JPH10314764A - 触媒湿式酸化処理装置の制御方法 - Google Patents

触媒湿式酸化処理装置の制御方法

Info

Publication number
JPH10314764A
JPH10314764A JP12552897A JP12552897A JPH10314764A JP H10314764 A JPH10314764 A JP H10314764A JP 12552897 A JP12552897 A JP 12552897A JP 12552897 A JP12552897 A JP 12552897A JP H10314764 A JPH10314764 A JP H10314764A
Authority
JP
Japan
Prior art keywords
wastewater
treating
organic matter
concentration
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12552897A
Other languages
English (en)
Inventor
Masahiko Maesaki
雅彦 前崎
Minoru Nakajima
実 中島
Hideo Hasegawa
英雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP12552897A priority Critical patent/JPH10314764A/ja
Publication of JPH10314764A publication Critical patent/JPH10314764A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】 有機物含有廃水中の有機物を触媒湿式酸化処
理装置によって処理する際に、該廃水の有機物濃度の変
動に左右されることが無く、処理液中の有機物の濃度変
動を抑制して均一な品質の処理液が定常的に得ることの
できる、該処理装置の制御方法を提供すること。 【解決手段】 有機物含有廃水を、貴金属固体触媒を充
填した反応器塔内に導入して該廃水中に存在する有機物
を酸化分解する触媒湿式酸化処理装置の制御方法におい
て、該処理装置から排出される処理液の電気伝導率を連
続的に測定し、該電気伝導率の変動度合いから、触媒湿
式酸化処理装置の運転条件を制御する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は触媒湿式酸化処理装
置の制御方法に関し、更に詳しくは、有機物含有廃水を
固体触媒存在下、連続的に触媒湿式酸化処理することに
より、廃水中の有機物を水及び炭酸ガスに分解処理する
際の触媒湿式酸化処理装置の制御方法に関する。
【0002】
【従来の技術】近年、廃水中の有機物を酸化分解する方
法として、有機物含有廃水を高温高圧下液相状態で空気
などの酸素含有ガスを吹き込んで酸化分解するジーマー
マン法や、有機物含有廃水を固体触媒存在下、空気など
の酸素含有ガスで酸化分解する方法(以下、触媒湿式酸
化処理法と省略することがある。)が盛んに研究されて
いる。
【0003】このような廃水を湿式触媒酸化処理するこ
とによって該廃水中に含まれる有機物を酸化分解するプ
ロセスにおいて、該湿式酸化処理工程を制御する評価指
標として、廃ガス中のCO2濃度や(特開平6−912
79号公報)、廃ガス中のO2濃度(特開平6−277
677号公報、特開平6−277680号公報、特開平
7−265878号公報)を測定する方法が提示されて
いる。
【0004】これらの方法でも、確かに、廃水が連続式
に導入され、且つ排出量が定常状態にあり、廃水中の全
有機炭素(以下、TOCと略記することもある。)量が
一定であれば、廃ガス中のガス濃度分析によって間接的
に該処理装置によって処理済みの排水(以下、処理液と
称することもある。)の品質を把握し、廃水処理装置の
運転制御に反映させることが可能である。しかし、排水
生成系がバッチ式の場合、または連続式であっても例え
ば運転開始時及び運転終了時の非定常状態の場合等、T
OC総量が経時的に変化する排水生成系に対しては、ガ
ス濃度による制御方法を適用することはできない。
【0005】また、湿式触媒酸化処理では、触媒劣化に
よって処理効率が経時的に低下するケースも十分考えら
れるが、ガス濃度の連続測定だけでは、該濃度変動が触
媒活性の低下によるものか、廃水中のTOC濃度の変化
によるものか見極めることもできない。
