JPH10317195A - Continuous electroplating method and apparatus therefor - Google Patents

Continuous electroplating method and apparatus therefor

Info

Publication number
JPH10317195A
JPH10317195A JP13221297A JP13221297A JPH10317195A JP H10317195 A JPH10317195 A JP H10317195A JP 13221297 A JP13221297 A JP 13221297A JP 13221297 A JP13221297 A JP 13221297A JP H10317195 A JPH10317195 A JP H10317195A
Authority
JP
Japan
Prior art keywords
plating
electrodes
base stock
perforated plate
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13221297A
Other languages
Japanese (ja)
Other versions
JP3178373B2 (en
Inventor
Kunihiro Fukui
国博 福井
Junichi Uchida
淳一 内田
Hirohisa Seto
宏久 瀬戸
Takeshi Hattori
武 服部
Shigeo Itano
重夫 板野
Shizuaki Ueno
静昭 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13221297A priority Critical patent/JP3178373B2/en
Publication of JPH10317195A publication Critical patent/JPH10317195A/en
Application granted granted Critical
Publication of JP3178373B2 publication Critical patent/JP3178373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the current density of a continuously traveling base stock from being made nonuniform and to embody plating with the decreased compsn. variations in the thickness direction in plating films and excellent quality by installing perforated insulating materials between the opposed base stock constituting a cathode and anodes within a continuous electroplating cell and adjusting opening rates by changing the sizes of holes and the number of the holes per unit area. SOLUTION: The base stock 1 to be plated of a steel strip is made to travel continuously from the left side to the right side of Fig. and is supported by respective dam rolls 2 on the inlet and outlet sides of electrodes 4 which are the anodes. The distance between the electrodes is kept as constant as possible. Perforated plates 5 respectively consisting of the insulating materials are arranged parallel between the opposed electrodes 4 and the base stock 1 preferably in approximately intermediate positions with respect to the base stock 1 and the electrodes 4. The perforated plates 5 are formed of rectangular materials and are sufficiently sized to at least cover the electrodes 4. While the width thereof is similar to that of the electrodes 4, the length is slightly longer than that of the electrodes. In this example, the perforated plates are segmented to first to third zones in a longitudinal direction and their respective opening rates are changed to 30%, 40%, 50%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続電気めっき方
法およびそのための装置、特に連続走行する素材の進行
方向に沿って電流密度分布を均一化して行う連続電気め
っき方法およびそのための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous electroplating method and an apparatus therefor, and more particularly to a continuous electroplating method and an apparatus therefor in which a current density distribution is made uniform along a traveling direction of a continuously running material.

【0002】[0002]

【従来の技術】現在、フープ材、すなわち鋼帯、線材な
どの電気めっきは、生産性向上の要請から高電流密度の
高速めっきが行われている。線材や帯材へのめっきは耐
食性や電気的特性を得るために行われるものであり、め
っきされた製品の性能は、均一なめっき付着量が確保さ
れているか、合金めっき組成が安定化しているか、そし
て物理的性質の均一なめっき皮膜が実現されているか否
か等によって大幅に変動する。
2. Description of the Related Art At present, high-speed plating with a high current density is carried out for the electroplating of hoop materials, that is, steel strips, wire rods, etc. in order to improve productivity. Plating on wires and strips is performed to obtain corrosion resistance and electrical properties.The performance of plated products depends on whether uniform plating weight is secured or alloy plating composition is stabilized. , And greatly varies depending on whether or not a plating film having a uniform physical property is realized.

【0003】電流密度は、付着量の均一化や合金めっき
時の析出成分の均一化に大きな影響を与える。そしてそ
の電流密度は、特に、連続めっきの場合、極間距離や、
陽極、陰極の電流密度分布によって大きく影響される。
極間距離を一定に保持するには、まず、鋼帯や線材のパ
スライン精度を正確に保つことが必要であり、またその
ためには、通板ロールなどの調整と、めっき素材の平坦
度、真直度を確保することが必要となる。
[0003] The current density has a significant effect on the uniformity of the amount of deposition and the uniformity of the components deposited during alloy plating. And the current density, especially in the case of continuous plating, the distance between the poles,
It is greatly affected by the current density distribution of the anode and cathode.
In order to keep the distance between the poles constant, it is first necessary to accurately maintain the accuracy of the pass line of the steel strip or wire rod. It is necessary to ensure straightness.

