JPH10310822A - Production of grain-oriented silicon steel sheet stable in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet stable in magnetic property

Info

Publication number
JPH10310822A
JPH10310822A JP9119937A JP11993797A JPH10310822A JP H10310822 A JPH10310822 A JP H10310822A JP 9119937 A JP9119937 A JP 9119937A JP 11993797 A JP11993797 A JP 11993797A JP H10310822 A JPH10310822 A JP H10310822A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
temperature
grain
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9119937A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Takehide Senuma
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9119937A priority Critical patent/JPH10310822A/en
Publication of JPH10310822A publication Critical patent/JPH10310822A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the dispersion of the material in the operation of steel making and hot rolling stages and to obtain a grain-oriented silicon steel sheet having stable magnetic properties by estimating the primary factor of the dispersion of the material caused by disturbance in the operation before decarburizing annealing, swiftly changing the annealing pattern in decarburizing annealing for a silicon steel slab having a specified compsn. based on a material model and executing treatment at a specified heating rate. SOLUTION: A silicon steel slab contg., by weight, 0.8 to 4.8% Si, <=0.085% C, 0.01 to 0.065% acid soluble Al, <=0.012% N, and the balance Fe is heated at <=1280 deg.C, is subjected to hot rolling and is subsequently subjected to cold rolling for one time or >=two times including annealing to regulate its sheet thickness into the final one, which is subjected to decarburizing annealing and is thereafter subjected to finish annealing to obtain a grain-oriented silicon steel sheet, where, in the decarburizing annealing stage, it is heated at the average heating rate of 10 to 40 deg.C/sec at least to 650 deg.C and is then heated at a heating rate of >=60 deg.C/sec to a temp. calculated based on a material prediction model to regulate the average grain size in the primary recrystallized structure, and after that, nitriding treatment is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶粒がミラー指
数で{110}<001>方位に集積した、いわゆる方
向性電磁鋼板を、材質予測モデルに基づき脱炭焼鈍パタ
−ンを制御することにより一次再結晶粒組織を調整し、
安定した磁気特性を作り込む製造方法を開示するもので
ある。
The present invention relates to a so-called grain-oriented electrical steel sheet in which crystal grains are accumulated in a {110} <001> direction with a Miller index, and to control the decarburization annealing pattern based on a material prediction model. Adjust the primary recrystallized grain structure by
It discloses a manufacturing method for producing stable magnetic characteristics.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、{110}<001
>方位に集積した結晶粒により構成されたSiを0.8
〜4.8%含有した鋼板である。この鋼板は磁気特性と
して励磁特性と鉄損特性が要求される。励磁特性を表す
指標としては磁場の強さ800A/mにおける磁束密
度:B8 が通常使用される。また、鉄損特性を表す指標
としては周波数50Hzで1.7Tまで磁化した時の鋼
板1kgあたりの鉄損:W17/50 が用いられる。磁束密
度:B8 は鉄損特性の最大の支配因子であり、磁束密
度:B8 値が高いほど鉄損特性が良好になる。磁束密
度:B8 を高めるためには結晶方位を高度に揃えること
が重要である。この結晶方位の制御は二次再結晶とよば
れるカタストロフィックな粒成長現象を利用して達成さ
れる。
2. Description of the Related Art Grain-oriented electrical steel sheets are {110} <001.
> 0.8% of Si composed of crystal grains accumulated in the orientation
It is a steel sheet containing 〜4.8%. This steel sheet is required to have excitation characteristics and iron loss characteristics as magnetic characteristics. As an index indicating the excitation characteristic, a magnetic flux density: B 8 at a magnetic field strength of 800 A / m is usually used. As an index indicating iron loss characteristics, iron loss per kg of steel sheet when magnetized at a frequency of 50 Hz to 1.7 T: W 17/50 is used. The magnetic flux density: B 8 is the largest controlling factor of the iron loss characteristics, and the higher the magnetic flux density: B 8 value, the better the iron loss characteristics. Flux density: in order to increase the B 8 is important to align advanced crystal orientation. The control of the crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.

【0003】この二次再結晶を制御するためには、一次
再結晶組織とインヒビタ−とよばれる微細析出物の調整
を行うことが必要である。
In order to control the secondary recrystallization, it is necessary to adjust the primary recrystallization structure and fine precipitates called inhibitors.

【0004】インヒビタ−は、一次再結晶組織のなかで
一般の粒の成長を抑制し、特定の方位粒のみを優先成長
させる機能を持つ。これまでに工業的に用いられたイン
ヒビタ−として代表的なものとしては、M.F.Littmann
(特公昭30−3651号公報),J.E.May &D.Turnbu
ll(Trans.Met.Soc.AIME212(1958年)p769等により
開示されたMnS、田口ら(特公昭40−15644号
公報)により開示されたAlN、今中ら(特公昭51−
13469号公報)により開示されたMnSeがある。
これらの析出物を微細析出させるために熱間圧延前のス
ラブ加熱時に析出物を完全固溶させた後に、熱間圧延及
びその後の焼鈍条件を制御して微細析出させる方法がと
られている。
[0004] The inhibitor has a function of suppressing the growth of general grains in the primary recrystallized structure and preferentially growing only grains of a specific orientation. MFLittmann is a typical example of an industrially used inhibitor.
(Japanese Patent Publication No. 30-3651), JEMay & D. Turnbu
Met. Soc. AIME212 (1958) p769, MnS disclosed by Taguchi et al. (JP-B-40-15644), AlN disclosed by Taguchi et al.
No. 13469) discloses MnSe.
In order to finely precipitate these precipitates, a method has been adopted in which the precipitates are completely dissolved in slab heating before hot rolling, and then fine conditions are formed by controlling the conditions of hot rolling and subsequent annealing.

【0005】これらの析出物を完全固溶させるためには
1400℃以上の高温で加熱する必要があり、これは普
通鋼のスラブ加熱温度に比べて約200℃高く、次の問
題点がある。 (1)専用の加熱炉が必要。 (2)加熱炉のエネルギ−原単位が高い。 (3)溶融スケール量が多く、いわゆるノロ出し等の操
業管理が必要。
[0005] In order to completely dissolve these precipitates, it is necessary to heat at a high temperature of 1400 ° C or more, which is about 200 ° C higher than the slab heating temperature of ordinary steel, and has the following problems. (1) A dedicated heating furnace is required. (2) The energy intensity of the heating furnace is high. (3) There is a large amount of molten scale, and operation management such as so-called sticking out is necessary.

【0006】この問題を解消する低温スラブ加熱による
製造方法としては小松ら(特公昭62ー45285号公
報)は一次再結晶後に窒化処理により形成した(Al,
Si)Nをインヒビターとして用いる方法を開示してい
る。
[0006] As a manufacturing method by low-temperature slab heating to solve this problem, Komatsu et al. (Japanese Patent Publication No. Sho 62-45285) formed a nitride (Al,
A method using Si) N as an inhibitor is disclosed.

