
スラスト軸受を形成する円筒状孔20の底面に接触し、
軸体21の挿入工程が終了する。以上に述べた第1の実
施例に示した工程においては、軸体の挿入過程で空気が
閉じこめられることはなく、さらに円筒形状内表面と軸
体外周面の間に潤滑流体が存在することにより、円筒状
孔底面と軸体端面との間の潤滑流体は密閉され、そのた
め軸受部材と軸体の間の潤滑流体中に気泡はほとんど入
らない。
As the insertion of the shaft 21 is further continued,
The lubricating fluid 27 which has reached the radial bearing clearance forming the radial bearing fills the radial bearing clearance while discharging air, and as shown in FIG. 3 (c), the end surface of the shaft body 21 forms a cylindrical shape forming a thrust bearing. Touches the bottom of the hole 20,
The step of inserting the shaft 21 ends. In the process described in the first embodiment described above, air is not trapped in the process of inserting the shaft, and the lubricating fluid is present between the cylindrical inner surface and the shaft outer surface. The lubricating fluid between the bottom surface of the cylindrical hole and the end surface of the shaft is sealed, so that almost no bubbles enter the lubricating fluid between the bearing member and the shaft.

【0014】即ち、本実施例においては軸受部材の円筒
状孔に軸体を挿入する工程のみで、潤滑流体中の気泡を
大幅に減少させた高性能な動圧軸受装置が容易に得られ
た。軸受部材の円筒状孔の底面に注入された潤滑流体が
形成する凹形状球面の深さHは、潤滑流体の粘度や円筒
状孔の内径の大きさにより異なるため、軸体の縮径端部
の凸球面の半径Rと軸方向長さLは、凹形状面の深さH
の値に応じて適宜決定すればよい。
That is, in this embodiment, a high-performance hydrodynamic bearing device in which bubbles in the lubricating fluid are greatly reduced can be easily obtained only by inserting the shaft into the cylindrical hole of the bearing member. . The depth H of the concave spherical surface formed by the lubricating fluid injected into the bottom surface of the cylindrical hole of the bearing member varies depending on the viscosity of the lubricating fluid and the size of the inner diameter of the cylindrical hole. The radius R and the axial length L of the convex spherical surface are the depth H of the concave surface.
May be appropriately determined according to the value of.

【0015】図4(a)、(b)は、本発明の第2の実
施例における動圧軸受装置製造時の、軸受部材32に設
けられたラジアル動圧軸受を構成する円筒形状内表面と
スラスト軸受を構成する円筒部底面とよりなる円筒状孔
30への円柱形状の軸体31の挿入工程について、動圧
軸受装置の概略縦断面図を示す。第1の実施例と異なる
点は、図3(a)に示すように軸受部材32に設けられ
た円筒状孔30の底面のスラスト軸受面の形状が凸球面
でなく、平面となっている点である。
FIGS. 4 (a) and 4 (b) show the cylindrical inner surface of the radial dynamic pressure bearing provided on the bearing member 32 when the hydrodynamic bearing device is manufactured in the second embodiment of the present invention. FIG. 4 is a schematic longitudinal sectional view of a hydrodynamic bearing device in a process of inserting a cylindrical shaft body 31 into a cylindrical hole 30 having a cylindrical bottom surface constituting a thrust bearing. The difference from the first embodiment is that as shown in FIG. 3A, the shape of the thrust bearing surface on the bottom surface of the cylindrical hole 30 provided in the bearing member 32 is not a convex spherical surface but a flat surface. It is.

【0016】これにより第1の実施例と比較して、図3
(b)に示される軸体31の端面とスラスト軸受面とが
接触する面積が増加し、スラスト軸受面の面圧が小さく
なるという効果がある。第2の実施例においても、潤滑
流体37内部へ気泡が入らない効果及び作用は第1の実
施例と同様であり、軸受部材に設けられた円筒状孔に軸
体を挿入する工程のみで高性能な動圧軸受装置が得られ
る。
As a result, compared to the first embodiment, FIG.
The area where the end face of the shaft body 31 and the thrust bearing surface shown in (b) are in contact with each other is increased, and the surface pressure on the thrust bearing surface is reduced. In the second embodiment as well, the effect and action of preventing air bubbles from entering the lubricating fluid 37 are the same as in the first embodiment, and are high only in the step of inserting the shaft into the cylindrical hole provided in the bearing member. A high performance hydrodynamic bearing device is obtained.

