JPH10309574A - Pure water producing method - Google Patents

Pure water producing method

Info

Publication number
JPH10309574A
JPH10309574A JP11812697A JP11812697A JPH10309574A JP H10309574 A JPH10309574 A JP H10309574A JP 11812697 A JP11812697 A JP 11812697A JP 11812697 A JP11812697 A JP 11812697A JP H10309574 A JPH10309574 A JP H10309574A
Authority
JP
Japan
Prior art keywords
water
specific resistance
value
meter
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11812697A
Other languages
Japanese (ja)
Other versions
JP3610723B2 (en
Inventor
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11812697A priority Critical patent/JP3610723B2/en
Publication of JPH10309574A publication Critical patent/JPH10309574A/en
Application granted granted Critical
Publication of JP3610723B2 publication Critical patent/JP3610723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce high purity water by measuring the pH and the specific resistance of flowing water to a reverse osmotic membrane separation device and adjusting the pH of the flowing water based on a relational curve between the both measured values so as to increase the specific resistance. SOLUTION: A pH adjuster is added so as to become a prescribed pH by feed-back-controlling each of pH adjuster adding means 11, 13 and 15 linking the measured value of each of pH meters 12, 14 and 16. The measured value of each of the pH meters 12, 14 and 16, the measured value of specific resistance in the permeated water of a 3rd reverse osmotic membrane device 6 by a specific resistance meter 17 and the measured value of Na<1+> ion concentration in the permeated water by a Na meter 18 are inputted to a controller 10 and the relation among each of the pH value, the specific resistance value and the Na<1+> ion concentration is obtained based on the newest data. Then when the optimum pH is changed and the specific resistance is lowered, the specific pH adjuster adding means 11, 13 to 15 is selected and the set value of the pH is shifted up and down to keep the optimum specific resistance value. As the result, the high purity water is stably obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原水を酸性下に脱炭
酸処理した後、逆浸透(RO)膜分離装置で脱イオン処
理する純水製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water in which raw water is decarbonated under acidic conditions and then deionized in a reverse osmosis (RO) membrane separation apparatus.

【0002】[0002]

【従来の技術】従来、市水、井水、工水、回収水、その
他の水から純水を製造する方法として、これらの水を前
処理(除濁、除塩素)した後、酸を添加して脱気装置で
脱炭酸処理し、脱炭酸処理水を2段に直列配置したRO
膜分離装置に順次通水処理(2段RO処理)し、更にR
O処理水をイオン交換装置で処理する方法がある。ま
た、このイオン交換装置の代りに、RO膜分離装置を用
い、3段RO処理を行う方法もある。
2. Description of the Related Art Conventionally, as a method for producing pure water from city water, well water, industrial water, recovered water, and other water, an acid is added after pretreatment (turbidity, chlorine removal) of the water. Decarbonation treatment with a degassing device, and RO in which decarbonation-treated water is arranged in two stages in series
Water is sequentially passed through the membrane separation device (two-stage RO treatment), and
There is a method of treating O-treated water with an ion exchange device. There is also a method of performing a three-stage RO process using an RO membrane separation device instead of the ion exchange device.

【0003】また、このような2段又は3段RO処理に
おいて、処理水質の改善を図るために、RO膜分離装置
の給水に水酸化ナトリウム(NaOH)等のアルカリを
注入し、RO膜分離装置に供給される水中に残留する炭
酸(CO2 )をイオン化(HCO3 -,CO3 2- )してR
O処理する方法が提案されている。
Further, in such a two-stage or three-stage RO treatment, an alkali such as sodium hydroxide (NaOH) is injected into the feed water of the RO membrane separation device in order to improve the quality of the treated water. Carbonic acid (CO 2 ) remaining in the water supplied to the reactor is ionized (HCO 3 , CO 3 2− )
A method of performing O treatment has been proposed.

【0004】即ち、CO2 はpHが低いとCO2 ガス形
態となるが、pHが高いとイオンの形になり脱気装置で
除去し得なくなるため、脱気装置の給水には酸を添加し
てCO2 ガス形態として除去し、RO膜分離装置の給水
にはアルカリを添加してイオン形態としてRO処理で除
去するようにする。
[0004] That is, when the pH is low, CO 2 is in the form of CO 2 gas, but when the pH is high, it is in the form of ions and cannot be removed by the deaerator, so that acid is added to the water supply to the deaerator. CO 2 gas form, and alkali is added to the feed water of the RO membrane separation apparatus to remove it in the form of ions by RO treatment.