【0006】また、他にも処理液中の有機物を測定する
化学的な定量分析方法として、処理液中の化学的酸素消
費量(以下、CODと略記することもある。)を測定す
る方法も知られているが、この方法は化学的な酸化処理
に若干の時間を必要とし、廃水の濃度変動に敏速に対応
することが難しい。
【0007】その他の方法として、処理液のTOC濃度
を測定する方法もまたよく知られているが、COD分析
と同様に、処理液を連続的に分析することは困難であ
る。実際に用いられる湿式触媒酸化装置にあっては、廃
水中のTOC濃度は一定では無く、常時変動し、それに
伴って処理効率も変動するため、安定して高い処理効率
を得るには、処理液品質を連続的に監視して装置条件を
常に最適状態に制御する必要があるが上述のように、未
だその問題は解決されていなかった。
【0008】
【発明が解決しようとする課題】本発明の目的は、有機
物含有廃水中の有機物を触媒湿式酸化処理装置によって
処理する際に、該廃水の有機物濃度の変動に左右される
ことが無く、処理液中の有機物の濃度変動を抑制して均
一な品質の処理液が定常的に得ることのできる、該処理
装置の制御方法を提供することにある。
【0009】
【課題を解決するための手段】本発明者等は、上記の課
題を解決すべく検討を重ねた結果、湿式触媒酸化処理を
行った場合、(1)廃水中に含まれている各種の有機物
は酸化分解されて酢酸、ギ酸等の有機酸が生成するこ
と、及び、(2)有機酸は電気伝導性を有しており、処
理液の電気伝導率と有機酸の濃度とが図1に示すような
比例関係にあること、の二点を見出し、更に鋭意検討を
重ねて、本発明を完成するに至った。
【0010】即ち、上記の課題は、有機物含有廃水を、
貴金属担持固体触媒を充填した反応器塔内に導入して該
廃水中に存在する有機物を酸化分解する触媒湿式酸化処
理装置の制御方法において、該処理装置から排出される
処理液の電気伝導率を連続的に測定し、該電気伝導率の
変動度合いから、触媒湿式酸化処理装置の運転条件を制
御することを特徴とする、触媒湿式酸化処理装置の制御
方法によって達成されることを見出した。
【0011】
【発明の実施の形態】本発明の制御方法が特徴とすると
ころは、触媒湿式酸化処理装置の運転条件を、処理液の
電気伝導率を測定することによって、残存有機物濃度を
把握し、処理液の電気伝導率が0.3mS/m以上1.
0mS/m以下の範囲内となるように、運転条件を適宜
変更して湿式酸化処理工程を制御することにある。この
ようにすることにより、初めて、触媒湿式酸化処理装置
を用いて連続的に廃水を処理する場合にあっても、導入
する廃水の有機物濃度の変動があっても、処理液の有機
物濃度を管理することができるので、高い処理効率を維
持しながら、湿式酸化処理工程の制御が達成することが
できる。該電気伝導率が1.0mS/mを越えるている
と処理液中に含まれる有機物濃度が多くなりすぎ、環境
の面から問題がある。一方、該電気伝導率が0.3mS
/m未満である場合には処理液中に含まれる有機物は殆
ど無く、それ以上電気伝導率を下げるように運転条件を
制御することはコスト面で不利である。
【0012】ここで、変更する運転条件としては、反応
温度、廃水の供給量のどちらかを変更すればよく、例え
ば、電気伝導率が高い(処理液中の有機酸濃度が高い)
場合には、廃水の供給量を低くするか、反応温度を高く
すればよく、逆に、電気伝導率が低い(処理液中の有機
酸濃度が低い)場合には、廃水の導入量を多くするか、
反応温度を低くすればよい。該条件の変更は、本発明の
目的を達成する範囲内にあれば、反応温度と廃水の供給
量との変更を同時に行ってもよい。
【0013】本発明においては、触媒湿式酸化装置とし
て灌液型反応器を用いることが好ましい。反応器内圧力
損失が非常に小さくなり、局部反応が起こりにくくなる
ため熱の分散も向上し、断熱除熱を行うことができる。
廃水の一部は、反応熱を吸収して一部気相となるが、本
発明はこの時、系の圧力を液相を保持する圧力より高い
任意の圧力に調節することにより、気相となる廃水の量
を調節し反応温度を制御するものである。灌液型反応器
以外の装置を用いると反応器が大型となりコストも割高
となる。
【0014】本発明の制御方法において反応器塔内の圧
力は、反応器内の廃水が液相を保持する範囲内にあれば
よいが、該圧力が高すぎると設備費、運転費等のコスト
面で不利となることから、好ましい圧力の範囲は、反応
温度における水の飽和蒸気圧以上、20kg/cm2
未満である。
