JPS63293200A - Electroplating method - Google Patents

Electroplating method

Info

Publication number
JPS63293200A
JPS63293200A JP12791187A JP12791187A JPS63293200A JP S63293200 A JPS63293200 A JP S63293200A JP 12791187 A JP12791187 A JP 12791187A JP 12791187 A JP12791187 A JP 12791187A JP S63293200 A JPS63293200 A JP S63293200A
Authority
JP
Japan
Prior art keywords
steel strip
plating
plated
electrode
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12791187A
Other languages
Japanese (ja)
Inventor
Masaru Watarai
渡会 勝
Kenji Tanaka
健治 田中
Norihiko Sakamoto
徳彦 坂本
Osamu Yoshioka
修 吉岡
Toshiyuki Tsujihara
辻原 利之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12791187A priority Critical patent/JPS63293200A/en
Publication of JPS63293200A publication Critical patent/JPS63293200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To form plating layers of a uniform thickness on a traveling long-sized steel strip by dividing an insoluble anode in a plating cell to plural pieces in the longitudinal direction of the steel strip so that electric conditions can be adjusted at the time of subjecting said steel strip continuously to metal plating with an electroplating device having the insoluble anode. CONSTITUTION:The steel strip 1 is moved in an arrow direction by means of conductor rolls 2 and backup rolls 3 in a plating bath contg. a plating bath 6. The steel strip 1 as a negative pole and the insoluble anodes 20 disposed in above and below the steel strip 1 as the anode are energized by the rolls 2 and metal ions of Zn, etc., in the plating bath 6 are electrodeposited on the surfaces of the steel strip 1, by which the steel strip is galvanized. The insoluble anodes 20 provided in the traveling direction of the steel strip 1 are divided to A1-A3 and the voltages and currents thereof are made discretely controllable by an electric control device 21, by which the uniform control of the current density over the entire surface of the steel strip 1 is enabled and, therefore, the plating layers having no fluctuations in the thickness are formed on the steel strip 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続的に走行する帯状鋼板等の被メッキ材
に電気メッキする不溶性電極を具備した電気メッキ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electroplating apparatus equipped with an insoluble electrode for electroplating a material to be plated, such as a strip-shaped steel plate, which runs continuously.

〔従来の技術〕[Conventional technology]

一1%iに鉄鋼業等の電気メッキの分野においては。 1%i in the field of electroplating such as the steel industry.

連続的に走行する帯状鋼板等の被メッキ材に亜鉛。Zinc is applied to plated materials such as steel strips that run continuously.

錫等の金属を電気メッキすることが古くがら行われてい
る。この場合法(使用されている可溶性電極がメッキ浴
槽への挿入、取替の浦作業の繁雑さや、メッキ浴槽の大
型化を余儀な(されていることから、それに代わって寸
法安定性のよい不溶性電極を使用する電気メッキが多く
なってきている。
Electroplating of metals such as tin has been practiced for a long time. In this case, the soluble electrodes used in the plating bath require complicated work to insert and replace them, and the plating bath becomes larger. Electroplating using electrodes is becoming more common.

第4図は、一般に使用されている不溶性電極を具備した
電気メッキ装置の説明図である(特公昭55−2451
7号参照)。
FIG. 4 is an explanatory diagram of a generally used electroplating apparatus equipped with an insoluble electrode (Japanese Patent Publication No. 55-2451
(See No. 7).

図において被メッキ材lは矢印方向に連続的に走行する
。被メッキ材lはメッキ用コンダクタ−ロール2によっ
て負に帯電され、メッキ浴槽6に入り、被メッキ材lの
上下に設けられた不溶性電極4との間で電極反応が行わ
れ、被メッキ材1の表面に亜鉛等の金属が析出される。
In the figure, the material to be plated 1 runs continuously in the direction of the arrow. The material to be plated 1 is negatively charged by the plating conductor roll 2, enters the plating bath 6, and undergoes an electrode reaction with the insoluble electrodes 4 provided above and below the material to be plated. Metals such as zinc are deposited on the surface.

被メッキ材lはメッキ浴槽6を走行した後に次の装置用
コンダクタ−ロール2によって負に帯電され1図示して
いない次のメッキ浴槽で同様に電気メッキされ。
After the material to be plated 1 has traveled through the plating bath 6, it is negatively charged by the conductor roll 2 for the next device and electroplated in the same manner in the next plating bath (not shown).