【0005】特開平7−16565号公報には、このよ
うなアルカリ添加を行う3段RO処理において、2段目
のRO膜分離装置にNaOHを添加するに当り、この2
段目のRO膜分離装置の濃縮水のpHを測定し、濃縮水
のpHが7〜8となるようにNaOHを添加することが
記載されている。
[0005] Japanese Patent Application Laid-Open No. 7-16565 discloses that, in a three-stage RO treatment in which such alkali addition is performed, NaOH is added to a second-stage RO membrane separation apparatus.
It describes that the pH of the concentrated water of the RO membrane separation device at the stage is measured, and NaOH is added so that the pH of the concentrated water becomes 7 to 8.

【0006】ところで、このようなRO処理による純水
の製造において、用いるRO膜の種類により給水の最適
pHが異なり、得られる生産水(透過水)の比抵抗が高
くなるpH領域は非常に狭いことが報告されている。
[0006] In the production of pure water by such RO treatment, the optimum pH of feed water varies depending on the type of RO membrane used, and the pH range in which the specific resistance of the produced water (permeate) becomes high is very narrow. It has been reported.

【0007】[0007]

【発明が解決しようとする課題】上述の如く、RO膜分
離処理では、生産水の比抵抗が高くなるpH条件は非常
に狭いため、pH計の校正不良等によりわずかでも給水
のpH値が変動すると得られる透過水の比抵抗は大きく
低下してしまう。
As described above, in the RO membrane separation process, since the pH condition at which the specific resistance of the produced water becomes high is very narrow, the pH value of the feed water fluctuates even slightly due to poor calibration of the pH meter or the like. Then, the specific resistance of the obtained permeated water is greatly reduced.

【0008】従って、水質の向上のためには、pH制御
が極めて重要な要件となるが、特開平7−16565号
公報に記載されるように、2段目のRO膜分離装置の濃
縮水のpH値でpH調整を行う方法では、原水のpH変
動に対し、RO膜分離装置の滞留時間分の時間遅れが生
じ、即時的なpH調整を行うことは困難である。このた
め、瞬間的に比抵抗の高い生産水が得られてもこのよう
な水質を連続して安定に維持することは困難であった。
また、RO膜分離装置のRO膜の種類を変える毎に設定
pHを変える必要があり、操作が煩雑であった。
Therefore, pH control is an extremely important requirement for improving water quality. However, as described in Japanese Patent Application Laid-Open No. 7-16565, concentrated water of a second-stage RO membrane separation device is used. In the method of performing pH adjustment with a pH value, a time delay corresponding to the residence time of the RO membrane separation device occurs with respect to the fluctuation in pH of raw water, and it is difficult to perform immediate pH adjustment. For this reason, it has been difficult to maintain such water quality continuously and stably even when product water having high specific resistance is obtained instantaneously.
Further, each time the type of the RO membrane of the RO membrane separation apparatus is changed, it is necessary to change the set pH, and the operation is complicated.

【0009】また、本発明者は、RO処理におけるpH
条件と生産水の比抵抗について検討を重ねた結果、同種
のRO膜であっても、給水の水質が変化すると最大比抵
抗を与える最適pH条件は変化することを見出した。ま
た、RO膜自体の経時変化によっても同様な現象が起き
ることを見出した。
Further, the present inventor has determined that the pH in RO treatment
As a result of repeated investigations on the conditions and the specific resistance of the produced water, it was found that, even with the same type of RO membrane, the optimum pH condition that gives the maximum specific resistance changes when the quality of the feed water changes. It has also been found that a similar phenomenon occurs due to the temporal change of the RO film itself.

【0010】しかしながら、現状において、このような
最適pH条件の変化にも対応し得るpH制御技術は提案
されていない。
However, at present, no pH control technology has been proposed which can cope with such a change in the optimum pH condition.

【0011】本発明は上記従来の実状に鑑みてなされた
ものであって、原水を酸性下に脱炭酸処理した後、RO
膜分離装置で脱イオン処理する純水の製造方法におい
て、原水水質やRO膜の種類、pH計の性能等の通水諸
条件の変動に十分に対応してRO処理の給水を生産水の
比抵抗が最適となるpH条件にpH調整することによ
り、高純度の純水を安定に製造する方法を提供すること
を目的とする。
[0011] The present invention has been made in view of the above-mentioned conventional situation.
In the method for producing pure water deionized by a membrane separation device, the supply water for RO treatment is adjusted to the ratio of production water in response to fluctuations in various water flow conditions such as the quality of raw water, the type of RO membrane, and the performance of a pH meter. It is an object of the present invention to provide a method for stably producing high-purity pure water by adjusting the pH to a pH condition at which the resistance becomes optimal.