【0015】本発明の制御方法に適用できる有機物含有
廃水は低級有機物を含有するものであればよく、例え
ば、ジメチルテレフタレート製造工場、ポリエチレンテ
レフタレート製造工場から排出される廃水を挙げること
が出来る。該低級有機物としてメタノール、ホルムアル
デヒド、ギ酸、アセトアルデヒド、酢酸及び低級脂肪酸
のメチルエステルなどが挙げられ、それぞれ単独でも、
又それらの混合物であっても構わないが、廃水中に含ま
れる金属イオン濃度が10ppm以下であることが好ま
しく、廃水中の金属イオン濃度が10ppmを越えるよ
うな場合にはイオン交換樹脂等を用いて金属イオンを除
去しておくのが好ましい。
【0016】本発明の制御方法において、廃水の有機物
濃度は特に限定されないが、一般的な電気伝導度計の感
度との兼ね合いから判断すると、各有機物成分の濃度と
廃水全体の重量を基準として0.1%以上が好ましく、
特に、0.5%以上がよい。
【0017】本発明の職場湿式酸化処理装置において使
用する固体触媒は、貴金属担持固体触媒であり、具体的
にはルテニウム、パラジウム、ロジウム、及び白金より
なる群から選ばれる少なくとも1種類の金属を無機酸化
物及び活性炭に担持した触媒が用いられる。該無機酸化
物としては、酸化チタン、酸化ジルコニウム、アルミ
ナ、シリカ、酸化鉄よりなる群から選ばれる少なくなく
とも1種類以上の酸化物が挙げられる。また、触媒の形
状としては粒状、粉末状、ペレット状、円柱状、破砕状
又はハニカム状などの様々な形状の触媒をいずれも使用
することができる。
【0018】また、触媒湿式酸化処理装置の反応器内の
反応温度は、150〜300℃の範囲にあることが好ま
しい。該反応温度が150℃未満であると、廃水中に存
在する、酸化分解させるべき有機物の分解反応速度が低
くなり、逆に300℃を越えると廃水中に存在する回収
・再利用すべき酢酸の分解をも促進してしまうため好ま
しくない。該反応温度は、200〜270℃の範囲にあ
るのが更に好ましい。
【0019】次に、該反応器内での反応圧力は20〜1
50kg/cm2Gの範囲内にあることが好ましい。該
反応圧力が25kg/cm2G未満であると、有機物含
有廃水が液相を保持できなくなり、固体触媒との接触面
積が低くなるので、有機物の分解効率が落ち好ましくな
い。逆に70kg/cm2Gを越えると設備費、運転費
等のコスト面で不利となる。該反応圧力は、30〜10
0kg/cm2Gの範囲にあることが特に好ましい。
【0020】更に、本発明の回収方法において、廃水の
空間速度は0.1〜20hr-1の範囲内にあるのが好ま
しい。ここで、空間速度とは、充填層における廃水の流
通速度を意味し、該空間速度が0.1hr-1未満である
と、廃水の処理量が低下し、反応設備とコストとの釣り
合いがとれない。一方、該空間速度が20hr-1を越え
ると、廃水の処理効率が低下するので、十分な処理性能
を発揮し難い。該重量空間速度は、0.5〜10hr-1
の範囲にあるのが特に好ましい。
【0021】本発明の触媒湿式処理を行うに当たり、酸
素含有ガスの使用量は特に制限されない。酸素含有ガス
の使用量が、廃水中の有機物を二酸化炭素と水とに分解
する為に必要な理論酸素量以上であると、酸化分解反応
が主反応となる。一方、該使用量が理論酸素量未満の場
合には、熱分解反応が主反応となるものの、どちらの場
合であっても廃水中の有機物は効率良く分解される。
【0022】本発明において、酸素含有ガスとしては、
空気、酸素濃度21容積%以上の高濃度酸素含有ガス、
オゾン等を使用することができるが、経済的観点から、
空気を使用することが望ましい。
【0023】本発明において使用する電気伝導度計は、
液体の電気伝導率を連続して測定できるものであれば限
定されず、例えば、コールラウシュブリッジ回路を内蔵
した伝導計等を挙げることができる。
【0024】以下、図面をもって本発明の制御方法の一
態様を説明する。
【0025】図2中、高濃度の有機物含有廃水は廃水ポ
ンプ(図中2)から熱交換器(図中6)に流れ、一方、
コンプレッサー(図中4)により昇圧された酸素含有ガ
スをも同時に熱交換器(図中6)に導き、該廃水は該熱
交換器内にて予熱された後、更に加熱器(図中8)を通
って昇温される。
【0026】該昇温された有機物含有廃水及び酸素含有
ガスは、触媒を充填した触媒湿式酸化処理装置(図中1
0)の塔頂部に導入されて触媒湿式酸化処理を受け、発
熱を伴いながら該廃水中の有機物が酸化分解されつつ塔
底部に向かって下向きに流れ落ちる。該反応器(図中1