所定のメッキ厚さを得るまで繰り返され、最後に水洗等
の後処理を行ってテンシランリールで巻取られる0図中
3はバックアップロールである。
The process is repeated until a predetermined plating thickness is obtained, and finally, post-treatment such as washing with water is performed and the process is wound up on a Tensilan reel. 3 in Figure 0 is a backup roll.

メッキ液はメッキ浴槽6から排液配管7を通ってタンク
9は排出せられ、循環子ンプ10により配管11を通っ
てメッキ浴槽6へ送入される。メッキ浴槽6からタンク
9への排液配管7にバイパスを設けてフィルター8を設
置している。
The plating solution is discharged from the plating bath 6 through a drain pipe 7 to the tank 9, and is sent to the plating bath 6 through a pipe 11 by a circulation pump 10. A filter 8 is installed with a bypass provided in a drain pipe 7 from a plating bath 6 to a tank 9.

上述したように電気メッキ装置では、不溶性電極は陽極
として用いられることから、一般にpb系電極(Pb−
^、、 pb−sb等)が使用されている。そして電極
間隔をより狭くするために、第5図に示すように不溶性
電極4の被メッキ材1出側からノズル13によりメッキ
液12を矢印の方向に噴流する方法や、第6図に示すよ
うに、不溶性電極4の中央からノズル13によりメッキ
液12を高速で矢印の方向に吹込む方法がある。第5図
、第6図において。
As mentioned above, in electroplating equipment, insoluble electrodes are used as anodes, so pb-based electrodes (Pb-
^,, pb-sb, etc.) are used. In order to narrow the electrode spacing, there is a method in which the plating solution 12 is jetted in the direction of the arrow from the nozzle 13 from the outlet side of the material to be plated 1 of the insoluble electrode 4 as shown in FIG. 5, or as shown in FIG. Another method is to blow the plating solution 12 from the center of the insoluble electrode 4 through the nozzle 13 at high speed in the direction of the arrow. In Figures 5 and 6.

被メッキ材1は大矢印の方向に連続的に走行し。The material to be plated 1 runs continuously in the direction of the large arrow.

まずメッキ用コンダクタ−ロール2によって負に帯電さ
れ、メッキ浴槽6に入り、被メッキ材1の上下に設けら
れた不溶性電極4との間で電極反応が行われ、そして被
メッキ材lの表面に亜鉛等の金属が析出される0図中3
はバックアンプロール。
First, it is negatively charged by the conductor roll 2 for plating, enters the plating bath 6, and undergoes an electrode reaction with the insoluble electrodes 4 provided above and below the material 1 to be plated, and then the surface of the material 1 to be plated is 3 in Figure 0 where metals such as zinc are deposited
is a back unroll.

7は排液配管を示す(「表面処理鋼板の現状と今後の動
向」第106・107回西山記念技術講座 60年9月
、40〜42ページ)。
7 shows the drainage pipe (``Current status and future trends of surface-treated steel plates'', 106th and 107th Nishiyama Memorial Technical Lectures, September 1960, pages 40-42).

以上のような電気メッキ装置では、一般に電橋間隔は1
5〜25鶴程度であり、その電極の長手方向の長さも1
000鶴未満のものが一般に使用されている。
In the above-mentioned electroplating equipment, the electric bridge spacing is generally 1
It is about 5 to 25 cranes, and the longitudinal length of the electrode is 1
Those less than 000 Tsuru are commonly used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし最近の傾向として、電気メッキ装置、メッキタン
ク等の付帯設備をより一層小型化することが要求されて
おり、そのため電極間隔をより一層狭くすることや、電
極の長手方向の長さをより一層長くすることの試みが行
われている。しかるに前記したようなメッキ液の電極間
への噴流方法のみの対策では限度があり、それを超えた
場合には電極の長手方向での電流密度のバラツキが大き
くなり、そのため被メッキ材の長手方向での付着量が不
均一になる等の問題点を生じる。特に亜鉛−鉄合金、亜
鉛−ニッケル合金等の電気メッキの場合は電流密度のバ
ラツキが大きくなるとその組成に影響を受け、製品の品
質、外観上の問題点を生じる。
However, recent trends require further downsizing of ancillary equipment such as electroplating equipment and plating tanks, and for this reason, the spacing between electrodes must be further narrowed and the length of the electrodes in the longitudinal direction must be further reduced. Attempts are being made to lengthen it. However, there is a limit to the method of jetting the plating solution between the electrodes as described above, and if the limit is exceeded, the variation in current density in the longitudinal direction of the electrode becomes large, and as a result, the variation in the longitudinal direction of the material to be plated increases. Problems such as non-uniform adhesion occur. Particularly in the case of electroplating of zinc-iron alloys, zinc-nickel alloys, etc., large variations in current density will affect the composition, causing problems in product quality and appearance.