【0007】一方、一次再結晶粒組織調整に関する知見
はほとんどなく、本願発明者らは例えば特開平2ー18
2866号公報にその重要性を開示している。特に、低
温スラブ加熱による小松ら(特公昭62ー45285号
公報)による製造方法では一次再結晶焼鈍条件により一
次再結晶組織を大きく調整することができる。
On the other hand, there is almost no knowledge about the adjustment of the primary recrystallized grain structure.
No. 2,866 discloses its importance. In particular, in the production method by Komatsu et al. (Japanese Patent Publication No. 62-45285) using low-temperature slab heating, the primary recrystallization structure can be largely adjusted by the primary recrystallization annealing conditions.

【0008】方向性電磁鋼板の製造は、各工程の種々の
変動要因がインヒビターや一次再結晶組織を変動させ二
次再結晶挙動に影響を及ぼすために、厳しい管理基準を
設けて製造を行っている。しかしながら操業上の外乱を
なくすことは困難である。製造の安定性の点で、特に問
題となる工程は製鋼工程でのインヒビター系の成分調整
と熱延工程である。例えば、スラブ加熱時のスキッドの
加熱むら、仕上熱延の通板速度のズーミングなどに伴う
圧延、冷却条件の変化、仕上温度、巻き取温度のバラツ
キなどがあげられる。これらの外乱は熱延板の組織、析
出物の状態を変化させ最終製品の磁気特性のバラツキの
原因となる。
The production of grain-oriented electrical steel sheets is carried out under strict control standards because various factors in each step fluctuate the inhibitor and primary recrystallization structure and affect the secondary recrystallization behavior. I have. However, it is difficult to eliminate operational disturbances. Processes that are particularly problematic in terms of production stability are the inhibitor-based component adjustment in the steelmaking process and the hot rolling process. For example, uneven heating of the skid at the time of slab heating, rolling caused by zooming of the passing speed of the finish hot rolling, changes in cooling conditions, and variations in the finishing temperature and the winding temperature can be mentioned. These disturbances change the structure of the hot-rolled sheet and the state of precipitates, and cause variations in the magnetic properties of the final product.

【0009】[0009]

【発明が解決しようとする課題】本発明はこのような問
題を解消しようとするものであり、脱炭焼鈍前の操業上
の外乱により生じた材質のバラツキ要因を事前に予測
し、材質モデルに基づき脱炭焼鈍の焼鈍パターンを速や
かに変化させることにより一次再結晶組織を調整し、磁
気特性の均一な方向性電磁鋼板を製造する方法を提供す
るものである。
SUMMARY OF THE INVENTION The present invention is intended to solve such a problem, and predicts in advance factors of material variation caused by operational disturbances before decarburizing annealing, and calculates a material model. An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet having uniform magnetic properties by quickly changing an annealing pattern of decarburizing annealing to adjust a primary recrystallization structure.

【0010】[0010]

【課題を解決するための手段】本発明は、以下の通りで
ある。
SUMMARY OF THE INVENTION The present invention is as follows.

【0011】(1) 重量%で、Si:0.8〜4.8
%、C :0.085%以下、酸可溶性Al:0.01
〜0.065%、N :0.012%以下を含有し、残
部Fe及び不可避的不純物からなる珪素鋼スラブを12
80℃以下の温度で加熱し熱間圧延した後、1回もしく
は焼鈍をはさむ二回以上の冷間圧延により最終板厚と
し、脱炭焼鈍、仕上焼鈍を行う方向性電磁鋼板の製造方
法において、脱炭焼鈍工程で少なくとも650℃までは
平均加熱速度10〜40℃/secで加熱し、次いで60℃
/sec以上の加熱速度で材質予測モデルに基づいて算出し
た温度まで加熱して一次再結晶組織の平均粒径を調整
し、その後窒化処理を行うことを特徴とする磁気特性の
安定した方向性電磁鋼板の製造方法。
(1) Si: 0.8 to 4.8% by weight
%, C: 0.085% or less, acid-soluble Al: 0.01
650.065%, N: 0.012% or less, and 12% of a silicon steel slab composed of the balance of Fe and unavoidable impurities.
After being heated at a temperature of 80 ° C. or less and hot-rolled, the final thickness is obtained by one or two or more cold-rollings including annealing, in a method for producing a grain-oriented electrical steel sheet to be subjected to decarburizing annealing and finish annealing. Heat at an average heating rate of 10 to 40 ° C / sec until at least 650 ° C in the decarburizing annealing process,
Directional electromagnetic with stable magnetic characteristics characterized by heating at a heating rate of / sec or more to the temperature calculated based on the material prediction model, adjusting the average grain size of the primary recrystallization structure, and then performing nitriding treatment Steel plate manufacturing method.

【0012】(2) 重量%で、Si:0.8〜4.8
%、C :0.085%以下、酸可溶性Al:0.01
〜0.065%、N :0.012%以下を含有し、残
部Fe及び不可避的不純物からなる珪素鋼スラブを12
80℃以下の温度で加熱し熱間圧延した後、一回もしく
は焼鈍をはさむ二回以上の冷間圧延により最終板厚と
し、脱炭焼鈍、仕上焼鈍を行う方向性電磁鋼板の製造方
法において、脱炭焼鈍工程の後半で60℃/sec以上の加
熱速度で材質予測モデルに基づいて算出した温度まで加
熱して一次再結晶組織の平均粒径を調整し、その後窒化
処理を行うことを特徴とする磁気特性の安定した方向性
電磁鋼板の製造方法。
(2) Si: 0.8 to 4.8% by weight
%, C: 0.085% or less, acid-soluble Al: 0.01
650.065%, N: 0.012% or less, and 12% of a silicon steel slab composed of the balance of Fe and unavoidable impurities.
After heating at a temperature of 80 ° C. or less and hot rolling, the final thickness by cold rolling once or more than two times including annealing, decarburizing annealing, in the method of manufacturing a grain-oriented electrical steel sheet to perform finish annealing, In the latter half of the decarburization annealing process, the heating is performed at a heating rate of 60 ° C./sec or more to the temperature calculated based on the material prediction model to adjust the average grain size of the primary recrystallization structure, and thereafter, the nitriding treatment is performed. For producing grain-oriented electrical steel sheets with stable magnetic properties.

【0013】本発明者らは、インヒビター成分、熱延板
の結晶組織と析出物の状態がわかっている冷延板を脱炭
焼鈍し、焼鈍条件と粒組織の関係を検討した結果、焼鈍
板の粒組織に一定の関係があること、そしてこれを予測
することにより優れた磁気特性が安定して得られること
が分かった。
The present inventors decarburized annealed a cold-rolled sheet in which the inhibitor component, the crystal structure of the hot-rolled sheet and the state of the precipitate were known, and examined the relationship between the annealing conditions and the grain structure. It has been found that there is a certain relationship between the grain structures and that by predicting this, excellent magnetic properties can be stably obtained.