【0012】[0012]

【課題を解決するための手段】本発明の純水製造方法
は、原水を酸性下に脱炭酸処理した後、RO膜分離装置
で脱イオン処理して純水を製造する方法において、該R
O膜分離装置に流入する流入水のpHと、該RO膜分離
装置の透過水の比抵抗とを測定し、測定されたpH値と
比抵抗値との関係曲線に基き、比抵抗値が大きくなるよ
うに、該流入水のpHを調整することを特徴とする。
The pure water production method of the present invention is a method for producing pure water by decarbonating raw water under acidic conditions and then deionizing it with an RO membrane separator.
The pH of the inflow water flowing into the O membrane separator and the specific resistance of the permeated water of the RO membrane separator were measured, and based on the relationship curve between the measured pH value and the specific resistance, the specific resistance was increased. It is characterized in that the pH of the inflow water is adjusted so as to be as follows.

【0013】RO膜については、同一のRO膜を用いて
も、例えば原水水質の変化により、図2のA条件、B条
件に示すように、最適pH条件が異なるものとなる。従
って、給水のpHと生産水(透過水)の比抵抗とを1回
測定しただけでは、例えば、図2において、pH=P,
比抵抗=Mの場合、どちらの条件に含まれるのか判定す
ることはできない。
As for the RO membrane, even if the same RO membrane is used, the optimum pH conditions are different as shown by the conditions A and B in FIG. 2 due to, for example, a change in the quality of the raw water. Therefore, if the pH of the feedwater and the specific resistance of the produced water (permeated water) are measured only once, for example, in FIG.
When the specific resistance is M, it cannot be determined which condition is included.

【0014】しかし、この場合において、給水のpHを
上げると生産水の比抵抗が下がるようであればA条件で
あり、逆に、給水のpHを上げると生産水の比抵抗が上
がるようであればB条件であることがわかる。
However, in this case, if the specific resistance of the product water decreases as the pH of the feedwater increases, the condition A is satisfied. Conversely, if the specific pH of the product water increases, the specific resistance of the product water increases. It can be seen that the condition B is satisfied.

【0015】本発明では給水のpHと生産水の比抵抗と
を測定してこの変動の様子を追跡し、この関係曲線を求
め、この曲線に基いて比抵抗が高くなるようにpH調整
を行う。
In the present invention, the state of the fluctuation is tracked by measuring the pH of the feed water and the specific resistance of the produced water, a relation curve is obtained, and the pH is adjusted based on this curve so as to increase the specific resistance. .

【0016】従って、水質変動等の通水諸条件の変動が
あっても、常に生産水の比抵抗を高くするようにpH調
整を行うことができる。
Therefore, even if there are fluctuations in water flow conditions such as fluctuations in water quality, the pH can be adjusted so as to always increase the specific resistance of the produced water.

【0017】なお、本発明者による研究により、例えば
図2に示すようなpHと比抵抗との関係において、給水
のpHが最適pH値より高い場合には主にNaイオン等
のカチオンが生産水中に増えることで比抵抗が低下し、
逆に、給水のpHが最適pH値よりも低い場合には主に
炭酸イオン等のアニオンが生産水中に増えることで比抵
抗が低下することが判明した。
According to the study by the present inventor, cations such as Na ions mainly produce cations such as Na ions when the feedwater pH is higher than the optimum pH value in the relationship between pH and specific resistance as shown in FIG. , The specific resistance decreases,
Conversely, it was found that when the pH of the feedwater was lower than the optimum pH value, the specific resistance decreased mainly due to an increase in anions such as carbonate ions in the production water.

【0018】[0018]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1は本発明の純水製造方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the pure water production method of the present invention.