第1表は、電極の長手方向の長さと、電極間隔とが及ぼ
す被メッキ材の長手方向の電流密度のバラツキを一定の
条件を設定して算出したものである。
Table 1 shows the variations in current density in the longitudinal direction of the material to be plated, which are affected by the longitudinal length of the electrodes and the electrode spacing, and are calculated under certain conditions.

第1表 <m考)表中数字はσ/=xtooで表わしたもの。Table 1 <m Consideration) The numbers in the table are expressed as σ/=xtoo.

ここにおいてiは、電極の長手方向の長さと対応する被
メッキ材の長手方向の電流密度の平均値であり、σはそ
の場合の電流密度の分布を標準偏差で表わしたもの。
Here, i is the average value of the current density in the longitudinal direction of the plated material corresponding to the longitudinal length of the electrode, and σ is the standard deviation of the current density distribution in that case.

この表は一例であるが、電極長さ1000fiでは電極
間隔が15m+以下の場合、そして電極長さ1400m
では電極間隔が25鶴以下の場合に被メッキ材の長手方
向の電流密度のバラツキが大きくなり問題であることが
わかる。
This table is an example, but when the electrode length is 1000fi, the electrode spacing is 15m+ or less, and when the electrode length is 1400m
It can be seen that when the electrode spacing is 25 squares or less, the variation in current density in the longitudinal direction of the material to be plated increases, which is a problem.

本発明は以上のような問題点を解消するためになされた
もので、電極間隔を一層狭<シ、電極の長手方向の長さ
を一層長くしても被メッキ材の長手方向の電流密度のバ
ラツキの小さい電気メッキ装置を提供することを目的と
する。
The present invention has been made to solve the above-mentioned problems, and even if the electrode spacing is made narrower and the length of the electrodes in the longitudinal direction is made longer, the current density in the longitudinal direction of the material to be plated remains unchanged. The purpose is to provide an electroplating device with small variations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は連続的に走行する被メッキ材に電気メッキする
不溶性電極を具備した電極メッキ装置において、その不
溶性電極は被メッキ材の走行する長手方向に分割した電
極を構成し、それらの分割した電極に独立した電気制御
′装置を設けた電気メッキ装置であることを特徴とする
The present invention provides an electrode plating apparatus equipped with an insoluble electrode for electroplating a continuously traveling material to be plated, in which the insoluble electrode constitutes an electrode divided in the longitudinal direction of the traveling material to be plated, and the divided electrodes The electroplating apparatus is characterized in that it is equipped with an independent electric control device.

〔作 用〕[For production]

本発明の電気メッキ装置によれば、その装置に具備した
不溶性電極が被メッキ材の走行する長手方向に分割した
電極で構成され、それらの分割した電極に独立した電気
制御装置を設けているので。
According to the electroplating apparatus of the present invention, the insoluble electrode provided in the apparatus is composed of electrodes divided in the longitudinal direction of the traveling material to be plated, and each of the divided electrodes is provided with an independent electric control device. .

被メッキ材はコンダクタ−ロールで負に帯電した位置か
ら走行によって不溶性電極に対面し、それを通過するま
での被りフキ材自体による抵抗が増加しても、不溶性電
極を構成している分割電極でそれに対応した電流制御、
電圧制御を行い、被メッキ材の長手方向の電流密度のバ
ラツキを小さく出来る。
The material to be plated faces the insoluble electrode as it travels from a negatively charged position on the conductor roll, and even if the resistance due to the covering material itself increases until it passes through it, the divided electrodes that make up the insoluble electrode Corresponding current control,
By controlling the voltage, it is possible to reduce the variation in current density in the longitudinal direction of the plated material.

〔実施例〕〔Example〕

以下実施例について第1〜第3図によって説明する。 Examples will be described below with reference to FIGS. 1 to 3.