【0014】図1は焼鈍板の一時再結晶組織を予測する
材質モデルを概念的に示すものである。すなわち、熱延
板の成分、熱履歴および圧下履歴と、熱延板焼鈍の熱履
歴から、熱延板各部のフェライト粒径及び析出物(Al
N等)を計算して冷延前組織を予測し、求めた前記フェ
ライト粒径及び析出物の状態と、冷延板の熱履歴および
圧下履歴から目的の一時再結晶後の平均粒径となる一時
再結晶熱履歴(脱炭焼鈍温度)を求め、得られた条件に
基づいて一時再結晶の粒組織を調整した後窒化処理を施
し、インヒビターを形成し、仕上げ焼鈍を行うことによ
り、二次再結晶が安定し、磁気特性が均一になる事を確
認した。
FIG. 1 conceptually shows a material model for predicting a temporary recrystallization structure of an annealed plate. That is, based on the components of the hot-rolled sheet, the heat history and the rolling history, and the heat history of the hot-rolled sheet annealing, the ferrite grain size and precipitate (Al
N) is calculated to predict the structure before cold rolling, and from the obtained ferrite grain size and precipitate state, and the heat history and rolling history of the cold rolled sheet, the average grain size after the target temporary recrystallization is obtained. The temporary recrystallization heat history (decarburization annealing temperature) is determined, the grain structure of the temporary recrystallization is adjusted based on the obtained conditions, nitriding treatment is performed, an inhibitor is formed, and the finish annealing is performed. It was confirmed that recrystallization was stable and magnetic properties became uniform.

【0015】しかしながら、従来の脱炭焼鈍設備におい
ては、通常輻射熱を利用したラジアントチューブやエレ
マによる加熱が主体となるために前工程の外乱に応じて
焼鈍サイクルを短時間で変更することはできない。そこ
で、短時間で加熱温度を変更可能な誘電加熱、通電加熱
等を用いて焼鈍パターンを変化させることにより、一次
再結晶組織の調整を行うことにより製品の磁気特性を安
定化させる検討を行った。
However, in the conventional decarburization annealing equipment, heating mainly by a radiant tube or an elema using radiant heat is mainly used, so that an annealing cycle cannot be changed in a short time in accordance with disturbance in a preceding process. Therefore, we studied the stabilization of the magnetic properties of the product by adjusting the primary recrystallization structure by changing the annealing pattern using dielectric heating, energization heating, etc., which can change the heating temperature in a short time. .

【0016】方向性電磁鋼板の脱炭焼鈍を急速加熱で行
うことは例えば、特開平1ー290716号公報に開示
されている。しかしながら、この開示された発明の目的
は室温から675℃以上の温度域まで100℃/sec以上
の加熱速度で急速加熱を行うことにより二次再結晶組織
を微細にして鉄損得性を向上させることである。このよ
うな方法で急速加熱を行うと一次再結晶集合組織が大き
く変動するために、一次再結晶粒径を一定にしても磁気
特性が一定に制御できず長手方向等の磁気特性の均一化
には効果がないことが分かった。従って、従来の急速加
熱技術を単純に適用して焼鈍パターンを変化させた場合
には磁気特性を安定化させることができない。
Performing decarburizing annealing of grain-oriented electrical steel sheets by rapid heating is disclosed, for example, in Japanese Patent Laid-Open No. 1-290716. However, an object of the disclosed invention is to improve the iron loss yield by making the secondary recrystallized structure finer by performing rapid heating at a heating rate of 100 ° C./sec or more from room temperature to a temperature range of 675 ° C. or more. It is. When rapid heating is performed by such a method, the primary recrystallization texture fluctuates greatly. Therefore, even if the primary recrystallization grain size is fixed, the magnetic characteristics cannot be controlled to be constant, and the magnetic characteristics in the longitudinal direction and the like are made uniform. Turned out to be ineffective. Therefore, when the conventional rapid heating technique is simply applied to change the annealing pattern, the magnetic characteristics cannot be stabilized.

【0017】本発明者等は焼鈍パターンに関する研究を
重ね、急速加熱を開始する温度を適切に選ぶことによ
り、急速加熱焼鈍を採用しても一次再結晶集合組織に影
響を与えずに一次再結晶組織調整のみを行うことが可能
なことを確認した。
The present inventors have conducted studies on the annealing pattern, and by appropriately selecting the temperature at which rapid heating is started, the primary recrystallization without affecting the primary recrystallization texture even when rapid heating annealing is employed. It was confirmed that only organizational adjustment could be performed.

【0018】以下、インヒビター系の成分(酸可溶性A
l)に関して行った実験結果を基に説明する。重量でS
i:3.2%、C:0.05%、酸可溶性Al:(1)
0.024、及び(2)0.029%、N:0.08%
を含有するスラブを1150℃の温度で加熱した後、
2.3mm厚に熱間圧延した。その後、1120℃で焼鈍
してから0.23mm厚まで冷間圧延し、810〜870
℃の温度域で脱炭焼鈍し、アンモニア含有雰囲気で焼鈍
し窒素を0.02%とした。ついでMgOを主成分とす
る焼鈍分離剤を塗布した後、仕上焼鈍を行った。表1に
脱炭焼鈍後の一次再結晶組織(平均粒径)、及び製品の
磁気特性(B8 )を示す。
In the following, an inhibitor component (acid-soluble A
A description will be given based on the results of an experiment performed on l). S by weight
i: 3.2%, C: 0.05%, acid-soluble Al: (1)
0.024, and (2) 0.029%, N: 0.08%
Is heated at a temperature of 1150 ° C.
It was hot rolled to a thickness of 2.3 mm. Thereafter, it is annealed at 1120 ° C. and cold-rolled to a thickness of 0.23 mm.
Decarburization annealing was performed in a temperature range of ° C., and annealing was performed in an atmosphere containing ammonia to reduce nitrogen to 0.02%. Then, after applying an annealing separator mainly containing MgO, finish annealing was performed. Table 1 shows the primary recrystallized structure (average particle size) after decarburizing annealing and the magnetic properties (B 8 ) of the product.

【0019】[0019]

【表1】 [Table 1]

【0020】表1より、鋼板1(酸可溶性Al:0.0
24%)及び、鋼板2(酸可溶性Al:0.029%)
を同一の焼鈍温度で脱炭焼鈍すると製品の磁束密度(B
8 )に相違が生じることが分かる。一方、脱炭焼鈍後の
一次再結晶平均粒径が同じ場合には、酸可溶性Alの含
有量が相違するにもかかわらず、製品の磁気特性は同じ
レベルになる。
From Table 1, it can be seen that the steel sheet 1 (acid-soluble Al: 0.0
24%) and steel sheet 2 (acid-soluble Al: 0.029%)
When decarburizing annealing is performed at the same annealing temperature, the magnetic flux density (B
It can be seen that there is a difference in 8 ). On the other hand, when the primary recrystallization average particle diameter after decarburization annealing is the same, the magnetic properties of the product are at the same level despite the difference in the content of acid-soluble Al.