0)から排出された廃水処理液は熱交換器(図中6)に
導かれて除熱された後、更に、補助冷却器(図中13)
によって完全に冷却される。
【0027】その後、気液分離器(図中14)に導入さ
れた処理液は、無害なガスと水とに分離される。この気
液分離器(図中14)では、液面コントロールバルブ
(図中16)を作動させて一定の液面を保持するととも
に、電気伝導度分析計(図中19)により処理液の電気
伝導率を測定するとともに、圧力センサー(図中18)
により気液分離器内の圧力を検出して、圧力・温度コン
トロールバルブ(図中15)を作動させる。
【0028】ここで、圧力・温度コントロールバルブ
(図中15)は触媒湿式酸化処理塔(図中10)内の温
度を測定する温度センサー(図中17)とも連動してお
り、該反応塔内の温度を上昇させる際には、該コントロ
ールバルブ(図中15)を閉じて反応系内の圧力を上昇
させて、灌液型反応器内の廃水中に含まれる水分の該反
応器内の温度での蒸気圧以上として、該水分を液相から
蒸気相へ相変化を起こさないようにすることによって反
応器内から蒸発熱の分だけの熱量が取り去られるのを防
ぎ、逆に該反応器内の温度を下げる場合には該コントロ
ールバルブ(図中15)を開放して、反応系内の圧力を
下げて、灌液型反応器内の廃水中に含まれる水分を液相
から蒸気相に相変化させて反応器内から蒸発熱の分だけ
の熱量を取り去る。このような反応器内温度の制御方法
を取ることにより、反応器、熱回収装置を小型の物と出
来、触媒の磨耗も著しく少なくなる。
【0029】
【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明はこれにより何等限定を受けるものでは
ない。尚、実施例中の各値は、以下の方法により測定し
た。
【0030】(1)空間速度: 空間速度(hr-1)=廃水供給速度(cm3/hr)/
反応器容積(cm3) (2)TOC濃度: TOC濃度(ppm)=廃水中に含有される有機化合物
の総炭素量(mg)/廃水質量(g)/1000
【0031】[実施例1]ルテニウムを酸化チタンに担
持した触媒(ルテニウム2重量%)を充填した湿式触媒
酸化処理塔に、ジメチルテレフタレート製造プロセスか
ら排出されたTOC濃度4405ppmの廃水と1L/
hrの空気とを混合して反応器塔塔頂部より導入し、処
理温度235℃、処理圧力25kg/cm2Gにて廃水
を処理した。
【0032】処理液を配管5を経て気液分離槽6に送液
され、廃ガスと処理液とに分離した後、廃ガスを除去し
た後の処理液を電気伝導度分析計19にて連続的に電気
伝導率を測定し、該電気伝導度分析計の値が、0.3〜
1.0(mS/m)の範囲内となるように廃水の供給量
を自動制御し、廃水濃度を図2の様に変動させて連続処
理を行った。処理液のTOC濃度の変化を図2に示す。
【0033】[実施例2]実施例1において、廃水の供
給量を、触媒に対する空間速度が4.0hr-1で一定と
なるように制御し、電気伝導度分析計の値が、0.3〜
1.0(mS/m)の範囲内となるように触媒湿式酸化
処理装置内の反応温度を自動制御すること以外は、同様
の操作を行って廃水処理を行った。処理液中のTOC濃
度の変化を図3に示す。
【0034】
【発明の効果】本発明の方法によれば、廃水中の有機物
濃度が変動しても安定した処理液水質が得られるととも
に、処理液品質を連続的に管理することが可能である。
【図面の簡単な説明】
【図1】図1は本発明を実施するためのプロセス例の概
略図である。
【図2】図2は実施例1の結果であって、廃水供給量を
変化させた場合の処理液の電気伝導率及びTOC濃度の
変化を示したものである。
【図3】図3は実施例2の結果であって、反応温度を変
化させた場合の処理液の電気伝導率及びTOC濃度の変
化を示したものである。
【図4】図4は処理液の電気伝導率と有機酸の濃度とが
比例関係にあることを示すグラフである。
【符号の説明】
1 ・・・ 配管 2 ・・・ 廃水供給ポンプ 3 ・・・ 配管 4 ・・・ コンプレッサー 5 ・・・ 配管 6 ・・・ 熱交換器(反応熱回収及び廃水予熱用) 7 ・・・ 配管 8 ・・・ 廃水加熱器 9 ・・・ 配管 10 ・・・ 灌液型反応器 11 ・・・ 配管 12 ・・・ 配管 13 ・・・ 補助冷却器 14 ・・・ 気液分離器 15 ・・・ 圧力・温度コントロールバルブ 16 ・・・ 液面コントロールバルブ 17 ・・・ 温度センサー 18 ・・・ 圧力センサー 19 ・・・ 電気伝導度分析計