【0004】また、陽極電極内の電流密度を均一化する
ためには、陽極内で生じるIRドロップ成分を少なくす
る必要があり、そのためには高電気伝導度の材料を使用
したり、あるいは不溶性電極などの場合、高電気伝導度
の材料を芯材にして外周のみを電極材料でライニングし
たり、あるいは可溶性電極の場合、電極内の電流の流れ
る方向に対しての断面積を大きくして抵抗値を少なくす
る等の手段により、電極の構造面からIRドロップ成分
を少なくする方法がとられている。
[0004] Further, in order to make the current density in the anode electrode uniform, it is necessary to reduce the IR drop component generated in the anode. For this purpose, a material having high electric conductivity is used, or an insoluble electrode is used. In such cases, use a material with high electrical conductivity as the core material and line only the outer periphery with the electrode material, or in the case of a fusible electrode, increase the cross-sectional area in the direction of current flow in the electrode to increase the resistance value. In order to reduce the IR drop component from the structural surface of the electrode, for example, a method of reducing the number of components is adopted.

【0005】まためっき電解時にエッジ部に電流集中す
る現象を防ぐために遮蔽板などを取り付けてめっき電解
槽内での電力線の集中を防いでいるが、めっきすべき素
材である帯鋼や線材自体の固有抵抗から生じるIRドロ
ップは防ぐことが困難であって、板厚が薄くなるほど、
また線径が細くなるほど、発生するIRが大きくなり陰
極に不均一電流密度分布が発生する。
In order to prevent current concentration at the edge during plating electrolysis, a shield plate or the like is attached to prevent the concentration of power lines in the plating electrolytic cell. It is difficult to prevent the IR drop resulting from the specific resistance.
In addition, as the wire diameter becomes smaller, the generated IR becomes larger and a non-uniform current density distribution occurs in the cathode.

【0006】めっき素材として鉄材を用いる場合、水溶
液のめっきは常温から60℃では電気抵抗値は比較的少な
いが、高温下でめっきを行う溶融塩めっきにおいては電
気抵抗が大きくなりIRドロップが発生するから陰極電
流密度分布は大きく変動し、めっきへの影響は大きい。
When an iron material is used as a plating material, the electrical resistance of an aqueous solution plating is relatively small from normal temperature to 60 ° C., but in molten salt plating performed at a high temperature, the electrical resistance increases and an IR drop occurs. The cathode current density distribution fluctuates greatly, and the effect on plating is large.

【0007】また連続めっきではめっき素材に給電する
ためにめっき槽の外から金属製通電ロールで給電を行
う。そのときの給電点から離れる程、めっき母材の固有
抵抗×距離の関係で母材のIRドロップによる電気が流
れにくくなる。めっき母材である帯鋼や線材自体の固有
抵抗から生じるIRドロップを防ぐことが困難で、特に
板厚が薄くなるほど、また線径が細くなるほど、IRド
ロップが大きくなり陰極での電流密度分布は大きくな
る。また、めっき母材、つまりめっき素材として鉄材に
めっきする場合が多いが、一般に金属材料の特性として
温度が高くなるほど電気抵抗値は増加する傾向があり、
水溶液のめっきでは常温から60℃程度で行うため電気抵
抗は比較的少なく影響は少ない。しかし、高温下でめっ
きを行う溶融塩めっきでは電気抵抗値も大きくなり、I
Rドロップ成分も大きく、従って陰極電流密度がめっき
素材の進行方向に対して大きく変化する。それらの対策
としては連続めっきにおいて陽極配置を陰極のパスライ
ンに対して傾斜して取り付け極間距離制御から電流密度
を均一化する対策が行われている。
In continuous plating, power is supplied to the plating material from outside the plating tank by a metal energizing roll. The farther away from the feeding point at that time, the more difficult it is for electricity to flow due to the IR drop of the base material due to the relationship of the specific resistance of the base material and the distance. It is difficult to prevent the IR drop caused by the specific resistance of the steel strip or the wire itself, which is the plating base material. growing. In addition, in many cases, iron is plated as a plating base material, that is, a plating material, but in general, as the temperature of a metal material increases, the electric resistance tends to increase as the temperature increases.
Since the plating of the aqueous solution is carried out at a temperature from normal temperature to about 60 ° C., the electric resistance is relatively small and the influence is small. However, in the case of molten salt plating in which plating is performed at a high temperature, the electric resistance value also increases, and I
The R drop component is also large, so that the cathode current density changes greatly in the direction of travel of the plating material. As a countermeasure, in the continuous plating, the arrangement of the anode is inclined with respect to the pass line of the cathode, and a measure is taken to make the current density uniform by controlling the distance between the attached electrodes.

【0008】現在の高速電気めっきでは高電流密度めっ
きでもめっき焼けを防ぐため、めっき液の高速流動を行
ってイオンの供給を促進し、めっきの焼けを防止してい
る。しかし、電極配置が傾斜している場合、電極間の距
離(断面積)が異なると、めっき液の流動速度が部位に
より異なり、流動の遅い所でめっき焼けが生じるため、
そのような対策は高速めっきでは実施困難である。
In the current high-speed electroplating, in order to prevent burning of the plating even at a high current density plating, a high-speed flow of a plating solution is performed to promote the supply of ions, thereby preventing burning of the plating. However, when the electrode arrangement is inclined, if the distance (cross-sectional area) between the electrodes is different, the flow speed of the plating solution differs depending on the part, and plating burning occurs at a place where the flow is slow,
Such measures are difficult to implement with high-speed plating.