【0021】したがって、方向性電磁鋼板の製造におい
て、脱炭焼鈍前の操業上の外乱により鋼板長手方向で上
記鋼板1と2とのように材質のバラツキが生じたとして
も、鋼板長手方向で一次再結晶平均粒径をほぼ均一とす
れば、製品の磁気特性の均一化を図ることができる。
Therefore, in the production of a grain-oriented electrical steel sheet, even if there is a variation in the material in the longitudinal direction of the steel sheet such as the steel sheets 1 and 2 due to operational disturbance before the decarburization annealing, the primary steel sheet does not If the recrystallized average particle size is made substantially uniform, the magnetic properties of the product can be made uniform.

【0022】例えば、鋼板1及び2から磁束密度
(B8 )が約1.93Tの製品を製造するためには、一
次再結晶平均粒径を約25μmに調整すれば良い。両鋼
板の一次再結晶平均粒径を約25μmとするには、鋼板
1では870℃、鋼板2では850℃と焼鈍温度を変更
する必要がある。
For example, in order to manufacture a product having a magnetic flux density (B 8 ) of about 1.93 T from the steel sheets 1 and 2, the average primary recrystallization particle size may be adjusted to about 25 μm. In order to set the average primary recrystallization grain size of both steel sheets to about 25 μm, it is necessary to change the annealing temperature to 870 ° C. for steel sheet 1 and 850 ° C. for steel sheet 2.

【0023】そこで、エレマによる輻射加熱方式(10
℃/sec)と通電加熱(60、300℃/sec)とを組み合
わせて、加熱途中までは輻射加熱方式により加熱し、次
いで通電加熱によって鋼板を加熱し、鋼板1については
均熱温度870℃で、鋼板2については850℃で脱炭
焼鈍を行った。その後アンモニア含有雰囲気で焼鈍し窒
素を0.02%とした。ついでMgOを主成分とする焼
鈍分離剤を塗布した後、仕上焼鈍を行い、得られた製品
の磁束密度B8 を測定した。
Therefore, the radiant heating method (10
° C / sec) and electric heating (60, 300 ° C / sec) are combined, and the steel sheet is heated by radiant heating until heating is in progress, then the steel sheet is heated by electric current heating. The steel sheet 2 was subjected to decarburizing annealing at 850 ° C. Thereafter, annealing was performed in an ammonia-containing atmosphere to reduce nitrogen to 0.02%. Then after coating an annealing separator mainly comprised of MgO, perform finish annealing, the magnetic flux density was measured B 8 of the resulting product.

【0024】図2(a)に鋼板1から得られた製品の磁
束密度B8 (T)と急速加熱開始温度Tr(℃)との相
関を、図2(b)に鋼板2から得られた製品の磁束密度
8(T)と急速加熱開始温度Tr(℃)との相関をそ
れぞれ示す。なお、ここで急速加熱開始温度Trとは、
通電加熱によって鋼板を加熱し始める温度をいう。図2
より明らかなように、いずれの鋼板においても急速加熱
装置による加熱開始温度が650℃より低い場合には磁
束密度(B8 )は加熱速度により大きく変化するが、急
速加熱開始温度を650℃以上とすれば二次再結晶後の
磁気特性(B8 )は一次再結晶粒径に応じて安定するこ
とが分かる。いずれの焼鈍サイクルによっても焼鈍後の
一次再結晶平均粒径は24.5〜26μmの範囲にある
ので、急速加熱開始温度が650℃より低い場合に磁束
密度(B8 )が加熱速度により大きく変化したのは集合
組織の影響と考えられる。
FIG. 2A shows the correlation between the magnetic flux density B 8 (T) of the product obtained from the steel sheet 1 and the rapid heating start temperature Tr (° C.), and FIG. The correlation between the magnetic flux density B 8 (T) of the product and the rapid heating start temperature Tr (° C.) is shown. Here, the rapid heating start temperature Tr is
The temperature at which the steel sheet starts to be heated by electric heating. FIG.
As is clear from any of the steel sheets, when the heating start temperature by the rapid heating device is lower than 650 ° C., the magnetic flux density (B 8 ) greatly changes depending on the heating speed, but the rapid heating start temperature is 650 ° C. or higher. Then, it can be seen that the magnetic characteristics (B 8 ) after the secondary recrystallization are stabilized according to the primary recrystallization particle size. Since the average primary recrystallized grain size after annealing is in the range of 24.5 to 26 μm in any of the annealing cycles, the magnetic flux density (B 8 ) greatly changes depending on the heating rate when the rapid heating start temperature is lower than 650 ° C. This is probably due to the texture.

【0025】以上のように、上記のような材質のバラツ
キを有する方向性電磁鋼板を連続的に製造する場合に、
従来のように室温から急速加熱を行い粒径調整を行って
も磁気特性は安定化しないが、急速加熱を開始する温度
を適切に選ぶことにより一次再結晶集合組織に影響を与
えずに一次再結晶組織の粒径調整することが可能であ
る。このような加熱方法を用いて、一次再結晶組織の粒
径を均一化するべく鋼板長手方向の各部位において均熱
温度を変更することにより、鋼板長手方向の磁気特性が
安定した製品を製造できる。
As described above, when continuously manufacturing a grain-oriented electrical steel sheet having the above-described variations in the materials,
Even if the particle size is adjusted by rapid heating from room temperature as in the past, the magnetic properties are not stabilized.However, by appropriately selecting the temperature at which rapid heating is started, the primary recrystallization can be performed without affecting the primary recrystallization texture. It is possible to adjust the grain size of the crystal structure. By using such a heating method, by changing the soaking temperature at each portion in the longitudinal direction of the steel sheet to make the grain size of the primary recrystallization structure uniform, it is possible to manufacture a product having stable magnetic properties in the longitudinal direction of the steel sheet. .

【0026】また、本発明では鋼板長手方向の各部位に
おいて均熱温度を変更するものであるが、その均熱温度
は焼鈍板の一次再結晶組織を予測する材質モデルによっ
て決定する。
In the present invention, the soaking temperature is changed at each part in the longitudinal direction of the steel sheet. The soaking temperature is determined by a material model that predicts the primary recrystallization structure of the annealed sheet.