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 有機物含有廃水を、貴金属固体触媒を充
    填した反応器塔内に導入して該廃水中に存在する有機物
    を酸化分解する触媒湿式酸化処理装置の制御方法におい
    て、 該処理装置から排出される処理液の電気伝導率を連続的
    に測定し、該電気伝導率の変動度合いから、触媒湿式酸
    化処理装置の運転条件を制御することを特徴とする、触
    媒湿式酸化処理装置の制御方法。
  2. 【請求項2】 電気伝導率が0.3以上1.0mS/m
    以下の範囲内にある、請求項1記載の有機物含有廃水の
    処理方法。
  3. 【請求項3】 反応圧力が、反応温度における水の飽和
    蒸気圧以上、20kg/cm2G未満の範囲にある、請
    求項1記載の有機物含有廃水の処理方法。
  4. 【請求項4】 有機物含有廃水が、テレフタル酸ジメチ
    ル及び/又はポリエチレンテレフタレートの製造プロセ
    スから排出される廃水である、請求項1記載の有機物含
    有廃水の処理方法。
JP12552897A 1997-05-15 1997-05-15 触媒湿式酸化処理装置の制御方法 Pending JPH10314764A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12552897A JPH10314764A (ja) 1997-05-15 1997-05-15 触媒湿式酸化処理装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12552897A JPH10314764A (ja) 1997-05-15 1997-05-15 触媒湿式酸化処理装置の制御方法