【0009】[0009]

【発明が解決しようとする課題】このように、従来技術
にあって電流密度の長手方向の分布を均一化するために
種々の提案がされているが、いずれも、十分な効果を上
げているとは言えなかった。
As described above, various proposals have been made in the prior art to make the distribution of the current density in the longitudinal direction uniform, but all of them have achieved sufficient effects. I couldn't say.

【0010】連続電気めっき、特に帯状および線形の素
材を一方向に連続的に通して電気めっきを行う連続電気
めっきの場合、素材の電気抵抗からIRドロップを生
じ、進行方向に電流密度の不均一化が生じる。電流密度
の不均一化が生じるとめっき母材の通電点に近い所に異
常に高い電流密度域が発生してめっきの焼けが生じる。
また合金めっきの場合、組成比は電流密度依存があるた
め析出物の組成不均一化がめっき厚さ方向で生じる。
In the case of continuous electroplating, particularly continuous electroplating in which a strip-shaped or linear material is continuously passed in one direction to perform electroplating, an IR drop occurs due to the electrical resistance of the material, resulting in uneven current density in the traveling direction. Transformation occurs. When the current density becomes non-uniform, an abnormally high current density region is generated near a current-carrying point of the plating base material, and burning of the plating occurs.
In the case of alloy plating, since the composition ratio depends on the current density, the composition of the precipitate becomes non-uniform in the plating thickness direction.

【0011】ここに、本発明の目的は、そのような電流
密度不均一化を防止することで、品質の優れためっきを
実現できる技術を開発することにある。
Here, an object of the present invention is to develop a technique capable of realizing plating of excellent quality by preventing such nonuniform current density.

【0012】[0012]

【課題を解決するための手段】ここに、本発明者らは、
連続電気めっきのめっき電解槽内の陽極と陰極との間に
多孔絶縁材を設置して孔の大きさと単位面積当たりの孔
数を変化させることにより開口率を調整して、陰極電流
密度を均一化することができ、さらに可溶性タイプのペ
レット電極方式に使用する場合は、孔を設けその開口密
度を調節した絶縁多孔板をペレット電極箱の正面に使用
して電極箱自体で電流分布を調節する。
Means for Solving the Problems Here, the present inventors have
Uniform cathode current density by adjusting the aperture ratio by installing a porous insulating material between the anode and cathode in the plating electrolyzer for continuous electroplating and changing the hole size and the number of holes per unit area In the case of using a soluble type pellet electrode system, the current distribution is adjusted by the electrode box itself by using an insulating porous plate having holes and adjusting the opening density in front of the pellet electrode box. .

【0013】ここに、本発明は、連続走行する陰極であ
る素材に電気めっきを行うに際して、対向する陰極を構
成する素材と陽極との間に絶縁物で作られた多孔板を設
置して素材の進行方向に沿って該多孔板の開口率を調整
することにより電流密度分布を均一化することを特徴と
する連続電気めっき方法である。
[0013] Here, the present invention provides a method for performing electroplating on a material which is a continuously running cathode, by installing a perforated plate made of an insulator between a material constituting the opposed cathode and the anode. The continuous electroplating method is characterized in that the current density distribution is made uniform by adjusting the aperture ratio of the perforated plate along the direction of travel.

【0014】また、本発明は、別の面からは、連続走行
する素材に電気めっきを行う装置であって、陽極および
該陽極と連続走行する素材の通過領域との間に設置され
多孔板を備え、該多孔板かつ絶縁物で作られ、素材進行
方向に開口率が調整されていることを特徴とする連続電
気めっき装置である。
Another aspect of the present invention is an apparatus for electroplating a continuously running material, comprising: an anode and a perforated plate installed between the anode and a passage area of the continuously running material. A continuous electroplating apparatus comprising a perforated plate and an insulating material, the aperture ratio of which is adjusted in a material traveling direction.

【0015】このように、本発明によれば、めっき素材
の進行方向に沿って電流密度分布が均一化した電気めっ
き方法および装置が提供されるが、別の観点からは、本
発明は、水溶液による連続電気めっき、あるいは溶融塩
による連続電気めっきに際して、素材の長手方向に生じ
る電流密度分布を陽極、陰極の間に絶縁物で作られた多
孔板を設置してこの多孔板の開口率を調整することによ
り電流密度分布を均一化する方法および装置である。
As described above, according to the present invention, there is provided an electroplating method and apparatus in which a current density distribution is made uniform along a traveling direction of a plating material. In the continuous electroplating by the slag or the continuous electroplating by the molten salt, the current density distribution generated in the longitudinal direction of the material is adjusted by setting a perforated plate made of an insulator between the anode and the cathode and setting the aperture ratio of this perforated plate And a method and apparatus for making the current density distribution uniform.

【0016】[0016]

【発明の実施の形態】連続電気めっきにおけるめっき時
の電流密度分布はめっき素材への給電点の数と位置、電
解槽の大きさ (電解槽内の素材長さ) が大きく影響す
る。それはめっき素材の固有の電気抵抗が長さ方向に抵
抗成分としてあるため、めっき電流が流れるとIRドロ
ップが生じ給電点に近い程電気が流れやすく給電点から
離れると電気が流れにくくなり、すなわち電流密度分布
の不均一化がめっき素材の長手方向に生じる。
BEST MODE FOR CARRYING OUT THE INVENTION The current density distribution at the time of plating in continuous electroplating is greatly affected by the number and positions of feeding points to the plating material and the size of the electrolytic cell (the length of the material in the electrolytic cell). That is, since the inherent electrical resistance of the plating material is a resistance component in the length direction, when a plating current flows, an IR drop occurs, and the closer to the power supply point, the more the electric current flows. Non-uniform density distribution occurs in the longitudinal direction of the plating material.

【0017】IRドロップ自体は素材の種類と素材の断
面形状 (面積) まためっき時の温度が大きく作用する。
極薄板、極細径線などはIRドロップの影響を受けやす
く、高温で電気めっきを行う溶融塩めっきはめっき素材
が金属の場合、一般には高温ほど電気抵抗値が大きくな
るため影響は大きい。
The IR drop itself has a large effect on the type of material, the cross-sectional shape (area) of the material, and the temperature during plating.
Ultra-thin plates, ultra-fine wires, etc. are susceptible to IR drop, and the effect of molten salt plating, which performs electroplating at a high temperature, is large when the plating material is metal, since generally the higher the temperature, the higher the electrical resistance value.

【0018】ここに、本発明によれば、絶縁物に孔を明
けた多孔板を、陽極と、陰極を構成する素材との間に平
行に設置する。多孔板の大きさはめっき素材の形状によ
って異なるが、好ましくは電極面全体を遮蔽できるだけ
十分広い面積を有するものであればよい。
Here, according to the present invention, a perforated plate having holes formed in an insulator is placed in parallel between an anode and a material constituting a cathode. The size of the perforated plate depends on the shape of the plating material, but it is preferable that the perforated plate has an area large enough to shield the entire electrode surface.

【0019】孔の大きさおよび数で調整して、給電点に
近いほど開口度を少なく、給電点から離れるほど開口率
を大きくすることにより、めっきすべき素材の固有電気
抵抗値を打ち消すように多孔板の開口率を調整する。開
口率は電流密度分布に影響するものであって、通常は20
〜60%の範囲内で2〜5ゾーンに分けてそれぞれほぼ10
%程度の差違をつけて設ける。もちろん連続的に変化さ
せてもよい。
By adjusting the size and the number of holes to reduce the degree of opening closer to the feeding point and increasing the opening ratio further away from the feeding point, the specific electrical resistance of the material to be plated can be canceled. Adjust the aperture ratio of the perforated plate. The aperture ratio affects the current density distribution.
Divided into 2 to 5 zones within the range of ~ 60%, each with approximately 10
It is provided with a difference of about%. Of course, it may be changed continuously.

【0020】多孔板は絶縁物であればどのような材料で
も使用可能であり、孔加工やめっき液中での安定度か
ら、例えば硬質塩化ビニル板、エポキシ板、アクリル
板、ポリイミド板、などの樹脂材が使用できる。孔の形
状は丸、三角、四角などどのような形状でもいいが加工
するに際し、また開口度を調節するうえで丸孔が好まし
い。
The porous plate can be made of any material as long as it is an insulating material. For example, a rigid vinyl chloride plate, epoxy plate, acrylic plate, polyimide plate, etc. Resin material can be used. The shape of the hole may be any shape such as a circle, a triangle, or a square, but a round hole is preferable for processing and for adjusting the degree of opening.

【0021】図1は本発明にかかる連続電気めっき装置
の模式的説明図であり、図中、鋼帯のめっきすべき素材
1は、図面に向かって左手側から右手側に連続走行し、
陽極である電極4の入出側でそれぞれダムロール2によ
り支持され、極間距離を可及的一定にしようとしてい
る。外部電源 (図示せず) からの電流は陽極である電極
4から素材1を経て、この場合、通電ロール3に向かっ
て流れ、それに伴って陰極を構成する素材1の表面に金
属がめっきされる。ここに、本発明によれば対向する各
電極4と素材1との間には、それぞれ絶縁材から成る多
孔板5が、好ましくは素材1および電極4とに対しほぼ
中間位置において平行に配置されている。多孔板5の形
状は、同じく図1に示すように長矩形材であって、その
大きさは電極4を少なくとも覆うに十分な大きさとす
る。図示例では、幅は電極のそれと同様であるが、長さ
は上流側および下流側のいずれにおいても多少長く伸び
ている。電極4に密着させて設けてもよい。また図示例
では、長手方向にかけて第1ないし第3ゾーンに区画さ
れ、それぞれの開口率を給電点を構成する通電ロールに
近い方から30%、40%、50%と変更させている。
FIG. 1 is a schematic explanatory view of a continuous electroplating apparatus according to the present invention, in which a steel strip material 1 to be plated continuously runs from the left hand side to the right hand side as viewed in the drawing.
Each of the anodes 4 is supported by a dam roll 2 on the entrance and exit sides of the electrode 4 to make the distance between the electrodes as constant as possible. A current from an external power source (not shown) flows from the electrode 4 as an anode, through the material 1, and in this case, toward the energizing roll 3, whereby metal is plated on the surface of the material 1 constituting the cathode. . Here, according to the present invention, a porous plate 5 made of an insulating material is disposed between each of the opposed electrodes 4 and the material 1, preferably at a substantially intermediate position with respect to the material 1 and the electrode 4. ing. The shape of the perforated plate 5 is a long rectangular material as shown in FIG. 1, and its size is large enough to cover at least the electrode 4. In the example shown, the width is similar to that of the electrodes, but the length is slightly longer both upstream and downstream. It may be provided in close contact with the electrode 4. In the illustrated example, the first to third zones are defined in the longitudinal direction, and the opening ratios of the respective zones are changed to 30%, 40%, and 50% from the side closer to the energizing roll forming the feeding point.

【0022】図2は、図1のそれと実質上同一である
が、図2の場合は多孔板5が長手方向に第1ないし第4
の各ゾーンに区画され、それぞれの開口率を25%、35
%、45%、55%に調整している。なお、図2において図
1と同一部材は同一符号をもって表わす。
FIG. 2 is substantially the same as that of FIG. 1, but in the case of FIG. 2, the perforated plate 5 is first to fourth in the longitudinal direction.
Are divided into zones, each with an aperture ratio of 25%, 35
%, 45% and 55%. In FIG. 2, the same members as those in FIG. 1 are denoted by the same reference numerals.

【0023】図4は、別の変更例を示すもので、めっき
素材1を竪型めっき装置で連続めっきする装置を示す。
めっき浴中に浸漬された浸漬ロールを周回してめっき素
材1、例えばSUS 鋼板がめっきされる。図示例では、素
材1が下方に走行するときだけめっきされる態様を示す
が、両側においてめっきしてもよい。
FIG. 4 shows another modification, which shows an apparatus for continuously plating a plating material 1 with a vertical plating apparatus.
The plating material 1, for example, a SUS steel plate, is plated around the immersion roll immersed in the plating bath. In the illustrated example, the plating is performed only when the material 1 travels downward, but plating may be performed on both sides.

【0024】図1、図2の場合、不溶性電極、可溶性電
極のいずれであってもよいが、図4は可溶性電極ペレッ
ト6を用いてこれを電極箱5に入れて電極として用いる
場合である。電極箱5の正面、つまりめっき素材1と対
向する側の面は絶縁材料の多孔板から構成されており、
図示のように上下方向に第1、第2ゾーンに区画されて
いて、例えばそれぞれ35%、45%の開口率でもって開口
が設けられている。
1 and 2 may be either an insoluble electrode or a soluble electrode. FIG. 4 shows a case where a soluble electrode pellet 6 is used and put in an electrode box 5 to be used as an electrode. The front surface of the electrode box 5, that is, the surface on the side facing the plating material 1 is made of a porous plate made of an insulating material.
As shown in the figure, it is divided into first and second zones in the vertical direction, and openings are provided with opening ratios of, for example, 35% and 45%, respectively.

【0025】図6は、図1、図2、図4の多孔板5にお
ける開口率の定義を説明するもので、図中、開口として
丸形開口を考えた場合、その直径d、それと取り込む平
均四角形の各辺の長さA、Bとすると、本発明における
開口率は下式で定義される。
FIG. 6 explains the definition of the aperture ratio in the perforated plate 5 of FIGS. 1, 2 and 4. In FIG. 6, when a circular opening is considered as the opening, its diameter d and its average taken in are considered. Assuming the lengths A and B of each side of the rectangle, the aperture ratio in the present invention is defined by the following equation.

【0026】[0026]

【数1】 (Equation 1)

【0027】[0027]

【実施例】次に、本発明の作用効果を実施例によってさ
らに具体的に説明する。 (実施例1)図1に示す連続横型電気めっき装置を使用し
て、鋼帯に電気亜鉛めっきを行った。図1の数字は寸法
(mm)を表わす。通板速度10 m/minでめっきを行って限界
電流密度とめっきの焼け発生とを調べた。
Next, the operation and effect of the present invention will be described more specifically with reference to examples. (Example 1) Using a continuous horizontal electroplating apparatus shown in FIG. 1, a steel strip was electrogalvanized. The numbers in Figure 1 are dimensions
(mm). Plating was performed at a sheet passing speed of 10 m / min, and the limit current density and the occurrence of burning in the plating were examined.

【0028】 めっき液流速:30 m/min (向流) めっき素材:冷延鋼板(0.2厚さ×1000幅mm) 多孔板は、厚さ5mmのガラス補強エポキシ板を用い、通
電ロール側から3つのゾーンに分けて通電ロールに近い
ゾーンの開口率を30%、次のゾーンを40%、そして50%
の順で丸孔を明けた。
[0028] Plating solution flow rate: 30 m / min (counter current) Plating material: Cold rolled steel plate (0.2 thickness x 1000 width mm) The perforated plate uses a 5 mm thick glass reinforced epoxy plate, and is divided into three zones from the energizing roll side Separate the opening ratio of the zone close to the energizing roll by 30%, the next zone by 40%, and 50%
The holes were drilled in this order.

【0029】本例の結果は次の通りであった。本発明に
したがって多孔板を使用した時の限界電流密度は未使用
の場合に比べてほぼ1.4 倍程度上昇した。亜鉛めっきの
焼け発生は多孔板使用時が85A/dm2 に対して多孔板を未
使用では60A/dm2 であった。
The results of this example were as follows. The limit current density when the perforated plate was used according to the present invention was increased about 1.4 times as compared with the case where the perforated plate was not used. The occurrence of galvanizing burn was 85 A / dm 2 when the perforated plate was used, and was 60 A / dm 2 when the perforated plate was not used.

【0030】(実施例2)本例では図2に示す連続横型電
気めっき装置を使用して、ニッケル−亜鉛合金電気めっ
きを行った。図中の数字は寸法(mm)を表わす. 多孔板使
用、未使用時の析出金属組成を調べた。
Example 2 In this example, nickel-zinc alloy electroplating was performed using the continuous horizontal electroplating apparatus shown in FIG. The numbers in the figure represent dimensions (mm). The composition of the deposited metal was determined when a perforated plate was used and when it was not used.

【0031】 電流密度:80 A/dm2 めっき液流速:60 m/min (順流) 通板速度:6 m/min めっき素材:冷延鋼板(0.6厚さ×750 幅mm) 多孔板としては厚さ10mmアクリル板に丸孔を明け、通電
ロールに近いゾーンから最も遠い位置までを4分割して
開口率を通電ロールに近い所から25%、35%、45%、55
%の順で孔を明けて調整した。
[0031] Current density: 80 A / dm 2 Plating solution flow rate: 60 m / min (forward flow) Passing speed: 6 m / min Plating material: Cold rolled steel plate (0.6 thickness x 750 width mm) 10 mm thick acrylic as a perforated plate Drill a round hole in the plate and divide the area from the zone near the energizing roll to the farthest position into four parts, and set the aperture ratio to 25%, 35%, 45%, 55
The holes were adjusted in the order of% to adjust.

【0032】その結果は次の通りであった。めっき皮膜
を厚さ方向のEPMA線分析した。結果を図3にグラフ
で示すが、本発明にしたがって多孔板を使用した時のめ
っき皮膜中のNiは14.5〜16%になったが、未使用時は12
〜18%と大きくバラついた。
The results were as follows. The plating film was subjected to EPMA line analysis in the thickness direction. The results are shown in the graph of FIG. 3, where the Ni content in the plating film was 14.5 to 16% when the perforated plate was used in accordance with the present invention, but 12% when not used.
It varied greatly, up to 18%.

【0033】(実施例3)本例では、図4に示す竪型めっ
き装置を使用して溶融塩Al−Mn合金めっきを縦型めっき
セルで行い、めっき組成とめっき焼けとから多孔板の効
果を調べた。
Example 3 In this example, molten salt Al-Mn alloy plating was performed in a vertical plating cell using a vertical plating apparatus shown in FIG. Was examined.

【0034】 めっき条件:温度 200℃ 液速度1m/S (順流) 通板速度:5 m/min 陽極電極箱の陰極に対応する正面に多孔板を張り付け
た。孔径は5mmで開口率を上から30%、45%の2分割と
した。多孔板および電極箱は10mmのガラス積層ポリイミ
ド板で製作した。
[0034] Plating conditions: temperature 200 ° C. Liquid speed 1 m / S (forward flow) Passing speed: 5 m / min A perforated plate was attached to the front of the anode electrode box corresponding to the cathode. The hole diameter was 5 mm, and the aperture ratio was divided into two, 30% and 45% from the top. The perforated plate and the electrode box were made of a 10 mm glass laminated polyimide plate.

【0035】なお比較用の電極箱の多孔板には直径6mm
の孔を開口率50%一定にして設けた。 電極材料:Alペレット (10mm径) めっき素材:SUS304 (0.4 mm厚さ×1000mm幅) その結果、開口率50%一定の電極箱でめっきした場合、
電流密度50 A/dm2焼けが発生した。開口率を30、45%と
調整した電極箱でめっきした場合、電流密度65A/dm2
焼けが発生し、開口率の調整はめっきの限界電流密度上
昇に効果があることが分かる。
The perforated plate of the comparative electrode box had a diameter of 6 mm.
Are provided with a constant aperture ratio of 50%. Electrode material: Al pellet (10 mm diameter) Plating material: SUS304 (0.4 mm thickness x 1000 mm width) As a result, when plating with an electrode box with a constant aperture ratio of 50%,
A current density of 50 A / dm 2 burns occurred. When plating is performed with an electrode box whose opening ratio is adjusted to 30 or 45%, burning occurs at a current density of 65 A / dm 2 , and it can be seen that adjusting the opening ratio is effective in increasing the limiting current density of plating.

【0036】めっき組成分布については図5にその結果
をグラフで示すが、開口率一定の電極箱でめっきすると
めっきの厚さ方向で23から30%のMn組成変化がある。開
口率を30、45%と変化させた電極箱でめっきを行うとめ
っき膜厚さ方向でのMn変化は24から28%とバラツキは少
なく開口率の調整による効果はあった。
FIG. 5 is a graph showing the results of the plating composition distribution. When the plating is performed using an electrode box having a constant aperture ratio, the Mn composition changes by 23 to 30% in the thickness direction of the plating. When plating was performed using an electrode box with an aperture ratio changed to 30 or 45%, the variation in Mn in the thickness direction of the plating was 24 to 28% with little variation, and there was an effect of adjusting the aperture ratio.

【0037】[0037]

【発明の効果】連続電気めっきのめっき電解槽内の陽
極、陰極との間に多孔板を設置することにより、めっき
の限界電流密度が上昇して高速めっきが可能となった。
合金電気めっきにおいてはめっき皮膜中の厚さ方向の組
成バラツキが減少できるようになった。
By installing a perforated plate between the anode and the cathode in the electrolyzer for continuous electroplating, the limiting current density of the plating has been increased and high-speed plating has become possible.
In alloy electroplating, the composition variation in the thickness direction in the plating film can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる電気めっき装置の一つの構成例
を示す略式説明図である。
FIG. 1 is a schematic explanatory view showing one configuration example of an electroplating apparatus according to the present invention.

【図2】本発明にかかる電気めっき装置の別の例の構成
を示す略式説明図である。
FIG. 2 is a schematic explanatory view showing the configuration of another example of the electroplating apparatus according to the present invention.

【図3】本発明にかかる多孔板の有無がめっき組成に及
ぼす影響を示すグラフである。
FIG. 3 is a graph showing the effect of the presence or absence of a perforated plate according to the present invention on the plating composition.

【図4】本発明にかかる電気めっき装置のさらに別の例
の構成を示す略式説明図である。
FIG. 4 is a schematic explanatory view showing the configuration of still another example of the electroplating apparatus according to the present invention.

【図5】本発明にかかる多孔板の開口率の調整の有無が
めっき組成に及ぼす影響を示すグラフである。
FIG. 5 is a graph showing the effect of adjusting the aperture ratio of the perforated plate on the plating composition according to the present invention.

【図6】多孔板の開口率の定義の説明図である。FIG. 6 is an explanatory diagram of a definition of an aperture ratio of a perforated plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸 宏久 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 服部 武 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 板野 重夫 広島市西区観音新町4丁目6番22号 三菱 重工業株式会社広島研究所内 (72)発明者 上野 静昭 広島市西区観音新町4丁目6番22号 三菱 重工業株式会社広島製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hirohisa Seto 4-5-33 Kitahama, Chuo-ku, Osaka City Inside Sumitomo Metal Industries Co., Ltd. (72) Inventor Takeshi Hattori 4-5-33 Kitahama, Chuo-ku, Osaka City Within Sumitomo Metal Industries Co., Ltd. (72) Inventor Shigeo Itano 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Inside Mitsubishi Heavy Industries Co., Ltd. No. Mitsubishi Heavy Industries, Ltd. Hiroshima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続走行する素材に電気めっきを行うに
際して、対向する陰極を構成する素材と陽極との間に絶
縁物で作られた多孔板を設置して素材進行方向に沿って
該多孔板の開口率を調整することにより素材進行方向の
電流密度分布を均一化することを特徴とする連続電気め
っき方法。
When performing electroplating on a continuously running material, a perforated plate made of an insulating material is placed between a material constituting an opposed cathode and an anode, and the perforated plate is formed along the material moving direction. A continuous electroplating method characterized in that the current density distribution in the material advancing direction is made uniform by adjusting the aperture ratio of the electrode.
【請求項2】 連続走行する素材に電気めっきを行う装
置であって、陽極および該陽極と連続走行する素材の通
過領域との間に設置された多孔板を備え、該多孔板が絶
縁物で作られ、素材進行方向に開口率が調整されている
ことを特徴とする連続電気めっき装置。
2. An apparatus for electroplating a continuously running material, comprising an anode and a perforated plate provided between the anode and a passage area of the continuously running material, wherein the perforated plate is made of an insulating material. A continuous electroplating apparatus made, wherein an aperture ratio is adjusted in a material traveling direction.
JP13221297A 1997-05-22 1997-05-22 Continuous electroplating method and equipment Expired - Fee Related JP3178373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13221297A JP3178373B2 (en) 1997-05-22 1997-05-22 Continuous electroplating method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13221297A JP3178373B2 (en) 1997-05-22 1997-05-22 Continuous electroplating method and equipment

Publications (2)

Publication Number Publication Date
JPH10317195A true JPH10317195A (en) 1998-12-02
JP3178373B2 JP3178373B2 (en) 2001-06-18

Family

ID=15076022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13221297A Expired - Fee Related JP3178373B2 (en) 1997-05-22 1997-05-22 Continuous electroplating method and equipment

Country Status (1)

Country Link
JP (1) JP3178373B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144120A (en) * 2004-10-19 2006-06-08 Bridgestone Corp Method for producing electromagnetic wave shielding light transmission window material and plating apparatus used for the method
KR20200007784A (en) 2017-05-16 2020-01-22 스미토모덴키고교가부시키가이샤 Manufacturing method of aluminum plating film and aluminum plating film
CN113748231A (en) * 2019-06-14 2021-12-03 株式会社荏原制作所 Plating method, plating device, and non-volatile storage medium storing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144120A (en) * 2004-10-19 2006-06-08 Bridgestone Corp Method for producing electromagnetic wave shielding light transmission window material and plating apparatus used for the method
KR20200007784A (en) 2017-05-16 2020-01-22 스미토모덴키고교가부시키가이샤 Manufacturing method of aluminum plating film and aluminum plating film
CN113748231A (en) * 2019-06-14 2021-12-03 株式会社荏原制作所 Plating method, plating device, and non-volatile storage medium storing program

Also Published As

Publication number Publication date
JP3178373B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
US3975242A (en) Horizontal rectilinear type metal-electroplating method
US4642173A (en) Cell having coated valve metal electrode for electrolytic galvanizing
US3803013A (en) Electrolytic plating apparatus and method
JP2002294481A (en) Electrolysis apparatus for manufacturing metal foil
US4652346A (en) Apparatus and process for the continuous plating of wide delicate metal foil
JP5212225B2 (en) Copper foil plating method and plating apparatus therefor
JP3178373B2 (en) Continuous electroplating method and equipment
EP0125707A1 (en) Method and apparatus for unilateral electroplating of a moving metal strip
KR102219717B1 (en) Electroplated steel sheet manufacturing method and manufacturing apparatus thereof
JP2901488B2 (en) Continuous electrolytic treatment method
JP6414037B2 (en) Method for producing electroplating strip
US3856653A (en) Platinum clad tantalum anode assembly
JPH0670279B2 (en) Horizontal electric plating device
JPS63293200A (en) Electroplating method
JPH06306695A (en) Equipment for continuously electropoplating metallic strip and method for controlling coating weight in width direction
US3920524A (en) Method for high speed continuous electroplating using platinum clad anode assembly
JP6589747B2 (en) Electroplated steel sheet manufacturing method and electroplated steel sheet manufacturing apparatus
JP4505113B2 (en) Strip metal electrolytic treatment equipment
JP4710619B2 (en) Method for producing tin-plated steel strip and tin-plating cell
JPH01208499A (en) Electrode for electroplating
JP3753114B2 (en) Electroplating electrode and metal strip electroplating method using the same
JP4256839B2 (en) Electroplating electrode and electroplating method using the same
JPS62103393A (en) Continuous electroplating method for metallic strip
JPS60100693A (en) Method for controlling position of edge mask during electroplating
JPH11323596A (en) Continuous electroplating method and continuous electroplating apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

LAPS Cancellation because of no payment of annual fees