【0027】図1は本発明における材質モデルを示す概
略図であるが、より具体的には、例えば冷延前のフェラ
イト粒径(D0 )、析出物の量(I0 )、析出物の平均
粒径(r0 )、冷延の熱履歴{例えば温度(Tc )、滞
在時間(tc )、圧下履歴[パス回数(Np )、圧下率
(R)等]}、脱炭焼鈍履歴[加熱速度(dT)、均熱
温度(Ts )、均熱時間(ts )]等の金属学的に重要
な因子と、一次再結晶粒径(D)との関係を、理論と実
験により回帰式、すなわち、 D=f{D0 ,I0 ,r0 ,Tc ,tc ,Np ,R,d
T,Ts ,ts ・・・} として予め求めてこれを材質予測モデルとしてもよい。
例えば、このような回帰式から所望の結晶粒径Dを得る
ための脱炭焼鈍温度(均熱温度:Ts )を求めるには、
s 以外の値を入力して、Ts を算出すればよい。
FIG. 1 is a schematic view showing a material model according to the present invention. More specifically, for example, the ferrite grain size (D 0 ) before cold rolling, the amount of precipitate (I 0 ), Average particle size (r 0 ), heat history of cold rolling {for example, temperature (T c ), stay time (t c ), reduction history [number of passes (N p ), reduction ratio (R), etc.]], decarburization annealing The relation between the metallographically important factors such as history [heating rate (dT), soaking temperature (T s ), soaking time (t s )] and the primary recrystallized grain size (D) is described by the theory. Through experiments, a regression equation, that is, D = f {D 0 , I 0 , r 0 , T c , t c , N p , R, d
T, T s , t s ... May be obtained in advance and used as a material prediction model.
For example, to obtain a decarburizing annealing temperature (soaking temperature: T s ) for obtaining a desired crystal grain size D from such a regression equation,
A value other than T s may be input to calculate T s .

【0028】また、本発明者等は脱炭焼鈍の後半に急速
加熱装置を用いて材質モデルに基づいた温度まで加熱す
ることによっても、一次再結晶集合組織に影響を与えず
に、一次再結晶組織の粒径調整のみが可能であることを
も確認した。
In addition, the present inventors can use a rapid heating device in the second half of the decarburization annealing to heat the material to a temperature based on the material model, without affecting the primary recrystallization texture. It was also confirmed that only the particle size adjustment of the tissue was possible.

【0029】前述の鋼板をもとに、鋼板2については均
熱温度850℃で脱炭焼鈍を行った。そして鋼板1につ
いては、一部の試料は均熱850℃の温度で脱炭焼鈍を
行った後、通電加熱(60、300℃/sec)により87
0〜920℃まで加熱して短時間の追加焼鈍を行い粒径
調整をした。さらに鋼板1の一部の試料については、室
温から870℃まで通電加熱(60、300℃/sec)に
より急速加熱して粒径調整を行った。その後アンモニア
含有雰囲気で焼鈍し窒素を0.02%とした。ついでM
gOを主成分とする焼鈍分離剤を塗布した後、仕上焼鈍
を行った。
The steel sheet 2 was subjected to decarburization annealing at a soaking temperature of 850 ° C. based on the above-mentioned steel sheet. Then, as for the steel sheet 1, some of the samples were decarburized and annealed at a temperature of 850 ° C., and then heated by heating (60, 300 ° C./sec).
The particle size was adjusted by heating to 0 to 920 ° C. and performing additional annealing for a short time. Further, for a part of the sample of the steel sheet 1, the particle size was adjusted by rapidly heating from room temperature to 870 ° C. by electric heating (60, 300 ° C./sec). Thereafter, annealing was performed in an ammonia-containing atmosphere to reduce nitrogen to 0.02%. Then M
After applying an annealing separator containing gO as a main component, finish annealing was performed.

【0030】[0030]

【表2】 [Table 2]

【0031】表2より明らかなように、加熱速度60℃
/sec、及び300℃/secにいずれの加熱速度においても
加熱温度870〜910℃で焼鈍して一次再結晶平均粒
径を約25μmに調整することにより磁束密度
(B8 ):約1.93Tの製品が製造できることが分か
る。一方、脱炭焼鈍の最初から急速加熱装置により急速
加熱を施した試料は、一次再結晶平均粒径はほぼ同じで
も製品の磁気特性が大きく異なる。これは脱炭焼鈍の低
温域を急速加熱すると集合組織が大きく変化するのでそ
のためであると考えられる。
As is clear from Table 2, the heating rate was 60 ° C.
magnetic flux density (B 8 ): about 1.93 T by annealing at a heating temperature of 870 to 910 ° C. at any heating rate of 300 ° C./sec and 300 ° C./sec to adjust the average primary recrystallization particle size to about 25 μm. It can be seen that the product can be manufactured. On the other hand, the samples subjected to rapid heating by the rapid heating device from the beginning of the decarburization annealing have significantly different magnetic properties of the products even though the average primary recrystallization grain size is almost the same. This is considered to be due to the fact that when the low temperature region of the decarburizing annealing is rapidly heated, the texture changes greatly.

【0032】以上のように従来の脱炭焼鈍設備により焼
鈍した後、材質予測モデルに応じて急速加熱設備により
粒径調整を行うことによって、二次再結晶後の磁気特性
(B8 )の安定した製品を製造できる。従って、無方向
性電磁鋼板を連続して製造する際に、材質予測モデルに
基づいて急速加熱装置により追加焼鈍し粒径調整を行う
ことにより、安定して同一レベルの磁気特性を持つ製品
が製造できる。
As described above, after annealing by the conventional decarburizing annealing equipment, the particle size is adjusted by the rapid heating equipment according to the material prediction model, thereby stabilizing the magnetic properties (B 8 ) after the secondary recrystallization. Products can be manufactured. Therefore, when continuously manufacturing non-oriented electrical steel sheets, products with the same level of magnetic properties can be stably manufactured by performing additional annealing by means of a rapid heating device and adjusting the grain size based on a material prediction model. it can.

【0033】[0033]

【発明の実施の形態】次に、本願発明の実施形態を述べ
る。本願発明において、Si:0.8〜4.8%,C:
0.085%以下,酸可溶性Al:0.01〜0.06
5%,N:0.012%以下が必要である。
Next, an embodiment of the present invention will be described. In the present invention, Si: 0.8 to 4.8%, C:
0.085% or less, acid-soluble Al: 0.01 to 0.06
5%, N: 0.012% or less is required.

【0034】Siは添加量を多くすると電気抵抗が高く
なり、鉄損特性が改善される。しかしながら、4.8%
を超えると圧延時に割れやすくなってしまう。また、
0.8%より少ないと仕上焼鈍時にγ変態が生じ結晶方
位が損なわれてしまう。
When Si is added in a large amount, the electric resistance increases and the iron loss characteristics are improved. However, 4.8%
If it exceeds, it will be easy to crack during rolling. Also,
If it is less than 0.8%, γ transformation occurs during finish annealing, and the crystal orientation is impaired.

【0035】Cは一次再結晶組織を制御するうえで有効
な元素であるが、磁気特性に悪影響を及ぼすので仕上焼
鈍前に脱炭する必要がある。Cが0.085%より多い
と脱炭焼鈍時間が長くなり生産性が損なわれてしまう。
C is an effective element for controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties, so that it is necessary to remove carbon before the finish annealing. If C is more than 0.085%, the decarburization annealing time will be long and productivity will be impaired.