【0020】図示の方法は、脱イオン処理を3段に直列
配置したRO膜分離装置に順次通水して行うものであ
り、1は原水タンク、2は脱気装置、3は活性炭塔、4
は1段目のRO膜分離装置(以下「第1RO装置」と称
す。)、5は2段目のRO膜分離装置(以下「第2RO
装置」と称す。)、6は3段目のRO膜分離装置(以下
「第3RO装置」と称す。)である。10は制御装置、
11,13,15はpH調整剤添加手段、12,14,
16はpH計、19は比抵抗計、18はNaイオンモニ
ター(以下「Na計」と称す。)、P1 ,P2 はポンプ
である。
In the illustrated method, deionization treatment is performed by sequentially passing water through RO membrane separators arranged in three stages in series, wherein 1 is a raw water tank, 2 is a deaerator, 3 is an activated carbon tower,
Is a first-stage RO membrane separation device (hereinafter, referred to as “first RO device”), and 5 is a second-stage RO membrane separation device (hereinafter, “second RO device”).
Device ". ) And 6 are third-stage RO membrane separation devices (hereinafter, referred to as “third RO device”). 10 is a control device,
11, 13, and 15 are means for adding a pH adjuster;
16 is a pH meter, 19 is a specific resistance meter, 18 is a Na ion monitor (hereinafter referred to as "Na meter"), and P 1 and P 2 are pumps.

【0021】まず、原水タンク1内の原水、即ち、市
水、工水、井水、回収水等に必要に応じて除濁、除塩素
等の前処理を施して得られる水に、pH調整剤(酸)を
添加した後、脱気装置2で脱気処理する。この脱気装置
2としては脱炭酸塔や膜脱気装置等を採用することがで
きる。
First, the pH of raw water in the raw water tank 1, that is, water obtained by subjecting city water, industrial water, well water, recovered water, and the like to pretreatment such as turbidity and dechlorination as required, is adjusted. After the addition of the agent (acid), degassing is performed by the degassing device 2. As the deaerator 2, a decarbonation tower, a membrane deaerator or the like can be employed.

【0022】この脱気装置2の給水のpHは4.5〜
5.0であることが好ましい。即ち、前述の如く、脱気
装置2では、低pH条件下で炭酸成分をCO2 ガス形態
として除去するため、この点においては、給水のpHは
低い方が好ましいが、過度にpHを下げ過ぎるとpH調
整剤によるイオン負荷(例えば、H2 SO4 )が後段の
RO装置にかかるため、過度にpHを低くすると最終処
理水の比抵抗が低くなり好ましくない。また、原水の炭
酸成分及びCa濃度によっては、RO膜へのCaCO3
やCaF2 のスケール付着の問題もあるため、pHは
4.0〜5.0とするのが好ましい。
The supply water of the deaerator 2 has a pH of 4.5 to 4.5.
It is preferably 5.0. That is, as described above, in the deaerator 2, since the carbonate component is removed in the form of CO 2 gas under a low pH condition, the pH of the feedwater is preferably lower in this point, but the pH is excessively lowered. And an ion load (for example, H 2 SO 4 ) by the pH adjuster is applied to the RO device in the subsequent stage, so that if the pH is excessively lowered, the specific resistance of the final treated water is undesirably lowered. Also, depending on the carbon content and the Ca concentration of the raw water, CaCO 3
The pH is preferably set to 4.0 to 5.0 because of the problem of scale adhesion of CaF 2 and CaF 2 .

【0023】脱気装置2の流出水は活性炭塔3に通水さ
れ、その後pH調整剤(酸又はアルカリ)を添加した
後、第1RO装置4に通水され、再度pH調整剤(酸又
はアルカリ)が添加された後、第2RO装置5、第3R
O装置6に順次通水されて脱イオン処理される。
The effluent from the deaerator 2 is passed through the activated carbon tower 3, after which a pH adjuster (acid or alkali) is added, followed by passing through the first RO unit 4, and again a pH adjuster (acid or alkali). ) Is added, the second RO device 5, the third R
Water is sequentially passed through the O device 6 to be deionized.

【0024】この純水製造方法において、活性炭塔3
は、活性炭による触媒作用のものと、CO2 のイオン化
を進行させてRO装置での除去効率を高めるためのもの
であり、このイオン化のためには、活性炭塔3の給水の
pHが6.0〜6.8程度となるように、脱気装置2で
脱気処理を行うのが好ましい。なお、この活性炭塔3の
pH条件の調整のために、必要に応じて脱気装置2の流
出水にアルカリを添加しても良く、この場合には、この
アルカリ添加手段についても後述の制御装置によるpH
調整を行うようにするのが好ましい。
In this pure water production method, the activated carbon tower 3
Is for catalysis by activated carbon and for promoting the ionization of CO 2 to increase the removal efficiency in the RO device. For this ionization, the pH of the feed water of the activated carbon tower 3 is 6.0. It is preferable to perform the deaeration treatment in the deaerator 2 so that the pressure becomes about 6.8. In order to adjust the pH condition of the activated carbon tower 3, an alkali may be added to the effluent of the deaerator 2 if necessary. In this case, the alkali addition means is also controlled by a control device described later. PH
Preferably, an adjustment is made.