第1図に示すように大矢印の方向に連続的に走行する被
メッキ材lは、コンダクタ−ロール2で負に帯電してメ
ッキ浴槽6に入り1分割電極Al。
As shown in FIG. 1, the material to be plated 1, which is continuously traveling in the direction of the large arrow, is negatively charged by the conductor roll 2 and enters the plating bath 6 where it is coated with one-part electrode Al.

AI+ A3で構成された不溶性電極20と対面してそ
こで電極反応により金属を析出し電気メッキされる。
It faces an insoluble electrode 20 composed of AI+A3, and metal is deposited there by an electrode reaction and electroplated.

そしてメッキ浴槽6を出て2図示していない次のメッキ
浴槽に走行する。この場合分割電極A、、 AlA3は
独立して電気制御出来る電気制御装置21を設けている
。第2図は第1図における電気制御装置が電圧制御装置
であり、それによって分割電極AI。
Then, it leaves the plating bathtub 6 and travels to the next plating bathtub (not shown). In this case, the divided electrodes A, AlA3 are provided with an electrical control device 21 that can electrically control them independently. FIG. 2 shows that the electric control device in FIG. 1 is a voltage control device, thereby dividing the divided electrode AI.

Am、 A3を各々電圧制御して電流密度を調整した場
合の被メッキ材の長手方向の電位・電流密度の分布を示
す説明図である0図中アノード電位について、実線が発
明による電極を用いた場合であり9分割電極A、、 A
、、 Amで階段的に電圧を切り換えて操業しており、
また2点鎖線が従来の電極を用いた場合であり一定の電
位で操業されている。
This is an explanatory diagram showing the distribution of potential and current density in the longitudinal direction of the plated material when the current density is adjusted by voltage control of Am and A3 respectively.In Figure 0, regarding the anode potential, the solid line indicates the anode potential when the electrode according to the invention was used. In the case, 9 divided electrodes A,, A
It operates by switching the voltage stepwise in Am.
Moreover, the chain double-dashed line shows the case where conventional electrodes are used, and the operation is performed at a constant potential.

この図から明らかなように本発明による電気メッキ装置
を用いた場合は、実線で示すように被メッキ材の長手方
向の電流密度のバラツキが小さくなる。それに対して2
点鎖線で示した従来の電極による電気メッキ装置を用い
た場合はそのバラツキが大きい。
As is clear from this figure, when the electroplating apparatus according to the present invention is used, the variation in current density in the longitudinal direction of the material to be plated is reduced, as shown by the solid line. On the other hand, 2
When an electroplating apparatus using a conventional electrode shown by a dotted chain line is used, there is a large variation.

なお、縦軸方向の破線は分割電極A+、At、 Asの
長さ方向に対応した被メッキ材の長手方向の範囲を示し
ている。
Note that the broken lines in the vertical axis direction indicate the range in the longitudinal direction of the plated material corresponding to the length direction of the divided electrodes A+, At, and As.

第3図は第1図における電気制御装置が電流制御装置で
あり、それによって分割電極At、 Am、 Asを各
々電流制御して電流密度を調整した場合の被メッキ材の
長手方向の電流密度の分布を示す説明図である。これは
第2図と同様に実線は本発明による場合、2点鎖線は従
来による場合の被メッキ材の長手方向の電流密度の分布
を示している。
FIG. 3 shows the current density in the longitudinal direction of the plated material when the electric control device in FIG. 1 is a current control device, and the current density is adjusted by controlling the divided electrodes At, Am, and As. It is an explanatory diagram showing distribution. As in FIG. 2, the solid line shows the current density distribution in the longitudinal direction of the plated material according to the present invention, and the two-dot chain line shows the current density distribution in the conventional case.

この図から明らかなように本発明による電気メッキ装置
を用いた場合は被メッキ材の長手方向の電流密度のバラ
ツキが小さくなる。
As is clear from this figure, when the electroplating apparatus according to the present invention is used, the variation in current density in the longitudinal direction of the material to be plated is reduced.

次に第1図に示すような本発明の電気メッキ装置で、電
流制御を行った場合の分割電極の個数と被メッキ材の長
手方向の電流密度のバラツキとの関係について実験例を
示す。
Next, an experimental example will be shown regarding the relationship between the number of divided electrodes and the variation in current density in the longitudinal direction of the material to be plated when current is controlled using the electroplating apparatus of the present invention as shown in FIG.