【0036】酸可溶性Alは、本願発明においてNと結
合して(Al,Si)Nとしてインヒビターとしての機
能をはたすために必須の元素である。二次再結晶が安定
しする0.01〜0.065%を限定範囲とする。Nは
0.012%をこえるとブリスターとよばれる鋼板中の
空孔を生じる。
Acid-soluble Al is an essential element for bonding to N in the present invention to function as (Al, Si) N as an inhibitor. The limited range is 0.01 to 0.065% at which the secondary recrystallization is stabilized. If N exceeds 0.012%, voids in the steel plate called blisters are generated.

【0037】その他、Sは磁気特性に悪影響をので0.
015%以下とすることが望ましい。Snは脱炭焼鈍後
の集合組織を改善し、二次再結晶を安定化する。0.0
2〜0.15%添加することが望ましい。Crは脱炭焼
鈍の酸化層を改善し、グラス被膜形成に有効な元素であ
る。0.03〜0.2%添加することが望ましい。その
他、微量のCu,Sb,Mo,Bi,Ti等を鋼中に含
有することは、本願特許の主旨を損なうものではない。
In addition, S has an adverse effect on the magnetic characteristics.
It is desirably 015% or less. Sn improves the texture after decarburizing annealing and stabilizes secondary recrystallization. 0.0
It is desirable to add 2 to 0.15%. Cr is an element that improves the oxide layer in decarburizing annealing and is effective for forming a glass film. It is desirable to add 0.03 to 0.2%. In addition, the inclusion of trace amounts of Cu, Sb, Mo, Bi, Ti, etc. in steel does not impair the gist of the present patent.

【0038】上記、珪素鋼スラブは転炉、または電気炉
等により鋼を溶性し、必要に応じて溶鋼を真空脱ガス処
理し、ついで連続鋳造もしくは造塊後分塊圧延すること
によって得られる。その後、熱間圧延に先だってスラブ
加熱がなされる。本発明においては、スラブ加熱温度は
1280℃以下として、高温スラブ加熱の諸問題を回避
する。
The above-mentioned silicon steel slab is obtained by melting the steel in a converter or an electric furnace or the like, subjecting the molten steel to vacuum degassing if necessary, and then subjecting the steel to continuous casting or ingot making followed by slab rolling. Thereafter, slab heating is performed prior to hot rolling. In the present invention, the slab heating temperature is set to 1280 ° C. or less to avoid various problems of high-temperature slab heating.

【0039】上記、熱間圧延して得られた鋼板は、必要
に応じて900〜1200℃で30秒〜30分間短時間
焼鈍した後、一回もしくは焼鈍を挟んだ二回以上に冷間
圧延により最終板厚とする。この焼鈍を行うことにより
熱延板の組織を再結晶により調整し、また析出物を調整
することができるので製品の磁気特性が一般に良くな
る。冷間圧延としては、特公昭40ー15644号公報
に示されるように最終冷間圧延率を80%以上とするこ
とが、一次再結晶集合組織を調整するうえで必要であ
る。
The steel sheet obtained by the hot rolling described above is optionally subjected to a short annealing at 900 to 1200 ° C. for 30 seconds to 30 minutes, and then cold rolled once or twice or more with the annealing interposed therebetween. To the final thickness. By performing this annealing, the structure of the hot-rolled sheet can be adjusted by recrystallization and precipitates can be adjusted, so that the magnetic properties of the product generally improve. For the cold rolling, it is necessary to make the final cold rolling reduction 80% or more in order to adjust the primary recrystallization texture as shown in Japanese Patent Publication No. 40-15644.

【0040】冷間圧延後の鋼板は、鋼中に含まれるCを
除去するために湿潤雰囲気中で脱炭焼鈍を施す。この脱
炭焼鈍工程において少なくとも650℃までは平均加熱
速度10〜40℃/secで加熱し、引き続いて材質予測モ
デルに基づいて算出した焼鈍温度まで60℃/sec以上の
加熱速度で加熱して一次再結晶組織の平均粒径を調整す
る。
The steel sheet after cold rolling is subjected to decarburizing annealing in a humid atmosphere in order to remove C contained in the steel. In this decarburizing annealing step, heating is performed at an average heating rate of 10 to 40 ° C./sec up to at least 650 ° C., and subsequently, heating is performed at a heating rate of 60 ° C./sec or more to the annealing temperature calculated based on the material prediction model. Adjust the average particle size of the recrystallized structure.

【0041】急速加熱の開始温度を650℃以上と限定
したのは、この温度より低温から急速加熱をおこなうと
一次再結晶集合組織が大きく変化してかえって磁気特性
が変動するからである。なお、急速加熱を行う前の平均
加熱速度を10〜40℃/secとしたのは、下限の限定は
材質上の問題というよりは10℃/sec未満では時間がか
かりすぎ、炉長も長くなりコストが高くなるためであ
る。また、上限は40℃/secより速くなると集合組織が
大きく変化してしまい粒組織のみでは磁気特性が整理で
きなくなるからである。
The start temperature of the rapid heating is limited to 650 ° C. or more because when the heating is performed from a temperature lower than this temperature, the primary recrystallization texture is greatly changed and the magnetic characteristics are changed. The reason why the average heating rate before the rapid heating is set to 10 to 40 ° C./sec is that the lower limit is too long at less than 10 ° C./sec rather than a material problem, and the furnace length becomes longer. This is because the cost increases. On the other hand, if the upper limit is higher than 40 ° C./sec, the texture changes greatly, and the magnetic properties cannot be arranged only by the grain structure.

【0042】また、脱炭焼鈍工程において脱炭焼鈍後半
に材質予測モデルに基づいて算出した温度まで60℃/s
ec以上の加熱速度で急速加熱して一次再結晶組織の平均
粒径を調整してもよい。
In the decarburizing annealing step, the temperature is calculated at 60 ° C./s up to the temperature calculated based on the material prediction model in the latter half of the decarburizing annealing.
The average particle size of the primary recrystallized structure may be adjusted by rapid heating at a heating rate of ec or more.

【0043】急速加熱の方法は特に限定するものではな
く、レーザー、プラズマ等の高エネルギー熱源を利用す
る方法、誘導加熱、通電加熱装置等を適用する方法等が
ある。
The method of rapid heating is not particularly limited, and includes a method using a high-energy heat source such as laser and plasma, a method using induction heating, an electric heating device, and the like.