【0025】ここで、pH調整剤としての酸としては、
硫酸(H2 SO4 )、塩酸(HCl)等が好適であり、
アルカリとしては、水酸化ナトリウム(NaOH)等を
用いることが好適である。
Here, as the acid as a pH adjuster,
Sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl) and the like are suitable,
It is preferable to use sodium hydroxide (NaOH) or the like as the alkali.

【0026】本実施例では、各pH調整剤添加手段1
1,13,15を各々pH計12,14,16の測定結
果に連動させてフィードバック制御することにより、所
定のpH値となるようにpH調整剤を添加する。
In this embodiment, each pH adjusting agent adding means 1
A pH adjuster is added so that a predetermined pH value is obtained by performing feedback control of 1, 13, and 15 in conjunction with the measurement results of the pH meters 12, 14, and 16, respectively.

【0027】各pH計12,14,16の測定値及び最
終処理水(第3RO装置6の透過水)の比抵抗を測定す
る比抵抗計17の測定値、及び最終処理水のNaイオン
濃度を測定するNa計18の測定値は制御装置10に入
力される。この制御装置10では、各pH値と比抵抗値
及びNaイオン濃度との関係が求められ、かつ、常に最
新のデータにより更新されるように設計されている。従
って、通水諸条件の変動により、最適pHが変動し、比
抵抗が低下した場合には、特定のpH調整剤添加箇所に
おいてpH設定値を上下させ、そのpH変動に応じてp
H値と比抵抗との関係を調べ、最適の比抵抗が得られる
ように当該箇所のpH設定を変える信号を出力する。こ
の制御装置10には、ニューラルネットワーク等の人工
知能ソフトを用いることが望ましい。
The measured values of the pH meters 12, 14, 16 and the measured values of the specific resistance meter 17 for measuring the specific resistance of the final treated water (the permeated water of the third RO device 6) and the Na ion concentration of the final treated water are shown in FIG. The measured value of the Na meter 18 to be measured is input to the control device 10. The control device 10 is designed so that the relationship between each pH value, the specific resistance value and the Na ion concentration is obtained, and is constantly updated with the latest data. Therefore, when the optimum pH fluctuates and the specific resistance decreases due to fluctuations in water flow conditions, the pH set value is raised or lowered at a specific pH adjuster addition point, and p
The relationship between the H value and the specific resistance is examined, and a signal for changing the pH setting at the relevant location is output so as to obtain the optimum specific resistance. It is desirable to use artificial intelligence software such as a neural network for the control device 10.

【0028】また、図1に示す装置では、Na計(例え
ば、東洋メデック社製Na計)18が設けてあるため、
このNa計18によるNaイオン濃度の上昇により、最
適pH値よりも現状のpHが高pH域となっているとす
る判断基準とすることもできる。また、Na計の代りに
炭酸イオンを測定するTOC計(例えば、シーバス社製
TOC計)を設け、IC(Inorganic Carbon:全炭酸成
分(CO2 ,HCO3 -及びCO3 2- )を炭酸換算した
値)濃度を調べ、pH調整の判断基準とすることもでき
る。
In the apparatus shown in FIG. 1, a Na meter (for example, a Na meter manufactured by Toyo Medec) 18 is provided.
The increase in the Na ion concentration by the Na meter 18 can be used as a criterion for determining that the current pH is in a higher pH range than the optimum pH value. Also, a TOC meter (for example, a TOC meter manufactured by Seabass) for measuring carbonate ions is provided in place of the Na meter, and IC (Inorganic Carbon: total carbonic acid components (CO 2 , HCO 3 and CO 3 2− ) are converted to carbon dioxide. The value can be used as a criterion for pH adjustment.

【0029】この3段RO処理のうち、第1RO装置4
の濃縮水は系外へ排出するが、第2RO装置5の濃縮水
及び第3RO装置6の濃縮水は、既に第1RO装置4に
よるRO装置で純度が高められたものであるため、水回
収率の向上のために、原水タンク1に返送する。
In the three-stage RO process, the first RO device 4
The concentrated water of the second RO device 5 and the concentrated water of the third RO device 6 have already been purified by the RO device of the first RO device 4, and thus the water recovery rate Is returned to the raw water tank 1 to improve the quality.