〔実験例〕[Experiment example]

0.7 X1200鶴の帯状鋼板を亜鉛メッキするもの
である。
0.7 x 1200 Tsuru strip steel plate is galvanized.

(条件)■不溶性電極の材質   pb系電橋■不要性
電極の長手方向の長さ 1000m■電流(片面当り)
    12500A■電極間隔  10龍 ■電極の分割個数  2分割、3分割。
(Conditions) ■Material of insoluble electrode: PB-based bridge ■Longitudinal length of unnecessary electrode: 1000 m ■Current (per single side)
12500A ■ Electrode spacing 10 dragons ■ Number of electrode divisions 2 or 3 divisions.

5分割、10分割 比較として分割しない電極を用いた。5 divisions, 10 divisions For comparison, an undivided electrode was used.

(実験結果) (備考) j: X5in+ Xa+axは被メッキ材
の長手方向の電流密度の平均値、II小値、Il大値を
示す、σはその場合の電流密度の分布を標準偏差で表わ
したもの。
(Experimental results) (Remarks) j: X5in+ Xa+ax indicates the average value of the current density in the longitudinal direction of the plated material, II small value, Il large value, σ represents the distribution of current density in that case as standard deviation thing.

実験結果から電極の分割個数を増やせば被メッキ材の長
手方向の電流密度のバラツキが小さくなることがわかる
。電流制御の代わりに電圧制御を行っても同様の結果が
得られることはいうまでもない。
The experimental results show that increasing the number of divided electrodes reduces the variation in current density in the longitudinal direction of the plated material. It goes without saying that similar results can be obtained even if voltage control is performed instead of current control.

実験例では、 1000m長さの電極を使用したが。In the experimental example, an electrode with a length of 1000 m was used.

これ以上の電極についてもそれに対応して分割電橋の個
数を設定すれば同様に被メッキ材の長手方向の電流密度
のバラツキを小さくして操業することが可能である。
For more electrodes, if the number of divided electrical bridges is set accordingly, it is possible to similarly operate with less variation in current density in the longitudinal direction of the material to be plated.

〔発明の効果〕〔Effect of the invention〕

本発明の電気メッキ装置によれば、不溶性電極を被メッ
キ材の長手方向に分割した電極で構成し。
According to the electroplating apparatus of the present invention, the insoluble electrode is composed of electrodes divided in the longitudinal direction of the material to be plated.

その分割した電極に独立した電気制御装置を設けたので
、電極間隔を1Ofi程度まで狭くシ、不溶性電極の長
手方向の長さを1000鶴以上にしても、被メッキ材の
長手方向の電流密度のバラツキを小さく出来、それによ
ってメッキ付着量を均一に出来。
Since an independent electric control device is provided for each of the divided electrodes, the current density in the longitudinal direction of the plated material can be reduced even if the electrode spacing is narrowed to about 1Ofi and the longitudinal length of the insoluble electrode is over 1000Ofi. Variations can be reduced and the amount of plating deposited can be made uniform.

更に亜鉛−鉄合金等のメッキ皮膜についても組成の均一
なものを得ることが出来る等価値のある発明である。
Furthermore, it is an invention of equivalent value that it is possible to obtain a plating film of zinc-iron alloy or the like with a uniform composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電気メッキ装置の断面
図、第2図は本発明装置を使用した場合の電位・電流密
度の分布を示す説明図、第3図は本発明装置を使用した
場合の外の電流密度の分布を示す説明図、第4図は、従
来の電気メッキ装置の説明図、第5図、第6図は従来の
外の電気メッキ装置の説明図である。 20・・・不溶性電極、21・・・電気制御装置。
Figure 1 is a cross-sectional view of an electroplating apparatus showing an embodiment of the present invention, Figure 2 is an explanatory diagram showing the distribution of potential and current density when the apparatus of the present invention is used, and Figure 3 is an illustration of the distribution of potential and current density when the apparatus of the present invention is used. FIG. 4 is an illustration of a conventional electroplating apparatus, and FIGS. 5 and 6 are illustrations of a conventional electroplating apparatus. 20... Insoluble electrode, 21... Electric control device.