【0044】上記条件で一次再結晶組織を調整した後、
窒化処理によりインヒビター((Al,Si)N)を調
整する。窒化処理としては、アンモニア等の窒化能のあ
るガスを含有する雰囲気中で焼鈍する方法、MnN等の
窒化能のある粉末を焼鈍分離剤中に添加して仕上焼鈍中
に行う方法等がある。窒化処理後の窒素量としては二次
再結晶を安定的に行わせるためには鋼中のAl量に対し
てN/Alが重量比として0.5以上、好ましくは0.
67以上とする必要がある。その後、仕上焼鈍を行い
{110}<001>方位粒を二次再結晶により優先成
長させる。
After adjusting the primary recrystallization structure under the above conditions,
The inhibitor ((Al, Si) N) is adjusted by nitriding. Examples of the nitriding treatment include a method of annealing in an atmosphere containing a gas having a nitriding ability such as ammonia, and a method of adding a powder having a nitriding ability such as MnN to an annealing separator and performing the finishing annealing. In order to stably perform the secondary recrystallization, the amount of nitrogen after the nitriding treatment is such that the weight ratio of N / Al to the amount of Al in the steel is 0.5 or more, preferably 0.1% or more.
It is necessary to be 67 or more. After that, finish annealing is performed, and {110} <001> oriented grains are preferentially grown by secondary recrystallization.

【0045】[0045]

【実施例】【Example】

[実施例1]Si:3.2%,C:0.05%,酸可溶
性Al:0.03%,N:0.007%,Mn:0.1
%,S:0.007%,Cr:0.1%,Sn:0.0
5%含有する珪素鋼スラブを1150℃に加熱し、熱間
圧延して2.3mm厚とした。この材料の長手方向のスラ
ブ加熱時のスキッドによる加熱温度履歴の差等を基に、
まず熱延板の各部の析出物粒径(AlN等)及び、フェ
ライト粒径を算出した。次に、これらのデータとあわせ
て冷延時の温度履歴をインプットし一次再結晶平均粒径
が一定(22μm)となる一次再結晶焼鈍温度を算出し
たところ、860℃〜880℃の温度範囲で長手方向の
焼鈍温度を変更すれば、磁束密度(B8)として1.9
0Tの製品を安定して製造できることが分かった。そこ
で、この材質モデルに基づいて長手方向の焼鈍パターン
を変更して脱炭焼鈍を行った後、アンモニア含有雰囲気
中でし、窒素量を0.02%とした。次いで、MgOを
主成分とする焼鈍分離剤を塗布した後、1200℃で2
0時間仕上焼鈍を施した。製品の長手方向の磁気特性
(鉄損:W17/50 )を図3に示す。図3より、材質モデ
ルに基づいて脱炭焼鈍の焼鈍パターンを制御することに
より、スキッドに起因する熱延工程の加熱むらに影響さ
れず磁気特性が安定化することが分かる。
[Example 1] Si: 3.2%, C: 0.05%, acid-soluble Al: 0.03%, N: 0.007%, Mn: 0.1
%, S: 0.007%, Cr: 0.1%, Sn: 0.0
A 5% silicon steel slab was heated to 1150 ° C. and hot rolled to a thickness of 2.3 mm. Based on the difference in heating temperature history due to the skid when heating the slab in the longitudinal direction of this material,
First, the precipitate grain size (such as AlN) and the ferrite grain size of each part of the hot rolled sheet were calculated. Next, the temperature history at the time of cold rolling was input together with these data, and the primary recrystallization annealing temperature at which the average primary recrystallization particle size became constant (22 μm) was calculated. The longitudinal recrystallization temperature was 860 ° C. to 880 ° C. When the annealing temperature in the direction is changed, the magnetic flux density (B 8 ) becomes 1.9.
It was found that a 0T product could be manufactured stably. Then, after decarburizing annealing was performed by changing the annealing pattern in the longitudinal direction based on this material model, the atmosphere was set in an ammonia-containing atmosphere, and the nitrogen amount was set to 0.02%. Next, after applying an annealing separator mainly composed of MgO,
Finish annealing was performed for 0 hours. FIG. 3 shows the magnetic properties (iron loss: W 17/50 ) in the longitudinal direction of the product. FIG. 3 shows that controlling the annealing pattern of the decarburizing annealing based on the material model stabilizes the magnetic characteristics without being affected by the uneven heating in the hot rolling process due to the skid.

【0046】[実施例2]Si:3.2%,C:0.0
5%,酸可溶性Al:0.025%,N:0.007
%,Mn:0.1%,S:0.007%,Cr:0.1
%,Sn:0.05%を含有する珪素鋼スラブ(鋼板
1)、及び、Si:3.2%,C:0.05%,酸可溶
性Al:0.027%,N:0.008%,Mn:0.
1%,S:0.008%,Cr:0.1%,Sn:0.
04%を含有する珪素鋼スラブ(鋼板2)を1150℃
で30秒間加熱し、熱間圧延して2.3mm厚とした。そ
の後1120℃で熱延板を焼鈍した後、冷間圧延して最
終板厚0.23mmとした。これらの材料の成分、及び熱
延及びその後の焼鈍の履歴を基に、まず冷延前の鋼板各
部位の析出物粒径(AlN等)及び、フェライト粒径を
算出した。次に、これらのデータとあわせて冷延時の温
度履歴をインプットし一次再結晶平均粒径が25μmと
一定となる一次再結晶焼鈍温度を算出したところ、均熱
温度840℃で90秒焼鈍した後、急速加熱(100℃
/sec)し860〜880℃の温度範囲で30秒長手方向
の焼鈍温度を変更すれば良いことが分かった。そこで、
上記の2コイルをつなぎこの材質モデルに基づいて長手
方向の焼鈍パターンを変更して脱炭焼鈍を行った。比較
として全コイルを850℃で120秒焼鈍を行った。こ
れらのコイルをアンモニア含有雰囲気中で焼鈍し、窒素
量を0.02%とし、次いで、MgOを主成分とする焼
鈍分離剤を塗布した後、1200℃で20時間仕上焼鈍
を施した。
Example 2 Si: 3.2%, C: 0.0
5%, acid-soluble Al: 0.025%, N: 0.007
%, Mn: 0.1%, S: 0.007%, Cr: 0.1
%, Sn: 0.05%, silicon steel slab (steel 1) and Si: 3.2%, C: 0.05%, acid-soluble Al: 0.027%, N: 0.008% , Mn: 0.
1%, S: 0.008%, Cr: 0.1%, Sn: 0.
1150 ° C silicon steel slab (steel plate 2) containing 04%
For 30 seconds, and hot-rolled to a thickness of 2.3 mm. Thereafter, the hot-rolled sheet was annealed at 1120 ° C. and then cold-rolled to a final sheet thickness of 0.23 mm. Based on the components of these materials and the history of hot rolling and subsequent annealing, first, the precipitate grain size (such as AlN) and the ferrite grain size of each part of the steel sheet before cold rolling were calculated. Next, the temperature history at the time of cold rolling was input together with these data to calculate the primary recrystallization annealing temperature at which the average primary recrystallization grain size was constant at 25 μm. After annealing at a soaking temperature of 840 ° C. for 90 seconds, , Rapid heating (100 ℃
/ sec) in the temperature range of 860 to 880 ° C. for 30 seconds in the longitudinal direction. Therefore,
Decarburization annealing was performed by connecting the two coils described above and changing the annealing pattern in the longitudinal direction based on this material model. For comparison, all the coils were annealed at 850 ° C. for 120 seconds. These coils were annealed in an ammonia-containing atmosphere to reduce the nitrogen content to 0.02%, and then an annealing separator containing MgO as a main component was applied, followed by finish annealing at 1200 ° C. for 20 hours.