【0030】なお、図1に示す如く、3段RO処理する
場合、第3RO装置6に流入する第2RO装置5の透過
水は、既に2段階のRO処理を経ることで、十分に脱イ
オン処理がなされ、比較的水質の高いものである。この
ようにイオン濃度の低い第2RO装置5の透過水をRO
処理する第3RO装置6のRO膜としては、低塩類濃度
域における塩類阻止率の高いRO膜を用いるのが好まし
い。このようなRO膜であれば、2段RO処理により既
にイオン濃度が相当に低減された第2RO装置5の透過
水中のイオンを極低濃度にまで除去して、著しく高水質
の処理水を得ることができる。
As shown in FIG. 1, when the three-stage RO process is performed, the permeated water of the second RO device 5 flowing into the third RO device 6 has already undergone the two-stage RO process to be sufficiently deionized. The water quality is relatively high. Thus, the permeated water of the second RO device 5 having a low ion concentration is
As the RO film of the third RO device 6 to be processed, it is preferable to use an RO film having a high salt rejection in a low salt concentration region. With such an RO membrane, ions in the permeated water of the second RO device 5 whose ion concentration has already been considerably reduced by the two-stage RO treatment are removed to an extremely low concentration to obtain treated water of extremely high quality. be able to.

【0031】この第3RO装置6に用いるRO膜として
は、塩類濃度0.1〜2ppmというような低塩類濃度
域における塩類阻止率が90%以上のRO膜、例えば、
日東電工社製「NTR−719HF」「ES10C」
(共にNaCl濃度1〜10ppmでのNaCl阻止率
99%以上)等を用いるのが好ましい。
As the RO film used in the third RO device 6, an RO film having a salt rejection of 90% or more in a low salt concentration range such as a salt concentration of 0.1 to 2 ppm, for example,
Nitto Denko Corporation "NTR-719HF""ES10C"
(Both are 99% or more of NaCl rejection at NaCl concentration of 1 to 10 ppm).

【0032】図1に示す方法は本発明の実施の形態の一
例であって、本発明はその要旨を超えない限り、何ら図
示の方法に限定されるものではない。
The method shown in FIG. 1 is an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist.

【0033】例えば、RO装置は2段に配置しても良
く、また4段以上に配置しても良い。また、アルカリ添
加及び活性炭処理は、第2RO装置以降のRO膜分離装
置の前段に設けても良い。
For example, the RO devices may be arranged in two stages, or may be arranged in four or more stages. Further, the alkali addition and the activated carbon treatment may be provided in a stage preceding the RO membrane separation device after the second RO device.

【0034】[0034]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0035】実施例1 図1に示す装置により純水の製造を行った。Example 1 Pure water was produced using the apparatus shown in FIG.

【0036】水道水(300L/hr)に酸(HCl)
を添加してpH4.7〜4.8とした水を、膜脱気装置
(4インチ大日本インキ製EF040P脱気膜)2で脱
気処理して得られたpH6.5の水を、活性炭塔にSV
=20hr-1(滞留時間3分)で通水した後、3段に直
列配置したRO装置4,5,6に順次通水した。
Acid (HCl) in tap water (300 L / hr)
Was added to pH 4.7 to 4.8, and water having a pH of 6.5 obtained by degassing the water with a membrane deaerator (EF040P degassing membrane manufactured by Dainippon Ink and Chemicals, Inc.) 2 was activated carbon. SV on the tower
= 20 hr -1 (residence time 3 minutes), and then sequentially passed through RO devices 4, 5, and 6 arranged in series in three stages.

【0037】なお、用いたRO膜(いずれも4インチR
O膜)は次の通りである。
The RO films used (both 4 inches R)
O film) is as follows.

【0038】 第1RO装置4:ポリアクリルアミド膜(日東電工株式
会社製「ES20」) 第2RO装置5:ポリアクリルアミド膜(日東電工株式
会社製「ES20」) 第3RO装置6:ポリアクリルアミド膜(日東電工株式
会社製「ES10C」) また、第1RO装置4の入口側ではNaOHを添加して
給水のpHを6.9〜7.6の範囲でpH調整した。
First RO device 4: polyacrylamide film (“ES20” manufactured by Nitto Denko Corporation) Second RO device 5: polyacrylamide film (“ES20” manufactured by Nitto Denko Corporation) Third RO device 6: polyacrylamide film (Nitto Denko) (“ES10C” manufactured by Co., Ltd.) Further, at the inlet side of the first RO device 4, NaOH was added to adjust the pH of the feedwater in the range of 6.9 to 7.6.