【0017】図5(a)、(b)は、本発明の第3の実
施例における動圧軸受装置製造時の、軸受部材42に設
けられたラジアル動圧軸受を構成する円筒形状内表面と
スラスト軸受を構成する底面とよりなる円筒状孔40へ
の円柱形状の軸体41の挿入工程について、動圧軸受装
置の概略縦断面図を示す。第2の実施例と異なる点は、
図5(a)に示すように軸体41の縮径端部の外周部は
本体21bから先端に向かって直径が減少してゆく円す
い面形状となっており、それと接続する内部の形状が凸
球面になっている点である。
FIGS. 5A and 5B show a cylindrical inner surface of a radial dynamic pressure bearing provided on a bearing member 42 when a hydrodynamic bearing device is manufactured according to a third embodiment of the present invention. A schematic longitudinal sectional view of a hydrodynamic bearing device is shown in a process of inserting a cylindrical shaft body 41 into a cylindrical hole 40 having a bottom surface constituting a thrust bearing. The difference from the second embodiment is that
As shown in FIG. 5A, the outer peripheral portion of the reduced diameter end portion of the shaft body 41 has a conical surface shape whose diameter decreases from the main body 21b toward the distal end, and the internal shape connected thereto is convex. It is a spherical point.

【0018】軸体41の端面の形状に円すい面41bを
設けることにより、軸体41の端面の凸球面41aの半
径を大きくしてある。凸球面41aの半径を大きくする
ことにより、図5(b)に示される軸受部材42設けら
れた円筒状孔40の底面のスラスト軸受面に加えられる
面圧を第1の実施例より下げることが可能であるととも
に、第1の実施例において定義した縮径端部の軸方向長
さLの値を凸球面41aの半径を大きくしたにもかかわ
らず潤滑流体47表面に形成された凹形状面の深さHよ
りも大きく保つことができるようになっている。
The radius of the convex spherical surface 41a on the end surface of the shaft 41 is increased by providing a conical surface 41b in the shape of the end surface of the shaft 41. By increasing the radius of the convex spherical surface 41a, the surface pressure applied to the thrust bearing surface on the bottom surface of the cylindrical hole 40 provided with the bearing member 42 shown in FIG. 5B can be reduced as compared with the first embodiment. It is possible to set the value of the axial length L of the reduced diameter end defined in the first embodiment to the value of the concave surface formed on the surface of the lubricating fluid 47 despite increasing the radius of the convex spherical surface 41a. It can be kept larger than the depth H.

【0019】第3の実施例においても、潤滑流体47内
部へ気泡が入らない効果及び作用は第1の実施例と同様
であり、軸受部材に設けられた円筒状孔に軸体を挿入す
る工程のみで高性能な動圧軸受装置が得られる。円筒状
孔に軸体を挿入する工程において、縮径端部は軸体の本
体21bの直径Dの3/4以下の直径dを有する軸心を
中心とする円の内側の部分が最初に前記潤滑流体に接触
することにより、軸体の縮径端部と潤滑流体との間に空
間は形成されない。その結果として、真空引き等の気泡
の排出工程を経ること無しに、動圧軸受装置の性能に悪
影響を及ぼす潤滑流体中の気泡の量は大幅に減少できる
が、その量は少ないほど好ましい。
In the third embodiment, the effect and action of preventing air bubbles from entering the lubricating fluid 47 are the same as those of the first embodiment, and a step of inserting a shaft into a cylindrical hole provided in a bearing member. Alone, a high-performance hydrodynamic bearing device can be obtained. In the step of inserting the shaft into the cylindrical hole, the reduced-diameter end portion is first formed by the inner portion of a circle centered on the axis having a diameter d of 3/4 or less of the diameter D of the main body 21b of the shaft. By contacting the lubricating fluid, no space is formed between the reduced diameter end of the shaft and the lubricating fluid. As a result, the amount of bubbles in the lubricating fluid that adversely affects the performance of the hydrodynamic bearing device can be significantly reduced without going through a bubble discharging step such as vacuuming, but the smaller the amount, the better.

【0020】実施例1〜3に示すように軸体の縮径端部
が凸球面となるピボット軸受の場合、球面の大きさを変
えるだけ(実施例3の場合はテーパー角度と球面の大き
さ)で容易に縮径端部と潤滑流体とが接触する位置を軸
心に近づけることができることからスラスト軸受の面圧
に問題がない場合は、より気泡を減らすため軸体の縮径
端部は本体の直径の1/2以下の直径を有する軸心を中
心とする円の内側の部分が最初に潤滑流体に接触するこ
とが好ましい。
As shown in Embodiments 1 to 3, in the case of a pivot bearing in which the reduced-diameter end of the shaft body is a convex spherical surface, the size of the spherical surface is simply changed (in the case of Embodiment 3, the taper angle and the size of the spherical surface are changed). ) Can easily bring the contact between the reduced diameter end and the lubricating fluid closer to the shaft center. If there is no problem with the surface pressure of the thrust bearing, the reduced diameter end of the shaft body should be It is preferred that the inner part of the circle about the axis having a diameter less than or equal to one-half the diameter of the body first contacts the lubricating fluid.

【0021】図6(a)、(b)は、本発明の第4の実
施例における動圧軸受装置製造時の、軸受部材52に設
けられたラジアル動圧軸受を構成する円筒形状内表面及
びスラスト軸受を構成する底面とよりなる円筒状孔50
への円柱形状の軸体51の挿入工程について、動圧軸受
装置の概略縦断面図を示す。第3の実施例と異なる点
は、図6(b)に示すように軸体の縮径端部の外周部の
円すい面51bに接続する内部の形状が軸心に垂直な平
面となり、軸受部材52に設けられた円筒状孔50の底
面のスラスト軸受面に動圧発生用溝が形成されている点
である。
FIGS. 6 (a) and 6 (b) show the cylindrical inner surface and the radial dynamic pressure bearing provided on the bearing member 52 when the hydrodynamic bearing device is manufactured in the fourth embodiment of the present invention. A cylindrical hole 50 having a bottom surface constituting a thrust bearing
A schematic longitudinal cross-sectional view of a hydrodynamic bearing device is shown in a step of inserting a cylindrical shaft body 51 into the shaft. The difference from the third embodiment is that, as shown in FIG. 6 (b), the inner shape connected to the conical surface 51b of the outer peripheral portion of the reduced diameter end of the shaft becomes a plane perpendicular to the axis, and the bearing member The point is that a groove for generating dynamic pressure is formed in the thrust bearing surface on the bottom surface of the cylindrical hole 50 provided in 52.

【0022】これにより軸体51の回転時にスラスト軸
受面上に動圧が発生しスラスト軸受面と軸体51の端面
とを非接触とできるため、性能、耐久性がより向上す
る。軸体端面を球形状とした場合と比較して潤滑流体中
の気泡の量はわずかに増加する可能性はあるが、円すい
面51bの形成により軸受装置の性能に悪影響を与える
ほどの気泡は潤滑流体中に入らない。
As a result, dynamic pressure is generated on the thrust bearing surface when the shaft body 51 rotates, and the thrust bearing surface and the end face of the shaft body 51 can be brought into non-contact, so that the performance and durability are further improved. Although the amount of air bubbles in the lubricating fluid may slightly increase as compared with the case where the end surface of the shaft is spherical, air bubbles that adversely affect the performance of the bearing device due to the formation of the conical surface 51b are lubricated. Does not enter the fluid.

【0023】本実施例のように、スラスト軸受に動圧軸
受を用いる場合にはスラスト負荷容量を確保するために
は軸体端面の平面部は広い方がよいが、負荷容量に余裕
がある場合には、残留気泡をより減らすため、図6
(a)に示す軸体の縮径端部は本体の直径の1/2以下
の直径を有する軸心を中心とする円の内側の部分が最初
に潤滑流体に接触することが好ましい。第4の実施例に
おいても、潤滑流体57の内部に気泡が入らない効果及
び作用は第1の実施例とほぼ同様であり、軸受部材に設
けられた円筒状孔に軸体を挿入する工程のみで高性能な
動圧軸受装置が得られる。
When a dynamic pressure bearing is used as the thrust bearing as in this embodiment, the flat portion of the end face of the shaft should be wide in order to secure the thrust load capacity, but there is a margin in the load capacity. In order to further reduce residual air bubbles, FIG.
In the reduced diameter end portion of the shaft body shown in (a), it is preferable that a portion inside a circle centered on an axis having a diameter equal to or less than half of the diameter of the main body comes into contact with the lubricating fluid first. Also in the fourth embodiment, the effect and action of preventing air bubbles from entering the lubricating fluid 57 are substantially the same as those of the first embodiment, and only the step of inserting the shaft into the cylindrical hole provided in the bearing member is performed. And a high-performance hydrodynamic bearing device can be obtained.

【0024】図7は、本発明の第5の実施例における動
圧軸受装置製造時の、軸受部材62に設けられたラジア
ル動圧軸受を構成する円筒形状内表面及びスラスト軸受
を構成する底面とよりなる円筒状孔60への円柱形状の
軸体61の挿入工程について、動圧軸受装置の概略縦断
面図を示す。第2の実施例と異なる点は、軸受部材62
はスリーブ62bとスリーブ62bの一方の端部に固定
したスラスト軸受部材62aとで構成される。ラジアル
軸受構成部分とスラスト軸受構成部分とが一体形成ある
いは別体による形成であっても、潤滑流体67の内部に
気泡が入らない効果及び作用は第2の実施例とほぼ同様
であり、軸受部材に設けられた円筒状孔に軸体を挿入す
る工程のみで高性能な動圧軸受装置が得られる。
FIG. 7 shows a cylindrical inner surface constituting a radial dynamic pressure bearing provided on a bearing member 62 and a bottom surface constituting a thrust bearing when a hydrodynamic bearing device according to a fifth embodiment of the present invention is manufactured. A schematic vertical cross-sectional view of a dynamic pressure bearing device is shown in a process of inserting a cylindrical shaft body 61 into a cylindrical hole 60 formed by the method. The difference from the second embodiment is that the bearing member 62
Is composed of a sleeve 62b and a thrust bearing member 62a fixed to one end of the sleeve 62b. Even if the radial bearing component and the thrust bearing component are integrally formed or formed separately, the effect and action of preventing air bubbles from entering the lubricating fluid 67 are substantially the same as those of the second embodiment. A high-performance hydrodynamic bearing device can be obtained only by the step of inserting the shaft body into the cylindrical hole provided in the shaft.

【0025】本発明により得られた動圧軸受装置を使用
したスピンドルモータの1例を図8に示す。スピンドル
モータは軸受部材72に固定したステータ75の回りを
回転するロータ76は軸体71に固定され、この軸体7
1は動圧軸受装置を構成する。回転軸となる軸体71は
軸受部材72の円筒状孔70に挿入され、この円筒状孔
70はラジアル動圧軸受74を構成する円筒形状内表面
と、軸体のアキシアル荷重を支持する凸球面が形成され
たスラスト軸受73を構成する底面とを有する。円筒状
孔70の円筒形状内表面には軸方向に離れた二ケ所にヘ
リングボーン状の動圧発生用の溝が設けられている。な
お、該スピンドルモータの動圧軸受装置としては第2の
実施例において得られたものを用いている。
FIG. 8 shows an example of a spindle motor using the hydrodynamic bearing device obtained according to the present invention. The spindle motor rotates around a stator 75 fixed to a bearing member 72. A rotor 76 is fixed to a shaft 71.
1 is a dynamic pressure bearing device. A shaft 71 serving as a rotating shaft is inserted into a cylindrical hole 70 of a bearing member 72. The cylindrical hole 70 has a cylindrical inner surface constituting a radial dynamic pressure bearing 74 and a convex spherical surface for supporting the axial load of the shaft. And a bottom surface constituting the thrust bearing 73 in which is formed. Herringbone-shaped grooves for generating dynamic pressure are provided at two locations separated in the axial direction on the inner surface of the cylindrical hole 70. As the dynamic bearing device of the spindle motor, the one obtained in the second embodiment is used.

【0026】本実施例に限られず、軸受部材円筒状孔へ
の軸体挿入を行う工程時において、軸体の縮径端部の形
状を球面状にすると良く、又縮径端部は前記本体から先
端に向かって直径が減少してゆく円すい面の部分を外周
部に有するとともに、縮径端部の軸方向の長さを、潤滑
流体が表面張力により円筒形状内表面に沿って盛り上が
ることにより形成された潤滑流体表面の凹形状面の深さ
よりも長くすると良い。それにより軸体の縮径端部は本
体の直径の3/4以下の直径を有する軸心を中心とする
円の内側の部分が最初に潤滑流体に接触することが可能
となり高性能な動圧軸受を得ることが出来る。
The present invention is not limited to this embodiment. In the step of inserting the shaft into the cylindrical bore of the bearing member, the shape of the reduced diameter end of the shaft may be spherical, and the reduced diameter end may be the main body. The outer peripheral part has a conical surface part whose diameter decreases from the tip toward the tip, and the axial length of the reduced diameter end is increased by lubricating fluid rising along the cylindrical inner surface due to surface tension. It is preferable that the depth be longer than the depth of the concave surface of the formed lubricating fluid surface. As a result, the reduced-diameter end of the shaft body can first contact the lubricating fluid inside the circle centered on the axis having a diameter of 3/4 or less of the diameter of the main body, so that high-performance dynamic pressure can be obtained. Bearings can be obtained.

【0027】なお、前記工程を満足すれば、実施例に示
したようにスラスト軸受面は平面でも凸球面でも動圧発
生溝を有する面としても良く、また軸体の縮径端部の形
状も凸球面でも、外周部を除く部分が平面あるいは動圧
発生用の溝を形成した平面でも良く、さらにスラスト軸
受面と軸体の縮径端部は実施例の如くこれらの組合せと
しても良い。
If the above process is satisfied, the thrust bearing surface may be a flat surface, a convex spherical surface, or a surface having a dynamic pressure generating groove as shown in the embodiment, and the shape of the reduced diameter end of the shaft body may be changed. The convex spherical surface may be a flat surface or a flat surface on which a groove for generating a dynamic pressure is formed except for the outer peripheral portion. Further, the thrust bearing surface and the reduced diameter end portion of the shaft may be a combination thereof as in the embodiment.

【0028】[0028]

【本発明の効果】本発明によれば、円筒状の本体と前記
本体から先端に向かって直径が減少してゆく部分を外周
部に有する縮径端部とを有する軸体を前記縮径端部から
軸受部材の円筒状孔内に挿入する挿入工程において、縮
径端部は本体の直径の3/4以下の直径を有する軸心を
中心とする円の内側の部分が円筒状孔底面に注入された
油、液状グリース等の潤滑流体に最初に接触することに
より、動圧軸受装置の性能に悪影響を及ぼす潤滑流体中
の気泡をほとんど無くするかあるいは性能低下を生じさ
せない程度まで減少させることが可能となり、高性能な
動圧軸受装置をが得られる。さらに、軸受部材の円筒状
孔への軸体挿入を行う工程だけで潤滑流体中の気泡を大
幅に減少できるため、組立が容易となり組立工数を減少
できるという効果を有する。
According to the present invention, a shaft having a cylindrical body and a reduced-diameter end having an outer peripheral portion having a diameter decreasing from the main body toward the tip is provided by the reduced-diameter end. In the insertion step of inserting into the cylindrical hole of the bearing member from the portion, the reduced-diameter end portion has a portion inside the circle centered on the axis having a diameter of 3/4 or less of the diameter of the main body at the bottom of the cylindrical hole. The first contact with the lubricating fluid, such as oil or liquid grease, to eliminate or reduce air bubbles in the lubricating fluid that adversely affects the performance of the hydrodynamic bearing device. And a high-performance hydrodynamic bearing device can be obtained. Furthermore, since the bubbles in the lubricating fluid can be greatly reduced only by the step of inserting the shaft into the cylindrical hole of the bearing member, the assembly is facilitated and the number of assembly steps can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による動圧軸受装置を使用したスピン
ドルモータ概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of a spindle motor using a conventional dynamic pressure bearing device.

【図2a】従来技術による動圧軸受装置概略縦断面図を
用いた軸受部材円筒状孔への軸体挿入工程における工程
開始時の説明図である。
FIG. 2a is an explanatory view at the start of a process of inserting a shaft body into a bearing member cylindrical hole using a schematic longitudinal sectional view of a conventional dynamic pressure bearing device.

【図2b】従来技術による動圧軸受装置概略縦断面図を
用いた軸受部材円筒状孔への軸体挿入工程における軸体
端面と潤滑流体との接触初期の説明図である。
FIG. 2B is an explanatory view of an initial stage of contact between a shaft end face and a lubricating fluid in a step of inserting a shaft into a bearing member cylindrical hole using a schematic longitudinal sectional view of a conventional dynamic pressure bearing device.

【図2c】従来技術による動圧軸受装置概略縦断面図を
用いた軸受部材円筒状孔への軸体挿入工程における工程
終了時の説明図である。
FIG. 2c is an explanatory view at the end of the step of inserting a shaft body into a bearing member cylindrical hole using a schematic longitudinal sectional view of a conventional dynamic pressure bearing device.

【図2d】従来技術による動圧軸受装置概略縦断面図を
用いた軸受部材円筒状孔への軸体挿入工程における工程
終了時の説明図であり、図2cにおけるスラスト軸受部
の拡大図である。
2d is an explanatory view at the end of the step of inserting a shaft body into a bearing member cylindrical hole using a schematic longitudinal sectional view of a conventional dynamic pressure bearing device, and is an enlarged view of a thrust bearing portion in FIG. 2c. .

【図3a】本発明の第1の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける工程開始時の説明図である。
FIG. 3a is an explanatory view at the start of a process of inserting a shaft member into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of the dynamic pressure bearing device according to the first embodiment of the present invention.

【図3b】本発明の第1の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける軸体端面と潤滑流体との接触初期の説明図であ
る。
FIG. 3b is an explanatory view of the initial stage of contact between the end face of the shaft and the lubricating fluid in the step of inserting the shaft into the cylindrical hole of the bearing member using the schematic longitudinal sectional view of the dynamic pressure bearing device according to the first embodiment of the present invention; It is.

【図3c】本発明の第1の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける工程終了時の説明図である。
FIG. 3c is an explanatory view at the end of the step of inserting a shaft member into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of the dynamic pressure bearing device according to the first embodiment of the present invention.

【図4a】本発明の第2の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける工程開始時の説明図である。
FIG. 4a is an explanatory view at the start of a process of inserting a shaft member into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of a dynamic pressure bearing device according to a second embodiment of the present invention.

【図4b】本発明の第2の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける工程終了時の説明図である。
FIG. 4b is an explanatory view at the end of the step of inserting a shaft member into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of a dynamic pressure bearing device according to a second embodiment of the present invention.

【図5a】本発明の第3の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける軸体端面と潤滑流体との接触初期の説明図であ
る。
FIG. 5a is an explanatory view of an initial stage of contact between a shaft end face and a lubricating fluid in a step of inserting a shaft into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of a dynamic bearing device according to a third embodiment of the present invention; It is.

【図5b】本発明の第3の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける工程終了時の説明図である。
FIG. 5b is an explanatory view at the end of the step of inserting a shaft member into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of a dynamic pressure bearing device according to a third embodiment of the present invention.

【図6a】本発明の第4の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける軸体端面と潤滑流体との接触初期の説明図であ
る。
FIG. 6a is an explanatory view of an initial stage of contact between a shaft end face and a lubricating fluid in a step of inserting a shaft into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of a dynamic pressure bearing device according to a fourth embodiment of the present invention. It is.

【図6b】本発明の第4の実施例の動圧軸受装置概略縦
断面図を用いた軸受部材の円筒状孔への軸体挿入工程に
おける工程終了時の説明図である。
FIG. 6B is an explanatory view at the end of the step of inserting a shaft member into a cylindrical hole of a bearing member using a schematic longitudinal sectional view of a dynamic pressure bearing device according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施例による動圧軸受装置概略
縦断面図である。
FIG. 7 is a schematic longitudinal sectional view of a hydrodynamic bearing device according to a fifth embodiment of the present invention.

【図8】本発明の第2の実施例による動圧軸受装置を用
いたスピンドルモータ概略縦断面図である。
FIG. 8 is a schematic vertical sectional view of a spindle motor using a hydrodynamic bearing device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 円筒状孔 21 軸体 21a 凸球面 21b 本体 22 軸受部材 27 潤滑流体 Reference Signs List 20 cylindrical hole 21 shaft body 21a convex spherical surface 21b main body 22 bearing member 27 lubricating fluid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 動圧軸受装置の製造方法であって、 ラジアル軸受面を構成するための円筒形状内表面とスラ
スト軸受面を構成するための底面とを有する円筒状孔が
設けられた軸受部材の前記円筒状孔内の底面に潤滑流体
を注入する注入工程と、 前記注入工程の後に、円筒状の本体と前記本体から先端
に向かって直径が減少してゆく部分を外周部に有する縮
径端部とを有する軸体を前記縮径端部から前記円筒状孔
内に挿入する挿入工程とからなり、 前記挿入工程では、 前記縮径端部は本体の直径の3/4以下の直径を有する
軸心を中心とする円の内側の部分が最初に前記潤滑流体
に接触することを特徴とする動圧軸受装置の製造方法。
1. A method of manufacturing a hydrodynamic bearing device, comprising: a bearing member provided with a cylindrical hole having a cylindrical inner surface for forming a radial bearing surface and a bottom surface for forming a thrust bearing surface. An injecting step of injecting a lubricating fluid into the bottom surface of the cylindrical hole of the above, after the injecting step, a reduced diameter having a cylindrical main body and a portion whose diameter decreases from the main body toward the tip on the outer peripheral portion. And an insertion step of inserting a shaft having an end from the reduced diameter end into the cylindrical hole. In the inserting step, the reduced diameter end has a diameter of / or less of the diameter of the main body. A method for manufacturing a hydrodynamic bearing device, characterized in that an inner part of a circle centered on the shaft center first contacts the lubricating fluid.
JP13095197A 1997-05-21 1997-05-21 Manufacture of dynamic pressure bearing device Pending JPH10318271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13095197A JPH10318271A (en) 1997-05-21 1997-05-21 Manufacture of dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13095197A JPH10318271A (en) 1997-05-21 1997-05-21 Manufacture of dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JPH10318271A true JPH10318271A (en) 1998-12-02

Family

ID=15046471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13095197A Pending JPH10318271A (en) 1997-05-21 1997-05-21 Manufacture of dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JPH10318271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123465A1 (en) * 1998-10-19 2001-08-16 Vincent H. Rose Fluid thrust bearing - indicator with an assembling
WO2008139911A1 (en) * 2007-05-07 2008-11-20 Ntn Corporation Fluid bearing device
JP2018093768A (en) * 2016-12-09 2018-06-21 株式会社シマノ Reciprocation mechanism of fishing reel
US10742059B2 (en) 2012-12-11 2020-08-11 Smart Wave Technologies, Inc. Power management system for dispensers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1123465A1 (en) * 1998-10-19 2001-08-16 Vincent H. Rose Fluid thrust bearing - indicator with an assembling
EP1123465A4 (en) * 1998-10-19 2005-05-18 Vincent H Rose Fluid thrust bearing - indicator with an assembling
WO2008139911A1 (en) * 2007-05-07 2008-11-20 Ntn Corporation Fluid bearing device
US8277126B2 (en) 2007-05-07 2012-10-02 Ntn Corporation Fluid dynamic bearing device
US10742059B2 (en) 2012-12-11 2020-08-11 Smart Wave Technologies, Inc. Power management system for dispensers
JP2018093768A (en) * 2016-12-09 2018-06-21 株式会社シマノ Reciprocation mechanism of fishing reel

Similar Documents

Publication Publication Date Title
KR100626585B1 (en) Spindle motor
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
US7466050B2 (en) Brushless motor and method of manufacturing the same
US20040145260A1 (en) Dynamic bearing device, producing method thereof, and motor using the same
US20050099722A1 (en) Disk drive spindle motor with radial inward thrust area annular prutruding portion and bearing member communicating passage
JP2000514165A (en) Spindle motor with hydrodynamic bearings (open-ended) with journals combined with conical bearings
JP2005321089A (en) Dynamic pressure bearing device
US20070201779A1 (en) Hydrodynamic bearing motor
JP3774080B2 (en) Hydrodynamic bearing unit
WO2005059387A1 (en) Fluid bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JPH10318271A (en) Manufacture of dynamic pressure bearing device
JP3921007B2 (en) Hydrodynamic bearing unit and manufacturing method thereof
US7789565B2 (en) Fluid dynamic bearing apparatus
JP3998915B2 (en) Manufacturing method of hydrodynamic bearing unit
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2000352416A (en) Dynamic pressure type bearing unit and its manufacture
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
JP3773721B2 (en) Hydrodynamic bearing
JP2004176778A (en) Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
JPH08275448A (en) Motor
JP2002174242A (en) Lubricant filling method into fluid bearing device
JPH10131958A (en) Fluid bearing device
JPH074428A (en) Bearing device
JP2002061647A (en) Dynamic pressure type bearing unit