【0047】製品の長手方向の磁気特性を表3に示す。
表3より、材質モデルに基づいて脱炭焼鈍のパターンを
制御することにより、長手方向で磁気特性が安定化する
ことが分かる。
Table 3 shows the magnetic properties in the longitudinal direction of the product.
From Table 3, it can be seen that controlling the decarburizing annealing pattern based on the material model stabilizes the magnetic properties in the longitudinal direction.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明により、製鋼・熱延工程の操業上
のバラツキを軽減し、工業的に安定した磁気特性を持つ
方向性電磁鋼板を製造することができる。
According to the present invention, it is possible to reduce the variation in the operation of the steel making and hot rolling processes and to manufacture a grain-oriented electrical steel sheet having industrially stable magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】材質予測モデルシステムの模式図である。FIG. 1 is a schematic diagram of a material prediction model system.

【図2】脱炭焼鈍の焼鈍サイクルと仕上焼鈍後の製品の
磁束密度:B8 の関係を示した図表である。
[Figure 2] product of the magnetic flux density after annealing finish the decarburization annealing annealing cycle: is a table showing the relationship of B 8.

【図3】(a)材質モデルに基づいて脱炭焼鈍の焼鈍パ
ターンを制御した製品の長手方向の磁気特性(鉄損:W
17/50 )を示す図表。 (b)焼鈍パターンを制御しなかった製品の長手方向の
磁気特性(鉄損:W17 /50 )を示す図表。
FIG. 3 (a) shows a longitudinal magnetic property (iron loss: W) of a product in which an annealing pattern of decarburizing annealing is controlled based on a material model.
17/50 ). (B) the longitudinal direction of the magnetic properties of the products was not controlled annealing pattern (iron loss: W 17/50) table showing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Si:0.8〜4.8%、 C :0.085%以下、 酸可溶性Al:0.01〜0.065%、 N :0.012%以下 を含有し、残部Fe及び不可避的不純物からなる珪素鋼
スラブを1280℃以下の温度で加熱し熱間圧延した
後、1回もしくは焼鈍をはさむ二回以上の冷間圧延によ
り最終板厚とし、脱炭焼鈍、仕上焼鈍を行う方向性電磁
鋼板の製造方法において、脱炭焼鈍工程で少なくとも6
50℃までは平均加熱速度10〜40℃/secで加熱し、
次いで60℃/sec以上の加熱速度で材質予測モデルに基
づいて算出した温度まで加熱して一次再結晶組織の平均
粒径を調整し、その後窒化処理を行うことを特徴とする
磁気特性の安定した方向性電磁鋼板の製造方法。
1. Content of Si: 0.8-4.8%, C: 0.085% or less, Acid-soluble Al: 0.01-0.065%, N: 0.012% or less by weight% Then, the silicon steel slab consisting of the balance of Fe and unavoidable impurities is heated at a temperature of 1280 ° C. or less and hot-rolled, and then subjected to one or two or more cold-rollings including annealing to obtain a final sheet thickness, and decarburizing annealing. In the method for producing a grain-oriented electrical steel sheet subjected to finish annealing, at least 6
Heat up to 50 ° C at an average heating rate of 10 to 40 ° C / sec,
Then, heating to a temperature calculated based on the material prediction model at a heating rate of 60 ° C./sec or more to adjust the average grain size of the primary recrystallized structure, and then performing a nitriding treatment, thereby stabilizing the magnetic characteristics. Manufacturing method of grain-oriented electrical steel sheet.
【請求項2】 重量%で、 Si:0.8〜4.8%、 C :0.085%以下、 酸可溶性Al:0.01〜0.065%、 N :0.012%以下 を含有し、残部Fe及び不可避的不純物からなる珪素鋼
スラブを1280℃以下の温度で加熱し熱間圧延した
後、一回もしくは焼鈍をはさむ二回以上の冷間圧延によ
り最終板厚とし、脱炭焼鈍、仕上焼鈍を行う方向性電磁
鋼板の製造方法において、脱炭焼鈍工程の後半で60℃
/sec以上の加熱速度で材質予測モデルに基づいて算出し
た温度まで加熱して一次再結晶組織の平均粒径を調整
し、その後窒化処理を行うことを特徴とする磁気特性の
安定した方向性電磁鋼板の製造方法。
2. In% by weight, Si: 0.8 to 4.8%, C: 0.085% or less, acid-soluble Al: 0.01 to 0.065%, N: 0.012% or less Then, after the silicon steel slab consisting of the balance of Fe and unavoidable impurities is heated at a temperature of 1280 ° C. or less and hot-rolled, the steel sheet is subjected to one or two or more cold rolling operations including annealing to obtain a final sheet thickness, and decarburized annealing. In the method for producing a grain-oriented electrical steel sheet to be subjected to finish annealing, a temperature of 60 ° C.
Directional electromagnetic with stable magnetic characteristics characterized by heating at a heating rate of / sec or more to the temperature calculated based on the material prediction model, adjusting the average grain size of the primary recrystallization structure, and then performing nitriding treatment Steel plate manufacturing method.
JP9119937A 1997-05-09 1997-05-09 Production of grain-oriented silicon steel sheet stable in magnetic property Pending JPH10310822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9119937A JPH10310822A (en) 1997-05-09 1997-05-09 Production of grain-oriented silicon steel sheet stable in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9119937A JPH10310822A (en) 1997-05-09 1997-05-09 Production of grain-oriented silicon steel sheet stable in magnetic property

Publications (1)

Publication Number Publication Date
JPH10310822A true JPH10310822A (en) 1998-11-24

Family

ID=14773865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9119937A Pending JPH10310822A (en) 1997-05-09 1997-05-09 Production of grain-oriented silicon steel sheet stable in magnetic property

Country Status (1)

Country Link
JP (1) JPH10310822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537112A (en) * 2012-09-27 2015-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド Manufacturing method of high magnetic flux density general-purpose directional silicon steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537112A (en) * 2012-09-27 2015-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド Manufacturing method of high magnetic flux density general-purpose directional silicon steel

Similar Documents

Publication Publication Date Title
JP2013189712A (en) Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density
JP2008001979A (en) Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP3481567B2 (en) Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2005226111A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic
JP4714637B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JPH0567683B2 (en)
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4456317B2 (en) Method for producing grain-oriented electrical steel sheet
JP3943837B2 (en) Method for producing grain-oriented electrical steel sheet
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH10310822A (en) Production of grain-oriented silicon steel sheet stable in magnetic property
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH09296219A (en) Production of grain oriented silicon steel sheet
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP3485532B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH1030123A (en) Production of thin grain oriented silicon steel sheet having extremely high magnetic flux density
JPH05117751A (en) Method for hot-rolling continuously cast slab for grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020716