【0039】このような処理において、脱気装置2の給
水のpHを4.7〜4.8に調整し、第1RO装置4の
給水のpHを変化させて、このpHと生産水(第3RO
装置6の透過水)の比抵抗との関係を求めたところ、図
3(a)に示す如く、第1RO装置4の最適pHは約
7.1であることが判明した。
In such a treatment, the pH of the feed water of the deaerator 2 is adjusted to 4.7 to 4.8, the pH of the feed water of the first RO device 4 is changed, and this pH and the production water (third RO) are changed.
When the relationship with the specific resistance of the permeated water of the apparatus 6 was determined, it was found that the optimum pH of the first RO apparatus 4 was about 7.1, as shown in FIG.

【0040】そこで、第1RO装置4の給水のpHが
7.1となるようにpH制御したところ、比抵抗14〜
15MΩ・cmの高水質の生産水を安定に得ることがで
きた。
Therefore, when the pH of the feed water of the first RO device 4 was controlled to be 7.1, the specific resistance was 14 to 14.
Produced water of high quality of 15 MΩ · cm could be obtained stably.

【0041】この装置において、原水を水道水から、半
導体製造プロセスの回収水:水道水=7:3の水となる
ように回収水を原水タンクに混入させたところ、pH
7.1では、比抵抗は低下傾向となった。そこで、第1
RO装置4の給水pHを制御装置10により上げてみる
と比抵抗は降下し、下げてみると比抵抗は上昇したの
で、pHを徐々に上げ、1時間後に最適pHは約6.0
であることが判明した。この間も比抵抗13〜16MΩ
・cmの高水質の生産水を得ることができた。そこで、
第1RO装置4の給水がpH6.0となるようにpH制
御したところ、比抵抗16MΩ・cmの生産水が継続し
て得られた。その後、pHと比抵抗の関係を調べたとこ
ろ図3(b)のとおりであり、最適pHは約6.0であ
ることが確認された。
In this apparatus, the recovered water was mixed into the raw water tank so that the raw water was converted from tap water to recovered water in the semiconductor manufacturing process: tap water = 7: 3.
At 7.1, the specific resistance had a tendency to decrease. Therefore, the first
When the water supply pH of the RO device 4 is raised by the control device 10, the specific resistance decreases, and when the water supply pH is lowered, the specific resistance increases. Therefore, the pH is gradually increased, and after one hour, the optimum pH is about 6.0.
Turned out to be. During this time, the specific resistance is 13-16 MΩ
・ Production water with high water quality of 1 cm was obtained. Therefore,
When the pH of the first RO device 4 was controlled so that the supply water became pH 6.0, product water having a specific resistance of 16 MΩ · cm was continuously obtained. Thereafter, the relationship between the pH and the specific resistance was examined, as shown in FIG. 3 (b), and it was confirmed that the optimum pH was about 6.0.

【0042】なお、上記実施例では第1RO装置の給水
のpH制御を行ったが、同様にして第2RO装置の給水
のpH制御を行って比抵抗を高い値で安定させることも
できる。
In the above embodiment, the pH control of the feed water of the first RO device is performed, but the pH control of the feed water of the second RO device can be similarly performed to stabilize the specific resistance at a high value.

【0043】[0043]

【発明の効果】以上詳述した通り、本発明の純水製造方
法によれば、通水諸条件の変動に対応して生産水の比抵
抗が最適となるようにpH制御を行うことができ、高純
度の純水を安定に製造することができる。
As described above in detail, according to the method for producing pure water of the present invention, it is possible to control the pH so that the specific resistance of the produced water becomes optimum in response to the fluctuation of various water flow conditions. And high-purity pure water can be stably produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水製造方法の実施の形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a pure water production method of the present invention.

【図2】RO膜分離装置の給水のpHと生産水の比抵抗
との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the pH of feed water and the specific resistance of product water in an RO membrane separation device.

【図3】実施例1で得られた第1RO装置の給水のpH
と生産水の比抵抗との関係を示すグラフである。
FIG. 3 shows the pH of the feed water of the first RO device obtained in Example 1.
4 is a graph showing the relationship between the product water and the specific resistance.