Claims (1)

【特許請求の範囲】[Claims] 連続的に走行する被メッキ材に電気メッキする不溶性電
極を具備した電気メッキ装置において、その不溶性電極
は被メッキ材の走行する長手方向に分割した電極で構成
し、それらの分割した電極に独立した電気制御装置を設
けたことを特徴とする電気メッキ装置。
In an electroplating device equipped with an insoluble electrode that electroplates a continuously moving material to be plated, the insoluble electrode is composed of electrodes divided in the longitudinal direction of the material to be plated, and each of these divided electrodes has an independent An electroplating device characterized by being equipped with an electric control device.
JP12791187A 1987-05-27 1987-05-27 Electroplating method Pending JPS63293200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12791187A JPS63293200A (en) 1987-05-27 1987-05-27 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12791187A JPS63293200A (en) 1987-05-27 1987-05-27 Electroplating method

Publications (1)

Publication Number Publication Date
JPS63293200A true JPS63293200A (en) 1988-11-30

Family

ID=14971696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12791187A Pending JPS63293200A (en) 1987-05-27 1987-05-27 Electroplating method

Country Status (1)

Country Link
JP (1) JPS63293200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228494A (en) * 1989-03-02 1990-09-11 Nkk Corp Production of zinc alloy electroplated steel sheet
JPH05132799A (en) * 1991-06-25 1993-05-28 Internatl Business Mach Corp <Ibm> Electroplating method and apparatus therefor
JP2009026990A (en) * 2007-07-20 2009-02-05 Sumitomo Metal Mining Co Ltd Manufacturing method for metal coated polyimide substrate
DE102009041068A1 (en) * 2009-09-10 2011-03-24 GM Global Technology Operations, Inc., Detroit Apparatus for electrophoretically depositing a varnish layer on an object, comprises two anodes having a first part and a second part, and a container for the reception of a solution of first anode and the object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351146A (en) * 1976-10-21 1978-05-10 Nippon Steel Corp Nonnelectrolytic treatment method of metal strip
JPS6123797A (en) * 1984-07-09 1986-02-01 Katsukawa Kogyo Kk Electrode body in electrolytic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351146A (en) * 1976-10-21 1978-05-10 Nippon Steel Corp Nonnelectrolytic treatment method of metal strip
JPS6123797A (en) * 1984-07-09 1986-02-01 Katsukawa Kogyo Kk Electrode body in electrolytic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228494A (en) * 1989-03-02 1990-09-11 Nkk Corp Production of zinc alloy electroplated steel sheet
JPH05132799A (en) * 1991-06-25 1993-05-28 Internatl Business Mach Corp <Ibm> Electroplating method and apparatus therefor
JP2009026990A (en) * 2007-07-20 2009-02-05 Sumitomo Metal Mining Co Ltd Manufacturing method for metal coated polyimide substrate
DE102009041068A1 (en) * 2009-09-10 2011-03-24 GM Global Technology Operations, Inc., Detroit Apparatus for electrophoretically depositing a varnish layer on an object, comprises two anodes having a first part and a second part, and a container for the reception of a solution of first anode and the object

Similar Documents

Publication Publication Date Title
US4652346A (en) Apparatus and process for the continuous plating of wide delicate metal foil
JPS6238436B2 (en)
JPS6014840B2 (en) Processing method for wire mainly made of iron
JPS6056099A (en) Method and device for electrolytic treatment
JPS63293200A (en) Electroplating method
CN114174559A (en) Method and device for electrolytic coating of electrically conductive strips and/or fabrics using impulse technology
US3959099A (en) Electrolytic method of producing one-side-only coated steel
JPH10310900A (en) Apparatus for electrodepositing metallic layer on band plate
JPH0733598B2 (en) Method and apparatus for manufacturing metal foil
US4584066A (en) Method and apparatus for the continuous electrolytic treatment of a metal strip using insoluble horizontal electrodes
JP2558134B2 (en) Method for manufacturing high efficiency electrolytic chrome plated steel sheet
US5344552A (en) Process for electroplating a metal strip
JP3178373B2 (en) Continuous electroplating method and equipment
JPH0670279B2 (en) Horizontal electric plating device
JP4710619B2 (en) Method for producing tin-plated steel strip and tin-plating cell
JPH01195297A (en) Continuous galvanizing method
US4822457A (en) Method of eliminating a fern-like pattern during electroplating of metal strip
JP3361203B2 (en) Soluble anode for electroplating equipment
JP2717599B2 (en) Electroplating control method
JPH05339798A (en) Method for continuously electroplating steel sheet
JPS63266090A (en) Equipment for electroplating strip
JPS641558B2 (en)
JPS59140395A (en) Method and device for continuous electroplating
DE69207704T2 (en) Process for electro galvanizing a metal sheet
JPH0488194A (en) Continuous plating device