Publications (1)

Publication Number Publication Date
JPH10314764A true JPH10314764A (ja) 1998-12-02

Family

ID=14912418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12552897A Pending JPH10314764A (ja) 1997-05-15 1997-05-15 触媒湿式酸化処理装置の制御方法

Country Status (1)

Country Link
JP (1) JPH10314764A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249373A (ja) * 2008-04-11 2009-10-29 Hitachi Chem Co Ltd フェノール類含有廃液からのフェノールの回収法
JP4488396B2 (ja) * 2000-09-11 2010-06-23 オルガノ株式会社 廃水処理方法
CN112830597A (zh) * 2020-12-31 2021-05-25 何蕾 一种聚酯废水处理方法
CN114906916A (zh) * 2021-02-09 2022-08-16 中国石油化工股份有限公司 一种己内酰胺氨肟化工艺生产废水的预处理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488396B2 (ja) * 2000-09-11 2010-06-23 オルガノ株式会社 廃水処理方法
JP2009249373A (ja) * 2008-04-11 2009-10-29 Hitachi Chem Co Ltd フェノール類含有廃液からのフェノールの回収法
CN112830597A (zh) * 2020-12-31 2021-05-25 何蕾 一种聚酯废水处理方法
CN114906916A (zh) * 2021-02-09 2022-08-16 中国石油化工股份有限公司 一种己内酰胺氨肟化工艺生产废水的预处理方法
CN114906916B (zh) * 2021-02-09 2024-06-11 中国石油化工股份有限公司 一种己内酰胺氨肟化工艺生产废水的预处理方法

Similar Documents

Publication Publication Date Title
Beltrán et al. Gallic acid water ozonation using activated carbon
Fortuny et al. Wet air oxidation of phenol using active carbon as catalyst
Nakayama et al. Improved ozonation in aqueous systems
US6224843B1 (en) Carbon dioxide purification in ethylene glycol plants
JP4703227B2 (ja) 廃水の処理方法
KR100418085B1 (ko) 액상촉매와 활성탄 필터 및 활성탄 섬유필터를 이용한황화수소와 VOCs의 처리시스템
JPH10314764A (ja) 触媒湿式酸化処理装置の制御方法
Lin et al. Feasibility of ozone absorption by H2O2 solution in rotating packed beds
JPH11147093A (ja) 触媒湿式酸化処理装置の制御方法
JP2004105831A (ja) 排水の処理方法
KR100491351B1 (ko) Pfc 및/또는 hfc를 포함하는 배기 가스의 처리방법및 장치
JP2002292379A (ja) 促進酸化処理方法及び装置
JP2003112194A (ja) 窒素除去プロセスの制御方法
JP4524525B2 (ja) アンモニアと過酸化水素を含む排水の処理方法
JPH091165A (ja) アンモニア含有廃水の処理方法
JP2003001048A (ja) 湿潤ガスの乾燥方法、硫酸ミストの除去方法およびこれらを用いた塩素の製造方法
KR200234635Y1 (ko) 액상촉매와 활성탄 필터 및 활성탄 섬유필터를 이용한황화수소와 VOCs의 처리시스템
KR100564055B1 (ko) 전기화학적 매개산화 및 오존 산화에 의한 유기폐액의복합매개산화 처리장치
JPH11128958A (ja) 水の脱窒処理装置
WO2020256151A1 (ja) 精製ガスの製造方法及び精製ガス製造装置
JP3302125B2 (ja) 廃水の処理方法
JPH0924244A (ja) 排オゾンガス処理装置とその運転方法
JP2001276855A (ja) 排水の処理方法
JPH1099878A (ja) 水処理方法
JPH10174843A (ja) アンモニア含有ガスの処理方法