【符号の説明】[Explanation of symbols]

1 原水タンク 2 脱気装置 3 活性炭塔 4 第1RO装置 5 第2RO装置 6 第3RO装置 10 制御装置 11,13,15 pH調整剤添加手段 12,14,16 pH計 17 比抵抗計 18 Na計 DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Deaerator 3 Activated carbon tower 4 1st RO device 5 2nd RO device 6 3rd RO device 10 Control device 11,13,15 pH adjuster addition means 12,14,16 pH meter 17 Resistivity meter 18Na meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水を酸性下に脱炭酸処理した後、逆浸
透膜分離装置で脱イオン処理して純水を製造する方法に
おいて、 該逆浸透膜分離装置に流入する流入水のpHと、該逆浸
透膜分離装置の透過水の比抵抗とを測定し、測定された
pH値と比抵抗値との関係曲線に基き、比抵抗値が大き
くなるように、該流入水のpHを調整することを特徴と
する純水製造方法。
1. A method for producing deionized water by subjecting raw water to decarbonation under acidic conditions, followed by deionization in a reverse osmosis membrane separator, wherein the pH of the influent water flowing into the reverse osmosis membrane separator; The specific resistance of the permeated water of the reverse osmosis membrane separation device is measured, and the pH of the inflow water is adjusted so that the specific resistance increases based on a relationship curve between the measured pH value and the specific resistance. A method for producing pure water, comprising:
【請求項2】 請求項1において、該流入水のpH値を
変えて比抵抗を測定することにより前記関係曲線を求め
ることを特徴とする純水製造方法。
2. The pure water production method according to claim 1, wherein the relationship curve is obtained by measuring the specific resistance while changing the pH value of the inflow water.
JP11812697A 1997-05-08 1997-05-08 Pure water production method Expired - Fee Related JP3610723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11812697A JP3610723B2 (en) 1997-05-08 1997-05-08 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11812697A JP3610723B2 (en) 1997-05-08 1997-05-08 Pure water production method

Publications (2)

Publication Number Publication Date
JPH10309574A true JPH10309574A (en) 1998-11-24
JP3610723B2 JP3610723B2 (en) 2005-01-19

Family

ID=14728692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11812697A Expired - Fee Related JP3610723B2 (en) 1997-05-08 1997-05-08 Pure water production method

Country Status (1)

Country Link
JP (1) JP3610723B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272455A (en) * 1997-03-31 1998-10-13 Kurita Water Ind Ltd Process for making pure water
WO2018070548A1 (en) * 2016-10-14 2018-04-19 株式会社日建 Filtering device
WO2021250977A1 (en) * 2020-06-10 2021-12-16 栗田工業株式会社 Pure water production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272455A (en) * 1997-03-31 1998-10-13 Kurita Water Ind Ltd Process for making pure water
WO2018070548A1 (en) * 2016-10-14 2018-04-19 株式会社日建 Filtering device
JPWO2018070548A1 (en) * 2016-10-14 2019-08-15 株式会社日建 Filtration processing equipment
WO2021250977A1 (en) * 2020-06-10 2021-12-16 栗田工業株式会社 Pure water production method
CN115515906A (en) * 2020-06-10 2022-12-23 栗田工业株式会社 Method for producing pure water
KR20230023613A (en) 2020-06-10 2023-02-17 쿠리타 고교 가부시키가이샤 pure manufacturing method

Also Published As

Publication number Publication date
JP3610723B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JP3187629B2 (en) Reverse osmosis membrane treatment method
US6267891B1 (en) High purity water production using ion exchange
US6080316A (en) High resistivity water production
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
EP0844907A1 (en) Producing high purity water using reverse osmosis
US20080156710A1 (en) Pure Water Producing Apparatus
JP3575271B2 (en) Pure water production method
JPH06277665A (en) Producing apparatus for high purity water
JPH10314735A (en) Pure water preparation process
JP2000051665A (en) Desalination method
CN219950761U (en) High-salt fluorine-containing wastewater defluorination and resource utilization treatment system
JP3610723B2 (en) Pure water production method
JP4208270B2 (en) Pure water production method
JP3278918B2 (en) Desalting method
JPH11267645A (en) Production of pure water
JPH07962A (en) Production of pure water
Singh Brine recovery at industrial RO plants: Conceptual process design studies
JP2007268352A (en) Water treatment method and water treatment apparatus
JP2006122908A (en) Pure water producing method
JPH11262771A (en) Production of pure water
JP3885319B2 (en) Pure water production equipment
JP3444214B2 (en) Reverse osmosis membrane desalting method
WO2021250977A1 (en) Pure water production method
JPH11244854A (en) Production of pure water
JP3227765B2 (en) Membrane separation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees