WO2018070548A1 - Filtering device - Google Patents

Filtering device Download PDF

Info

Publication number
WO2018070548A1
WO2018070548A1 PCT/JP2017/038095 JP2017038095W WO2018070548A1 WO 2018070548 A1 WO2018070548 A1 WO 2018070548A1 JP 2017038095 W JP2017038095 W JP 2017038095W WO 2018070548 A1 WO2018070548 A1 WO 2018070548A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
liquid
cleaning
membrane
filtered
Prior art date
Application number
PCT/JP2017/038095
Other languages
French (fr)
Japanese (ja)
Inventor
眞佐夫 山田
勇輝 宮里
Original Assignee
株式会社日建
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日建 filed Critical 株式会社日建
Priority to CN201790001331.4U priority Critical patent/CN211514099U/en
Priority to JP2018545095A priority patent/JP6917635B2/en
Publication of WO2018070548A1 publication Critical patent/WO2018070548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/069Tubular membrane modules comprising a bundle of tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/04Membrane cleaning or sterilisation ; Membrane regeneration with movable bodies, e.g. foam balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions

Definitions

  • the present invention for example, filtration of emulsion waste liquid discharged from factories, filtration of viruses and endotoxins during production of pharmaceuticals and medical water, filtration of heat-sensitive substances such as proteins and enzymes, etc.
  • the present invention relates to a filtration apparatus that separates liquid.
  • the present invention relates to a filtration apparatus that filters a liquid to be filtered by a cross-flow method using a tubular filtration membrane and separates it into a treated liquid and a concentrated liquid.
  • the liquid to be filtered is filtered into the treated liquid (membrane permeated water) and the concentrated liquid by pumping the liquid to be filtered (raw water) into the tubular membrane module.
  • the liquid to be filtered is filtered into the treated liquid (membrane permeated water) and the concentrated liquid by pumping the liquid to be filtered (raw water) into the tubular membrane module.
  • raw water introduction and discharge ports 210 and 212 are provided at the left and right ends of the pressure vessel 216.
  • the inside of the pressure vessel 216 is divided into three regions by partition members 222 and 224.
  • a plurality of tubular membranes 218 are provided in parallel in the central region.
  • the left and right regions are configured in a merge chamber 230 in which concentrated liquids that have passed through the plurality of tubular membranes 218 are merged.
  • the raw water introduced from one of the inlet / outlet ports 210 and 212 enters the merge chamber 230 and then is supplied to each tubular membrane 218, and the concentrated liquid that has passed through each tubular membrane 218 is received by the merge chamber 230. After joining, it is discharged from the other of the introduction discharge ports 210 and 212.
  • the membrane permeated water (treated solution) that passed through the membrane and the concentrated solution that did not pass through the membrane while the liquid to be filtered fed to the end of each of the plurality of tubular membranes 218 moved to the other end. And separated.
  • the membrane permeated water (treated liquid) is discharged from the discharge port 214.
  • a contaminant or the like of the liquid to be filtered adheres to the inner surface of the plurality of tubular membranes 218.
  • a wiper body composed of a sponge ball 220 for cleaning is placed in a plurality of tubular membranes 218 one by one, and the tubular membrane 218 is placed.
  • the inflow direction of the raw water introduced into the inside is switched, and the sponge balls 220 are reciprocated in the tubular membranes 218, whereby the inside of the membranes is wiped and cleaned with the sponge balls.
  • a cleaning material retaining mechanism 222 is provided at both ends of each tubular membrane 218 (see FIG. 29B), and the sponge that has moved through the tubular membrane 218 has been moved.
  • the ball 220 is received and prevented from falling off the end of the tubular membrane 218.
  • the cleaning material retaining mechanism 222 is configured so that the liquid to be filtered can pass even when the sponge ball 220 is received.
  • the filtration apparatus described in Patent Document 1 has a drawback in that the contaminants and the like adhere to the sponge ball itself as a wiping body by reciprocating in the tubular membrane module, and the cleaning function is lowered.
  • the present invention has been conceived in view of the actual situation, and an object thereof is to provide a filtration apparatus capable of solving the problem that the cleaning function is reduced due to contamination of the wiping body itself.
  • the present invention is a filtration apparatus that separates a liquid to be filtered and a concentrated liquid by filtering the liquid to be filtered by a cross-flow method using a tubular filtration membrane (for example, a UF membrane tube 15),
  • the tubular filtration membrane is built-in, and a filtration processing unit (for example, the tubular membrane separation device 10) for flowing and filtering the liquid to be filtered in the tubular filtration membrane;
  • Cleaning means for example, a membrane cleaning tank 8, a device control panel 23, three-way valves 36, 37, and 38, a receiving mechanism 18 and a sponge ball 17
  • the cleaning means moves a wiping body (for example, sponge ball 17) in contact with the inner surface of the tubular filtration membrane to wipe off deposits adhering to the inner surface of the tubular filtration membrane,
  • the said filtration process part has the entrance / exit (for example, the liquid in / out 118 of FIG. 2) of the filtration object liquid formed in the 1st place and the 2nd place, and the filtration object which approached from one said entrance / exit
  • the movement path (for example, movement path 125) until the liquid reaches the other entrance / exit is configured to be one (for example, FIG. 2)
  • the wiping body is moved by a liquid cross flow and wipes off deposits adhering to the inner surface of the tubular filtration membrane.
  • the exchange mechanism receives the wiping body that moves through the tubular filtration membrane and comes out of the entrance and exit, and also allows the concentrated liquid to pass therethrough (for example, the receiving mechanism 1).
  • the wiping body receiving mechanism may have a take-out mechanism (for example, a detachable cap 20) for taking out the received wiping body and making it replaceable.
  • the movement path (for example, movement path 125) may be bent in the filtration processing unit such that the movement route (for example, movement path 125) is longer than the entire length of the filtration processing unit (for example, FIG. 2).
  • the cleaning means is a cleaning liquid cross flow means (for example, the membrane cleaning tank 8, cleaning process switching process in FIG. 24 (a), FIG. 24 (a), for flowing a cleaning liquid along the tubular filtration membrane. b) a process flow path switching process).
  • a treated liquid storage tank for example, a membrane cleaning tank 8 for collecting and storing the treated liquid
  • the cleaning liquid crossflow means has a processed liquid use means (for example, S79, motor valve MV6) for using the processed liquid stored in the processed liquid storage tank as the cleaning liquid. May be.
  • a process for switching from a filtration process for example, FIGS. 1 and 10) for filtering the liquid to be filtered by the filtration processing unit to a cleaning process (for example, FIGS. 12 and 13) for cleaning by flowing the cleaning liquid.
  • Switching means for example, the process switching process of FIG. 22B, the process switching process of FIG.
  • a flushing means for example, a water pushing step flow path control process in FIG. 23C for flushing the remaining filtration target liquid with the washing liquid; May be further provided.
  • a concentration circulation tank for example, the concentration circulation tank 2 for storing the filtration target liquid and receiving and storing the concentrated liquid after the filtration target liquid is supplied to the filtration processing unit and filtered.
  • the filtration target liquid in the concentration circulation tank is concentrated by the filtration by the filtration processing part as the filtration target liquid returns from the concentration circulation tank to the concentration circulation tank via the filtration processing part.
  • a stock solution addition means for example, raw water tank 1, raw solution water supply pump 27, pH adjustment
  • Tank 5 pH adjustment water pump 30, S162, S164, S30, S31 to S34
  • the number of times of addition by the stock solution addition means reaches a predetermined number (for example, the number of times of concentration NK set in advance by S61) (for example, YES by S163), it is stored in the concentration circulation tank.
  • Concentrated liquid extracting means for example, S167, S251 to S254 for extracting the concentrated liquid may be further provided.
  • machine learning means for performing machine learning for acquiring knowledge adapted to each filtration environment for example, filtration environments A, B,... In FIG. 26) classified according to the type of the filtration target liquid ( For example, an artificial intelligence server 55) is further provided,
  • the machine learning means inputs data that can specify the filtration efficiency of the liquid to be filtered by filtration in the filtration processing unit as a state (for example, state data s in FIG. 26) with respect to the filtration environment, and also adds the filtration efficiency to the filtration efficiency.
  • Reinforcement learning means for example, performing reinforcement learning for improving the filtration efficiency by repeating the input and output by outputting the affecting control as an action on the filtration environment (for example, action data a in FIG. 26).
  • the reinforcement learning process in FIG. 26B may be included.
  • the wiping body that passes through one tubular filtration membrane provided in one filtration processing section can be replaced outside the filtration processing section, and the wiping body itself is cleaned along with dirt.
  • the problem of reduced functionality can be solved.
  • FIG. 1 is an overall configuration diagram of the filtration apparatus in the state of the concentration step 1.
  • FIG. 2 is a schematic view of a tubular membrane separator.
  • FIG. 3 is an exploded perspective view of the main part of the tubular membrane separator.
  • FIG. 4 is a diagram showing the internal structure near the end of the tubular membrane separator.
  • FIG. 5 is a cross-sectional view of an essential part for explaining the sealing function of the tubular membrane separator.
  • 6A is a cross-sectional view of the end cap on the input / discharge side
  • FIG. 6B is a cross-sectional view of the end cap on the return side.
  • FIG. 7A is a cross-sectional view showing a holding state of a plurality of pipes in the housing, and FIG.
  • FIG. 7B is a view showing a holding state of the plurality of pipes in a state where the housing is removed.
  • FIG. 8 is a diagram showing the principle of filtration with a UF membrane tube and the cleaning action of the inner surface of the UF membrane tube with a sponge ball.
  • FIG. 9 is a view showing a receiving mechanism for holding a sponge ball with a strainer.
  • FIG. 10 is a configuration diagram of the filtration apparatus in the state of the concentration step 2.
  • FIG. 11 is a configuration diagram of the filtration apparatus in the state of the water pushing step.
  • FIG. 12 is a configuration diagram of the filtration apparatus in the state of the cleaning process 1.
  • FIG. 13 is a configuration diagram of the filtration apparatus in the state of the cleaning process 2.
  • FIG. 10 is a configuration diagram of the filtration apparatus in the state of the concentration step 2.
  • FIG. 11 is a configuration diagram of the filtration apparatus in the state of the water pushing step.
  • FIG. 12 is a configuration diagram of the filtration apparatus in the
  • FIG. 14 is a block diagram showing a control circuit of the pH adjustment control panel and the apparatus control panel.
  • A) of FIG. 15 is a flowchart which shows the main routine of pH adjustment control processing
  • (b) is a flowchart which shows the subroutine program of each tank abnormality check process.
  • (A) of FIG. 16 is a flowchart which shows the subroutine program of each inter-tank liquid movement process
  • (b) is a flowchart which shows the subroutine program of pH adjustment process.
  • FIG. 17A is a flowchart showing a main routine of the apparatus control process
  • FIG. 17B is a flowchart showing a subroutine program of the operation set value input process.
  • FIG. 18A is a flowchart showing a continuation of the subroutine program for the operation set value input process
  • FIG. 18B is a flowchart showing the subroutine program for the abnormal set value input process.
  • FIG. 19 is a flowchart showing a subroutine program for the abnormality check process.
  • FIG. 20 is a flowchart showing the continuation of the subroutine program for the abnormality check process.
  • FIG. 21A is a flowchart showing the continuation of the subroutine program for the flow path switching process
  • FIG. 21B is a flowchart showing the continuation of the subroutine program for the stock solution supply process.
  • 22A is a flowchart showing the continuation of the subroutine program for the concentration process
  • FIG. 22A is a flowchart showing the continuation of the subroutine program for the concentration process
  • FIG. 22B is a flowchart showing the continuation of the subroutine program for the process switching process
  • FIG. It is a flowchart which shows a subroutine program.
  • FIG. 23A is a flowchart showing the continuation of the subroutine program for the water pushing process
  • FIG. 23B is a flowchart showing the continuation of the subroutine program for the process switching process
  • FIG. It is a flowchart which shows the continuation of the subroutine program of a process.
  • 24A is a flowchart showing a continuation of the subroutine program for the cleaning process
  • FIG. 24B is a flowchart showing a continuation of the subroutine program for the process switching process
  • FIG. 24C is a flowchart of the cleaning process flow path control process.
  • FIG. 25A is a flowchart showing a continuation of the subroutine program for the concentrate discharge process
  • FIG. 25B is a flowchart showing a continuation of the subroutine program for the monitor display process.
  • FIG. 26 is a diagram showing an overall system in an embodiment to which artificial intelligence is applied.
  • FIG. 27A is a block diagram showing the control circuit of the artificial intelligence server
  • FIG. 27B is a diagram for explaining the principle of reinforcement learning by the agent
  • FIG. 27C shows the main routine of control by the artificial intelligence server. It is a flowchart to show.
  • FIG. 28A is a flowchart showing a subroutine program for filtering environment classification processing
  • FIG. 29 shows a conventional example, (a) is a longitudinal sectional view of a tubular membrane module, and (b) is a longitudinal sectional view showing a cleaning material retaining mechanism.
  • the filtration apparatus shown in the present embodiment for example, filtration of emulsion waste liquid discharged from various factories, filtration of viruses and endotoxins during the production of pharmaceuticals and medical water, filtration of heat-sensitive substances such as proteins and enzymes, etc. And is used when separating into a treated liquid and a concentrated liquid.
  • washing wastewater, cutting wastewater, polishing wastewater, compressor drain wastewater, car wash wastewater, high frequency coolant wastewater, die casting wastewater, rolling coolant wastewater, wastewater from food factories, etc. are the main applications. More specifically, it is used when, for example, a filtration target liquid is filtered and separated into treated water and concentrated liquid by tubular membrane separation using a UF membrane tube.
  • the filtration apparatus is a wide concept including not only a single apparatus but also a system in which a plurality of apparatuses and computers are linked via a network, for example, as shown in FIG. With reference to FIG. 1, the whole structure of a filtration apparatus is demonstrated.
  • the filtration device stores a raw water tank 1 for storing a stock solution such as a factory waste liquid, a pH adjustment tank 5 for adjusting the pH of the stock solution (hereinafter simply referred to as “pH”), and a filtered and concentrated concentrate. Accepts the treated water filtered by the membrane cleaning tank 8 and the tubular membrane separator 10, storing the cleaning water for cleaning the adhering matter adhering to the UF membrane tube 15 of the concentration circulation tank 2 and the tubular membrane separator 10.
  • the treated liquid relay tank 11 that relays the concentrated liquid the concentrated liquid relay tank (also referred to as a waste liquid relay tank) 3 that receives and relays the concentrated liquid stored in the concentrated circulation tank 2, and the concentrated liquid stored in the concentrated liquid relay tank 3
  • a concentrated water tank 4 is provided for receiving and storing the water.
  • the emulsion separator is shown surrounded by a two-dot chain line.
  • a stock solution such as a factory waste liquid is supplied to the raw water tank 1.
  • the raw water tank 1 is provided with a level sensor LS4, and the amount of stock solution stored in the raw water tank 1 is detected. If the level sensor LS4 detects that the raw water tank 1 is full, the supply of the raw solution is stopped.
  • the raw liquid stored in the raw water tank 1 is supplied to the pH adjustment tank 5 through the pipe 80.
  • the pH adjustment tank 5 is provided with a level sensor LS6, and the stock amount of the stock solution in the pH adjustment tank 5 is detected.
  • the pH adjustment tank 5 is provided with a pH sensor 24. This pH sensor 24 detects the pH of the stock solution stored in the pH adjustment tank 5.
  • the acid injection pump 29 is operated to inject the acid in the chemical injection tank 7 into the pH adjustment tank 5.
  • the alkali injection pump 28 operates to inject the alkali in the chemical injection tank 6 into the PH adjustment tank 5.
  • the stock solution is neutralized in the pH adjusting tank 5 and adjusted to a neutral state.
  • PVDF polyvinylidene fluoride
  • a stock solution in the range of pH 2 to pH 12 can be filtered.
  • an acidic undiluted solution having a pH of less than 2 there is a problem that the metal pipe corrodes and the undiluted solution leaks.
  • an alkaline stock solution exceeding pH 12 there is a disadvantage that the UF membrane tube 15 deteriorates.
  • the PH adjusting tank 5 is provided with a stirring propeller 50. By rotating the stirring propeller 50 by a stirring motor 35, the stock solution in the pH adjusting tank 5 is stirred and neutralized uniformly.
  • a pipe 81 connecting the pH adjustment tank 5 and the concentration circulation tank 2 is provided with a pH adjustment water pump 30.
  • the stock solution neutralized in the pH adjustment tank 5 is supplied to the concentration circulation tank 2 through the pipe 81.
  • the concentration circulation tank 2 is provided with a level sensor LS1, and the stock amount of the stock solution in the concentration circulation tank 2 is detected.
  • the operation of the pH adjustment water pump 30 is stopped, and the circulation pump 33 is operated so that the stock solution (concentration liquid) in the concentration circulation tank 2 is tubular membrane separation.
  • the three-way valve 36 whose flow path is switched by the motor valve MV3 is a B ⁇ C flow path.
  • the undiluted solution (concentrated liquid) in the concentration circulation tank 2 flows in the direction of B ⁇ C at the three-way valve 36 via the pipe 82, the motor valve MV 1, the circulation pump 33, and the pipe 83, and via the pipe 84.
  • a plurality (six in the figure) of tubular membrane separators 10 are supplied.
  • the tubular membrane separation device 10 filters the stock solution (concentrated solution) and separates it into treated water and concentrated solution.
  • the treated water is taken out from the treated water take-out pipe 21 and supplied to the treated water relay tank 11 via the motor valve MV5 and the pipe 91.
  • the treated water stored in the treated water relay tank 11 is purified by activated carbon 12 and 13 by operating the treated water delivery pump 34 and then discharged to the outside.
  • ions contained in the treated water may be removed using ion exchange.
  • Ion exchange refers to ions (for example, ammonia ions NH) contained in the electrolyte solution in contact with a certain substance. 4 (+) Is taken in and ion species are exchanged by releasing other types of ions instead.
  • a substance exhibiting an ion exchange action is called an ion exchanger. As this ion exchanger, for example, an ion exchange resin is used.
  • the process water is supplied to the membrane cleaning tank 8 via the pipe 90 by controlling the motor valve MV5 to close and opening the motor valve MV6.
  • treated water can be stored in the membrane cleaning tank 8 and used as cleaning water even in a place where fresh water such as tap water, industrial water, and agricultural water is difficult to obtain (for example, a desert area).
  • the concentrated solution filtered and concentrated by the tubular membrane separator 10 is returned to the concentration circulation tank 2 via the three-way valve 38.
  • the flow path of the three-way valve 37 switched by the motor valve MV4 is changed from C to A.
  • a three-way valve 38 switched by the motor valve MV9 is a C ⁇ B flow path.
  • the concentrated solution filtered and concentrated by the tubular membrane separator 10 passes through the three-way valve 37, the pipe 87, the three-way valve 38, the pipe 89 and through the flow rate adjustment valve 48 to the concentration circulation tank 2.
  • Reduced. By operating the circulation pump 33 with the flow rate adjusting valve 48 adjusted, the stock solution (concentrated liquid) can be pumped into the tubular membrane separator 10 while maintaining an appropriate pressure.
  • pressure sensors PS1 and PS2 are provided.
  • the motor valve MV2 is closed.
  • This filtration device is controlled by a pH adjustment control panel 22 and a device control panel 23.
  • the control territory of the pH adjustment control panel 22 is in the range indicated by the two-dot chain line in FIG. 1 and mainly performs pH adjustment.
  • the control territory of the device control panel 23 is in the range indicated by the two-dot chain line in FIG.
  • the pH adjustment control panel 22 and the apparatus control panel 23 are configured to be able to communicate with each other.
  • a raw solution supply signal is transmitted from the apparatus control panel 23 to the pH adjustment control panel 22, and the pH adjustment control panel 22 transmits the apparatus control panel.
  • a batch abnormality signal and a raw water supply signal are transmitted to 23.
  • the apparatus control panel 23 outputs a raw water supply signal, a collective abnormality signal, an operation signal, and an abnormality signal.
  • FL1, FL2, and FL3 are flow meters
  • 26 is a temperature sensor
  • 25 is a photoelectric sensor
  • 40, 41, 42, 43, and 44 are check valves.
  • a motor valve MV8 is provided in a pipe connecting the pipe 97 and the concentration circulation tank 2. This motor valve MV8 prevents the UF membrane tube 15 in the tubular membrane separator 10 from becoming a negative pressure. Details will be described later.
  • receiving mechanisms 18 that hold the sponge balls 17 are provided.
  • the sponge ball 17 is composed of a spherical sponge and wipes and removes impurities adhering to the inner surface of the UF membrane tube 15.
  • the sponge ball 17 is a foamed urethane material. In the case of a urethane material compared to a rubber material, there are advantages that resistance to oil is high and expansion can be suppressed.
  • a plurality of (for example, 18) UF membrane tubes 15 are provided in a housing 14. End caps 101 are provided at the left and right ends of the housing 14.
  • a one-dot chain line in FIG. 2 indicates a movement path 125 of the liquid to be filtered (raw solution) flowing in the UF membrane tube 15.
  • the UF membrane tube 15 is inserted into the pipe 106 (see FIG. 3).
  • the left and right end caps 101 are formed with return paths 117 that cause the flow of the liquid to be filtered received from a certain UF membrane tube 15 to U-turn and flow into other UF membrane tubes 15. This will be described later with reference to FIG.
  • a liquid inlet / outlet port 118 is formed at two positions on the left end cap 101 in FIG.
  • the stock solution is supplied to one liquid inlet / outlet port 118 via the receiving mechanism 18 and the valve 10, and sent into the UF membrane tube 15 through the inlet / outlet path 110 a in the end cap 101.
  • the fed stock solution passes through the UF membrane tube 15 and reaches the other end cap 101, where it makes a U-turn through the return path 117 and is fed into the next UF membrane tube 15.
  • the stock solution that has passed through the UF membrane tube 15 and has reached the other end cap 101 passes through the return path 117 again to make a U-turn and is sent into the next UF membrane tube 15.
  • the concentrated liquid that has passed through all the UF membrane tubes 15 by repeating this U-turn is discharged from the other liquid inlet / outlet 118 through the inlet / outlet path 110a.
  • Such a moving path 125 of the stock solution in the tubular membrane separation apparatus 10 is shown by a one-dot chain line in FIG.
  • the stock solution moves along the movement path 125 that is bent and reciprocates in the housing 14 a plurality of times, and is filtered by the UF membrane tube 15 to be separated into treated water and concentrate.
  • the treated water is discharged from the treated water take-out pipe 21 provided in the housing 14 and sent to the treated water relay tank 11.
  • the concentrated liquid is discharged from the liquid inlet / outlet 118 and is returned to the concentrated circulation tank 2. As shown in FIG.
  • the path through which the stock solution is filtered by the UF membrane tube 15 is defined as the full length of the tubular membrane separator 10 (one end cap).
  • the length from the outer end surface of 101 to the outer end surface of the other end cap 101 can be made longer.
  • the means for lengthening the movement path 125 is not limited to the reciprocation of the movement path 125 shown in FIG. Any shape may be used.
  • FIG. 3 shows a state in which the end cap 101 provided at one end of the housing 14 is removed and various components in the housing 14 are pulled out.
  • a pipe holding plate 105 and a disk-shaped metal plate 103 are accommodated in the housing 14.
  • a rubber plate 104 for sealing is attached to the surface of the metal plate 103 on the pipe holding plate 105 side.
  • a plurality of UF membrane tubes 15 are provided in the housing 14, and each of the UF membrane tubes 15 is inserted into a metal pipe 106.
  • the UF membrane tube 15 is formed in a tube shape by winding a belt-shaped nonwoven fabric in a spiral shape and heat-welding the tube, and the inner surface of the tube is coated with a UF membrane.
  • a pipe holding plate 105 holds the end of each pipe 106 into which the UF membrane tube 15 is inserted.
  • a plurality of pipe insertion holes are formed in the pipe holding plate 105, and the end portions of the pipes 106 are inserted into the insertion holes.
  • Each pipe 106 in the inserted state is welded and fixed to the pipe holding plate 105.
  • a plurality of (18) pipes 106 are held by the pipe holding plate 105.
  • Insertion holes 109 corresponding to the number of pipes 106 are formed in the rubber plate 104 and the metal plate 103 so that the insertion joints 108 can be inserted into the insertion holes 109 from the metal plate 103 side.
  • the insertion joint 108 is made of a material having a sealing function, such as rubber, in a mushroom shape, and has an insertion portion 108a and an umbrella portion 108b having a saw-shaped cross section.
  • the insertion portion 108a of the insertion joint 108 is inserted from the opposite side (the metal plate 103 side) in a state where each pipe 106 is aligned with the insertion hole 109, whereby the saw-like insertion portion 108a becomes the UF membrane tube 15 in the pipe 106. It will be in the state inserted in. In this state, the umbrella part 108b comes into contact with the metal plate 103 (see FIGS. 4 and 5).
  • the insertion portion 108a is inserted into the UF membrane tube 15, it can be easily inserted by inserting the UF membrane tube 15 in a state where it is slightly pulled out from the pipe 106.
  • the saw-shaped insertion portion 108a inserted into the UF membrane tube 15 has an effect of preventing the UF membrane tube 15 from coming off. That is, the end portion of the UF membrane tube 15 can be sandwiched and held by the insertion portion 108a of the insertion joint 108 and the end portion of the pipe 106.
  • the insertion portion 108a is inserted into both ends of the pipe 106 (see FIG. 5), and the ends of the UF membrane tube 15 are held at both ends of the pipe 106.
  • a fixed holding member (fixed holding means) for fixing and holding the end portion of the UF membrane tube 15 to the end portion of the pipe 106 is configured by the insertion portion 108 a of the insertion joint 108.
  • An O-ring groove 119 is formed on the outer periphery of the pipe holding plate 105, and a sealing O-ring 111 is fitted in the groove 119.
  • Each pipe 106 is provided with a large number of small holes 120 in one or several rows along the longitudinal direction. The treated water is discharged into the housing 14 through the small hole 120. The treated water discharged into the housing 14 is discharged out of the tubular membrane separation apparatus 10 from the treated water extraction pipe 21 (see FIG. 2).
  • Positioning protrusions 112a and 112b are formed on the pipe holding plate 105.
  • the metal plate 103 and the rubber plate 104 are formed with positioning insertion holes 113a and 113b. Further, positioning holes 114 a and 114 b are formed in the end cap 101.
  • An insertion hole 115 for inserting the stud bolt 107 is formed in the end cap 101.
  • An insertion hole 150 for inserting the stud bolt 107 is also formed in the rubber plate 104 and the metal plate 103. After the stud bolt 107 is inserted into both the insertion holes 115 and 150, the end cap 101, the metal plate 103 with the rubber plate 104, and the pipe holding plate 105 are positioned by the positioning protrusions 112a and 112b. In this state, the nut 102 is screwed and screwed into the stud bolt 107, whereby the end cap 101, the metal plate 103 with the rubber plate 104, and the pipe holding plate 105 are fastened and fixed in close contact with each other. The state will be described with reference to FIG. FIG.
  • FIG. 4 is a longitudinal sectional view of the vicinity of the end of the tubular membrane separator 10.
  • the plurality of pipes 106 are inserted to such a depth that the end portions reach the end surface of the pipe holding plate 105.
  • the ends of the pipe 106 and the UF membrane tube 15 are brought into pressure contact with the rubber plate 104 by the tightening force of the stud bolt 107 and the nut 102.
  • An insertion joint 108 is inserted into the UF membrane tube 15 pressed against the rubber plate 104.
  • a plurality of recesses 110 are formed by recessing the periphery of the inlet / outlet portion of the stock solution to the plurality of return paths 117 (see FIGS. 2 and 6) formed in the end cap 101 (see FIG. 3).
  • the umbrella portion 108 b of the insertion joint 108 enters the recess 110.
  • the UF membrane tube 15 and the return path 117 are in communication with each other via the insertion joint 108.
  • a recess 110 is also formed in the inlet / outlet path 110 a following the liquid inlet / outlet 118, and the umbrella portion 108 b of the insertion joint 108 enters the recess 110.
  • the UF membrane tube 15 and the inlet / outlet path 110a are in communication with each other via the insertion joint 108.
  • the insertion joint 108 constitutes a seal member (seal means) that prevents the liquid to be filtered from leaking out of the UF membrane tube 15. Further, the treated water filtered by the UF membrane tube 15 and coming out of the housing 14 through the small hole 120 is prevented from leaking out of the housing 14 by the O-ring 111.
  • the O-ring 111 constitutes a seal member (seal means) for preventing leakage of treated water.
  • the end cap 101 will be described. First, the end cap 101 on the inlet / outlet side where the liquid inlet / outlet 118 is formed will be described with reference to FIG.
  • liquid inlets / outlets 118 are formed at two locations, and an inlet / outlet path 110 a that continues to each liquid inlet / outlet 118 is formed.
  • the stock solution pumped from one liquid inlet / outlet port 118 is sent into the UF membrane tube 15 through one inlet / outlet route 110a, and the concentrated solution coming out from the other UF membrane tube 15 passes through the other inlet / outlet route 110a.
  • U-shaped return paths 117 are formed in eight places on the end cap 101 on the input / discharge side.
  • reference numeral 110 denotes a recess into which the umbrella part 108b of the insertion joint 108 enters.
  • the return end cap 101 in which the liquid inlet / outlet 118 is not formed has nine return paths 117, but the liquid inlet / outlet 118 is not formed.
  • the end cap 101 in which the return path 117 and the entry / exit path 110a are formed is manufactured by casting.
  • the stock solution pumped from the liquid inlet / outlet 118 of the inlet / outlet end cap 101 (FIG. 6A) is sent into the UF membrane tube 15 from the insertion joint 108, and the return side end cap 101 diagram is shown. 6 (b) is reached.
  • the stock solution then makes a U-turn through a return path 117 formed in the return-side end cap 101, is sent into the next UF membrane tube 15, and returns to the inlet / outlet-side end cap 101. Therefore, the undiluted solution makes a U-turn through a return path 117 formed in the end cap 101 on the inlet / outlet side, is sent into the next UF membrane tube 15 and moves again to the end cap 101 on the return side.
  • the U-turn is repeated a plurality of times (17 times), and the concentrated liquid passing through all the UF membrane tubes 15 is discharged from the other liquid inlet / outlet 118.
  • the end cap 101 constitutes a filtration target liquid return member (filtration target liquid return means) that returns the filtration target liquid received from a certain UF membrane tube 15 and sends it to another UF membrane tube 15.
  • filtration target liquid return means filtration target liquid return means
  • intermediate portions in the longitudinal direction of the plurality of pipes 106 are positioned by being held by the holding plate 116. This will be described with reference to FIGS. 7 (a) and 7 (b).
  • Six holding plates 116 are provided on the pipe 106 located on the outer periphery of the 18 pipes 106.
  • One holding plate 116 is provided across three pipes 106.
  • a holding plate 116 is welded and fixed to the central pipe 106 of the three pipes 106.
  • the pipes 106 at both ends are sandwiched between the end portions of the holding plates 116 located on both sides of the pipe 106. In this way, the mid-longitudinal positions of all the pipes located on the outer periphery are held and positioned.
  • These holding plates 116 are provided at a plurality of positions at predetermined intervals in the longitudinal direction of the pipe 106. As a result, there is an advantage that each pipe 106 can be held as straight as possible and the UF membrane tube 15 can be easily inserted into the pipe 106.
  • the holding plate 116 constitutes a holding member (holding means) that holds a part of the pipe in the longitudinal direction.
  • the filtration function by the UF membrane tube 15 will be described with reference to FIG.
  • the material of the UF membrane tube 15 is PVDF (polyvinylidene fluoride), which has an advantage of high heat resistance and a wide pH range of the liquid to be filtered.
  • the diameter of the UF membrane tube 15 is about 15 mm. This about 15 mm is merely an example, and for example, a diameter in the range of 5 mm to 26 mm can be used.
  • the UF membrane tube 15 is a porous membrane having a pore diameter of approximately 0.01 to 0.001 ⁇ m.
  • a sponge ball 17 is placed in the UF membrane tube 15 in order to remove impurities attached to the inner surface of the UF membrane tube 15.
  • the sponge ball 17 has a size slightly larger than the diameter of the UF membrane tube 15 (about 15 mm). As a result, the sponge ball 17 inserted into the UF membrane tube 15 is in a state where its outer peripheral surface is in contact with the inner surface of the UF membrane tube 15 (see FIG. 8).
  • the sponge ball 17 is moved in the UF membrane tube 15 by the stock solution fed into the UF membrane tube 15, and impurities adhering to the inner surface of the UF membrane tube 15 are wiped off and removed.
  • the sponge ball 17 that has moved through the UF membrane tube 15 and has been pushed to the other end of the tubular membrane separator 10 is received and held by a receiving mechanism 18 (see FIGS. 2 and 9).
  • the sponge ball 17 constitutes a wiping body that moves in the UF membrane tube 15 and wipes impurities adhering to the inner surface of the UF membrane tube 15.
  • a wiping body it is not limited to the sponge ball
  • the receiving mechanism 18 has a cylindrical portion 121, and an M-shaped strainer 19 in a plan view is provided in the cylindrical portion 121.
  • Left and right pipes 122 and 123 are connected to the tubular portion 121 by pipe joints 124, respectively.
  • One pipe 122 is connected to the liquid inlet / outlet port 118 of the tubular membrane separator 10 (see FIG. 2), and the other pipe 123 is connected to the pipe 97 (see FIG. 1).
  • a screw groove is formed in the upper part of the cylindrical portion 121, and the detachable cap 20 is screwed into the screw groove.
  • the sponge ball 17 moves through the UF membrane tube 15 of the tubular membrane separator 10 and is discharged from the other liquid inlet / outlet 118.
  • the sponge ball 17 reaches the strainer 19 of the cylindrical portion 121 through the pipe 122 and is received by the strainer 19.
  • the strainer 19 is formed with a stitch 19a so as to receive the sponge ball 17 but allow the concentrated liquid to pass therethrough.
  • the concentrated liquid is reduced to the concentrated reduction tank 2 through the stitches 19a.
  • the strainer 19 constitutes a receiving member that allows the liquid to be filtered to pass through but receives the sponge ball 17 (wiping body).
  • the sponge ball 17 held by the receiving mechanism 18 at the other end of the tubular membrane separation device 10 is moved again in the UF membrane tube 15 by switching the flow of the stock solution (concentrated solution) in the reverse direction, so that the tubular type It reaches the receiving mechanism 18 on one end side of the membrane separation apparatus 10.
  • the sponge ball 17 is reciprocated in the UF membrane tube 15 to remove the impurities 16.
  • impurities adhere to the sponge ball 17 itself, resulting in a disadvantage that the cleaning effect decreases.
  • the dirty sponge ball 17 is configured to be replaceable.
  • the valve 100 is provided in the pipe 122 (see FIG. 9) connected to the receiving mechanism 18 that receives the sponge ball 17, and the valve 100 is closed. This prevents the concentrate from flowing from the tubular membrane separator 10 to the receiving mechanism 18.
  • the removable cap 20 of the receiving mechanism 18 is rotated and opened.
  • the detachable cap 20 constitutes a take-out mechanism for taking out the received wipe and making it replaceable.
  • the receiving mechanism 18 is provided at a lower position than the tubular membrane separation apparatus 10, since the valve 100 is closed, the concentrated liquid does not spout even when the detachable cap 20 is opened. Since the receiving mechanism 18 is provided at a higher position than the pipe 123 (see FIG.
  • the concentrated liquid is supplied to the pipe 123 even when the detachable cap 20 is opened. Will not flow backwards.
  • the sponge ball 17 received by the strainer 19 can be taken out and replaced with a new one.
  • the detachable cap 20 is screwed into the cylindrical portion 121 to cover it, and the valve 100 is opened.
  • what is necessary is just to make it provide a valve also in the piping 123, when the receiving mechanism 18 is provided in the low position with respect to the piping 123 (refer FIG. 9).
  • the valve 100 constitutes an ejection prevention mechanism (ejection prevention means) that prevents ejection of the liquid to be filtered when the detachable cap 20 is opened.
  • FIG. 1 shows a concentration step 1 in which a stock solution (concentrated solution) flows in the forward direction with respect to the tubular membrane separator 10, and the stock solution (concentrated solution) flows in the reverse direction with respect to the tubular membrane separator 10.
  • Flowing concentration step 2 is shown in FIG. Referring to FIG. 10, in the concentration step 2, the three-way valve 36 is switched to the flow path C ⁇ A. The three-way valve 37 is switched to the B ⁇ C flow path.
  • the concentrated liquid sent out by the circulation pump 33 is pressure-fed from the reverse direction to the tubular membrane separator 10 through the pipes 83 and 85, the B ⁇ C of the three-way valve 37, the pipe 86, and the pipe 97.
  • the concentrated liquid concentrated in the tubular membrane separation apparatus 10 is returned to the concentration circulation tank 2 through the pipe 84, the C ⁇ A of the three-way valve 36, the pipe 88, the C ⁇ B of the three-way valve 38, and the pipe 89.
  • the cleaning liquid stored in the membrane cleaning tank 8 is a case where fresh water such as tap water is used (fresh water cleaning mode in S78), and a case where treated water separated by the tubular membrane separator 10 is used (processing water cleaning mode in S79). )
  • fresh water such as tap water
  • processing water cleaning mode in S79 processing water cleaning mode in S79.
  • the membrane cleaning tank 8 is provided with a level sensor LS2, which can detect four levels of a full water level HH2, an operation start level H2, an operation stop level L2, and a drought level LL2.
  • a level sensor LS2 which can detect four levels of a full water level HH2, an operation start level H2, an operation stop level L2, and a drought level LL2.
  • the motor valve MV5 and the closed motor valve MV6 are opened, and control is performed so that the treated water is supplied to the membrane cleaning tank 8 via the pipe 90 and the motor valve MV6.
  • fresh water or treated water is replenished until the membrane cleaning tank 8 reaches the operation start level H2.
  • a cleaning heater 49 is provided in the membrane cleaning tank 8, and the cleaning liquid is warmed to a temperature suitable for cleaning the UF membrane tube 15 (for example, 40 to 50 ° C.). Therefore, the membrane cleaning tank 8 is made of a stainless steel material having excellent heat resistance. In the case of cleaning with a normal temperature cleaning liquid without providing the cleaning heater 49, the film cleaning tank 8 may be made of a resin material. Further, by operating the cleaning agent injection pump 32, the alkaline cleaning agent is supplied to the membrane cleaning tank 8. This alkaline cleaning agent can further improve the cleaning efficiency. Further, depending on the type of concentrate (concentrated solution), the use of an acidic cleaning agent can improve the cleaning efficiency. In such a case, an acidic detergent is used instead of the alkaline detergent.
  • the circulation pump 33 is operated with the motor valve MV1 closed and the motor valve MV2 opened.
  • the concentration step performed immediately before the water pushing step is the concentration step 1 (see FIG. 1)
  • the cleaning liquid is caused to flow in the reverse direction with respect to the tubular membrane separation apparatus 10.
  • the concentration process performed immediately before the water pushing process is the concentration process 2 (FIG. 10)
  • the washing liquid is flowed forward with respect to the tubular membrane separation device 10 to perform the water pushing.
  • FIG. 11 shows a water pushing process in which the cleaning liquid is flowed in the forward direction to push out the residual concentrated liquid.
  • the three-way valve 36 is switched to the B ⁇ C flow path and the three-way valve 37 is switched to the C ⁇ A flow path.
  • the cleaning liquid in the membrane cleaning tank 8 is supplied to the UF membrane tube 15 from one end of the tubular membrane separator 10 through the pipe 95, the circulation pump 33, B ⁇ C of the three-way valve 36, and the pipe 84.
  • the sponge ball held in the receiving mechanism 18 on one end side of the tubular membrane separation apparatus 10 is pushed into the UF membrane tube 15 and moves in the UF membrane tube 15 to move into the UF membrane tube 15. Wipe off any adhering material that adheres to the surface.
  • the extruded concentrated liquid is returned to the concentration reduction tank 2 through the pipe 86, C ⁇ A of the three-way valve 37, pipe 87, C ⁇ B of the three-way valve 38, and pipe 89.
  • the process proceeds to the washing process.
  • the cleaning liquid stored in the membrane cleaning tank 8 is supplied to the tubular membrane separator 10 to clean the UF membrane tube 15.
  • the cleaning process includes a cleaning process 1 in which the cleaning liquid stored in the membrane cleaning tank 8 is washed in a forward direction with respect to the tubular membrane separation apparatus 10 and a cleaning liquid in a reverse direction with respect to the tubular membrane separation apparatus 10.
  • the three-way valve 38 is switched to the C ⁇ A flow path, and the cleaning water is controlled to be returned to the membrane cleaning tank 8.
  • the cleaning liquid in the membrane cleaning tank 8 passes through the tubular membrane separator 10 via the pipe 95, B ⁇ C of the three-way valve 36, and the pipe 84, C ⁇ A of the three-way valve 37, pipe 87, three-way
  • the valve 38 is returned to the membrane cleaning tank 8 through C ⁇ A and the scrap 96.
  • the process is switched to the cleaning process 2.
  • the three-way valve 36 is switched to the C ⁇ A flow path, and the three-way valve 37 is switched to the B ⁇ C flow path.
  • the cleaning liquid in the membrane cleaning tank 8 passes through the pipe 95, the circulation pump 33, the pipes 83 and 85, the flow path B ⁇ C of the three-way valve 37, and the pipe 86 from the opposite direction with respect to the tubular membrane separator 10. Supplied.
  • the cleaning liquid that has passed through the UF membrane tube 15 in the tubular membrane separator 10 is reduced to the membrane cleaning tank 8 via the pipe 84, the C ⁇ A of the three-way valve 36, the pipe 88, the C ⁇ A of the three-way valve 38, and the pipe 96. Is done. After repeatedly performing this washing process 1 (see FIG. 12) and washing process 2 (see FIG. 13), the process moves to the concentration process again.
  • the concentrated solution is gradually concentrated by filtration by the tubular membrane separation device 10, and the amount of the concentrated solution stored in the concentration circulation tank 2 is reduced. Decrease.
  • the concentrated liquid in the concentration circulation tank 2 has decreased to a predetermined amount (L1 level).
  • the pH adjustment water pump 30 is operated to supply the stock solution in the pH adjustment tank 5 to the concentration circulation tank 2. If the level sensor 1 detects that the concentrate in the concentration circulation tank 2 has reached the operation start level H1 by adding the stock solution, the pH adjustment water pump 30 is stopped and the addition of the stock solution is stopped. . In this state, the above-described concentration step, water pushing step, and washing step are repeatedly executed.
  • the concentrated liquid in the concentration circulation tank 2 is reduced to a predetermined amount (L1 level) again, the stock solution in the pH adjustment tank 5 is again used. Add to the concentration circulation tank 2 and supply.
  • the motor valve MV7 is opened and the concentrate in the concentration circulation tank 2 is discharged to the concentrate relay tank 3 through the pipe 93.
  • the level sensor LS1 detects that the concentrate in the concentration circulation tank 2 has reached the discharge completion level LL, the motor valve MV7 is closed and the discharge of the concentrate is completed.
  • the concentrate feed pump 31 is operated to pass the concentrate in the concentrate relay tank 3 through the pipe 94. It sends out to the concentration storage tank 4.
  • the concentration storage tank 4 is provided with a level sensor LS5. If the level sensor LS5 detects that the concentrated liquid in the concentrated storage tank 4 is full, the concentrated liquid in the concentrated storage tank 4 is taken out. Work is done. A process from the start of the first concentration process to the discharge of the concentrated liquid in the concentration circulation tank 2 where the concentration is completed is referred to as one batch. By performing this one batch of processes a predetermined number of times, the filtering operation by the filtering device is completed and the filtering device is stopped.
  • the turbidity of the treated water taken out from the treated water take-out pipe 21 is detected by the photoelectric sensor 25. If the turbidity is equal to or higher than a predetermined value, it is determined that the filtration error has occurred, and an error notification process is performed. Further, the temperature of the cleaning liquid pushed out by the circulation pump 33 is detected by the temperature sensor 26. Based on the detected value, the cleaning heater 49 is controlled so that the temperature of the cleaning liquid is maintained at a predetermined temperature (40 to 50 ° C.). Next, a control circuit for the pH adjustment control panel 22 and the apparatus control panel 23 will be described with reference to FIG.
  • the pH adjustment control panel 22 is provided with a pH adjustment control panel microcomputer 60.
  • the pH adjustment control panel microcomputer 60 includes a CPU (Central Processing Unit) 66 as a control center, a ROM (Read Only Memory) 67 in which control programs and data are stored, and a RAM that functions as a work area for the CPU 66. (Random Access Memory) 68 and the like are provided.
  • the device control board 23 is provided with a device control board microcomputer 63.
  • the device control panel microcomputer 63 includes a CPU 69 serving as a control center, a ROM 70 storing control programs and data, a RAM 71 functioning as a work area for the CPU 69, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 72, and the like. Is provided.
  • the pH adjustment control panel microcomputer 60 receives detection signals from the pH sensor 24 and the level sensors LS4 to LS6. In addition, an operation signal from the input operation unit 61 such as a keyboard, a mouse, or a touch panel is input to the pH adjustment control panel microcomputer 60.
  • the pH adjustment control panel microcomputer 60 outputs pump control signals for the raw solution water pump 27, the alkali injection pump 28, the acid injection pump 29, and the pH adjustment water pump 30.
  • a control signal for driving the agitation motor 30 is output.
  • monitor display signals such as various error displays and the operation state of the filtration device are output to the display unit 62 to the operator.
  • the device control panel microcomputer 63 receives the sensor signals of the level sensors LS1 to LS3.
  • Each flow rate detection signal of the flow meters FL1 to FL3 is input. Further, sensor signals of the photoelectric sensor 25, the temperature sensor 26, and the pressure sensors PS1 and PS2 are input. In addition, an operation signal is input from the input operation unit 64 such as a keyboard, a mouse, or a touch panel.
  • a heater control signal is output from the apparatus control panel microcomputer 63 to the cleaning heater 49. Further, each pump control signal is output to the concentrated liquid feed pump 31, the cleaning agent injection pump 32, and the circulation pump 33. Further, each valve control signal is output to the motor valves MV1 to MV10. Further, a display control signal for performing an error display and a monitor display of the operation state of the filtration device to the operator is output to the display unit 65.
  • the pH adjustment control panel microcomputer 60 and the apparatus control panel microcomputer 63 can transmit and receive signals to and from each other.
  • the apparatus control panel microcomputer 63 outputs a stock solution supply signal for supplying the stock solution to the concentrated storage tank 2 to the pH adjustment control panel microcomputer 60.
  • the pH adjustment control panel microcomputer 60 starts the control to supply the stock solution to the concentration and reduction tank 2 as described above, and sends a raw water supply signal to the device control panel microcomputer 63 that the supply of the stock solution has started. Send back.
  • the pH adjustment control panel microcomputer 60 transmits a collective abnormality signal to the apparatus control panel microcomputer 63 when an abnormality occurs in the control territory.
  • each tank abnormality check process is performed in step (hereinafter simply referred to as “S”) 1. This is to check abnormalities in the storage state of the raw water tank 1 and the concentrated storage tank 4.
  • S2 step
  • S3 pH adjustment processing is performed by S3.
  • This pH adjustment treatment is a treatment for adjusting the pH by neutralizing the stock solution in the pH adjustment tank 5 with an alkali or an acid.
  • S7 it is determined whether or not the value of the level sensor LS4 has abnormally decreased.
  • the control advances to S8, and the process of turning on the raw water tank drought error flag is turned on Is made.
  • S9 control is performed to turn off the raw water tank drought error flag.
  • S10 it is determined whether or not the value of the level sensor LS4 has risen abnormally.
  • control proceeds to S11, where control is performed to turn on the raw water tank full error flag.
  • the process proceeds to S12, and processing for turning off the raw water tank full error flag is performed.
  • S13 it is determined whether or not the value of the level sensor LS6 has abnormally decreased. If the stock solution in the pH adjustment tank 5 has dropped to an abnormal level, a determination of YES is made in S13, control proceeds to S14, and a process of turning on the pH adjustment tank drought error flag is performed.
  • the control proceeds to S15, and the pH adjustment tank drought error flag is turned OFF.
  • S16 it is determined whether or not the value of the level sensor LS6 has risen abnormally. If the stock solution stored in the pH adjustment tank 5 has risen to an abnormal level, a determination of YES is made in S16, the control proceeds to S17, and the pH adjustment tank full error flag is turned ON. On the other hand, if it is determined that the value of the level sensor 6 has not risen abnormally, the pH adjustment tank full error flag is turned OFF in S18. Next, the control proceeds to S19, where it is determined whether or not the level sensor 5 has abnormally increased.
  • This operation set value input process is a process for the operator to input and set various values necessary for operating the filtration device by the input operation unit 64.
  • S60 it is determined whether or not the number of times of concentration has been input. If there is not, it is determined in S62 whether or not the number of batches has been input.
  • S66 it is determined whether or not there has been an input of the discharge relay tank level. If not, it is determined whether or not an automatic cleaning time has been input in S67. If not, it is determined whether or not a water pushing time has been input in S70. If not, it is determined whether or not the reverse operation time has been input in S72. If not, it is determined in S74 whether or not the washing mode switching operation has been performed in S76.
  • HH2 is a level of abnormally high water
  • H2 is a level to close the motor valve MV7 and prevent the concentrate from entering the concentration relay tank 3
  • L2 starts the operation of the concentrate feed pump 31.
  • LL2 is a level at which the concentrated water pump 31 is stopped.
  • the automatic cleaning time is a time for repeatedly executing the above-described cleaning process 1 (see FIG. 12) and cleaning process 2 (see FIG. 13). If the water pushing time is input by the input operation unit 64, a determination of YES is made in S70 and the control advances to S71, and the stored water pushing time is updated to the newly inputted water pushing time. .
  • the reverse operation time is the time from the start of the concentration step 1 to the end of the concentration step 1, the time from the start of the concentration step 2 to the end of the concentration step 2, and the start of the washing step 1 It is the time from the start to the end of the cleaning step 1 and the time from the start of the cleaning step 2 to the end of the cleaning step 2.
  • Processing is performed to update the stored waste liquid discharge time to the newly input waste liquid discharge time. If the input operation unit 64 is operated to determine which cleaning mode is to be used, that is, cleaning with clean water or cleaning with the processing liquid, YES is determined in S76 and the control advances to S77. Then, it is determined whether or not the current mode is the treated water cleaning mode. If the current mode is the treated water cleaning mode, the control proceeds to S78, and processing for switching to the fresh water cleaning mode is performed. On the other hand, if the current mode is not the treated water cleaning mode, that is, if it is the fresh water cleaning mode, the control proceeds to S79 and a process of switching to the treated water cleaning mode is performed.
  • the control proceeds to S95, and the stored pressure is the upper limit of the newly input pressure. Processing for updating to PU and lower limit PL is performed. If the concentration discharge error time for determining an abnormality is input by the input operation unit 64 when the time for discharging the concentrate stored in the concentration circulation tank 2 exceeds a predetermined value, the control proceeds to S97. The stored concentration discharge error time is updated to the newly input concentration discharge error time NHT. Then, this subroutine program returns. Next, a subroutine program for the abnormality check process shown in S52 will be described with reference to FIGS. First, in S105, the current value of each sensor is read and stored.
  • the value of the level sensor LS1 is stored as LS1
  • the value of the level sensor LS2 is stored as LS2
  • the value of the level sensor LS3 is stored as LS3
  • the value of the flow meter FL1 is stored as F1
  • the flow rate The value of the meter FL2 is stored as F2
  • the value of the flow meter FL3 is stored as F3
  • the value of the photoelectric sensor 25 is stored as PS
  • the value of the temperature sensor 26 is stored as T
  • the value of the pressure sensor PS1 is PS1
  • the value of the pressure sensor PS2 is stored as PS2.
  • the control advances to S107, and it is determined whether or not the value F2 of the flow meter FL2 is less than the processing flow rate drop value SR. If the determination result is YES, the processing flow rate decrease error flag is turned ON in S108. On the other hand, if the determination result in S107 is NO, a process for turning off the processing flow rate decrease error flag is performed in S109. Next, the control proceeds to S110, where it is determined whether or not the value F1 of the flow meter FL1 exceeds the upper limit JRU of the circulation flow rate. If exceeded, the operation flow rate upper limit error flag is turned ON in S111. Thereafter, the control proceeds to S116.
  • control proceeds to S112, and after the operating flow rate upper limit error flag is turned OFF, control proceeds to S113.
  • S113 it is determined whether or not the value F1 of the flow meter FL1 is less than the lower limit JRL of the circulation flow rate. If it is less than S114, the operation flow rate lower limit error flag is turned on in S114, and if it is determined NO in S113, the operation flow rate lower limit error flag is turned off in S115.
  • S116 it is determined whether or not the value PS1 of the pressure sensor PS1 exceeds the pressure upper limit PU. If it has exceeded, the process proceeds to S112 after the operation pressure upper limit error flag is turned on in S117.
  • the waste liquid discharge flag is turned ON in S167 described later.
  • S122 a determination of YES is made only at the moment when the waste liquid discharge flag is switched from OFF to ON. If YES is determined in S122, the control proceeds to S123, and a process of setting the waste liquid discharge timer HHP is performed. Further, after the control for opening the motor valve MV7 is performed in S124, the control proceeds to S131. If NO is determined in S122, the control proceeds to S125, and it is determined whether or not the waste liquid discharge flag is ON.
  • the process proceeds to S130, the waste liquid discharge timer HHP is cleared, and control is performed to close the motor valve MV7. Then, the process proceeds to S131.
  • the control proceeds to S126, and it is determined whether or not the waste liquid discharge timer HHT exceeds the concentration discharge error time NHT. Is done. If exceeded, control is performed to turn on the waste liquid discharge flag in S127, and then control proceeds to S128.
  • the control proceeds to S128, and it is determined whether or not the level sensor LS1 is at the discharge completion level (LL1).
  • control proceeds to S131.
  • the control proceeds to S12, and after the control for switching the waste liquid discharge flag to OFF is performed, the control proceeds to S131. move on.
  • S131 it is determined whether or not the value of the level sensor LS3 exceeds the level HH2 of the full water abnormality. If it has exceeded, control proceeds to S132, the discharge P error flag is turned ON, and the process of turning ON the concentrate relay tank full error flag is performed, followed by S134. On the other hand, if NO is determined in S131, the control proceeds to S133, in which the waste liquid P error flag is turned OFF and the concentrate relay tank full error flag is turned OFF. Next, the control proceeds to S134.
  • S134 it is determined whether or not the value of the level sensor LS1 exceeds the full water abnormality level HH1. If it has exceeded, control proceeds to S135, and control is performed to turn on the concentration / circulation tank full water error flag. On the other hand, when the value of LS1 does not exceed HH1, the control proceeds to S136, and processing for turning off the concentration circulation tank full error flag is performed.
  • S137 it is determined whether or not the value of the level sensor LS2 exceeds the full water level ML of the membrane cleaning tank 8. If exceeded, control proceeds to S138, and after processing for turning on the membrane cleaning tank full water error flag is performed, control proceeds to S143.
  • the control proceeds to S139, and control for turning off the membrane cleaning tank full error flag is performed.
  • the control advances to S140, and it is determined whether or not the value of the level sensor LS2 is below the drought level KL of the membrane cleaning tank 8. If it falls below, the control advances to S141, and a process for turning on the membrane cleaning tank drought error flag is performed.
  • the control proceeds to S142, and control for turning off the membrane cleaning tank drought error flag is performed.
  • S143 it is determined whether or not any error flag is ON. If any error flag is ON, emergency stop control is performed in S144.
  • S150 the stock solution replenishment process for supplying the stock solution to the concentration circulation tank is performed.
  • S151 a concentration process is performed in which the stock solution stored in the concentration circulation tank 2 is filtered and concentrated.
  • a water pushing process is performed by S152.
  • S153 a cleaning process for cleaning the UF membrane tube 15 of the tubular membrane separation apparatus 10 using the cleaning liquid stored in the membrane cleaning tank 8 is performed in S153.
  • a concentrated liquid discharge process for discharging the concentrated liquid stored in the concentrated circulation tank 2 is performed through S154.
  • S160 it is determined whether or not the operation flag indicating that the filtration apparatus is operating is ON.
  • the operation flag becomes NO when the operator turns on the operation start switch with the power of the filtration apparatus turned on, and is turned off in S168. If the operation flag is not ON, this subroutine program returns. If the operation flag is ON, the control proceeds to S161, and it is determined whether or not the value of the level sensor LS1 is equal to or lower than the discharge completion level LL1 of the concentration circulation tank 2.
  • the control advances to S162, and it is determined whether or not the value of the level sensor LS1 is at the operation stop level L1. If it is not L1, this subroutine program returns.
  • this stock solution replenishment process is executed in a state where the concentrate in the concentration circulation tank 2 is discharged, the value of the level sensor LS1 is equal to or lower than the discharge completion level LL1, and therefore the control proceeds to S169.
  • a process of transmitting a stock solution supply signal for replenishing the stock solution by the initial replenishment amount to the pH adjustment control panel 22 is performed.
  • This “initial replenishment amount” is a replenishment amount at which the stock solution reaches the operation start level H1 in the concentration circulation tank 2 in a state where the concentrate is discharged.
  • a determination of YES is made in S162.
  • the control advances to S163, and it is determined whether or not the concentration counter is NK.
  • This concentration counter is a counter that counts the number of times of addition to add the stock solution into the concentration circulation tank 2.
  • NK is the number of times of concentration (number of times of addition) preset by S61.
  • the control proceeds to S164, and the stock solution supply signal for replenishing the stock solution to the operation start level H1 in the concentration circulation tank 2 Is transmitted to the pH adjustment control panel 22. Thereby, it determines with YES by S30, a stock solution is supplied to the concentration circulation tank 2 by S31, and the stock solution is added. While the stock solution is being added, the device control microcomputer 63 stops and controls the circulation pump 33. Thereby, supply of the stock solution (concentrated solution) to the tubular membrane separation apparatus 10 is stopped. When the circulation pump 33 is stopped, a back flow of the stock solution (concentrated liquid) may occur in the circulation pump 33.
  • the UF membrane tube 15 in the tubular membrane separation apparatus 10 located above the plurality of tubular membrane separation apparatuses 10 becomes negative pressure, and the treated water flows back to the UF membrane tube 15.
  • the apparatus control microcomputer 63 opens the motor valve MV8 while the circulation pump 33 is stopped. Then, the UF membrane tube 15 in the tubular membrane separator 10 is in communication with the upper part of the concentration circulation tank 2. The space between the liquid level of the stock solution (concentrated liquid) stored in the concentration circulation tank 2 and the ceiling portion of the concentration circulation tank 2 communicates with the outside air.
  • the control advances to S165, and a process of updating the concentration number counter by 1 is performed.
  • control proceeds to S166, where it is determined whether the batch counter has reached VC.
  • This VC is the number of batches input and set in advance in S63.
  • the control advances to S167, and a process of turning on a waste liquid discharge flag for discharging the concentrated liquid in the concentration circulation tank 2 is performed.
  • the control advances to S168, and processing for switching the operation flag to OFF is performed.
  • the stock solution is added each time the stock solution in the concentrate circulation tank 2 decreases and reaches a predetermined amount (L1 level) as the stock solution is concentrated. Instead of this, the stock solution may always be supplied to the concentration circulation tank 2 little by little as the concentration proceeds.
  • S180 it is determined whether or not the cleaning process flag is ON.
  • This cleaning process flag is a flag indicating that the cleaning process is being executed. If the cleaning process flag is ON, this subroutine program returns. If the cleaning process flag is not ON, the control advances to S181 to determine whether or not the water pushing process flag is ON.
  • the water pushing process flag is a flag indicating that the water pushing process is being executed. If the water pushing process flag is not ON, the control advances to S184, and it is determined whether or not the concentration process flag is ON.
  • the concentration process flag is a flag indicating that the concentration process is being executed.
  • the control proceeds to S185, and it is determined whether or not the value of the level sensor LS1 has reached the operation start level H1 in the concentration circulation tank 2. If not reached, this subroutine program returns. However, if the stock solution is replenished and the value of the level sensor LS1 reaches the operation start level H1, the control advances to S186, and the process of turning on the concentration process flag is performed. Done. If the concentration process flag is turned ON, a determination of YES is made in S184, the control proceeds to S182, and it is determined whether or not one unit concentration time has elapsed.
  • This 1-unit concentration time refers to the water pushing step (see FIG. 11) after the concentration step 1 (see FIG. 1) and the concentration step 2 (see FIG.
  • This 1 unit concentration time is set in advance so that it can be adjusted to a desired time. If one unit concentration time has not yet elapsed since the concentration step was started, the control proceeds to S183, where it is determined whether the reverse operation time has elapsed.
  • the reverse operation time is the time from the start of the concentration step 1 until the end of the concentration step 1 to start the concentration step 2, and the transition from the start of the concentration step 2 to the concentration step 1 The time until the concentration step 2 is completed.
  • This reverse operation time is the reverse operation time input and set in advance in S73. If the reverse operation time has not yet elapsed, this subroutine program returns.
  • the control proceeds to S187, and it is determined whether or not the reverse direction flag is ON.
  • the reverse direction flag is a flag indicating that the concentrated liquid or the cleaning liquid is flowing in the reverse direction with respect to the tubular membrane separator 10. If the current direction is flowing in the reverse direction, the reverse direction flag is ON. Therefore, a determination of YES is made in S187, the control proceeds to S188, and the reverse direction flag is turned OFF. On the other hand, when the reverse direction flag is OFF, the control advances to S192, and processing for turning the reverse direction flag ON is performed. This subroutine program returns soon.
  • S195 it is determined whether or not the concentration process flag is ON. If it is not ON, this subroutine program returns. If it is ON, control proceeds to S196, where it is determined whether the reverse flag is OFF. If the reverse flag is OFF, the control proceeds to S197, the motor valve MV1 is opened, the motor valve MV3 is switched to the B ⁇ C flow path, and the motor valve MV4 is switched to the C ⁇ A flow path, After the motor valve MV9 is switched to the flow path C ⁇ B and the motor valve MV2 is closed, this subroutine program returns.
  • the concentrated solution flows in the forward direction as shown in FIG. 1, and the concentration step 1 is executed.
  • the reverse direction flag is ON, NO is determined in S196 and the control advances to S198, the motor valve MV1 is opened, the motor valve MV3 is switched to the flow path C ⁇ A, and the motor valve MV4 is opened. Is switched to the flow path B ⁇ C, the motor valve MV9 is switched to the flow path C ⁇ B, and the motor valve MV2 is closed.
  • the concentrated solution (stock solution) flows in the reverse direction as shown in FIG. 10, and the concentration step 2 is executed.
  • the concentration process performed immediately before the water pushing process is the concentration process 1 in which the stock solution (concentrated liquid) is flowed in the forward direction
  • the reverse flag is OFF, so that NO is determined in S216.
  • the control proceeds to S218, the motor valve MV1 is closed, the motor valve MV2 is opened, the motor valve MV3 is switched to the flow path C ⁇ A, the motor valve MV4 is switched to the flow path B ⁇ C, and the motor valve Control for switching the MV 9 to the flow path C ⁇ B is performed.
  • the concentration process performed immediately before the water pushing process is the concentration process 2 in which the concentrated liquid is flowed in the reverse direction
  • the cleaning liquid is flowed in the forward direction in the water pushing process to be performed next.
  • the flow path control is performed (S217), and the sponge ball held in the receiving mechanism 18 on one end side of the tubular membrane separation apparatus 10 is pushed out into the UF membrane tube 15, and the sponge ball 17 is passed through the inside of the UF membrane tube 15. With this, the water is pushed while being washed.
  • the concentration process performed immediately before the water pushing process is the concentration process 1 in which the stock solution (concentrated liquid) flows in the forward direction
  • the reverse direction flag is OFF, so the cleaning liquid is tubular.
  • a water push is applied to the membrane separation device 10 in the opposite direction (S218), and the sponge ball 17 held by the receiving mechanism 18 on the other single side of the tubular membrane separation device 10 is placed in the UF membrane tube 15. The water is pushed while being pushed out to clean the inside of the UF membrane tube 15.
  • a flowchart of a subroutine program for the cleaning process shown in S153 will be described with reference to FIG.
  • a process switching process is performed in S225, and a cleaning process flow path control process is performed in S226.
  • a flowchart of a subroutine program for the process switching process shown in S225 will be described with reference to FIG.
  • the cleaning process flag is ON, the control advances to S231 to determine whether or not one unit cleaning time has elapsed.
  • the one unit cleaning time is a time period from when the cleaning process 1 (see FIG. 12) and the cleaning process 2 (see FIG. 13) are executed a plurality of times until the cleaning process is completed. This 1 unit cleaning time is set in advance so that it can be adjusted to a desired time. If one unit cleaning time has not yet elapsed since the start of the cleaning process, NO is determined in S231, and the control advances to S234 to determine whether the reverse operation time has elapsed.
  • This reverse operation time is the reverse operation time input and set in advance in S73. When the reverse operation time has not elapsed, the subroutine program returns.
  • the reverse direction flag at the end of the concentration process is carried over as it is in the cleaning process and is determined in S241.
  • control is performed so that the cleaning liquid flows in the same direction as the flow direction of the stock solution (concentrated liquid) that has been executed at the end of the concentration process. If it reduces, control which starts washing
  • the control proceeds to S243, the motor valve MV1 is closed, the motor valve MV3 is switched to the flow path C ⁇ A, the motor valve MV2 is opened, and the motor valve MV4 is set to B Control is performed to switch to the flow path of C and switch the motor valve MV9 to the flow path of C to A.
  • a cleaning process 2 is performed in which the cleaning liquid is flowed in the reverse direction with respect to the tubular membrane separation apparatus 10.
  • the control proceeds to S242, the motor valve MV1 is closed, the motor valve MV3 is switched to the flow path B ⁇ C, the motor valve MV2 is opened, and the motor valve MV4 is changed from C ⁇ A. Control is performed to switch to the flow path and switch the motor valve MV9 to the flow path C ⁇ A. As a result, as shown in FIG. 12, the cleaning is performed by flowing the cleaning liquid in the forward direction with respect to the tubular membrane separator 10. Since the reverse flag is switched when the reverse rotation time elapses (S234 to S237), the cleaning process is switched from the cleaning process 1 to 2 or from the cleaning process 2 to 1.
  • this subroutine program returns, but at the stage when LL1 is reached, a determination of YES is made in S252, control proceeds to S253, the waste liquid discharge flag is turned OFF, and batch is performed in S254. This subroutine program returns after the process of updating the number counter by 1 is performed.
  • the flowchart of the subroutine program for the monitor display process shown in S54 will be described with reference to FIG. In S260, it is determined whether or not a monitor display operation has been performed. If not, the subroutine program returns.
  • a determination of YES is made in S260 and the control advances to S261, and a menu for displaying various display items to be displayed on the display unit 65 is displayed. Display is executed. If the operator who sees it selects the menu to be displayed by the input operation unit 64, a determination of YES is made in S262, the control advances to S263, and the selected item is displayed on the display unit 65.
  • monitor display examples include, for example, automatic cleaning time, water pushing time, reverse operation time, waste liquid discharge time, full water abnormality level HH1, operation start level H1, operation stop level L1, discharge completion level LL1 in the concentration circulation tank 2 , Current water level, full water abnormality level HH2 in concentrate relay tank 3, level H1 closing MV7, level L2 starting operation of concentrate feed pump 31, level LL2 stopping concentrate feed pump 31, current water level, Various input operation setting values such as the number of times of concentration (the number of times of pouring) and the number of times of batch are displayed on the monitor. Furthermore, error display corresponding to various error flags that are turned on may be performed. Next, an embodiment in which optimum filtration control is performed using machine learning by artificial intelligence will be described with reference to FIGS.
  • each of the device control panels 23 of the large number of filtration processing devices is connected to the artificial intelligence server 55 via the Internet 60.
  • Various data generated during the operation of the filtration device is transmitted from each device control panel 23 to the artificial intelligence server 55, and the artificial intelligence server 5 performs machine learning based on the transmitted various data, and the learning result is obtained.
  • the reflected control command is returned to each device control panel 23.
  • Such a service may be executed by the artificial intelligence server 55 as a cloud service.
  • the artificial intelligence server 55 uses a general Neumann computer, but may also use a neural network processor (NNP).
  • NNP neural network processor
  • a large number of “artificial neurons” modeled on real neurons are mounted on the NNP chip, and each neuron cooperates in a network.
  • a quantum computer employing a “quantum annealing method” may be used. Thereby, the time required for the optimization calculation in machine learning can be greatly shortened.
  • “Artificial intelligence” is a broad concept that includes software agents. Further, machine learning described later may be performed in combination with deep learning.
  • a learning database 56 and a device control panel database 57 are connected to the artificial intelligence server 55.
  • the learning database 56 includes various filtering environments corresponding to the environment in reinforcement learning, state data s indicating the state of the filtering environment, and action data a as an action performed by the artificial intelligence server 55 on the filtering environment. It is stored for each filtering environment.
  • the filtration environment is classified according to the type of waste liquid to be filtered, such as waste liquid from a food factory, waste liquid from a mechanical grinding factory, waste liquid from a petrochemical plant factory, waste liquid from a chemical factory, and the like. For example, even if it is a filtration environment which filters the waste liquid from a food factory, you may classify
  • the state data s is data for specifying the current state in the filtration environment based on the data transmitted from each device control panel 23.
  • the time required for the value of the level sensor LS1 to decrease from the operation start level H1 to the operation stop level L1, error information based on ON error flag data, and the like The shorter the time for the level sensor LS1 to decrease from H1 to L1, the more efficiently the concentrate in the concentration circulation tank 2 is concentrated. The shorter the time, the higher the reward r is given to the artificial intelligence server 55. This is given to the agent engine 56 for reinforcement learning. On the other hand, based on the error information that has occurred, the lower the error occurrence frequency, the higher the reward r is given to the reinforcement learning agent engine 56.
  • Each device control panel 23 transmits the time required for the level sensor LS1 to decrease from H1 to L1 to the artificial intelligence server 55 via the Internet 60.
  • the device control panel 23 transmits error flag data that is ON among the above-described error flags to the artificial intelligence server 55 via the Internet 60.
  • Examples of the action data a instructed to the device control panel 23 to which the artificial intelligence server 55 corresponds include, for example, the number of times of concentration (number of times of addition) NK, automatic cleaning time, reverse operation time, heat exchange operation temperature, concentrated liquid circulation flow rate, cleaning liquid. Circulation flow rate, concentration pressure, etc.
  • the device control panel database 57 records the filtration environment in which the device control panel 23 is currently performing the filtration process in association with the control panel ID assigned to each device control panel 23. Next, the control circuit of the artificial intelligence server 55 will be described with reference to FIG.
  • the artificial intelligence server 55 is provided with a CPU 161 as a control center, a ROM 163 storing a control program and control data, and a RAM 162 functioning as a work area for the CPU 161.
  • a bus 164 for transferring data control signals and an interface unit 165 for transmitting / receiving data to / from an external device are provided.
  • An operation unit 168 and the like are provided.
  • the reinforcement learning agent engine 56 stored in the artificial intelligence server 55 exchanges information with the filtration environment S.
  • a reward r for the action a is obtained.
  • the machine learning agent engine 56 acquires data on the state s of the filtration environment S, determines an action a based on the state s, and executes the action a on the filtration environment S.
  • a control program for such an artificial intelligence server 55 will be described.
  • FIG. 27C shows a main routine of the artificial intelligence server.
  • a filtering environment classification process is performed through S270. Next, reinforcement learning processing is performed in S271.
  • the filtration environment classification process determines which filtration environment the filtration processing apparatus currently performing the filtration process belongs to.
  • the filtration environment specifying data is data for specifying the waste liquid to be filtered, such as food factory waste liquid, chemical factory waste liquid, and the like, and it is considered that the operator manually inputs the input operation unit 64 and transmits it to the artificial intelligence server 55. . If the filtration environment specifying data is received, the control proceeds to S276, where it is determined whether or not there is a corresponding filtration environment among the filtration environments already stored in the learning database 56.
  • the control advances to S279, and processing for storing the corresponding filtration environment in association with the transmitted ID of the apparatus control panel is performed.
  • the action data a corresponding to the filtration environment is calculated from the learning database 56 and returned to the apparatus control panel 23.
  • the apparatus control panel 23 controls the filtration apparatus in accordance with the received action data a (for example, the number of times of concentration, automatic cleaning time, reverse operation time, etc.).
  • the state data s as the control result is transmitted to the artificial intelligence server 55 via the Internet 60 again.
  • the control advances to S281 to create a new filtration environment and create the device control panel. Is stored in the device control panel database 57 in association with the ID of the device ID.
  • the process proceeds to S282, and processing for requesting the initial value of the action data a to the apparatus control panel 23 is performed.
  • the device control panel 23 displays the fact on the display unit 65, and the operator who sees it inputs the action data a that seems to be suitable for the filtration environment from the input operation unit 64 and passes through the Internet 60. And transmitted to the artificial intelligence server 50.
  • the artificial intelligence server 55 that has received the determination makes a YES determination in S277, and a process of storing the new filtering environment and the initial value of the action data a in the learning database 56 is performed in S278.
  • the initial value of action data a for a new filtration environment may be set by analogy on the artificial intelligence server 55 side.
  • a rough component or the like of the liquid to be filtered to be newly filtered is input from the input operation unit 64 and transmitted to the artificial intelligence server 55 via the Internet 60.
  • the artificial intelligence server 55 determines the initial value of the action data a based on the components of the filtration target liquid (waste liquid) for each filtration environment already stored in the learning database 56.
  • a regression method in supervised learning may be used.
  • Regression is an algorithm for obtaining a reasonable output value predicted from an input.
  • a target is output based on a function with input data, and the problem of obtaining the function is a regression problem.
  • a flowchart of a subroutine program for reinforcement learning processing shown in S271 will be described with reference to FIG. It is determined whether or not the status data s has been received in S283. If not received, this subroutine program returns.
  • the device control board 23 transmits the status data s and its own control board ID to the artificial intelligence server 55 via the Internet 60.
  • the control proceeds to S284, the device control board database 57 is searched, the filtration environment corresponding to the received control board ID is determined, the learning database 56 is searched, and the state corresponding to the filtration environment A process for updating the data s is performed.
  • This update can be done in multiple types.
  • a possible method is to update the average of the state data s as an average. For example, when the number of device control panels 23 that have transmitted the state data s as the filtration environment A is N and the state data that is newly transmitted this time is ss, the updated state data is (s ⁇ N + ss) / (N + 1).
  • the average state data as a whole can be calculated by the above-described formula.
  • the unique state data is data obtained by tabulating state data transmitted for each control panel ID.
  • the overall average state data is sz
  • the specific state data is sk
  • the weight of the total average state data is wg
  • the weight of the specific state data is wd
  • the artificial intelligence server 55 makes a response to the specific device control board 23.
  • w1 ⁇ sz + w2 ⁇ sk is used as the state data.
  • the filtration processing device conceived in view of the actual situation is a filtration processing device that uses a filtration membrane (for example, a UF membrane tube 15) to filter a liquid to be filtered by a cross flow method and separates it into a processed liquid and a concentrated liquid.
  • a filtration membrane for example, a UF membrane tube 15
  • a filtration processing unit for example, a tubular membrane separation device 10 for flowing and filtering the liquid to be filtered along the filtration membrane;
  • Cleaning means for example, the membrane cleaning tank 8, the device control panel 23, the three-way valves 36, 37, 38, the receiving mechanism 18, the sponge ball 17 for cleaning the deposits attached to the filtration membrane by the filtration treatment;
  • a treated liquid storage tank for example, a membrane cleaning tank 8) for collecting and storing the treated liquid,
  • the cleaning means is a cleaning liquid crossflow means (for example, the membrane cleaning tank 8, the process switching process in FIG. 24A, the cleaning process in FIG. 24B) for flowing a cleaning liquid along the filtration membrane.
  • the cleaning liquid crossflow means includes processed liquid use means (for example, S79, motor valve MV6) for using the processed liquid stored in the processed liquid storage tank as the cleaning liquid.
  • processed liquid use means for example, S79, motor valve MV6
  • S79 motor valve MV6
  • MV6 motor valve MV6
  • a cleaning liquid tank for storing water (or cleaning liquid) is provided, and water (or cleaning liquid) is washed through the ultrafiltration membrane when the facility is stopped. Yes.
  • the cleaning liquid that has passed through the ultrafiltration membrane is returned to the cleaning liquid tank again.
  • the filtration processing device conceived in view of the actual situation is a filtration processing device that uses a filtration membrane (for example, a UF membrane tube 15) to filter a liquid to be filtered by a cross flow method and separates it into a processed liquid and a concentrated liquid.
  • a filtration membrane for example, a UF membrane tube 15
  • a concentration circulation tank for example, concentration circulation tank 2 for storing the filtration target liquid and receiving and storing the concentrated liquid after the filtration target liquid is supplied to the filtration membrane and filtered;
  • a filtration processing unit for example, a tubular membrane separation device 10) for flowing and filtering the liquid to be filtered along the filtration membrane;
  • Cleaning means for example, a membrane cleaning tank 8, a device control panel 23, three-way valves 36, 37, 38, a receiving mechanism 18, a sponge ball for cleaning the deposits adhered to the filtration membrane by a filtration treatment 17
  • Process switching means for example, the process switching process in FIG. 22B, the process switching process in FIG. 23B
  • a flushing means for example, a water pushing step flow path control process in FIG. 23C
  • a filtration target liquid reduction means for example, S217, S218, motor valves MV3, MV4, MV9 for reducing the filtration target liquid washed away by the flushing means to the concentration circulation tank.
  • the liquid to be filtered pushed away by the flushing means is returned to the concentration circulation tank and further concentration is possible, and the waste amount of the liquid to be filtered can be reduced as much as possible.
  • a cleaning liquid storage tank for example, a film cleaning tank 8 for storing the cleaning liquid is further provided, The cleaning means returns the cleaning liquid after the filtration membrane cleaning to the cleaning liquid storage tank (for example, S242, S243, motor valve MV9) in the cleaning step executed after the flushing by the flushing means is completed. .
  • An object of the present invention is to provide a filtration apparatus capable of automatically switching each process necessary for performing a good filtration process and omitting an artificial operation as much as possible.
  • the filtration apparatus devised in view of the actual situation is subject to filtration by a cross-flow method using a filtration membrane (eg, UF membrane tube 15) provided in a filtration membrane unit (eg, tubular membrane separation device 10).
  • a filtration apparatus for filtering a liquid to separate a processed liquid and a concentrated liquid, Concentration reduction which reduces the concentrate which separated by supplying the filtration object liquid stored in the concentration circulation tank (for example, the concentration circulation tank 2) to the said filtration membrane unit and filtering with the said filtration membrane to a concentration circulation tank
  • Concentration reduction means for executing the process (for example, S197, S198, motor valves MV1, MV2, MV3, MV4, MV9),
  • a flushing means for supplying a cleaning liquid to the filtration membrane unit and flushing the liquid to be filtered remaining in the filtration membrane unit to reduce it to the concentration circulation tank (for example, FIG.
  • the filtration processing device conceived in view of the actual situation is a filtration processing device that uses a filtration membrane (for example, a UF membrane tube 15) to filter a liquid to be filtered by a cross flow method and separates it into a processed liquid and a concentrated liquid.
  • a filtration membrane for example, a UF membrane tube 15
  • a filtration processing unit for example, a tubular membrane separation device 10 for flowing and filtering the liquid to be filtered along the filtration membrane;
  • Cleaning means for example, the membrane cleaning tank 8, the device control panel 23, the three-way valves 36, 37, 38, the receiving mechanism 18, the sponge ball 17 for cleaning the deposits attached to the filtration membrane by the filtration treatment;
  • Machine learning means for performing machine learning for acquiring knowledge adapted to each filtration environment (for example, filtration environments A, B... In FIG.
  • the machine learning means inputs data capable of specifying the filtration efficiency of the liquid to be filtered by the filtration in the filtration processing unit as a state with respect to the filtration environment (for example, state data s in FIG. 26).
  • control that affects the filtration efficiency is output as an action on the filtration environment (for example, action data a in FIG. 26), and reinforcement learning is performed to improve the filtration efficiency by repeating the input and output.
  • Reinforcement learning means for example, the reinforcement learning process in FIG. 26B is included.
  • the present invention is a filtration apparatus for filtering a liquid to be filtered using a filtration membrane tube (for example, a UF membrane tube 15) to separate it into a treated liquid and a concentrated liquid,
  • a feeding means for example, a circulation pump 33
  • Communication means for example, a motor valve MV8 is provided that allows the inside of the filtration membrane tube to communicate with the outside air when the feeding of the stock solution by the feeding means is stopped.
  • the filtration target liquid may be washed away in a state where the remaining filtration target liquid and the cleaning liquid are partitioned by a wiping body (for example, a sponge ball). That is, when the liquid to be filtered remaining in the filtration processing unit is washed away by the flushing means, the liquid to be filtered is separated in a state where the remaining liquid to be filtered and the cleaning liquid are separated by the wiping body. Configure to flush away.
  • a wiping body for example, a sponge ball
  • the filtration object liquid can be washed away, and the filtration object liquid can be washed away effectively.
  • PVDF polyvinylidene fluoride
  • UF membrane ultrafiltration membrane
  • other materials may be used.
  • a UF membrane ultrafiltration membrane
  • the filtration membrane is not limited to this.
  • an MF membrane microfiltration membrane
  • separation and concentration at the ion level may be made possible by using an RO membrane (reverse osmosis) and an NF membrane (nanofiltration membrane).
  • the RO membrane has a salt removal rate of about 99 to 99.8%
  • the NF membrane has a salt removal rate of about 40 to 97%
  • the UF membrane has a membrane pore size of about 0.001 to 0.
  • the MF membrane has a pore diameter of about 0.01 to 10 ⁇ m.
  • the urethane type is used as the material of the sponge ball.
  • the present invention is not limited to this, and a vinyl type, a rubber type, or a polyethylene type may be used.
  • the upper limit JRU and lower limit JRL (S93) of the circulation flow rate, the concentration discharge error time NHT (S97), and the like were fixed values that do not vary. However, these values are controlled so as to vary to optimum values according to the progress of the concentration process (for example, the current number of times NK, the elapsed time of the concentration process, etc.) and / or the progress of the cleaning process. May be.
  • variation control (dynamic optimization control) is performed by using the machine learning (for example, reinforcement learning) by the artificial intelligence server 55 described above, it can be realized with minimal human labor.
  • an Ethernet unit is built in a filtration apparatus installed in the field, and the following can be performed by way of a PLC (Programmable Logic Controller).
  • a Filtration device sends an operation record by e-mail.
  • the filtering device that received the mail from the PC resets the abnormality.
  • the filter device that has received the mail from the PC starts / stops operation.
  • the stock solution water pump 27 shown in the above-described embodiment uses a mechanical seal pump.
  • a seal is provided at a location where the pump shaft passes through the casing, and the inside and outside of the casing are shut off to prevent leakage of internal liquid and intrusion of air or liquid from the outside.
  • a magnet pump (a kind of sealless pump) may be used instead of the mechanical seal pump. This magnetic pump stops the penetration of the power transmission shaft from the outside to the inside of the pump in order to prevent liquid leakage from the seal that cannot be avoided due to the shaft seal mechanism of the sealed pumps.
  • the power is transmitted by a permanent magnet or an electromagnet with a gap. Therefore, there is no leakage because there is no shaft seal. This is a feature of the magnet pump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The purpose of the present invention is to solve a problem in which a washing function is degraded by the washing of a tubular-type filter membrane. When a liquid to be filtered is filtered by being pressure-fed into a UF membrane tube 15 in a tubular-type membrane separation device 10, a sponge ball is made to flow inside the UF membrane tube 15 by the liquid to be filtered, so that deposits attached to the inner surface of the UF membrane tube 15 are cleaned out by the sponge ball. To ensure that a passageway 125 for the liquid to be filtered moving inside the tubular-type membrane separation device 10 is longer than the length from the end on one side of the tubular-type membrane separation device 10 to the end on the other side, the passageway 125 is curved inside the tubular-type membrane separation device 10. A reception tool 18 is provided for receiving the sponge ball, which has moved inside the UF membrane tube 15 and come out from a liquid outlet 118 of the tubular-type membrane separation device 10, while allowing a concentrate to pass through. The reception tool 18 has a detachable cap for enabling the received sponge ball 17 to be taken out and replaced.

Description

濾過処理装置Filtration processing equipment
 本発明は、例えば、工場から排出されるエマルジョン廃液の濾過、医薬品や医療用水製造時のウイルスや内毒素の濾過、蛋白質や酵素など熱に弱い物質の濾過等を行って、処理済み液と濃縮液とに分離する濾過処理装置に関する。詳しくは、チューブラ式濾過膜を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置に関する。 The present invention, for example, filtration of emulsion waste liquid discharged from factories, filtration of viruses and endotoxins during production of pharmaceuticals and medical water, filtration of heat-sensitive substances such as proteins and enzymes, etc. The present invention relates to a filtration apparatus that separates liquid. Specifically, the present invention relates to a filtration apparatus that filters a liquid to be filtered by a cross-flow method using a tubular filtration membrane and separates it into a treated liquid and a concentrated liquid.
 この種の濾過処理装置として、例えば、特許文献1に記載のものがあった。この濾過処理装置は、濾過対象液(原水)をチューブラ式膜モジュール内に圧送することにより濾過対象液を濾過して処理済み液(膜透過水)と濃縮液とに分離している。具体的な構成を図29に基づいて説明する。
 先ず、図29(a)を参照して、圧力容器216の左右両端に原水の導入排出口210、212が設けられている。圧力容器216の内部は、仕切り部材222、224で3つの領域に分けられている。中央の領域にはチューブラ式膜218が複数本並列状態に設けられている。左右の領域は、複数本のチューブラ式膜218内を通過してきた濃縮液を合流させる合流室230に構成されている。導入排出口210、212の一方から導入された原水が合流室230に入った後各々のチューブラ式膜218に供給され、各チューブラ式膜218を通過してきた濃縮液が合流室230に受け入れられて合流した後、導入排出口210、212の他方から排出される。
 複数本のチューブラ式膜218各々の端部に圧送された濾過対象液が他方の端部まで移動する間に、膜を通過した膜透過水(処理済み液)と膜を通過しなかった濃縮液とに分離される。膜透過水(処理済み液)は排出口214から排出される。
 このような濾過処理によって複数本のチューブラ式膜218の膜内面に濾過対象液の汚濁物質等が付着する。この付着物を洗浄する方法として、特許文献1の濾過処理装置では、複数本のチューブラ式膜218内に1つずつ洗浄用のスポンジボール220からなる拭浄体を入れておき、チューブラ式膜218内に導入する原水の流入方向を切り換えて、各スポンジボール220をそれぞれのチューブラ式膜218内で往復させることにより、膜内をスポンジボールで拭って洗浄している。
 この特許文献1に記載の濾過処理装置では、各チューブラ式膜218の両端に洗浄材抜け止め機構222が設けられており(図29(b)参照)、チューブラ式膜218内を移動してきたスポンジボール220が受止められてチューブラ式膜218端部から抜け落ちるのを防止している。この洗浄材抜け止め機構222はスポンジボール220を受止めた状態でも濾過対象液は通過できるように構成されている。
As this type of filtration apparatus, for example, there is one described in Patent Document 1. In this filtration apparatus, the liquid to be filtered is filtered into the treated liquid (membrane permeated water) and the concentrated liquid by pumping the liquid to be filtered (raw water) into the tubular membrane module. A specific configuration will be described with reference to FIG.
First, referring to FIG. 29A, raw water introduction and discharge ports 210 and 212 are provided at the left and right ends of the pressure vessel 216. The inside of the pressure vessel 216 is divided into three regions by partition members 222 and 224. A plurality of tubular membranes 218 are provided in parallel in the central region. The left and right regions are configured in a merge chamber 230 in which concentrated liquids that have passed through the plurality of tubular membranes 218 are merged. The raw water introduced from one of the inlet / outlet ports 210 and 212 enters the merge chamber 230 and then is supplied to each tubular membrane 218, and the concentrated liquid that has passed through each tubular membrane 218 is received by the merge chamber 230. After joining, it is discharged from the other of the introduction discharge ports 210 and 212.
The membrane permeated water (treated solution) that passed through the membrane and the concentrated solution that did not pass through the membrane while the liquid to be filtered fed to the end of each of the plurality of tubular membranes 218 moved to the other end. And separated. The membrane permeated water (treated liquid) is discharged from the discharge port 214.
As a result of such a filtration treatment, a contaminant or the like of the liquid to be filtered adheres to the inner surface of the plurality of tubular membranes 218. As a method of cleaning this deposit, in the filtration apparatus of Patent Document 1, a wiper body composed of a sponge ball 220 for cleaning is placed in a plurality of tubular membranes 218 one by one, and the tubular membrane 218 is placed. The inflow direction of the raw water introduced into the inside is switched, and the sponge balls 220 are reciprocated in the tubular membranes 218, whereby the inside of the membranes is wiped and cleaned with the sponge balls.
In the filtration apparatus described in Patent Document 1, a cleaning material retaining mechanism 222 is provided at both ends of each tubular membrane 218 (see FIG. 29B), and the sponge that has moved through the tubular membrane 218 has been moved. The ball 220 is received and prevented from falling off the end of the tubular membrane 218. The cleaning material retaining mechanism 222 is configured so that the liquid to be filtered can pass even when the sponge ball 220 is received.
特開平6−304455号公報JP-A-6-304455
 この特許文献1に記載の濾過処理装置では、チューブラ式膜モジュール内を往復することによって拭浄体としてのスポンジボール自体に汚濁物質等が付着し、洗浄機能が低下する欠点があった。
 本発明は、係る実情に鑑み考え出されたものであり、その目的は、拭浄体自体の汚れに伴い洗浄機能が低下するという問題を解消できる濾過処理装置を提供することである。
The filtration apparatus described in Patent Document 1 has a drawback in that the contaminants and the like adhere to the sponge ball itself as a wiping body by reciprocating in the tubular membrane module, and the cleaning function is lowered.
The present invention has been conceived in view of the actual situation, and an object thereof is to provide a filtration apparatus capable of solving the problem that the cleaning function is reduced due to contamination of the wiping body itself.
 以下には、課題を解決するための手段に対応する実施形態の具体的内容を括弧書き挿入して示す。
 本発明は、チューブラ式濾過膜(例えば、UF膜チューブ15)を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
 前記チューブラ式濾過膜が内蔵され、該チューブラ式濾過膜内に濾過対象液を流して濾過するための濾過処理部(例えば、チューブラ式膜分離装置10)と、
 濾過処理によって前記チューブラ式濾過膜内面に付着した付着物を洗浄する洗浄手段(例えば、膜洗浄槽8、装置制御盤23、三方弁36,37,38、受止め機構18、スポンジボール17)と、を備え、
 前記洗浄手段は、前記チューブラ式濾過膜内面に接触している拭浄体(例えば、スポンジボール17)を移動させて該チューブラ式濾過膜内面に付着した付着物を拭い取り、
 前記チューブラ式濾過膜内を移動して前記濾過処理部から出てきた前記拭浄体を交換にするための交換機構(例えば、受止め機構18および着脱キャップ20)をさらに備えている。
 また、前記濾過処理部は、第1か所と第2か所とに形成された濾過対象液の出入り口(例えば、図2の液出入り118)を有し、一方の前記出入り口から進入した濾過対象液が他方の前記出入り口に到達するまでの移動経路(例えば、移動経路125)が1本となるように構成されており(例えば、図2)、
 前記拭浄体は、液体のクロスフローにより移動して該チューブラ式濾過膜内面に付着した付着物を拭い取り、
 前記交換機構は、前記チューブラ式濾過膜内を移動して前記出入り口から出てきた前記拭浄体を受止めると共に、濃縮液の通過は許容する拭浄体受止め機構(例えば、受止め機構1)を有し、
 前記拭浄体受止め機構は、受止めた前記拭浄体を取出して交換可能にするための取出し機構(例えば、着脱キャップ20)を有してもよい。
 また、前記移動経路(例えば、移動経路125)が前記濾過処理部の全長よりも長くなるように、当該移動経路を前記濾過処理部内で屈曲させてもよい(例えば、図2)。
 また、前記洗浄手段は、前記チューブラ式濾過膜に沿って洗浄用液体を流すための洗浄用液体クロスフロー手段(例えば、膜洗浄槽8、図24(a)の洗浄工程切換え処理、図24(b)の工程流路切換え処理)を含んでもよい。
 また、前記処理済み液を回収して貯留するための処理済み液貯留槽(例えば、膜洗浄槽8)をさらに備え、
 前記洗浄用液体クロスフロー手段は、前記処理済み液貯留槽に貯留されている処理済み液を前記洗浄用液体として使用するための処理済み液使用手段(例えば、S79、モータバルブMV6)を有してもよい。
 また、前記濾過処理部により濾過対象液を濾過する濾過工程(例えば、図1と図10)から前記洗浄用液体を流して洗浄する洗浄工程(例えば、図12と図13)に切り換えるための工程切換え手段(例えば、図22(b)の工程切換え処理、図23(b)の工程切換え処理)と、
 前記濾過工程から前記洗浄工程に切り換わるときに、残存している濾過対象液を前記洗浄用液体で押し流すための押し流し手段(例えば、図23(c)の水押し工程流路制御処理)と、をさらに備えてもよい。
 また、前記濾過処理部により濾過対象液を濾過する濾過工程と前記洗浄手段による洗浄工程との実行時間を調整するための時間調整手段(例えば、S182、S231)をさらに備えてもよい。
 また、前記濾過対象液を貯留すると共に該濾過対象液が前記濾過処理部に供給されて濾過された後の濃縮液を受入れて貯留するための濃縮循環槽(例えば、濃縮循環槽2)と、
 前記濃縮循環槽から前記濾過処理部を経由して前記濃縮循環槽に戻る濾過対象液の循環に伴って前記濾過処理部による濾過が進行することにより、前記濃縮循環槽内の濾過対象液が濃縮されて所定の貯留量(例えば、L1レベル)まで減少したことに応じて、原液を前記濃縮循環槽内に注ぎ足すための原液注ぎ足し手段(例えば、原水槽1、原液送水ポンプ27、pH調整槽5、pH調整水ポンプ30、S162、S164、S30、S31~S34)と、
 前記原液注ぎ足し手段による注ぎ足し回数が所定回数(例えば、S61により予め入力設定された濃縮回数NK)に達したことに応じて(例えば、S163によりYES)、前記濃縮循環槽内に貯留されている濃縮液を取り出すための濃縮液取り出し手段(例えば、S167、S251~S254)と、をさらに備えてもよい。
 また、前記濾過対象液の種類に応じて分類された各濾過環境毎(例えば、図26の濾過環境A、B・・・)に適応した知識を獲得する機械学習を行うための機械学習手段(例えば、人工知能サーバ55)をさらに備え、
 前記機械学習手段は、前記濾過処理部での濾過による濾過対象液の濾過効率を特定可能なデータを前記濾過環境に対する状態(例えば、図26の状態データs)として入力する
と共に、前記濾過効率に影響する制御を前記濾過環境に対する行為(例えば、図26の行為データa)として出力し、前記入力と出力とを繰り返すことにより前記濾過効率を向上
させるための強化学習を行う強化学習手段(例えば、図26(b)の強化学習処理)を含んでもよい。
The specific contents of the embodiment corresponding to the means for solving the problem are shown below in parentheses.
The present invention is a filtration apparatus that separates a liquid to be filtered and a concentrated liquid by filtering the liquid to be filtered by a cross-flow method using a tubular filtration membrane (for example, a UF membrane tube 15),
The tubular filtration membrane is built-in, and a filtration processing unit (for example, the tubular membrane separation device 10) for flowing and filtering the liquid to be filtered in the tubular filtration membrane;
Cleaning means (for example, a membrane cleaning tank 8, a device control panel 23, three- way valves 36, 37, and 38, a receiving mechanism 18 and a sponge ball 17) for cleaning deposits adhering to the inner surface of the tubular filtration membrane by filtration treatment; With
The cleaning means moves a wiping body (for example, sponge ball 17) in contact with the inner surface of the tubular filtration membrane to wipe off deposits adhering to the inner surface of the tubular filtration membrane,
It further includes an exchange mechanism (for example, a receiving mechanism 18 and a detachable cap 20) for moving the inside of the tubular filtration membrane to exchange the wiping body that has come out of the filtration processing unit.
Moreover, the said filtration process part has the entrance / exit (for example, the liquid in / out 118 of FIG. 2) of the filtration object liquid formed in the 1st place and the 2nd place, and the filtration object which approached from one said entrance / exit The movement path (for example, movement path 125) until the liquid reaches the other entrance / exit is configured to be one (for example, FIG. 2),
The wiping body is moved by a liquid cross flow and wipes off deposits adhering to the inner surface of the tubular filtration membrane.
The exchange mechanism receives the wiping body that moves through the tubular filtration membrane and comes out of the entrance and exit, and also allows the concentrated liquid to pass therethrough (for example, the receiving mechanism 1). )
The wiping body receiving mechanism may have a take-out mechanism (for example, a detachable cap 20) for taking out the received wiping body and making it replaceable.
In addition, the movement path (for example, movement path 125) may be bent in the filtration processing unit such that the movement route (for example, movement path 125) is longer than the entire length of the filtration processing unit (for example, FIG. 2).
Further, the cleaning means is a cleaning liquid cross flow means (for example, the membrane cleaning tank 8, cleaning process switching process in FIG. 24 (a), FIG. 24 (a), for flowing a cleaning liquid along the tubular filtration membrane. b) a process flow path switching process).
Further, a treated liquid storage tank (for example, a membrane cleaning tank 8) for collecting and storing the treated liquid is further provided,
The cleaning liquid crossflow means has a processed liquid use means (for example, S79, motor valve MV6) for using the processed liquid stored in the processed liquid storage tank as the cleaning liquid. May be.
Also, a process for switching from a filtration process (for example, FIGS. 1 and 10) for filtering the liquid to be filtered by the filtration processing unit to a cleaning process (for example, FIGS. 12 and 13) for cleaning by flowing the cleaning liquid. Switching means (for example, the process switching process of FIG. 22B, the process switching process of FIG. 23B);
When switching from the filtration step to the washing step, a flushing means (for example, a water pushing step flow path control process in FIG. 23C) for flushing the remaining filtration target liquid with the washing liquid; May be further provided.
Moreover, you may further provide the time adjustment means (for example, S182, S231) for adjusting the execution time of the filtration process which filters the filtration object liquid by the said filtration process part, and the washing | cleaning process by the said washing | cleaning means.
Further, a concentration circulation tank (for example, the concentration circulation tank 2) for storing the filtration target liquid and receiving and storing the concentrated liquid after the filtration target liquid is supplied to the filtration processing unit and filtered.
The filtration target liquid in the concentration circulation tank is concentrated by the filtration by the filtration processing part as the filtration target liquid returns from the concentration circulation tank to the concentration circulation tank via the filtration processing part. In response to being reduced to a predetermined storage amount (for example, L1 level), a stock solution addition means (for example, raw water tank 1, raw solution water supply pump 27, pH adjustment) for adding the stock solution into the concentration circulation tank is added. Tank 5, pH adjustment water pump 30, S162, S164, S30, S31 to S34),
When the number of times of addition by the stock solution addition means reaches a predetermined number (for example, the number of times of concentration NK set in advance by S61) (for example, YES by S163), it is stored in the concentration circulation tank. Concentrated liquid extracting means (for example, S167, S251 to S254) for extracting the concentrated liquid may be further provided.
Further, machine learning means for performing machine learning for acquiring knowledge adapted to each filtration environment (for example, filtration environments A, B,... In FIG. 26) classified according to the type of the filtration target liquid ( For example, an artificial intelligence server 55) is further provided,
The machine learning means inputs data that can specify the filtration efficiency of the liquid to be filtered by filtration in the filtration processing unit as a state (for example, state data s in FIG. 26) with respect to the filtration environment, and also adds the filtration efficiency to the filtration efficiency. Reinforcement learning means (for example, performing reinforcement learning for improving the filtration efficiency by repeating the input and output by outputting the affecting control as an action on the filtration environment (for example, action data a in FIG. 26). The reinforcement learning process in FIG. 26B may be included.
 本発明によれば、1つの濾過処理部内に設けられた一本のチューブラ式濾過膜内を通過する拭浄体を当該濾過処理部の外で交換可能となり、拭浄体自体の汚れに伴い洗浄機能が低下するという問題を解消できる。 According to the present invention, the wiping body that passes through one tubular filtration membrane provided in one filtration processing section can be replaced outside the filtration processing section, and the wiping body itself is cleaned along with dirt. The problem of reduced functionality can be solved.
 図1は濃縮工程1の状態での濾過処理装置の全体構成図である。
 図2はチューブラ式膜分離装置の概略図である。
 図3はチューブラ式膜分離装置の要部分解斜視図である。
 図4はチューブラ式膜分離装置の端部付近の内部構造を示す図である。
 図5はチューブラ式膜分離装置のシール機能を説明するための要部断面図である。
 図6の(a)は入排出側のエンドキャップの断面図であり、(b)はリターン側のエンドキャップの断面図である。
 図7の(a)はハウジング内での複数本のパイプの保持状態を示す横断面図であり、(b)はハウジングを取り除いた状態での複数本のパイプの保持状態を示す図である。
 図8はUF膜チューブによる濾過の原理およびスポンジボールによるUF膜チューブ内面の洗浄作用を示す図である。
 図9はスポンジボールをストレーナで保持する受止め機構を示す図である。
 図10は濃縮工程2の状態での濾過処理装置の構成図である。
 図11は水押し工程の状態での濾過処理装置の構成図である。
 図12は洗浄工程1の状態での濾過処理装置の構成図である。
 図13は洗浄工程2の状態での濾過処理装置の構成図である。
 図14はpH調整制御盤および装置制御盤の制御回路を示すブロック図である。
 図15の(a)はpH調整制御処理のメインルーチンを示すフローチャートであり、(b)は各槽異常チェック処理のサブルーチンプログラムを示すフローチャートである。
 図16の(a)は各槽間液移動処理のサブルーチンプログラムを示すフローチャートであり、(b)はpH調整処理のサブルーチンプログラムを示すフローチャートである。
 図17の(a)は装置制御処理のメインルーチンを示すフローチャートであり、(b)は運転設定値入力処理のサブルーチンプログラムを示すフローチャートである。
 図18の(a)は運転設定値入力処理のサブルーチンプログラムの続きを示すフローチャートであり、(b)は異常設定値入力処理のサブルーチンプログラムを示すフローチャートである。
 図19は異常チェック処理のサブルーチンプログラムを示すフローチャートである。
 図20は異常チェック処理のサブルーチンプログラムの続きを示すフローチャートである。
 図21の(a)は流路切換え処理のサブルーチンプログラムの続きを示すフローチャートであり、(b)は原液補給工程処理のサブルーチンプログラムの続きを示すフローチャートである。
 図22の(a)は濃縮工程処理のサブルーチンプログラムの続きを示すフローチャートであり、(b)は工程切換え処理のサブルーチンプログラムの続きを示すフローチャートであり、(c)は濃縮工程流路制御処理のサブルーチンプログラムを示すフローチャートである。
 図23の(a)は水押し工程処理のサブルーチンプログラムの続きを示すフローチャートであり、(b)は工程切換え処理のサブルーチンプログラムの続きを示すフローチャートであり、(c)は水押し工程流路制御処理のサブルーチンプログラムの続きを示すフローチャートである。
 図24の(a)は洗浄工程処理のサブルーチンプログラムの続きを示すフローチャートであり、(b)は工程切換え処理のサブルーチンプログラムの続きを示すフローチャートであり、(c)は洗浄工程流路制御処理のサブルーチンプログラムの続きを示すフローチャートである。
 図25の(a)は濃縮液排出工程処理のサブルーチンプログラムの続きを示すフローチャートであり、(b)はモニター表示処理のサブルーチンプログラムの続きを示すフローチャートである。
 図26は人工知能を応用した実施形態における全体システムを示す図である。
 図27の(a)は人工知能サーバの制御回路を示すブロック図であり、(b)はエージェントによる強化学習の原理を説明する図であり、(c)は人工知能サーバによる制御のメインルーチンを示すフローチャートである。
 図28の(a)は濾過環境分類処理のサブルーチンプログラムを示すフローチャートであり、(b)は強化学習処理のサブルーチンプログラムを示すフローチャートである。
 図29は従来例を示し、(a)はチューブラ式膜モジュールの縦断面図であり、(b)は洗浄材抜け止め機構を示す縦断面図である。
FIG. 1 is an overall configuration diagram of the filtration apparatus in the state of the concentration step 1.
FIG. 2 is a schematic view of a tubular membrane separator.
FIG. 3 is an exploded perspective view of the main part of the tubular membrane separator.
FIG. 4 is a diagram showing the internal structure near the end of the tubular membrane separator.
FIG. 5 is a cross-sectional view of an essential part for explaining the sealing function of the tubular membrane separator.
6A is a cross-sectional view of the end cap on the input / discharge side, and FIG. 6B is a cross-sectional view of the end cap on the return side.
FIG. 7A is a cross-sectional view showing a holding state of a plurality of pipes in the housing, and FIG. 7B is a view showing a holding state of the plurality of pipes in a state where the housing is removed.
FIG. 8 is a diagram showing the principle of filtration with a UF membrane tube and the cleaning action of the inner surface of the UF membrane tube with a sponge ball.
FIG. 9 is a view showing a receiving mechanism for holding a sponge ball with a strainer.
FIG. 10 is a configuration diagram of the filtration apparatus in the state of the concentration step 2.
FIG. 11 is a configuration diagram of the filtration apparatus in the state of the water pushing step.
FIG. 12 is a configuration diagram of the filtration apparatus in the state of the cleaning process 1.
FIG. 13 is a configuration diagram of the filtration apparatus in the state of the cleaning process 2.
FIG. 14 is a block diagram showing a control circuit of the pH adjustment control panel and the apparatus control panel.
(A) of FIG. 15 is a flowchart which shows the main routine of pH adjustment control processing, (b) is a flowchart which shows the subroutine program of each tank abnormality check process.
(A) of FIG. 16 is a flowchart which shows the subroutine program of each inter-tank liquid movement process, (b) is a flowchart which shows the subroutine program of pH adjustment process.
FIG. 17A is a flowchart showing a main routine of the apparatus control process, and FIG. 17B is a flowchart showing a subroutine program of the operation set value input process.
FIG. 18A is a flowchart showing a continuation of the subroutine program for the operation set value input process, and FIG. 18B is a flowchart showing the subroutine program for the abnormal set value input process.
FIG. 19 is a flowchart showing a subroutine program for the abnormality check process.
FIG. 20 is a flowchart showing the continuation of the subroutine program for the abnormality check process.
FIG. 21A is a flowchart showing the continuation of the subroutine program for the flow path switching process, and FIG. 21B is a flowchart showing the continuation of the subroutine program for the stock solution supply process.
22A is a flowchart showing the continuation of the subroutine program for the concentration process, FIG. 22B is a flowchart showing the continuation of the subroutine program for the process switching process, and FIG. It is a flowchart which shows a subroutine program.
FIG. 23A is a flowchart showing the continuation of the subroutine program for the water pushing process, FIG. 23B is a flowchart showing the continuation of the subroutine program for the process switching process, and FIG. It is a flowchart which shows the continuation of the subroutine program of a process.
24A is a flowchart showing a continuation of the subroutine program for the cleaning process, FIG. 24B is a flowchart showing a continuation of the subroutine program for the process switching process, and FIG. 24C is a flowchart of the cleaning process flow path control process. It is a flowchart which shows the continuation of a subroutine program.
FIG. 25A is a flowchart showing a continuation of the subroutine program for the concentrate discharge process, and FIG. 25B is a flowchart showing a continuation of the subroutine program for the monitor display process.
FIG. 26 is a diagram showing an overall system in an embodiment to which artificial intelligence is applied.
FIG. 27A is a block diagram showing the control circuit of the artificial intelligence server, FIG. 27B is a diagram for explaining the principle of reinforcement learning by the agent, and FIG. 27C shows the main routine of control by the artificial intelligence server. It is a flowchart to show.
FIG. 28A is a flowchart showing a subroutine program for filtering environment classification processing, and FIG. 28B is a flowchart showing a subroutine program for reinforcement learning processing.
FIG. 29 shows a conventional example, (a) is a longitudinal sectional view of a tubular membrane module, and (b) is a longitudinal sectional view showing a cleaning material retaining mechanism.
 以下、本発明の実施形態を図面に基づいて詳述する。本実施の形態において示す濾過処理装置は、例えば、各種工場から排出されるエマルジョン廃液の濾過、医薬品や医療用水製造時のウイルスや内毒素の濾過、蛋白質や酵素など熱に弱い物質の濾過等を行って、処理済み液と濃縮液とに分離する際に用いられるものである。例えば、洗浄廃水、切削廃水、研磨廃水、コンプレッサードレン廃水、洗車廃水、高周波クーラント廃液、ダイカスト廃水、圧延クーラント廃水、食品工場からの排水等が、主な用途である。より詳しくは、例えばUF膜チューブを用いたチューブラ式膜分離により濾過対象液を濾過して処理水と濃縮液とに分離する際に用いられるものである。なお、本発明における濾過処理装置は、単体の装置ばかりでなく、例えば図26に示すように、ネットワークを介して複数の装置やコンピュータが連携したシステムをも包含する広い概念である。
 図1を参照して、濾過装置の全体構成を説明する。この濾過装置には、工場廃液等の原液を貯留する原水槽1、原液のペーハー(以下単に「pH」という)を調整するためのpH調整槽5、濾過されて濃縮された濃縮液を貯留する濃縮循環槽2、チューブラ式膜分離装置10のUF膜チューブ15に付着した付着物を洗浄する洗浄水を貯留している膜洗浄槽8、チューブラ式膜分離装置10により濾過された処理水を受け入れて中継する処理水中継槽11、濃縮循環槽2に貯留されている濃縮液を受け入れて中継する濃縮液中継槽(廃液中継槽ともいう)3、濃縮液中継槽3に貯留されている濃縮液を受け入れて貯留する濃縮貯水槽4が設けられている。図1中エマルジョン分離装置を二点鎖線で囲んで示している。
 まず、工場廃液等の原液が原水槽1に供給される。原水槽1には、レベルセンサLS4が設けられており、原水槽1内に貯留されている原液の貯留量が検出される。レベルセンサLS4により原水槽1が満杯になったことが検出されれば原液の供給が停止される。
 原液送水ポンプ27を作動させることにより、原水槽1内に貯留されている原液が配管80を通ってpH調整槽5へ供給される。pH調整槽5には、レベルセンサLS6が設けられており、pH調整槽5内の原液の貯留量が検出される。pH調整槽5が原液で満杯となればポンプ27の作動が停止される。また、pH調整槽5には、pHセンサ24が設けられている。このpHセンサ24により、pH調整槽5内に貯留されている原液のpHが検出される。pHセンサ24により原液がアルカリ性であると検出された場合には酸注入ポンプ29が作動して薬注タンク7内の酸がpH調整槽5に注入される。逆に、pHセンサ24により原液が酸性であると検出された場合にはアルカリ注入ポンプ28が作動して薬注タンク6内のアルカリがPH調整槽5に注入される。これにより、pH調整槽5内で原液を中和させて中性の状態に調整する。
 UF膜チューブ15の材質はPVDF(ポリフッ化ビニリデン)が用いられているため、pH2~pH12の範囲の原液を濾過できる。pH2未満の酸性原液の場合には金属製の配管が腐食して原液が漏れ出す不都合が生じる。pH12を超えるアルカリ原液の場合にはUF膜チューブ15が劣化する不都合が生じる。pH調整槽5内で原液を中和させることにより、上記のような不都合を防止している。また、UF膜チューブ15の材質がPVDF(ポリフッ化ビニリデン)であるため、上限60°Cまでの原液を濾過可能であり、原液に対する耐熱性が高いという利点がある。なお、PH調整槽5には、撹拌プロペラ50が設けられており、この撹拌プロペラ50を撹拌モータ35により回転させることにより、pH調整槽5内の原液を撹拌させて、満遍なく中和させる。
 pH調整槽5と濃縮循環槽2とを接続している配管81にはpH調整水ポンプ30が設けられている。このpH調整水ポンプ30を駆動させることにより、pH調整槽5内で中和された原液が配管81を経て濃縮循環槽2へ供給される。濃縮循環槽2には、レベルセンサLS1が設けられており、濃縮循環槽2内の原液の貯留量が検出される。濃縮循環槽2内の原液が運転開始レベルとなればpH調整水ポンプ30の作動が停止されると共に、循環ポンプ33を作動させて濃縮循環槽2内の原液(濃縮液)がチューブラ式膜分離装置10に供給される。このとき、図1では、モータバルブMV3により流路が切換えられる三方弁36がB→Cの流路となっている。その結果、濃縮循環槽2内の原液(濃縮液)が配管82、モータバルブMV1、循環ポンプ33、配管83を経由して三方弁36のところでB→Cの方向に流れ、配管84を介して複数(図では6個)のチューブラ式膜分離装置10へ供給される。
 このチューブラ式膜分離装置10により原液(濃縮液)が濾過されて処理水と濃縮液とに分離される。処理水は処理水取出管21から取り出されてモータバルブMV5と配管91とを経由して処理水中継槽11に供給される。処理水中継槽11内に貯留された処理水は処理水送出しポンプ34を作動させることにより活性炭12、13で浄化された後外部に排出される。なお、活性炭での浄化に代えてまたはそれに加えて、イオン交換を用いて処理水(電解質溶液)に含まれるイオンを除去してもよい。イオン交換とは、ある種の物質が示す、接触している電解質溶液に含まれるイオン(例えばアンモニアイオンNH+)を取り込み、代わりに自らの持つ別種のイオンを放出することで、イオン種の入れ換えを行うことである。イオン交換作用を示す物質をイオン交換体という。このイオン交換体として、例えばイオン交換樹脂を用いる。
 なお、チューブラ式膜分離装置10により原液(濃縮液)が濾過された処理水を、処理水中継槽11に供給するのに代えて膜洗浄槽8へ供給するように制御してもよい。具体的には、モータバルブMV5を閉制御するとともにモータバルブMV6を開制御することにより、配管90を経由して処理水を膜洗浄槽8へ供給する。このようにすれば、水道水や工業用水や農業用水等の清水を得にくい場所(例えば砂漠地帯)でも処理水を膜洗浄槽8に貯めて洗浄水として利用することができる利点がある。
 一方、チューブラ式膜分離装置10により濾過されて濃縮された濃縮液は、三方弁38を経由して濃縮循環槽2に還元される。具体的には、図1では、モータバルブMV4により切換えられる三方弁37の流路がC→Aとなっている。また、モータバルブMV9により切換えられる三方弁38がC→Bの流路となっている。その結果、チューブラ式膜分離装置10により濾過されて濃縮された濃縮液が三方弁37、配管87、三方弁38、配管89を経由してかつ流量調整バルブ48を経由して濃縮循環槽2へ還元される。
 この流量調整バルブ48を調整した状態で循環ポンプ33を作動させることにより、適度な圧力を保った状態で原液(濃縮液)をチューブラ式膜分離装置10内に圧送することができ、適度な圧力によりUF膜チューブ15への濾過が可能となる。その適度な圧力を保つために、圧力センサPS1、PS2が設けられている。チューブラ式膜分離装置10の上手側に設けられた圧力センサPS1と、チューブラ式膜分離装置10の下手側に設けられた圧力センサPS2との各検出値に基づいて流量調整バルブ48を調整することにより、UF膜チューブ15に適度な圧力をかけて濾過する。なお、図1および図10に示す濾過工程の場合にはモータバルブMV2は閉じられている。
 この濾過装置は、pH調整制御盤22と装置制御盤23とにより制御される。pH調整制御盤22の制御テリトリーは図1の2点鎖線で示した範囲であり、主にpH調整を行う。一方、装置制御盤23の制御テリトリーは図1の2点鎖線で示した範囲であり、主にチューブラ式膜分離装置10による濾過およびチューブラ式膜分離装置の洗浄等の制御を行う。pH調整制御盤22と装置制御盤23とは互いに交信可能に構成されており、装置制御盤23からpH調整制御盤22に対して原液供給信号が送信され、pH調整制御盤22から装置制御盤23に対して一括異常信号および原水供給信号が送信される。また、装置制御盤23から、原水供給信号、一括異常信号、運転信号、異常信号が出力される。
 図1中、FL1、FL2、FL3は流量計、26は温度センサ、25は光電センサ、40、41、42、43、44は逆止弁である。
 配管97と濃縮循環槽2とを結ぶ配管にモータバルブMV8が設けられている。このモータバルブMV8はチューブラ式膜分離装置10内のUF膜チューブ15が負圧になることを防止するものである。詳しくは後述する。
 チューブラ式膜分離装置10の両端にはスポンジボール17を保持する受止め機構18が設けられている。スポンジボール17は、球形のスポンジで構成されており、UF膜チューブ15内面に付着した不純物を拭って除去するものである。スポンジボール17はウレタン材質を発泡させてものである。ゴム材質に比べてウレタン材質の場合、油に対する耐性が高く且つ膨張を抑えることができる利点がある。
 次に、図2~図7に基づいてチューブラ式膜分離装置10を詳細に説明する。先ず図2を参照してチューブラ式膜分離装置10の概略を説明する。チューブラ式膜分離装置10は、ハウジング14内にUF膜チューブ15が複数本(例えば18本)設けられている。そのハウジング14の左右両端にはエンドキャップ101が設けられている。図2中の一点鎖線はUF膜チューブ15内を流動する濾過対象液(原液)の移動経路125を示している。UF膜チューブ15はパイプ106内に挿入されている(図3参照)。左右のエンドキャップ101は、或るUF膜チューブ15から受け入れた濾過対象液の流れをUターンさせて他のUF膜チューブ15に流し込むリターン経路117が形成されている。これについては図6に基づいて後述する。さらに図2中向かって左側のエンドキャップ101には、液出入り口118が2か所に形成されている。
 原液は、受止め機構18とバルブ10とを経由して一方の液出入り口118に供給されてエンドキャップ101内の入出経路110aを通ってUF膜チューブ15内に送り込まれる。送り込まれた原液はそのUF膜チューブ15内を通って他方のエンドキャップ101に到達し、そこでリターン経路117を通ってUターンして次のUF膜チューブ15内に送り込まれる。そのUF膜チューブ15内を通ってもう一方のエンドキャップ101に到達した原液は、そこで再度リターン経路117を通ってUターンして次のUF膜チューブ15内に送り込まれる。このUターンを繰り返して全てのUF膜チューブ15を通過した濃縮液が入出経路110aを通って他方の液出入り口118から排出される。チューブラ式膜分離装置10内でのこのような原液の移動経路125を図2の一点鎖線で示している。この屈曲して複数回ハウジング14内を往復する移動経路125に沿って原液が移動することによりUF膜チューブ15によって濾過され、処理水と濃縮液とに分離される。処理水はハウジング14に設けられた処理水取出管21から排出されて処理水中継槽11に送られる。濃縮液は液出入り口118から排出されて濃縮循環槽2へ還元される。
 図2に示すように、チューブラ式膜分離装置10内で移動経路125を屈曲させているため、原液がUF膜チューブ15により濾過される経路をチューブラ式膜分離装置10の全長(一方のエンドキャップ101の外端面から他方のエンドキャップ101の外端面までの長さ)よりも長くすることができる。その結果、効率の良い濾過を行うことができる利点がある。なお、移動経路125を長くする手段としては、図2に示した移動経路125の往復に限定されるものではなく、例えば、コイル状に屈曲した移動経路またはサイン曲線状に屈曲した移動経路等、どのような形のものであってもよい。
 次に、主に図3を参照してチューブラ式膜分離装置10の内部構造を説明する。図3では、ハウジング14の一方端に設けられたエンドキャップ101を取外してハウジング14内の各種部品を外部に引き出した状態が示されている。ハウジング14内にはパイプ保持版105と円盤状の金属プレート103とが収納されている。金属プレート103のパイプ保持版105側の面にはシール用のゴムプレート104が貼着されている。前述したように、ハウジング14内には複数本のUF膜チューブ15が設けられているが、そのUF膜チューブ15の各々は金属製のパイプ106に挿入されている。UF膜チューブ15は、帯状の不織布を螺旋状に巻いて熱溶着してチューブ状に形成し、そのチューブ内面にUF膜をコーティングしている。
 このUF膜チューブ15が挿入されている各パイプ106の端部を保持するものがパイプ保持版105である。このパイプ保持版105に複数のパイプ挿入孔が形成されており、その挿入孔に各パイプ106の端部が挿入される。その挿入状態の各パイプ106がパイプ保持版105に溶接されて固定されている。これにより、複数本(18本)のパイプ106がパイプ保持版105によって保持される。
 ゴムプレート104および金属プレート103にはパイプ106の数だけの差込み孔109が形成されており、金属プレート103側から差込み継手108を各差込み孔109に挿入できるように構成されている。この差込み継手108は、ゴム等のシール機能のある材質でキノコの形状に構成されており、断面ノコギリ状の挿入部108aと傘部108bとを有している。各パイプ106を差込み孔109に位置合わせした状態で反対側(金属プレート103側)から差込み継手108の挿入部108aを挿入することにより、ノコギリ状の挿入部108aがパイプ106内のUF膜チューブ15内に挿入された状態となる。その状態で傘部108bが金属プレート103に当接した状態となる(図4、図5参照)。なお、挿入部108aをUF膜チューブ15内に挿入する際に、UF膜チューブ15をパイプ106から少し引き出した状態で挿入すれば、挿入しやすくなる。このUF膜チューブ15内に挿入されたノコギリ状の挿入部108aによってUF膜チューブ15の抜け止め効果が奏される。つまり、差込み継手108の挿入部108aとパイプ106端部とにより、UF膜チューブ15の端部を挟持して保持することができる。この挿入部108aはパイプ106の両端部に挿入されており(図5参照)、パイプ106の両端部でUF膜チューブ15の各端部を保持している。その結果、パイプ106端部付近のUF膜チューブ15がパイプ106中央側に位置ずれすることが防止でき、位置ずれした箇所から濃縮液(原液)がパイプ106の小孔120を通って外部に漏れ出す不都合を防止できる。この差込み継手108の挿入部108aにより、UF膜チューブ15の端部をパイプ106端部に固定保持する固定保持部材(固定保持手段)が構成されている。また、パイプ保持版105の外周にはOリング用の溝119が形成されており、この溝119にシール用のOリング111が嵌め込まれている。
 各パイプ106には、長手方向に沿って一列または数列の小孔120が多数穿設されている。この小孔120を通って処理水がハウジング14内に排出される。ハウジング14内に排出され処理水は処理水取出管21(図2参照)からチューブラ式膜分離装置10の外に排出される。
 パイプ保持版105には位置決め突起112a、112bが形成されている。金属プレート103及びゴムプレート104には位置決め挿通孔113a、113bが形成されている。さらに、エンドキャップ101には位置決め孔114a、114bが形成されている。突起112a、112bを位置決め挿通孔113a、113bに挿通させた状態で位置決め孔114a、114bに挿入することにより、パイプ保持版105とゴムプレート104付きの金属プレート103とエンドキャップ101とが、互いに位置決めされる。
 さらに、パイプ保持版105の中心にスタッドボルト107が設けられている。このスタッドボルト107を挿通するための挿通孔115がエンドキャップ101に形成されている。また、スタッドボルト107を挿通するための挿通孔150がゴムプレート104及び金属プレート103にも形成されている。スタッドボルト107を両挿通孔115、150に挿通した上で、前述の位置決め突起112a、112bによりエンドキャップ101、ゴムプレート104付きの金属プレート103、およびパイプ保持版105の位置決めを行う。その状態でスタッドボルト107にナット102を螺合させてねじ込むことにより、エンドキャップ101、ゴムプレート104付きの金属プレート103、およびパイプ保持版105が締め付けられて互いに密着した状態で固定される。その状態を図4に基づいて説明する。
 図4はチューブラ式膜分離装置10の端部付近の縦断面図である。複数本のパイプ106は、その端部がパイプ保持版105の端面に達する深さまで挿入されている。この状態でスタッドボルト107とナット102とによる締め付け力により、パイプ106とUF膜チューブ15との各端部がゴムプレート104に圧接した状態になる。このゴムプレート104に圧接されたUF膜チューブ15内に差込み継手108が挿入されている。
 エンドキャップ101に形成された複数のリターン経路117(図2、図6参照)への原液の出入り口部分の周囲を窪ませて複数の凹部110が形成されている(図3参照)。この凹部110に差込み継手108の傘部108bが入り込む。この状態で、UF膜チューブ15とリターン経路117とが差込み継手108を経由して連通状態になっている。
 さらに、図5に示すように、液出入り口118に続く入出経路110aにも凹部110が形成されており、この凹部110に差込み継手108の傘部108bが入り込む。この状態で、UF膜チューブ15と入出経路110aとが差込み継手108を経由して連通状態になっている。
 この図5を参照し、チューブラ式膜分離装置10のシール機能を説明する。前述したナット102をスタッドボルト107に螺合させて締め付けることにより、パイプ106の端部がゴムプレート104に圧接し、かつ、差込み継手108の傘部108bが金属プレート103とエンドキャップ101の凹部110とに圧接する。その結果、UF膜チューブ15内に圧送された原液が外部に漏れだすことがない。この差込み継手108により、濾過対象液のUF膜チューブ15外への漏洩を防止するシール部材(シール手段)が構成されている。また、UF膜チューブ15により濾過され小孔120を通ってハウジング14内に出てきた処理水は、Oリング111によりハウジング14外に漏れ出すことが防止される。このOリング111により、処理水の漏洩を防止するためのシール部材(シール手段)が構成されている。
 次に、エンドキャップ101について説明する。先ず、図6(a)に基づいて、液出入り口118が形成された入排出側のエンドキャップ101を説明する。このエンドキャップ101には、液出入り口118が2か所に形成されていると共に、各液出入り口118に続いている入出経路110aが形成されている。これにより、一方の液出入り口118から圧送された原液が一方の入出経路110aを通ってUF膜チューブ15内に送り込まれ、他のUF膜チューブ15から出てきた濃縮液が他方の入出経路110aを経由して他方の液出入り口118から排出されるように構成されている。また、入排出側のエンドキャップ101には、U字状のリターン経路117が8か所に形成されている。なお、図中110は差込み継手108の傘部108bが入り込む凹部である
 液出入り口118が形成されていないリターン側のエンドキャップ101は、図6(b)に示すように、リターン経路117が9か所に形成されているが、液出入り口118は形成されていない。このようなリターン経路117や入出経路110aが形成されているエンドキャップ101は、鋳物により製造される。
 このような構成において、入排出側のエンドキャップ101(図6(a))の液出入り口118から圧送された原液は差込み継手108からUF膜チューブ15内に送り込まれ、リターン側のエンドキャップ101図6(b)に到達する。そこで原液は、リターン側のエンドキャップ101に形成されたリターン経路117を通ってUターンし、次のUF膜チューブ15内に送り込まれて入排出側のエンドキャップ101にまで帰ってくる。そこで原液は、入排出側のエンドキャップ101に形成されたリターン経路117を通ってUターンし、次のUF膜チューブ15内に送り込まれて再度リターン側のエンドキャップ101まで移動する。このUターンを複数回(17回)繰り返して全てのUF膜チューブ15を通過した濃縮液が他方の液出入り口118から排出される。このエンドキャップ101により、或るUF膜チューブ15から受け入れた濾過対象液をリターンさせて他のUF膜チューブ15に送り込む濾過対象液リターン部材(濾過対象液リターン手段)が構成されている。
 次に、複数本のパイプ106の長手方向途中箇所は、保持プレート116によって保持されることにより位置決めされている。このことを図7(a)(b)に基づいて説明する。18本のパイプ106のうちの外周に位置するパイプ106に6個の保持プレート116が設けられている。各保持プレート116はそれぞれ3本のパイプ106に亘って1個ずつ設けられている。その3本のパイプ106のうちの中央のパイプ106に保持プレート116が溶接されて固定されている。3本のパイプのうちの両端側のパイプ106は、当該パイプ106の両側に位置する保持プレート116各々の端部により挟持されている。
 このようにして、外周に位置する全てのパイプの長手方向途中箇所が保持されて位置決めされている。これらの保持プレート116は、パイプ106の長手方向に所定間隔を隔てて複数位置に設けられている。その結果、各パイプ106を極力まっすぐに保持でき、UF膜チューブ15をパイプ106内に挿入しやすくなる利点がある。この保持プレート116により、パイプの長手方向途中箇所を保持する保持部材(保持手段)が構成されている。
 図8を参照してUF膜チューブ15による濾過機能を説明する。このUF膜チューブ15の材質はPVDF(ポリフッ化ビニリデン)であり、耐熱性が高く且つ濾過対象液のpH範囲が広い利点がある。UF膜チューブ15の直径は、約15mm程度である。この約15mm程度は一例に過ぎず、例えば、直径5mm~26mmの範囲のものを用いることができる。このUF膜チューブ15は概ね0.01~0.001μmの孔径の多孔質膜である。低分子やイオンや水等に対して油や高分子や濁質等の不純物16が混在した原液を適度な圧力によりUF膜チューブ15内に送り込むことにより、低分子やイオンや水等がUF膜チューブ15を透過してパイプ106に形成された多数の小孔120(図3参照)からハウジング14内に排出され、透過液(処理水)として処理水取出管21から取り出される。一方、原液中の油や高分子や濁質等の不純物16はUF膜チューブ15を透過することなく濃縮された状態で出入り口118から排出され濃縮循環層2内に還元される。
 このUF膜チューブ15で原液を濾過することにより、UF膜チューブ15の内面に不純物16が付着する。不純物16が付着すると濾過性能が低下するためにその不純物を除去する必要がある。そのUF膜チューブ15の内面に付着した不純物を除去するためにスポンジボール17がUF膜チューブ15内に入れられている。このスポンジボール17は、UF膜チューブ15の直径(約15mm)よりも多少大きな寸法に構成されている。その結果、UF膜チューブ15内に挿入されたスポンジボール17は、その外周面がUF膜チューブ15内面に接触した状態となる(図8参照)。UF膜チューブ15内に圧送される原液によってこのスポンジボール17がUF膜チューブ15内で移動し、UF膜チューブ15の内面に付着した不純物を拭い取って除去する。このUF膜チューブ15内を移動してチューブラ式膜分離装置10の他方端に押し流されてきたスポンジボール17が受止め機構18(図2、図9参照)により受止められて保持される。このスポンジボール17により、UF膜チューブ15内を移動してUF膜チューブ15の内面に付着した不純物を拭い取る拭浄体が構成されている。なお、拭浄体としては、スポンジボール17に限定されるものではなく、例えば、ピグ(砲弾)やブラシ等であってもよい。
 次に、図9に基づいて受止め機構18を説明する。受止め機構18は筒状部121を有し、その筒状部121内に平面視M字型のストレーナ19が設けられている。筒状部121には、左右の配管122、123がそれぞれ管継ぎ手124により接続されている。一方の配管122がチューブラ式膜分離装置10の液出入り口118に接続され(図2参照)、他方の配管123が配管97に接続されている(図1参照)。また、筒状部121の上部にはネジ溝が形成されており、そのネジ溝に着脱キャップ20がねじ込まれている。
 一方の液出入り口118に原液を送り込むことによりスポンジボール17がチューブラ式膜分離装置10のUF膜チューブ15内を移動して他方の液出入り口118から排出される。そのスポンジボール17が配管122を通って筒状部121のストレーナ19に到達し、そのストレーナ19により受け止められる。ストレーナ19には、スポンジボール17は受け止めるが濃縮液は通過させるように編み目19aが形成さられている。この編み目19aを通って濃縮液が濃縮還元槽2へ還元されるように構成されている。このストレーナ19により、濾過対象液は通過させるがスポンジボール17(拭浄体)は受け止める受止め部材が構成されている。また、
 チューブラ式膜分離装置10の他方端の受止め機構18に保持されたスポンジボール17は、原液(濃縮液)の流れを逆方向に切換えることにより、再度UF膜チューブ15内を移動してチューブラ式膜分離装置10の一方端側の受止め機構18にまで流れ着く。このように、原液(濃縮液)の流れを切換えることにより、スポンジボール17をUF膜チューブ15内で往復移動させて不純物16の除去を行う。
 スポンジボール17をUF膜チューブ15内で複数回往復移動させることにより、スポンジボール17自体に不純物が付着し、洗浄効果が低下する不都合が生じる。その不都合を解消するために、汚れたスポンジボール17を取り替え可能に構成している。先ず、スポンジボール17を受止めている受止め機構18に接続さている配管122(図9参照)にバルブ100が設けられており、このバルブ100を閉める。これにより、チューブラ式膜分離装置10から受止め機構18へ濃縮液が流れないようにする。その状態で受止め機構18の着脱キャップ20を回転して開ける。この着脱キャップ20により、受止めた前記拭浄体を取出して交換可能にするための取出し機構が構成されている。チューブラ式膜分離装置10よりも受止め機構18の方が低位置に設けられているが、前述のバルブ100を閉めているために着脱キャップ20を開けても濃縮液が噴き出すことがない。なお、バルブ100が設けられていない側の配管123(図9参照)に対し受止め機構18の方が高位置に設けられているために、着脱キャップ20を開放しても濃縮液が配管123を逆流して噴き出すことがない。そして、着脱キャップ20が開放されることにより、ストレーナ19に受け止められているスポンジボール17を取出して新しいものに交換できる。交換後に着脱キャップ20を筒状部121にねじ込んで蓋をし、バルブ100を開放する。なお、配管123(図9参照)に対し受止め機構18の方が低位置に設けられている場合には、配管123にもバルブを設けるようにすればよい。このバルブ100により、着脱キャップ20を開放したときに濾過対象液の噴出を防止する噴出防止機構(噴出防止手段)が構成されている。
 図1は、原液(濃縮液)をチューブラ式膜分離装置10に対して順方向に流す濃縮工程1が示されており、チューブラ式膜分離装置10に対して原液(濃縮液)を逆方向に流す濃縮工程2が図10に示されている。図10を参照して、濃縮工程2では、三方弁36がC→Aの流路に切換えられている。また三方弁37がB→Cの流路に切換えられている。その結果、循環ポンプ33により送り出された濃縮液が、配管83、85、三方弁37のB→C、配管86、配管97を経てチューブラ式膜分離装置10に逆方向から圧送される。そしてチューブラ式膜分離装置10へ濃縮された濃縮液が、配管84、三方弁36のC→A、配管88、三方弁38のC→B、配管89を経て濃縮循環槽2に還元される。
 図1に示した濃縮工程1と図10に示した濃縮工程2とを所定回数繰り返して実行した後、濾過装置が水押し工程に移行する。この水押し工程は、チューブラ式膜分離装置10や配管内に残留している濃縮液を洗浄液で押し出して濃縮循環槽2へ還元させるものである。
 この水押し工程は約10秒ほどの短い時間実行されるものであり、図11に基づいて説明する。膜洗浄槽8に貯留される洗浄液は、水道水等の清水を用いる場合(S78の清水洗浄モード)と、チューブラ式膜分離装置10により分離された処理水を用いる場合(S79の処理水洗浄モード)とがある。清水を用いる場合にはモータバルブ10を開いて配管92を通して清水を膜洗浄槽8に供給する。膜洗浄槽8にはレベルセンサLS2が設けられており、満水レベルHH2、運転開始レベルH2、運転停止レベルL2、渇水レベルLL2の4段階のレベル検出ができる。一方、清水ではなく処理水を用いて洗浄する場合には、チューブラ式膜分離装置10により分離された処理水を膜洗浄槽8に供給する必要がある。そのために、モータバルブMV5と閉じモータバルブMV6を開き、処理水が配管90、モータバルブMV6を経由して膜洗浄槽8に供給されるように制御する。清水洗浄モードと処理水洗浄モードとの何れの場合も、膜洗浄槽8が上記運転開始レベルH2に達するまで清水または処理水が補給される。
 膜洗浄槽8には、洗浄用ヒータ49が設けられており、UF膜チューブ15を洗浄するために適した温度(例えば40~50℃)に洗浄液が温められる。よって、この膜洗浄槽8は耐熱性に優れたステンレス製材料が用いられている。なお、洗浄用ヒータ49を設けることなく常温の洗浄液で洗浄する場合は、膜洗浄槽8を樹脂製材料で構成してもよい。また、洗浄剤注入ポンプ32を作動させることにより、アルカリ洗浄剤が膜洗浄槽8に供給される。このアルカリ洗浄剤により、より洗浄効率を向上させることができる。また、原液の(濃縮液)の種類如何では酸性洗浄剤を用いた方が洗浄効率を向上させることができる。そのような場合にはアルカリ洗浄剤の代わりに酸性洗浄剤を用いる。
 水押し工程では、モータバルブMV1を閉じかつモータバルブMV2を開いた状態で循環ポンプ33を作動させる。この水押し工程の直前に実行されていた濃縮工程が濃縮工程1(図1参照)の場合には、洗浄液をチューブラ式膜分離装置10に対して逆方向に流す。一方、水押し工程の直前に実行されていた濃縮工程が濃縮工程2(図10)の場合には、洗浄液をチューブラ式膜分離装置10に対して順方向に流して水押しを行う。図11は、洗浄液を順方向に流して残留濃縮液を押し出す水押し工程が示されている。三方弁36をB→Cの流路に切換えかつ三方弁37をC→Aの流路に切換える。その結果、膜洗浄槽8内の洗浄液が、配管95、循環ポンプ33、三方弁36のB→C、配管84を経てチューブラ式膜分離装置10の一方端からUF膜チューブ15に供給される。その結果、チューブラ式膜分離装置10の一方端側の受止め機構18内に保持されているスポンジボールがUF膜チューブ15内に押し出されてUF膜チューブ15内を移動してUF膜チューブ15内に付着している付着物を拭い取って洗浄する。押し出された濃縮液は、配管86、三方弁37のC→A、配管87、三方弁38のC→B、配管89を経て濃縮還元槽2へ還元される。チューブラ式膜分離装置10や配管内に残留していた濃縮液が濃縮還元槽2内に押し出されて水押し工程が終了した後に、洗浄工程に移行する。
 洗浄工程では、膜洗浄槽8内に貯留されている洗浄液をチューブラ式膜分離装置10に供給してUF膜チューブ15を洗浄する。洗浄工程は、膜洗浄槽8に貯留されている洗浄液をチューブラ式膜分離装置10に対して順方向に流して洗浄する洗浄工程1と、チューブラ式膜分離装置10に対して逆方向に洗浄液を流して洗浄する洗浄工程2とがある。洗浄工程1では、図12に示すように、三方弁38がC→Aの流路に切換えられ、洗浄水が膜洗浄槽8に還元されるように制御される。その結果、膜洗浄槽8内の洗浄液が、配管95、三方弁36のB→C、配管84を経てチューブラ式膜分離装置10を通過した後、三方弁37のC→A、配管87、三方弁38のC→A、廃案96を経て膜洗浄槽8に還元される。この洗浄工程1が所定時間実行された後洗浄下程2に切り替わる。
 洗浄工程2では、図13を参照して、三方弁36がC→Aの流路に切り替わり、三方弁37がB→Cの流路に切り替わる。その結果、膜洗浄槽8内の洗浄液が、配管95、循環ポンプ33、配管83、85、三方弁37の流路B→C、配管86を経てチューブラ式膜分離装置10に対して逆方向から供給される。チューブラ式膜分離装置10内のUF膜チューブ15を通過した洗浄液が、配管84、三方弁36のC→A、配管88、三方弁38のC→A、配管96を経て膜洗浄槽8に還元される。この洗浄工程1(図12参照)および洗浄工程2(図13参照)を繰り返し実行した後再度濃縮工程に移行する。
 以上のような濃縮工程と水押し工程と洗浄工程とを繰り返し実行することにより、チューブラ式膜分離装置10による濾過によって濃縮液が徐々に濃縮され、濃縮循環槽2内の濃縮液の貯留量が減少する。濃縮循環槽2内の濃縮液が所定量(L1レベル)に減少した
ことがレベルセンサLS1により検出された段階で、pH調整水ポンプ30を作動させてpH調整槽5内の原液を濃縮循環槽2へ供給する。原液が継ぎ足されることによって濃縮循環槽2内の濃縮液が運転開始レベルH1に達したことがレベルセンサ1により検出されれば、pH調整水ポンプ30が停止して原液の注ぎ足しが停止される。その状態で、前述した濃縮工程と水押し工程と洗浄工程とを繰り返し実行する。そして、濃縮循環槽2内の濃縮液が再度所定量(L1レベル)にまで減少した段階で、pH調整槽5内の原液を再度
濃縮循環槽2内に注ぎ足して供給する。この原液の注ぎ足し回数(濃縮回数)が所定回数に達したとき、モータバルブMV7を開いて濃縮循環槽2内の濃縮液を配管93を通して濃縮液中継槽3へ排出する。濃縮循環槽2内の濃縮液が排出完了レベルLLになったことがレベルセンサLS1により検出されたときにモータバルブMV7が閉じられて濃縮液の排出が完了する。一方、濃縮液中継槽3では、レベルセンサLS3により濃縮液の貯留量が増加したことが検出されれば、濃縮液送水ポンプ31を作動させて濃縮液中継槽3内の濃縮液を配管94を通して濃縮貯留槽4へ送り出す。この濃縮貯留槽4にはレベルセンサLS5が設けられており、濃縮貯留槽4内の濃縮液が満杯となったことがレベルセンサLS5により検出されれば、濃縮貯留槽4内の濃縮液を取り出す作業が行われる。
 最初の濃縮工程が開始されてから濃縮が完了した濃縮循環槽2内の濃縮液を排出するまでの工程を1バッチと称する。この1バッチの工程を所定回数実行することにより、濾過装置による濾過作業が終了して濾過装置が停止される。
 処理水取出管21から取り出された処理水は光電センサ25により混濁度が検出される。その混濁度が所定値以上の場合には濾過不良のエラーと判断してエラー報知処理がなされる。
また、循環ポンプ33により押し出された洗浄液の温度が温度センサ26により検出される。その検出値に基づいて洗浄液の温度が所定温度(40~50℃)に保たれるように洗浄用ヒータ49を制御する。
 次に、図14に基づいて、pH調整制御盤22と装置制御盤23との制御回路を説明する。pH調整制御盤22にはpH調整制御盤マイクロコンピュータ60が設けられている。このpH調整制御盤マイクロコンピュータ60には、制御中枢としてのCPU(Central Processing Unit)66、制御用のプログラムやデータが記憶されているROM(Read Only Memory)67、CPU66のワークエリアとして機能するRAM(Random Access Memory)68等が設けられている。
 一方、装置制御盤23には装置制御盤マイクロコンピュータ63が設けられている。この装置制御盤マイクロコンピュータ63には、制御中枢としてのCPU69、制御用のプログラムやデータが記憶されているROM70、CPU69のワークエリアとして機能するRAM71、EEPROM(Electrically Erasable Programmable Read−Only Memory)72等が設けられている。
 pH調整制御盤マイクロコンピュータ60には、pHセンサ24、レベルセンサLS4~LS6の各検出信号が入力される。またキーボードやマウスやタッチパネル等の入力操作部61からの操作信号がpH調整制御盤マイクロコンピュータ60に入力される。
 pH調整制御盤マイクロコンピュータ60から、原液送水ポンプ27、アルカリ注入ポンプ28、酸注入ポンプ29、pH調整水ポンプ30の各ポンプ制御信号が出力される。また撹拌モータ30を駆動するための制御信号が出力される。さらに、オペレータに対して各種のエラー表示や濾過装置の動作状態等のモニタ表示信号が表示部62に出力される。
 装置制御盤マイクロコンピュータ63には、レベルセンサLS1~LS3の各センサ信号が入力される。また流量計FL1~FL3の各流量検出信号が入力される。さらに、光電センサ25、温度センサ26、圧力センサPS1、PS2の各センサ信号が入力される。また、キーボードやマウスやタッチパネル等の入力操作部64からの操作信号が入力される。
 装置制御盤マイクロコンピュータ63から、ヒータ制御信号が洗浄用ヒータ49に出力される。さらに、濃縮液送水ポンプ31、洗浄剤注入ポンプ32、循環ポンプ33に対して各ポンプ制御信号が出力される。また、モータバルブMV1~MV10に対して各バルブ制御信号が出力される。さらに、オペレータに対してエラー表示や濾過装置の動作状態のモニタ表示を行うための表示制御信号が表示部65に出力される。
 pH調整制御盤マイクロコンピュータ60と装置制御盤マイクロコンピュータ63とは、互いに信号の送受信が可能となっている。装置制御盤マイクロコンピュータ63からpH調整制御盤マイクロコンピュータ60に対して、原液を濃縮貯留槽2に供給してもらうための原液供給信号が出力される。それを受けたpH調整制御盤マイクロコンピュータ60は、前述したように原液を濃縮還元槽2に供給する制御を開始するとともに原液の供給を開始した旨の原水供給信号を装置制御盤マイクロコンピュータ63へ返信する。さらに、pH調整制御盤マイクロコンピュータ60は、制御テリトリー内での異常が発生した場合に一括異常信号を装置制御盤マイクロコンピュータ63へ送信する。
 次に、図15および図16に基づいて、pH調整制御盤マイクロコンピュータ60による制御動作を説明する。図15、図16に示された各フローチャートのプログラムはROM67に記憶されているものである。まず図15(a)に基づいて、pH調整制御処理のメインルーチンを説明する。ステップ(以下単に「S」という)1により、各槽異常チェック処理が行われる。これは、原水槽1および濃縮貯留槽4の貯留状態の異常をチェックするものである。次にS2により、各槽間液移動処理が行われる。次にS3により、pH調整処理が行われる。このPH調整処理は、pH調整槽5内の原液をアルカリまたは酸で中和させてpHを調整するための処理である。
 図15(b)を参照して、前述の各槽異常チェック処理のサブルーチンプログラムのフローチャートを説明する。S7により、レベルセンサLS4の値が異常低下したか否か判定される。原水槽1に貯留されている原水の貯留量が異常に低下して渇水状態になった場合にはS7によりYESの判断がなされて制御がS8へ進み、原水槽渇水エラーフラグをONにする処理がなされる。一方、レベルセンサLS4の値が異常低下していないと判定された場合には制御がS9へ進み、原水槽渇水エラーフラグをOFFにする制御がなされる。
 次に、S10により、レベルセンサLS4の値が異常上昇したか否か判定される。異常上昇したと判定された場合には制御がS11へ進み、原水槽満水エラーフラグをONにする制御がなされる。一方、レベルセンサLS4が異常上昇していないと判定された場合にはS12へ進み、原水槽満水エラーフラグをOFFにする処理がなされる。
 S13によりレベルセンサLS6の値が異常低下したか否か判定される。pH調整槽5内の原液が異常レベルまで低下した場合にはS13によりYESの判断がなされて制御がS14へ進み、pH調整槽渇水エラーフラグをONにする処理がなされる。一方、レベルセンサ6の値が異常低下していない場合には制御がS15へ進み、pH調整槽渇水エラーフラグをOFFにする。次にS16により、レベルセンサLS6の値が異常上昇したか否か判定される。pH調整槽5内に貯留されている原液が異常レベルまで上昇した場合にはS16によりYESの判断がなされて制御がS17へ進み、pH調整槽満水エラーフラグをONにする。一方、レベルセンサ6の値が異常上昇していないと判定された場合にはS18により、pH調整槽満水エラーフラグをOFFにする。
 次に制御がS19へ進み、レベルセンサ5が異常上昇しているか否か判定される。濃縮貯留槽4に貯留されている濃縮液が満杯となりレベルセンサLS5がその満杯を検出した場合にはS19によりYESの判断がなされて制御がS20へ進み、濃縮貯留槽満水エラーフラグをONにする。一方、レベルセンサ5の値が異常上昇していない場合には制御がS21へ進み、濃縮貯留槽満水エラーフラグをOFFにする制御が行われる。
 次に制御がS22へ進み、いずれかのエラーフラグがONになっているか否か判定され、ONになっていない場合にはこのサブルーチンプログラムがリターンして制御がS2へ進む。
 一方、いずれかのエラーフラグがONになっている場合には制御がS23へ進み、一括異常信号を装置制御盤マイクロコンピュータ63へ送信し、S24により、そのONになっているエラーフラグに応じた異常表示を表示部62により表示させる制御を行って、リターンする。
 次に、前述のS2に示した各槽間液移動処理のサブルーチンプログラムのフローチャートを図16(a)に基づいて説明する。S30により、原水供給信号を受信したか否か判定される。装置制御盤マイクロコンピュータ63から原水供給信号が送信されてくればS30によりYESの判断がなされて制御がS31へ進み、pH調整水ポンプ30を作動させてpH調整槽5内の原水を濃縮循環槽2へ供給する。次にS32により、原水供給を開始した旨の原水供給信号を装置制御盤マイクロコンピュータ63へ返信する。次にS33により、レベルセンサLS6の値が補給レベルまで低下しているか否か判定する。pH調整槽5内の原液が減少して補給が必要なレベルになったときにS33によりYESの判断がなされて制御がS34へ進み、原液送水ポンプ27を作動させて原水槽1内の原液をpH調整槽5内に補給する。
 前述のS3に示したpH調整処理のサブルーチンプログラムのフローチャートを図16(b)に基づいて説明する。S40により、pH調整値の入力があったか否か判定される。オペレータが入力操作部61を操作してpH調整槽5内のPH調整値を入力すればS41によりpH調整値をその入力された新たなpH調整値に更新する処理がなされる。次にS42により、現時点におけるPHセンサの値PSとpH調整値PTと比較する処理がなされ、S43により、PSがPTを超えているか否か判定される。PSがPTを超えている場合には制御がS44へ進み、アルカリ注入ポンプ28を作動させてアルカリをpH調整槽5内に注入する制御がなされる。一方、PSがPTを超えていない場合には制御がS45へ進み、酸注入ポンプ29を作動させて酸をpH調整槽5内に注入する制御がなされる。このPH調整処理により、pH調整槽5内の原液が、オペレータによって入力されたpH調整値となるように制御される。
 次に、図17~図25に基づいて装置制御盤マイクロコンピュータ63の制御用プログラムのフローチャートを説明する。これらフローチャートは、ROM70に記憶されている。まず図17(a)に基づいて装置制御処理のメインルーチンを説明する。S50により濾過装置の運転に必要な各種運転値設定入力処理がなされ、S51により、異常が発生したか否かの判定基準となる各種異常値の設定入力処理がなされ、S52により、異常が発生したか否かの異常チェック処理がなされ、S53により、各モータバルブを制御して流量を切換える処理がなされ、S54によりモニター表示処理がなされる。
 次に、S50に示した運転設定値入力処理のサブルーチンプログラムのフローチャートを図17(b)および図18(a)に基づいて説明する。この運転設定値入力処理は、濾過装置の運転を行う上で必要な各種値をオペレータが入力操作部64により入力設定するための処理である。S60により濃縮回数の入力があったか否か判定され、ない場合にはS62によりバッチ回数の入力があったか否か判定され、ない場合にはS64により濃縮循環槽レベル入力があったか否か判定され、ない場合にはS66により排出中継槽レベル入力があったか否か判定され、ない場合にはS67により自動洗浄時間の入力があったか否か判定され、ない場合にはS70により水押し時間の入力があったか否か判定され、ない場合にはS72により逆運転時間の入力があったか否か判定され、ない場合にはS74により廃液排出時間の入力があったか否か判定されない場合にはS76により洗浄モード切換操作があったか否か判定され、ない場合にはS80により薬品洗浄設定入力があったか否か判定され、ない場合にはS82により膜洗浄槽清水補給時間の入力があったか否か判定され、ない場合にはS84により熱交換運転温度の入力があったか否か判定され、ない場合にはこのサブルーチンプログラムがリターンする。
 前述したように、オペレータが入力操作部64を操作して濃縮循環槽2への原液の注ぎ足し回数(濃縮回数)を入力すれば、S60によりYESの判断がなされて制御がS61へ進み、記憶している濃縮回数をその新たに入力された濃縮回数NKに更新する処理がなされる。1バッチの工程を何回実行するかのバッチ回数が入力操作部64により入力された場合にはS62によりYESの判断がなされ制御がS63に進み、記憶しているバッチ回数をその新たに入力されたバッチ回数VCに更新する処理がなされる。
 濃縮循環槽2に貯留されている濃縮液のレベルを入力設定する操作が入力操作部64により行われた場合にはS64によりYESの判断がなされて制御がS65へ進み、記憶されている濃縮循環槽レベルをその新たに入力された各レベルHH1,H1,L1,LL1に更新する処理がなされる。このHH1は満水異常レベルであり、H1は運転開始レベルであり、L1は運転停止レベルであり、LL1は排水完了レベルである。
 オペレータが入力操作部64を操作して、廃液中継槽(濃縮液中継槽)3のレベル入力を行えば、S66によりYESの判断がなされて制御がS68へ進み、記憶している廃液中継槽レベルの値を新たに入力された各レベルHH2,H2,L2,LL2に更新する処理がなされる。このHH2は満水異常のレベルであり、H2はモータバルブMV7を閉じてそれ以上濃縮液が濃縮中継槽3内に入らないようにするためのレベルであり、L2は濃縮液送水ポンプ31を運転開始させるレベルであり、LL2は濃縮液送水ポンプ31を停止させるレベルである。
 入力操作部64により自動洗浄時間が入力された場合にはS67によりYESの判断がなされて制御がS69へ進み、記憶している自動洗浄時間をその新たに入力された自動洗浄時間に更新する処理がなされる。この自動洗浄時間とは、前述した洗浄工程1(図12参照)および洗浄工程2(図13参照)を繰り返し実行する時間のことである。入力操作部64により水押し時間が入力されればS70によりYESの判断がなされて制御がS71へ進み、記憶している水押し時間を新たに入力された水押し時間に更新する処理がなされる。
 入力操作部64により逆運転時間が入力される場合はS72によりYESの判断がなされて制御がS73へ進み、記憶している逆運転時間をその新たに入力された逆運転時間に更新する処理がなされる。この逆運転時間とは、濃縮工程1が開始されてからその濃縮工程1が終了するまでの時間、濃縮工程2が開始されてからその濃縮工程2が終了するまでの時間、洗浄工程1が開始されてからその洗浄工程1が終了するまでの時間、および、洗浄工程2が開始されてからその洗浄工程2が終了するまでの時間である。濃縮循環槽2に貯留されている濃縮液を濃縮中継槽5へ排出するための廃液排出時間が入力操作部64により入力された場合にはS74によりYESの判断がなされて制御がS75へ進み、記憶している廃液排出時間をその新たに入力された廃液排出時間に更新する処理がなされる。
 清水を用いての洗浄あるいは処理液を用いての洗浄のいずれの洗浄モードにするかの操作が入力操作部64により行われた場合には、S76によりYESの判断がなされて制御がS77へ進み、現時点のモードが処理水洗浄モードであるか否かの判定がなされる。現在のモードが処理水洗浄モードの場合には制御がS78へ進み、清水洗浄モードに切換える処理が行われる。一方、現在のモードが処理水洗浄モードでない場合すなわち清水洗浄モードであった場合には制御がS79へ進み、処理水洗浄モードに切換える処理がなされる。
 入力操作部64により薬品洗浄の設定入力操作があった場合にはS80によりYESの判断がなされて制御がS81へ進み、設定バッチ回数に応じた薬品の注入時間がその入力された値に更新される。この膜洗浄槽8に清水を供給するための膜洗浄槽清水補給時間が入力操作部64により入力された場合にはS82によりYESの判断がなされS83へ進み、記憶している膜洗浄槽清水補給時間をその新たに入力された膜洗浄槽清水補給時間に更新する処理がなされる。
 膜洗浄槽8内の洗浄液の温度である熱交換運転温度が入力操作部64から入力された場合にはS84によりYESの判断がなされて制御がS85へ進み、記憶している熱交換運転温度をその新たに入力された熱交換運転温度に更新する処理がなされる。そしてこのサブルーチンプログラムがリターンする。
 次に、前述したS51に示した異常値設定入力処理のサブルーチンプログラムを図18(b)に基づいて説明する。S90により処理流量低下入力があったか否か判定され、ない場合にはS92により循環流量の入力があったか否かの判定がなされ、ない場合にはS94により圧力の入力があったか否か判定され、ない場合S96により濃縮排出エラーの入力があったか否か判定され、ない場合にはこのサブルーチンプログラムがリターンする。
 チューブラ式膜分離装置10により濾過された処理水の流量が異常であるか否かを判定するための処理流量低下の入力が入力操作部64により行われた場合には制御がS91へ進み、記憶している処理流量低下値をその新たに入力された処理流量低下値SRに更新する処理が行われる。循環ポンプ33によって循環される濃縮液の循環量である循環流量が入力操作部64により入力された場合には制御がS93へ進み、記憶している循環流量をその新たに入力された循環流量の上限値JRUと下限値JRLとに更新する処理が行われる。濃縮工程におけるチューブラ式膜分離装置10に圧送される濃縮液の圧力が入力操作部64により入力された場合には制御がS95へ進み、記憶している圧力をその新たに入力された圧力の上限PUと下限PLとに更新する処理が行われる。濃縮循環槽2に貯留されている濃縮液を排出する時間が所定値を超えた場合に異常と判定するための濃縮排出エラー時間が入力操作部64により入力された場合には制御がS97へ進み、記憶している濃縮排出エラー時間をその新たに入力された濃縮排出エラー時間NHTに更新する処理が行われる。そしてこのサブルーチンプログラムがリターンする。
 次に、S52に示した異常チェック処理のサブルーチンプログラムを図19および図20に基づいて説明する。まずS105により現時点での各センサの値が読み取られて記憶される。具体的には、レベルセンサLS1の値がLS1として記憶され、レベルセンサLS2の値がLS2として記憶され、レベルセンサLS3の値がLS3として記憶され、流量計FL1の値がF1として記憶され、流量計FL2の値がF2として記憶され、流量計FL3の値がF3として記憶され、光電センサ25の値がPSとして記憶され、温度センサ26の値がTとして記憶され、圧力センサPS1の値がPS1として記憶され、圧力センサPS2の値がPS2として記憶される。
 次に、濾過装置により現在行われている工程が濃縮工程であるか否かがS106により判定される。濃縮工程でなければこのサブルーチンプログラムがリターンするが、濃縮工程の場合には制御がS107へ進み、流量計FL2の値F2が処理流量低下値SR未満であるか否か判定される。その判定結果がYESの場合にはS108により処理流量低下エラーフラグをONにする。一方、S107の判定結果がNOの場合にはS109により、処理流量低下エラーフラグをOFFにする処理がなされる。次に制御がS110へ進み、流量計FL1の値F1が循環流量の上限JRUを超えているか否か判定される。超えている場合にはS111により運転流量上限エラーフラグをONにする。その後制御がS116へ進む。一方、S110により超えていないと判定された場合には制御がS112へ進み、運転流量上限エラーフラグをOFFにした後制御がS113へ進む。S113では、流量計FL1の値F1が循環流量の下限JRL未満であるか否か判定される。未満である場合にはS114により運転流量下限エラーフラグをONにし、一方S113によりNOと判定された場合にはS115により運転流量下限エラーフラグをOFFにする制御がなされる。
 S116では、圧力センサPS1の値PS1が圧力の上限PUを超えているか否か判定される。超えている場合にはS117により運転圧力上限エラーフラグをONにする処理がなされた後S112へ進む。一方、PS1がPUを超えていない場合にはS118により運転圧力上限エラーフラグをOFFにする処理がなされる。次にS119により、圧力センサPS1の値PS1が圧力の下限PLを下回っているか否か判定される。下回っている場合にはS120により運転圧力下限エラーフラグをONにする。一方、下回っていない場合にはS121により運転圧力下限エラーフラグをOFFにする。
 次に制御がS122へ進み、廃液排水フラグがOFFからONに切り替わったか否か判定される。この廃液排出フラグは、濃縮循環槽2内への濃縮液を濃縮液中継槽3に排出するためのフラグであり、後述するS127によりONとなり後述するS129によりOFFに切り替わる。また、濃縮回数(注ぎ足し回数)が入力設定された濃縮回数NK(S61参照)に達すればバッチ回数がVCに達していないときに、後述するS167により廃液排出フラグがONになる。S122では、その廃液排出フラグがOFFからONに切り替わった瞬間だけYESの判断がなされる。S122によりYESの判断がなされた場合には制御がS123へ進み、廃液排出タイマーHHPをセットする処理がなされる。またS124によりモータバルブMV7を開く制御が行われたのち制御がS131へ進む。
 S122によりNOの判定がなされた場合には制御がS125へ進み、廃液排出フラグがONになっているか否か判定される。ONになっていない場合にはS130へ進み、廃液排出タイマーHHPをクリアするとともに、モータバルブMV7を閉じる状態にする制御がなされた後にS131へ進む。
 一方、S125により廃液排出フラグがONであると判定された場合には制御がS126へ進み、廃液排出タイマーHHTが濃縮排出エラー時間NHTを超えているか否か判定
される。超えている場合には、S127により廃液排出フラグをONにする制御がなされたた後制御がS128へ進む。廃液排出タイマーHHTが濃縮排出エラー時間NHTを超えていない場合には制御がS128へ進み、レベルセンサLS1が排出完了レベル(LL1)か否か判定される。排出完了レベルになっていない場合には制御がS131へ進むが、排出完了レベルになっている場合には制御がS12へ進み、廃液排出フラグをOFFに切換える制御が行われた後制御がS131へ進む。
 S131では、レベルセンサLS3の値が満水異常のレベルHH2を超えているか否か判定される。超えている場合には制御がS132へ進み、排出PエラーフラグをONにするとともに、濃縮液中継槽満水エラーフラグをONにする処理がなされた後S134へ進む。
 一方、S131によりNOの判定がなされた場合には制御がS133へ進み、廃液PエラーフラグをOFFにすると共に、濃縮液中継槽満水エラーフラグをOFFにする制御がなされる。次に制御がS134へ進む。
 S134では、レベルセンサLS1の値が満水異常レベルHH1を超えているか否か判定される。超えている場合には制御がS135へ進み、濃縮循環槽満水エラーフラグをONにする制御がなされる。一方、LS1の値がHH1を超えていない場合には制御がS136へ進み、濃縮循環槽満水エラーフラグをOFFにする処理がなされる。次にS137により、レベルセンサLS2の値が膜洗浄槽8の満水レベルMLを超えたか否か判定される。超えた場合には制御がS138へ進み、膜洗浄槽満水エラーフラグをONにする処理が行われた後制御がS143へ進む。一方、LS2が満水レベルMLを超えていない場合には制御がS139へ進み、膜洗浄槽満水エラーフラグをOFFにする制御が行われる。
 次に制御がS140へ進み、レベルセンサLS2の値が膜洗浄槽8の渇水レベルKLを下回ったか否か判定される。下回った場合には制御がS141へ進み、膜洗浄槽渇水エラーフラグをONにする処理がなされる。一方、LS2の値が渇水レベルKLを下回っていない場合には制御がS142へ進み、膜洗浄槽渇水エラーフラグをOFFにする制御が行われる。次にS143により、いずれかのエラーフラグがONになっているか否かの判定が行われ、いずれかのエラーフラグがONになっている場合にはS144により非常停止の制御が行われる。
 次に、S53で示した流路切換え処理のサブルーチンプログラムを図21(a)に基づいて説明する。S150により、原液を濃縮循環槽に供給する原液補給工程処理が行われる。次にS151により、濃縮循環槽2に貯留されている原液を濾過して濃縮する濃縮工程処理が行われる。次にS152により、水押し工程処理が行われる。次にS153により、膜洗浄槽8に貯留されている洗浄液を用いてチューブラ式膜分離装置10のUF膜チューブ15を洗浄する洗浄工程が行われる。次にS154により、濃縮循環槽2に貯留されている濃縮液を排出する濃縮液排出工程処理が行われる。
 次に、S150に示した原液補給工程処理のサブルーチンプログラムのフローチャートを図21(b)に基づいて説明する。S160により、濾過処理装置が作動中であることを示す作動フラグがONになっているか否か判定される。作動フラグは、濾過処理装置の電源をONにした状態でオペレータが作動開始スイッチをON操作したときにNOとなり、S168でOFFとなる。作動フラグがONになっていない場合にはこのサブルーチンプログラムがリターンする。作動フラグがONになっている場合には制御がS161へ進み、レベルセンサLS1の値が濃縮循環槽2の排出完了レベルLL1以下になっているか否か判定される。LL1以下になっていない場合には制御がS162へ進み、レベルセンサLS1の値が運転停止レベルL1になっているか否か判定される。L1になっていない場合にはこのサブルーチンプログラムがリターンする。
 濃縮循環槽2内の濃縮液が排出されている状態でこの原液補給工程処理が実行された場合には、レベルセンサLS1の値が排出完了レベルLL1以下になっているために、制御がS169へ進み、原液を初期補給量だけ補給する原液供給信号をpH調整制御盤22へ送信する処理が行われる。この「初期補給量」とは、濃縮液が排出された状態の濃縮循環槽2内において原液が運転開始レベルH1に達する補給量のことである。
 濃縮工程が進行して濃縮循環槽2内の濃縮液が濾過されて濃くなり運転停止レベルL1にまで体積が減少した状態でこの原液補給工程処理が実行された場合には、S162によりYESの判断がなされて制御がS163へ進み、濃縮回数カウンターがNKになっているか否か判定される。この濃縮回数カウンターは濃縮循環槽2内に原液を継ぎ足す注ぎ足し回数を計数するカウンターである。またNKとは、S61により予め入力設定された濃縮回数(注ぎ足し回数)のことである。現時点での濃縮回数(注ぎ足し回数)が予め入力設定された濃縮回数NKに未だ達していない場合には制御がS164へ進み、濃縮循環槽2における運転開始レベルH1まで原液を補給する原液供給信号をpH調整制御盤22へ送信する処理が行われる。これによりS30でYESと判定されてS31により原液を濃縮循環槽2へ供給して原液の注ぎ足しが行われる。
 この原液の注ぎ足しが行われている最中、装置制御マイクロコンピュータ63が循環ポンプ33を停止制御する。これにより、原液(濃縮液)のチューブラ式膜分離装置10への供給が停止される。この循環ポンプ33の停止時に循環ポンプ33において原液(濃縮液)の逆流が生じる場合がある。逆流が生じた場合には、複数のチューブラ式膜分離装置10のうちの上方に位置するチューブラ式膜分離装置10内のUF膜チューブ15が負圧となり、処理水が逆流してUF膜チューブ15が潰れて扁平な形になる不都合が生じる。この不都合を防止するべく、循環ポンプ33の停止中に装置制御マイクロコンピュータ63がモータバルブMV8を開制御する。すると、チューブラ式膜分離装置10内のUF膜チューブ15が濃縮循環槽2の上部と連通状態となる。濃縮循環槽2に貯留されている原液(濃縮液)の液面と濃縮循環槽2の天井部分との間の空間は外気と連通している。その結果、チューブラ式膜分離装置10内のUF膜チューブ15が外気と連通状態となり、UF膜チューブ15が負圧になることが回避され、UF膜チューブ15が潰れて扁平な形になる不都合が防止される。次に制御がS165へ進み、濃縮回数カウンターを1加算更新する処理が行われる。
 一方、S163により、現時点における濃縮回数カウンターがNKに達していると判定された場合には制御がS166へ進み、バッチ回数カウンターがVCに達しているか否か判定される。このVCは、S63により予め入力設定されたバッチ回数のことである。現時点におけるバッチ回数が未だVCに達していない場合には制御がS167へ進み、濃縮循環槽2内の濃縮液を排出するための廃液排出フラグをONにする処理が行われる。一方、現時点におけるバッチ回数がVCに達している場合には制御がS168へ進み、作動フラグをOFFに切換える処理が行われる。
 以上のように、本実施の形態では、原液の濃縮の進行に伴って濃縮液循環槽2内の原液が減少して所定量(L1レベル)に達する毎に原液の注ぎ足しを行っているが、その代わりに、濃縮の進行に合わせて原液を常時少しずつ濃縮循環槽2に供給するようにしてもよい。前者の注ぎ足し方式の場合には、濃縮の進行に伴って濃縮液の温度が徐々に上昇するため、濾過性能が向上する利点がある一方、継ぎ足し時に循環ポンプ33をストップさせることによる稼動停止の不都合が生じる。後者の常時供給方式の場合には、濃縮液の温度があまり上昇せず濾過性能の向上があまり期待できない一方、継ぎ足し時の稼動停止が生じない利点がある。
 次に、S151に示した濃縮工程処理のサブルーチンプログラムのフローチャートを図22(a)に基づいて説明する。S175により工程切換え処理が行われる。次にS176により、三方弁等の流量を切換える濃縮工程流量制御処理が行われる。
 次にS175に示した工程切換え処理のサブルーチンプログラムのフローチャートを図22(b)に基づいて説明する。S180により洗浄工程フラグがONになっているか否か判定される。この洗浄工程フラグは洗浄工程が実行中であることを示すフラグである。洗浄工程フラグがONの場合にはこのサブルーチンプログラムがリターンする。洗浄工程フラグがONになっていない場合には制御がS181へ進み、水押し工程フラグがONになっているか否か判定される。この水押し工程フラグは水押し工程が実行中であることを示すフラグである。水押し工程フラグがONになっていない場合には制御がS184へ進み、濃縮工程フラグがONになっているか否か判定される。この濃縮工程フラグは濃縮工程が実行中であることを示すフラグである。濃縮工程フラグがONになっていない場合には制御がS185へ進み、レベルセンサLS1の値が濃縮循環槽2における運転開始レベルH1に達したか否か判定される。達していない場合にはこのサブルーチンプログラムがリターンするが、原液が補給されてレベルセンサLS1の値が運転開始レベルH1に達した場合には制御がS186へ進み、濃縮工程フラグをONにする処理が行われる。
 濃縮工程フラグがONになれば、S184によりYESの判断がなされて制御がS182へ進み、1単位濃縮時間が経過したか否か判定される。この1単位濃縮時間とは、濃縮工程が開始されてから濃縮工程1(図1参照)と濃縮工程2(図10参照)とが複数回繰り返された後、水押し工程(図11参照)に移行するためにその濃縮工程を終了するまでの時間である。この1単位濃縮時間を所望の時間に調整できるように予め入力設定しておく。濃縮工程が開始されてから未だ1単位濃縮時間が経過していない場合には制御がS183へ進み、逆運転時間が経過したか否か判定される。この逆運転時間とは、濃縮工程1が開始されてから濃縮工程2を開始するべくその濃縮工程1を終了するまでの時間、および、濃縮工程2が開始されてから濃縮工程1に移行するためにその濃縮工程2を終了するまでの時間のことである。この逆運転時間は、S73により予め入力設定された逆運転時間のことである。
 未だ逆運転時間が経過していない場合にはこのサブルーチンプログラムがリターンする。一方、逆運転時間が経過した段階でS183によりYESの判断がなされて制御がS187へ進み、逆方向フラグがONであるか否か判定される。この逆方向フラグとは、濃縮液または洗浄液をチューブラ式膜分離装置10に対して逆方向に流していることを示すフラグである。現時点で逆方向に流している場合には逆方向フラグがONになっているために、S187によりYESの判断がなされて制御がS188へ進み、逆方向フラグをOFFにする処理がなされる。一方、逆方向フラグをOFFの場合には制御がS192へ進み、逆方向フラグをONにする処理がなされる。そのうちこのサブルーチンプログラムがリターンする。
 1単位濃縮時間が経過した段階でS182によりYESの判断がなされて制御がS189へ進み、濃縮回数カウンターがNKに達しているか否か判定される。原液の濃縮循環槽2への注ぎ足し回数が予め入力設定された濃縮回数NKに達している場合には制御がS190へ進み、濃縮工程フラグをOFFにする処理がなされる。一方、濃縮回数カウンターがNKに達していない場合には制御がS191へ進み、濃縮工程フラグをOFFにすると共に水押し工程フラグをONにする処理がなされる。
 その結果、S181によりYESの判断がなされることとなり、工程切換え処理のサブルーチンプログラムがリターンする。また、洗浄工程フラグがONになっている場合にもこの工程切換え処理のサブルーチンプログラムがリターンする。
 次に、S176に示した濃縮工程流路制御処理のサブルーチンプログラムを図22(c)に基づいて説明する。S195により濃縮工程フラグがONになっているか否か判定される。ONになっていない場合にはこのサブルーチンプログラムがリターンする。ONになっている場合には制御がS196へ進み、逆方向フラグがOFFになっているか否か判定される。逆方向フラグがOFFになっている場合には制御がS197へ進み、モータバルブMV1を開き、モータバルブMV3をB→Cの流路に切換え、モータバルブMV4をC→Aの流路に切換え、モータバルブMV9をC→Bの流路に切換え、モータバルブMV2を閉じる制御が行われた後このサブルーチンプログラムがリターンする。このS197の制御により、濃縮液(原液)が図1に示すように順方向に流れ、濃縮工程1が実行される。
 一方、逆方向フラグがONになっている場合にはS196によりNOの判断がなされて制御がS198へ進み、モータバルブMV1を開き、モータバルブMV3をC→Aの流路に切換え、モータバルブMV4をB→Cの流路に切換え、モータバルブMV9をC→Bの流路に切換え、モータバルブMV2を閉じる制御が行われる。その結果、濃縮液(原液)が図10に示すように逆方向に流れ、濃縮工程2が実行されることとなる。
 次に、S152に示した水押し工程処理のサブルーチンプログラムのフローチャートを図23(a)に基づいて説明する。S205により工程切換え処理が行われ、S206により水押し工程流路制御処理が行われる。
 次に、S205に示した工程切換え処理のサブルーチンプログラムのフローチャートを図23(b)に基づいて説明する。S210により、水押し工程フラグがONになっているか否か判定される。水押し工程フラグがONになっていない場合にはこのサブルーチンプログラムがリターンするがONになっている場合には制御がS211へ進み、水押し時間が経過したか否か判定される。この水押し時間とは、S71により予め入力設定された水押し時間のことである。水押し工程が進行してこの水押し時間だけ水押し処理が実行された段階でS211によりYESの判断がなされて制御がS212へ進み、水押し工程フラグをOFFにすると共に洗浄工程フラグをONに切換える制御が行われる。
 次に、S206に示した水押し工程流路制御処理のサブルーチンプログラムのフローチャートを図23(c)に基づいて説明する。S215により水押し工程フラグがONになっているか否か判定される。水押工程フラグがOFFの場合にはこのサブルーチンプログラムがリターンするが、水押し工程フラグがONになっている場合には制御がS216へ進み、逆方向フラグがONになっているか否か判定される。水押し工程の直前で実行されていた濃縮工程で原液(濃縮液)を逆方向に流す濃縮工程2が実行されていた場合には、S216によりYESの判断がなされて制御がS217へ進み、モータバルブMV1を閉じ、モータバルブMV2を開き、モータバルブMV3をB→Cの流路に切換え、モータバルブMV4をC→Aの流路に切換え、モータバルブMV9をC→Bの流路に切換える制御が行われる。その結果、図11に示すように洗浄水を順方向に流して水押しを行う状態となる。
 一方、水押し工程の直前で実行されていた濃縮工程が原液(濃縮液)を順方向に流す濃縮工程1であった場合には、逆方向フラグがOFFとなっているためにS216によりNOの判断がなされて制御がS218へ進み、モータバルブMV1を閉じ、モータバルブMV2を開き、モータバルブMV3をC→Aの流路に切換え、モータバルブMV4をB→Cの流路に切換え、モータバルブMV9をC→Bの流路に切換える制御が行われる。
 その結果、水押し工程の直前で実行されていた濃縮工程が濃縮液を逆方向に流す濃縮工程2であった場合には、次に実行される水押し工程においては、洗浄液を順方向に流す流路制御が行われ(S217)、チューブラ式膜分離装置10の一方端側の受止め機構18に保持されているスポンジボールをUF膜チューブ15内に押し出してUF膜チューブ15内をスポンジボール17により洗浄しつつ水押しが実行される状態となる。また、水押し工程の直前で実行されていた濃縮工程が原液(濃縮液)を順方向に流す濃縮工程1であった場合には、逆方向フラグがOFFになっているために洗浄液をチューブラ式膜分離装置10に対して逆方向に流す水押しが実行され(S218)、チューブラ式膜分離装置10の他方単側の受止め機構18に保持されているスポンジボール17をUF膜チューブ15内に押し出してUF膜チューブ15内を洗浄しつつ水押しが実行されることとなる。
 次に、S153に示した洗浄工程処理のサブルーチンプログラムのフローチャートを図24(a)に基づいて説明する。S225により工程切換え処理が行われ、S226により洗浄工程流路制御処理が実行される。
 次に、S225に示した工程切換え処理のサブルーチンプログラムのフローチャートを図24(b)に基づいて説明する。S230により洗浄工程フラグがONになっているか否か判定される。ONになっていない場合にはこのサブルーチンプログラムがリターンする。洗浄工程フラグがONになっている場合には制御がS231へ進み、1単位洗浄時間が経過したか否か判定される。この1単位洗浄時間とは、洗浄工程1(図12参照)と洗浄工程2(図13参照)とを複数回実行してその洗浄工程を終了するまでの時間である。この1単位洗浄時間を所望の時間に調整できるように予め入力設定しておく。洗浄工程が開始されてから未だ1単位洗浄時間が経過していない場合にはS231によりNOの判断がなされて制御がS234へ進み、逆運転時間が経過したか否か判定される。この逆運転時間は、S73により予め入力設定された逆運転時間である。逆運転時間が経過していない場合にはこのサブルーチンプログラムがリターンするが、逆運転時間が経過した段階で制御がS235へ進み、逆方向フラグがONになっているか否か判定される。逆方向フラグがONになっている場合にはS236により逆方向フラグをOFFに切換える制御が行われ、逆方向フラグがONになっていない場合にはS237により逆方向フラグをONに切換える制御が行われる。
 次に、S226に示した洗浄工程流路制御処理のサブルーチンプログラムを図24(c)に基づいて説明する。S240により洗浄工程フラグがONになっているか否か判定される。ONになっていない場合にはこのサブルーチンプログラムがリターンする。洗浄工程フラグがONになっている場合には制御がS241へ進み、逆方向フラグがOFFになっているか否か判定される。この逆方向フラグは、前述した水押し工程においては切換えられることがないために(図23参照)、濃縮工程の終了時点における逆方向フラグがそのまま洗浄工程において引き継がれてS241により判定される。その結果、洗浄工程の開始時においては、濃縮工程の終了時点で実行されていた原液(濃縮液)の流れ方向と同じ方向に洗浄液を流す制御が行われる。還元すれば、水押し工程で実行されていた洗浄液の流れる方向とは逆方向に洗浄液を流して洗浄を開始する制御が行われる。具体的には、逆方向フラグがONの場合には制御がS243へ進み、モータバルブMV1を閉じ、モータバルブMV3をC→Aの流路に切換え、モータバルブMV2を開き、モータバルブMV4をB→Cの流路に切換え、モータバルブMV9をC→Aの流路に切換える制御が行われる。その結果、図13に示すように、チューブラ式膜分離装置10に対して洗浄液を逆方向に流す洗浄工程2が実行されることとなる。
 また、逆方向フラグがOFFの場合には制御がS242へ進み、モータバルブMV1を閉じ、モータバルブMV3をB→Cの流路に切換え、モータバルブMV2を開き、モータバルブMV4をC→Aの流路に切換え、モータバルブMV9をC→Aの流路に切換える制御が行われる。その結果、図12に示すように、チューブラ式膜分離装置10に対して洗浄液を順方向に流して洗浄を行う状態となる。そして、逆転時間が経過することにより逆方向フラグが切換えられるために(S234~S237)、洗浄工程1から2へ、または洗浄工程2から1へ洗浄工程が切換えられる。
 次に、S154に示した濃縮液排出工程処理のサブルーチンプログラムのフローチャートを図25(a)に基づいて説明する。S250により、廃液排出フラグがONになっているか否か判定される。ONになっていない場合にはこのサブルーチンプログラムがリターンするが、ONになっている場合には制御がS251へ進み、モータバルブMV7を開く制御が行われる。その結果、濃縮循環槽2に貯留されている濃縮液がモータバルブMV7を経由して濃縮液中継槽3へ排出される。次に、S252により、レベルセンサLS1の値が濃縮循環槽2における排出完了レベルLL1になったか否か判定される。未だLL1になっていない場合には、このサブルーチンプログラムがリターンするが、LL1になった段階で、S252によりYESの判断がなされて制御がS253へ進み、廃液排出フラグをOFFにし、S254により、バッチ回数カウンターを1加算更新する処理がなされた後にこのサブルーチンプログラムがリターンする。
 次に、S54に示したモニター表示処理のサブルーチンプログラムのフローチャートを図25(b)に基づいて説明する。S260によりモニター表示操作があったか否か判定され、ない場合にはこのサブルーチンプログラムがリターンする。オペレータが入力操作部64を操作してモニター表示を行う操作が入力されれば、S260によりYESの判断がなされて制御がS261へ進み、表示対象となる各種表示項目を表示部65に表示するメニュー表示が実行される。それを見たオペレータが表示してもらいたいメニューを入力操作部64により選択すればS262によりYESの判断がなされて制御がS263へ進み、その選択された項目が表示部65に表示される。
 モニター表示の具体例としては、例えば、自動洗浄時間、水押し時間、逆運転時間、廃液排出時間、濃縮循環槽2における満水異常レベルHH1、運転開始レベルH1、運転停止レベルL1、排出完了レベルLL1、現在水位、濃縮液中継槽3における満水異常レベルHH2、MV7を閉じるレベルH1、濃縮液送水ポンプ31を運転開始するレベルL2、濃縮液送水ポンプ31を停止させるレベルLL2、現在水位、さらには、濃縮回数(注ぎ足し回数)、バッチ回数等の、入力された各種運転設定値をモニター表示する。さらには、ONになっている各種エラーフラグに対応するエラー表示を行ってもよい。
 次に、人工知能による機械学習を利用して最適な濾過制御を行う実施形態を図26~図28に基づいて説明する。図26を参照して、多数の濾過処理装置の装置制御盤23の各々がインターネット60を介して人工知能サーバ55に接続されている。濾過処理装置の稼働中に発生する各種データが各装置制御盤23から人工知能サーバ55へ送信され、その送信されてきた各種データに基づいて人工知能サーバ5が機械学習を行い、その学習結果を反映した制御指令を各装置制御盤23へ返信する。このようなサービスを人工知能サーバ55がクラウドサービスとして実行してもよい。この人工知能サーバ55は、ノイマン型の一般的なコンピュータを用いているが、ニューラル・ネット・プロセッサー(NNP)を用いてもよい。NNPのチップ上には本物のニューロンをモデルにした「人工ニューロン」が多数搭載されており、各ニューロンはネットワークでそれぞれ連携し合う。また、「量子アニーリング方式」を採用した量子コンピュータを用いてもよい。これにより、機械学習における最適化計算の所要時間を大幅に短縮できる。なお、「人工知能」とは、ソフトウェアエージェントを含む広い概念である。さらに、ディープラーニングと組み合わせて後述の機械学習を行ってもよい。
 人工知能サーバ55には、学習データベース56と装置制御盤データベース57とが接続されている。学習データベース56には、強化学習における環境に相当する各種濾過環境と、当該濾過環境の状態を示す状態データsと、当該濾過環境に対して人工知能サーバ55が行う行為としての行為データaとが、各種濾過環境ごとに記憶されている。
 濾過環境としては、例えば、食品工場からの廃液、機械研削工場からの廃液、石油化学プラント工場からの廃液、薬品工場からの廃液等の、濾過対象廃液の種類に応じて分類されている。また、例えば食品工場からの廃液を濾過する濾過環境であっても、対象としている食品の種類ごとに更に細分化して濾過環境を分類してもよい。また、分類された濾過環境ごとに廃液の成分を人工知能が知識として記憶すれば、より有益なサービスが提供可能となる。
 状態データsは、各装置制御盤23から送信されてきたデータに基づいて、現時点における濾過環境における状態を特定するためのデータである。例えば、レベルセンサLS1の値が運転開始レベルH1から、運転停止レベルL1まで低下するのに要した時間や、ONになっているエラーフラグのデータに基づいたエラー情報等である。レベルセンサLS1がH1からL1にまで低下する時間が短ければ短いほど、濃縮循環槽2内の濃縮液が効率的に濃縮されたこととなり、この時間が短いほど高い報酬rを人工知能サーバ55の強化学習用エージェントエンジン56に与える。一方、発生したエラー情報に基づいて、エラーの発生頻度が低いほど高い報酬rを強化学習用エージェントエンジン56に与える。
 各装置制御盤23は、レベルセンサLS1がH1からL1まで低下するのに要した時間をインターネット60を介して人工知能サーバ55へ送信する。また装置制御盤23は、前述した各エラーフラグのうちONとなっているエラーフラグのデータをインターネット60を介して人工知能サーバ55へ送信する。
 人工知能サーバ55が対応する装置制御盤23へ指令する行為データaとしては、例えば、濃縮回数(注ぎ足し回数)NK、自動洗浄時間、逆運転時間、熱交換運転温度、濃縮液循環流量、洗浄液循環流量、濃縮圧力等である。
 装置制御盤データベース57には各装置制御盤23に割り振られている制御盤IDに対応づけて当該装置制御盤23が現在濾過処理を行っている濾過環境が記録されている。
 次に、図27(a)に基づいて人工知能サーバ55の制御回路を説明する。人工知能サーバ55は、制御中枢としてのCPU161、制御用プログラムや制御用データを記憶しているROM163、CPU161のワークエリアとして機能するRAM162が設けられている。また、データ用制御信号を転送するためのバス164と、外部装置とのデータの送受信を行うためのインタフェース部165が設けられている。まず、インターネット60を経由して信号やデータを送受信するための通信部166、オペレータに対して各種情報を表示するための表示部167、オペレータが人工知能サーバ55に対して入力操作するための入力操作部168等が設けられている。
 次に、図27(b)に基づいて、強化学習の基本原理を説明する。人工知能サーバ55に記憶されている強化学習用エージェントエンジン56が濾過環境Sと情報のやりとりを行う。濾過環境Sは、離散的な状態の集合S={s|s∈S}でモデル化できる。そのような環境Sに対して強化学習用エージェントエンジン56が行為aを行うと、それに対する報酬rが得られる。機械学習用エージェントエンジン56は、濾過環境Sの状態sのデータを取得し、その状態sに基づいて行為aを決定し、濾過環境Sに対してその行為aを実行する。
 このような人工知能サーバ55の制御プログラムを説明する。図27(c)は、人工知能サーバのメインルーチンが示されている。S270により、濾過環境分類処理が行われる。次にS271により強化学習処理が行われる。濾過環境分類処理は、現在濾過処理を行っている濾過処理装置がどの濾過環境に属するかを決定するものである。
 具体的には図28(a)を参照して説明する。S275により装置制御盤23から濾過環境特定データが送信されてきたか否か判定される。この濾過環境特定データは、例えば、食品工場廃液、薬品工場廃液等の濾過対象廃液を特定するデータであり、オペレータが入力操作部64により手動入力して人工知能サーバ55へ送信することが考えられる。濾過環境特定データを受信すれば制御がS276へ進み、学習データベース56に既に記憶されている濾過環境のうち対応する濾過環境があるか否か判定される。対応する濾過環境がある場合には制御がS279へ進み、送信されてきた装置制御盤のIDに対応づけて対応する濾過環境を記憶する処理がなされる。次にS280により、濾過環境に対応する行為データaを学習データベース56から割り出して装置制御盤23に返信する処理がなされる。これを受けた装置制御盤23では、受信した行為データa(例えば、濃縮回数、自動洗浄時間、逆運転時間等)に従って濾過処理装置を制御する。その制御結果としての状態データsが再度インターネット60を経由して人工知能サーバ55へ送信されることとなる。
 一方、装置制御盤23から送信されてきた濾過環境特定データが学習データベース56に記憶されている濾過環境に当てはまらない場合には、制御がS281へ進み、新たな濾過環境を作成して装置制御盤のIDに対応づけて装置制御盤データベース57に記憶する処理がなされる。次にS282へ進み、行為データaの初期値を装置制御盤23に要求する処理がなされる。これを受けた装置制御盤23は表示部65にその旨を表示し、それを見たオペレータが濾過環境に適していると思われる行為データaを入力操作部64から入力してインターネット60を経由して人工知能サーバ50へ送信する。
 それを受けた人工知能サーバ55は、S277により、YESの判定を行い、S278により、その新たな濾過環境と行為データaの初期値とを学習データベース56に記憶する処理が行われる。
 なお、新たな濾過環境に対する行為データaの初期値を人工知能サーバ55側で類推設定してもよい。その際には、新たに濾過する濾過対象液の大まかな成分等を入力操作部64から入力してもらってインターネット60経由で人工知能サーバ55へ送信してもらう。それを受けた人工知能サーバ55では、既に学習データベース56に記憶されている濾過環境ごとの濾過対象液(廃液)の成分に基づいて行為データaの初期値を決定する。これは、例えば、教師あり学習における回帰の手法を用いてもよい。回帰とは、入力から予測される妥当な出力値を求めるアルゴリズムである。未知データに対して妥当な出力値を求めるために、入力データがある関数に基づいてターゲットを出力していると考え、その関数を求める問題が回帰問題である。
 次に、S271に示された強化学習処理のサブルーチンプログラムのフローチャートを図28(b)に基づいて説明する。S283により状態データsを受信したか否か判定される。受信してない場合にはこのサブルーチンプログラムがリターンする。
 装置制御盤23は、状態データsと自己の制御盤IDとをインターネット60経由で人工知能サーバ55へ送信する。それを受信した場合には制御がS284へ進み、装置制御盤データベース57を検索して受信した制御盤IDに対応する濾過環境を割り出し、学習データベース56を検索して、その濾過環境に対応する状態データsを更新する処理が行われる。この更新は複数種類の手法が考えられる。まず考えられるものとしては、状態データsの全体の平均として更新する方法である。例えば濾過環境Aとしての状態データsを送信してきた装置制御盤23の数をNとし、今回新たに送信されてきた状態データをssとした場合に、更新された後の状態データは、(s×N+ss)/(N+1)となる。
 2番目の考えられる手法としては、前述した全体としての平均と新たに送信してきた装置制御盤23固有の状態データとの2種類を用意し、それぞれ重み付けを掛けたデータを利用する方法である。全体としての平均状態データは前述の数式で算出できる。また固有状態データは制御盤IDごとに送信されてきた状態データを集計したデータである。全体平均状態データをszとし、固有状態データをskとし、全体平均状態データの重み付けをwg、固有状態データの重み付けをwdとした場合に、人工知能サーバ55が当該固有の装置制御盤23に対して行為データaを算出する場合には、状態データとして、w1×sz+w2×skを用いる。ただし、w1+w2=1である。
 このようにすれば、各濾過処理装置固有の状態データをも加味した具体的妥当性のある行為データaを各装置制御盤23に対してフィードバックすることが可能となる。
 状態データsを更新した後には制御がS285へ進み、報酬rを算出する処理がなされる。S283による状態データsの受信は、前回の行為データaを装置制御盤23へフィードバックしたその結果として装置制御盤23から送信されてくるデータであり、この結果データである状態データsに基づいて報酬rが算出される。例えば、レベルセンサLS1が運転開始レベルH1から運転停止レベルL1にまで低下するのに要した時間が短縮されておれば、高い報酬rを算出し、また、発生したエラーが少ないほど高い報酬rを算出する。
 次にS286により、Q(a)=rとして、Q値が一番高い行為aを算出する処理がなされる。行為aの価値をQ(a)と定義し、学習過程によって正しいQ(a)の値(以下Q値という)が得られれば、Q値を最大とする行為が学習の結果となる。最初は、行為aを行ってどれだけの報酬が得られるか分からないために、すべての行為aについてQ(a)の値を0初期化しておく。次に、可能なaを順番に行って、そのときの報酬rを取得する。そして、各aについてQ(a)=rとして、Q値が一番高いaを求める。学習データベース56に記憶されている行為データaを、S286により算出された新たな行為データaに更新してその行為データaを対応する装置制御盤23へ送信してフィードバックする処理が行われる。
 以上説明した実施形態には次の発明が開示されている。
(1) 特開2014−14745号に記載の廃水処理設備では、例えば、水は通すが油分等の汚濁物質は遮断するような微細な穴が空いている限外濾過膜を筒状にし、その筒内に産業排水を圧送して流すことにより水を濾過して汚濁物質と分離していた。そして、設備の停止時に限外濾過膜に水を流して洗浄している。しかし、水を確保することが困難な地域(例えば砂漠地帯)では洗浄用の水を十分に確保することが困難であり、十分な洗浄を行うことができないという不都合が生じる。また、水道が完備された地域において水道水を用いて洗浄した場合には、その水道水の使用料に応じて水道料金が加算される不都合が生じる。
 係る実情に鑑み考え出された濾過処理装置は、濾過膜(例えば、UF膜チューブ15)を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
 前記濾過膜に沿って濾過対象液を流して濾過するための濾過処理部(例えば、チューブラ式膜分離装置10)と、
 濾過処理によって前記濾過膜に付着した付着物を洗浄するための洗浄手段(例えば、膜洗浄槽8、装置制御盤23、三方弁36,37,38、受止め機構18、スポンジボール17)と、
 前記処理済み液を回収して貯留するための処理済み液貯留槽(例えば、膜洗浄槽8)と、を備え、
 前記洗浄手段は、前記濾過膜に沿って洗浄用液体を流すための洗浄用液体クロスフロー手段(例えば、膜洗浄槽8、図24(a)の工程切換え処理、図24(b)の洗浄工程流路切換え処理)を含み、
 前記洗浄用液体クロスフロー手段は、前記処理済み液貯留槽に貯留されている処理済み液を前記洗浄用液体として使用するための処理済み液使用手段(例えば、S79、モータバルブMV6)を有する。
 このような構成により、濾過することによって生じる処理液を有効利用して濾過膜に付着した付着物を洗浄することができる。
(2) 特開2014−14745号に記載の廃水処理設備では、水(又は洗浄液)を貯留する洗浄液タンクを設け、設備の停止時に限外濾過膜に水(又は洗浄液)を流して洗浄している。その限外濾過膜を通過した洗浄液を再び洗浄液タンクに戻している。
 しかし、洗浄開始時においては限外濾過膜内に未だ産業排水が残存しており、その産業排水が水(又は洗浄液)に押し出されて洗浄液タンクに戻される。その結果、洗浄液タンク内の水(又は洗浄液)に産業排水が混じり汚れた水(又は洗浄液)になってしまう欠点があった。
 このような欠点を解消するべく、洗浄開始時に押し出された産業排水を洗浄液タンクに戻すことなく廃棄した場合には、廃棄料金が高くつく不都合が生じる。つまり、産業廃棄物を廃棄するにあたっては、その廃棄物の種類と廃棄量に応じた料金が定めらており、廃棄量が増えれば廃棄料金も増加する。
 係る実情に鑑み考え出された濾過処理装置は、濾過膜(例えば、UF膜チューブ15)を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
 前記濾過対象液を貯留すると共に該濾過対象液が前記濾過膜に供給されて濾過された後の濃縮液を受入れて貯留するための濃縮循環槽(例えば、濃縮循環槽2)と、
 前記濾過膜に沿って濾過対象液を流して濾過するための濾過処理部(例えば、チューブラ式膜分離装置10)と、
 濾過処理によって前記濾過膜に付着した付着物を洗浄用液体で洗浄するための洗浄手段(例えば、膜洗浄槽8、装置制御盤23、三方弁36,37,38、受止め機構18、スポンジボール17)と、
 前記濾過処理部により濾過対象液を濾過する濾過工程(例えば、図1と図10)から前記洗浄用液体を流して前記濾過膜を洗浄する洗浄工程(例えば、図12と図13)に切り換えるための工程切換え手段(例えば、図22(b)の工程切換え処理、図23(b)の工程切換え処理)と、
 前記濾過工程から前記洗浄工程に切り換わるときに、残存している濾過対象液を前記洗浄用液体で押し流すための押し流し手段(例えば、図23(c)の水押し工程流路制御処理)と、
 前記押し流し手段により押し流された濾過対象液を前記濃縮循環槽に還元する濾過対象液還元手段(例えば、S217、S218、モータバルブMV3、MV4、MV9)と、を備えた。
 このような構成によれば、押し流し手段により押し流された濾過対象液が濃縮循環槽に還元されてさらなる濃縮が可能となり、濾過対象液の廃棄量を極力減少させることができる。
 また、前記押し流し手段による押し流し時間を変更設定するための押し流し時間設定手段(例えば、S70、S71)をさらに備えてもよい。
 さらに、前記洗浄用液体を貯留する洗浄液貯留槽(例えば、膜洗浄槽8)をさらに備え、
 前記洗浄手段は、前記押し流し手段による押し流しが終了した後に実行される前記洗浄工程において、前記濾過膜洗浄後の洗浄用液体を前記洗浄液貯留槽に還元する(例えば、S242、S243、モータバルブMV9)。
(3) 濾過膜を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置においては、種々の工程を経て濾過が進行する。
 この発明は、良好な濾過処理を行うために必要な各工程を自動的に切換えて人為的操作を極力省くことのできる濾過処理装置を提供することを目的とする。
 係る実情に鑑み考え出された濾過処理装置は、濾過膜ユニット(例えば、チューブラ式膜分離装置10)内に設けられた濾過膜(例えば、UF膜チューブ15)を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
 濃縮循環槽(例えば、濃縮循環槽2)に貯留されている濾過対象液を前記濾過膜ユニットに供給して前記濾過膜で濾過することにより分離された濃縮液を濃縮循環槽に還元する濃縮還元工程を実行する濃縮還元手段(例えば、S197、S198、モータバルブMV1、MV2、MV3、MV4、MV9)と、
 洗浄用液体を前記濾過膜ユニットに供給して該濾過膜ユニット内に残存している濾過対象液を押し流して前記濃縮循環槽に還元する押し流し工程を実行する押し流し手段(例えば、図23(c)の水押し工程流路制御処理)と、
 前記濾過膜に付着した付着物を洗浄用液体で洗浄する洗浄工程を実行する洗浄手段(例えば、膜洗浄槽8、装置制御盤23、三方弁36,37,38、受止め機構18、スポンジボール17)と、
 前記濃縮還元工程、前記押し流し工程、前記洗浄工程の順に実行する工程を自動的に切換える工程切換え制御を実行する工程切換え制御手段(例えば、図21(a)の流路切換え処理)と、を備え、
 前記工程切換え制御手段は、前記洗浄工程の終了後再度前記濃縮還元工程に戻り前記工程切換え制御を繰り返し実行する(例えば、S231~S233)。
(4) 特開2014−14745号に記載の廃水処理設備では、設備の停止時に限外濾過膜に水を流して洗浄している。しかし、濾過対象液の種類に適した濾過処理を行うことが困難であるという欠点があった。
 係る実情に鑑み考え出された濾過処理装置は、濾過膜(例えば、UF膜チューブ15)を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
 前記濾過膜に沿って濾過対象液を流して濾過するための濾過処理部(例えば、チューブラ式膜分離装置10)と、
 濾過処理によって前記濾過膜に付着した付着物を洗浄するための洗浄手段(例えば、膜洗浄槽8、装置制御盤23、三方弁36,37,38、受止め機構18、スポンジボール17)と、
 前記濾過対象液の種類に応じて分類された各濾過環境毎(例えば、図26の濾過環境A、B・・・)に適応した知識を獲得する機械学習を行うための機械学習手段(例えば、人工知能サーバ55)と、を備え、
 前記機械学習手段は、前記濾過処理部での濾過による濾過対象液の濾過効率を特定可能なデータを前記濾過環境に対する状態(例えば、図26の状態データs)として入力する
と共に、前記濾過効率に影響する制御を前記濾過環境に対する行為(例えば、図26の行為データa)として出力し、前記入力と出力とを繰り返すことにより前記濾過効率を向上させるための強化学習を行う強化学習手段(例えば、図26(b)の強化学習処理)を含む。
 このような構成により、強化学習の結果を反映した濾過処理が可能となり、濾過処理性能を向上させることができる。
(5) 特開2014−14745号に記載の廃水処理設備では、限外濾過膜に水を流して洗浄している。設備を停止するべく限外濾過膜へ原液を供給するポンプを停止した際に、そのポンプにおいて原液(濃縮液)の逆流が生じる場合がある。逆流が生じた場合には、限外濾過膜が負圧となる。この限外濾過膜が例えば保形力のないチューブで構成されていた場合には、負圧に起因して処理水が逆流して限外濾過膜のチューブが潰れて扁平な形になる不都合が生じる。
 係る実情に鑑み考え出されたこの発明の目的は、濾過膜チューブへの濾過対象液の供給を停止した際に濾過膜チューブ内が負圧となる不都合を解消することである。
 この発明は、濾過膜チューブ(例えば、UF膜チューブ15)を用いて濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
 前記濾過膜チューブへ濾過対象液を送り込む送込み手段(例えば、循環ポンプ33)と、
 前記送込み手段による原液の送り込みが停止したときに、前記濾過膜チューブ内と外気とを連通させる連通手段(例えば、モータバルブMV8)とを、備えた。
 これにより、濾過膜チューブへの濾過対象液の供給を停止した際に濾過膜チューブ内が負圧となる不都合を解消することができる。
 以上説明した実施形態の特徴点や変形例等を以下に記載する。
 水押し工程において、残存している濾過対象液と洗浄用液体とが拭浄体(例えばスポンジボール)で仕切られて区分された状態で濾過対象液を押し流すように構成してもよい。つまり、濾過処理部に残存している濾過対象液を押し流し手段により押し流す際に、残存している濾過対象液と洗浄用液体とが拭浄体で仕切られて区分された状態で濾過対象液を押し流すように構成する。これにより、濾過処理部に残存している濾過対象液と洗浄用液体とが混ざり合うことを極力防止した上で濾過対象液を押し流すことができ、効果的に濾過対象液を押し流すことができる。
 前述の実施形態では、UF膜(限外濾過膜)の材質としてPVDF(ポリフッ化ビニリデン)を用いたが、それ以外の材質のものを用いてもよい。また、前述の実施形態では、濾過膜の一例としてUF膜(限外濾過膜)を採用したが、濾過膜はこれに限定されない。例えば、MF膜(精密ろ過膜)等であってもよい。また、RO膜(逆浸透)、NF膜(ナノ濾過膜)を用いてイオンレベルの分離濃縮を可能にしてもよい。なお、膜の細孔径としては、RO膜は塩除去率が約99~99.8%、NF膜は塩除去率が約40~97%、UF膜は膜孔径が約0.001~0.01μm、MF膜は膜孔径が約0.01~10μm程度である。
 また、前述の実施形態では、スポンジボールの材質としてウレタン系を用いたが、これに限らず、ビニル系、ゴム系、ポリエチレン系を用いてもよい。
 前述の実施形態では、設定値として入力される自動洗浄時間(S69)、水押し時間(S71)、逆運転時間(S73)、熱交換運転温度(S85)、処理流量低下値SR(S91)、循環流量の上限JRUと下限JRL(S93)、濃縮排出エラー時間NHT(S97)等を、変動しない固定値とした。しかし、これらの値を濃縮工程の進行度合い(例えば現時点での濃縮回数NKや濃縮工程の経過時間等)および/または洗浄工程の進行度合い等に応じて、最適な値に変動させるように制御してもよい。このような変動制御(動的な最適化制御)を前述の人工知能サーバ55による機械学習(例えば強化学習)を用いて行えば、人手を極力省いて実現可能となる。
 前述の実施形態で示された濾過装置を遠隔監視できるように制御してもよい。例えば、現場に設置された濾過装置にイーサネットユニットを内蔵し、PLC(Programmable Logic Controller)を経由することにより、下記のようなことを可能にする。
 a 濾過装置が運転記録をメール送信する。
 b 濾過装置が異常発生時にメール送信をする。
 c PCからのメールを受信した濾過装置が異常をリセットする。
 d PCからのメールを受信した濾過装置が運転を開始・停止する。
 前述の実施形態で示された原液送水ポンプ27は、メカニカルシールのポンプを用いている。これは、例えば、ポンプ軸がケーシングを貫通する箇所にシールが設けられ、ケーシングの内部と外部とを遮断し、内部液の漏洩や外部からの空気または液体の浸入を防ぐものである。このメカニカルシールのポンプに代えて、マグネットポンプ(シールレスポンプの一種)を用いてもよい。このマグネットポンプは、シールポンプ(sealed pumps)の軸シールの機構上どうしても避けられないシールからの液漏れを防ぐため、動力伝達シャフトをポンプの外側から内側へ貫通させるのをやめ、ポンプケーシングの壁を隔てて永久磁石や電磁石で動力伝達をするようにしたものである。したがって軸シールがないのであるから洩れも全くない。これがマグネットポンプの特徴である。この無漏洩の特質は信頼性と安全性を生む。また、原液送水ポンプ27以外のポンプ(pH調整水ポンプ30、アルカリ注入ポンプ28、酸注入ポンプ29、循環ポンプ33、処理水送出しポンプ34、洗浄剤注入ポンプ32、濃縮液送水ポンプ31)も、メカニカルシールのポンプの代わりにマグネットポンプを用いてもよい。
 以上、本発明の実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The filtration apparatus shown in the present embodiment, for example, filtration of emulsion waste liquid discharged from various factories, filtration of viruses and endotoxins during the production of pharmaceuticals and medical water, filtration of heat-sensitive substances such as proteins and enzymes, etc. And is used when separating into a treated liquid and a concentrated liquid. For example, washing wastewater, cutting wastewater, polishing wastewater, compressor drain wastewater, car wash wastewater, high frequency coolant wastewater, die casting wastewater, rolling coolant wastewater, wastewater from food factories, etc. are the main applications. More specifically, it is used when, for example, a filtration target liquid is filtered and separated into treated water and concentrated liquid by tubular membrane separation using a UF membrane tube. The filtration apparatus according to the present invention is a wide concept including not only a single apparatus but also a system in which a plurality of apparatuses and computers are linked via a network, for example, as shown in FIG.
With reference to FIG. 1, the whole structure of a filtration apparatus is demonstrated. The filtration device stores a raw water tank 1 for storing a stock solution such as a factory waste liquid, a pH adjustment tank 5 for adjusting the pH of the stock solution (hereinafter simply referred to as “pH”), and a filtered and concentrated concentrate. Accepts the treated water filtered by the membrane cleaning tank 8 and the tubular membrane separator 10, storing the cleaning water for cleaning the adhering matter adhering to the UF membrane tube 15 of the concentration circulation tank 2 and the tubular membrane separator 10. The treated liquid relay tank 11 that relays the concentrated liquid, the concentrated liquid relay tank (also referred to as a waste liquid relay tank) 3 that receives and relays the concentrated liquid stored in the concentrated circulation tank 2, and the concentrated liquid stored in the concentrated liquid relay tank 3 A concentrated water tank 4 is provided for receiving and storing the water. In FIG. 1, the emulsion separator is shown surrounded by a two-dot chain line.
First, a stock solution such as a factory waste liquid is supplied to the raw water tank 1. The raw water tank 1 is provided with a level sensor LS4, and the amount of stock solution stored in the raw water tank 1 is detected. If the level sensor LS4 detects that the raw water tank 1 is full, the supply of the raw solution is stopped.
By operating the raw liquid feed pump 27, the raw liquid stored in the raw water tank 1 is supplied to the pH adjustment tank 5 through the pipe 80. The pH adjustment tank 5 is provided with a level sensor LS6, and the stock amount of the stock solution in the pH adjustment tank 5 is detected. When the pH adjustment tank 5 is filled with the stock solution, the operation of the pump 27 is stopped. The pH adjustment tank 5 is provided with a pH sensor 24. This pH sensor 24 detects the pH of the stock solution stored in the pH adjustment tank 5. When the pH sensor 24 detects that the stock solution is alkaline, the acid injection pump 29 is operated to inject the acid in the chemical injection tank 7 into the pH adjustment tank 5. Conversely, when the pH sensor 24 detects that the stock solution is acidic, the alkali injection pump 28 operates to inject the alkali in the chemical injection tank 6 into the PH adjustment tank 5. Thereby, the stock solution is neutralized in the pH adjusting tank 5 and adjusted to a neutral state.
Since PVDF (polyvinylidene fluoride) is used as the material of the UF membrane tube 15, a stock solution in the range of pH 2 to pH 12 can be filtered. In the case of an acidic undiluted solution having a pH of less than 2, there is a problem that the metal pipe corrodes and the undiluted solution leaks. In the case of an alkaline stock solution exceeding pH 12, there is a disadvantage that the UF membrane tube 15 deteriorates. By neutralizing the undiluted solution in the pH adjusting tank 5, the above inconvenience is prevented. Further, since the material of the UF membrane tube 15 is PVDF (polyvinylidene fluoride), it is possible to filter the stock solution up to an upper limit of 60 ° C., and there is an advantage that the heat resistance to the stock solution is high. The PH adjusting tank 5 is provided with a stirring propeller 50. By rotating the stirring propeller 50 by a stirring motor 35, the stock solution in the pH adjusting tank 5 is stirred and neutralized uniformly.
A pipe 81 connecting the pH adjustment tank 5 and the concentration circulation tank 2 is provided with a pH adjustment water pump 30. By driving the pH adjustment water pump 30, the stock solution neutralized in the pH adjustment tank 5 is supplied to the concentration circulation tank 2 through the pipe 81. The concentration circulation tank 2 is provided with a level sensor LS1, and the stock amount of the stock solution in the concentration circulation tank 2 is detected. When the stock solution in the concentration circulation tank 2 reaches the operation start level, the operation of the pH adjustment water pump 30 is stopped, and the circulation pump 33 is operated so that the stock solution (concentration liquid) in the concentration circulation tank 2 is tubular membrane separation. Supplied to the apparatus 10. At this time, in FIG. 1, the three-way valve 36 whose flow path is switched by the motor valve MV3 is a B → C flow path. As a result, the undiluted solution (concentrated liquid) in the concentration circulation tank 2 flows in the direction of B → C at the three-way valve 36 via the pipe 82, the motor valve MV 1, the circulation pump 33, and the pipe 83, and via the pipe 84. A plurality (six in the figure) of tubular membrane separators 10 are supplied.
The tubular membrane separation device 10 filters the stock solution (concentrated solution) and separates it into treated water and concentrated solution. The treated water is taken out from the treated water take-out pipe 21 and supplied to the treated water relay tank 11 via the motor valve MV5 and the pipe 91. The treated water stored in the treated water relay tank 11 is purified by activated carbon 12 and 13 by operating the treated water delivery pump 34 and then discharged to the outside. Instead of or in addition to purification with activated carbon, ions contained in the treated water (electrolyte solution) may be removed using ion exchange. Ion exchange refers to ions (for example, ammonia ions NH) contained in the electrolyte solution in contact with a certain substance. 4 (+) Is taken in and ion species are exchanged by releasing other types of ions instead. A substance exhibiting an ion exchange action is called an ion exchanger. As this ion exchanger, for example, an ion exchange resin is used.
In addition, you may control so that the treated water by which the undiluted | stock solution (concentrated liquid) was filtered by the tubular type | formula membrane separator 10 may be supplied to the membrane washing tank 8 instead of supplying to the treated water relay tank 11. FIG. Specifically, the process water is supplied to the membrane cleaning tank 8 via the pipe 90 by controlling the motor valve MV5 to close and opening the motor valve MV6. In this way, there is an advantage that treated water can be stored in the membrane cleaning tank 8 and used as cleaning water even in a place where fresh water such as tap water, industrial water, and agricultural water is difficult to obtain (for example, a desert area).
On the other hand, the concentrated solution filtered and concentrated by the tubular membrane separator 10 is returned to the concentration circulation tank 2 via the three-way valve 38. Specifically, in FIG. 1, the flow path of the three-way valve 37 switched by the motor valve MV4 is changed from C to A. A three-way valve 38 switched by the motor valve MV9 is a C → B flow path. As a result, the concentrated solution filtered and concentrated by the tubular membrane separator 10 passes through the three-way valve 37, the pipe 87, the three-way valve 38, the pipe 89 and through the flow rate adjustment valve 48 to the concentration circulation tank 2. Reduced.
By operating the circulation pump 33 with the flow rate adjusting valve 48 adjusted, the stock solution (concentrated liquid) can be pumped into the tubular membrane separator 10 while maintaining an appropriate pressure. Thus, filtration into the UF membrane tube 15 becomes possible. In order to maintain the appropriate pressure, pressure sensors PS1 and PS2 are provided. Adjusting the flow rate adjusting valve 48 based on the detected values of the pressure sensor PS1 provided on the upper side of the tubular membrane separator 10 and the pressure sensor PS2 provided on the lower side of the tubular membrane separator 10 Thus, the UF membrane tube 15 is filtered with an appropriate pressure. In the case of the filtration step shown in FIGS. 1 and 10, the motor valve MV2 is closed.
This filtration device is controlled by a pH adjustment control panel 22 and a device control panel 23. The control territory of the pH adjustment control panel 22 is in the range indicated by the two-dot chain line in FIG. 1 and mainly performs pH adjustment. On the other hand, the control territory of the device control panel 23 is in the range indicated by the two-dot chain line in FIG. 1, and mainly controls the filtration by the tubular membrane separator 10 and the cleaning of the tubular membrane separator. The pH adjustment control panel 22 and the apparatus control panel 23 are configured to be able to communicate with each other. A raw solution supply signal is transmitted from the apparatus control panel 23 to the pH adjustment control panel 22, and the pH adjustment control panel 22 transmits the apparatus control panel. A batch abnormality signal and a raw water supply signal are transmitted to 23. The apparatus control panel 23 outputs a raw water supply signal, a collective abnormality signal, an operation signal, and an abnormality signal.
In FIG. 1, FL1, FL2, and FL3 are flow meters, 26 is a temperature sensor, 25 is a photoelectric sensor, and 40, 41, 42, 43, and 44 are check valves.
A motor valve MV8 is provided in a pipe connecting the pipe 97 and the concentration circulation tank 2. This motor valve MV8 prevents the UF membrane tube 15 in the tubular membrane separator 10 from becoming a negative pressure. Details will be described later.
At both ends of the tubular membrane separator 10, receiving mechanisms 18 that hold the sponge balls 17 are provided. The sponge ball 17 is composed of a spherical sponge and wipes and removes impurities adhering to the inner surface of the UF membrane tube 15. The sponge ball 17 is a foamed urethane material. In the case of a urethane material compared to a rubber material, there are advantages that resistance to oil is high and expansion can be suppressed.
Next, the tubular membrane separation apparatus 10 will be described in detail with reference to FIGS. First, an outline of the tubular membrane separation apparatus 10 will be described with reference to FIG. In the tubular membrane separation apparatus 10, a plurality of (for example, 18) UF membrane tubes 15 are provided in a housing 14. End caps 101 are provided at the left and right ends of the housing 14. A one-dot chain line in FIG. 2 indicates a movement path 125 of the liquid to be filtered (raw solution) flowing in the UF membrane tube 15. The UF membrane tube 15 is inserted into the pipe 106 (see FIG. 3). The left and right end caps 101 are formed with return paths 117 that cause the flow of the liquid to be filtered received from a certain UF membrane tube 15 to U-turn and flow into other UF membrane tubes 15. This will be described later with reference to FIG. Further, a liquid inlet / outlet port 118 is formed at two positions on the left end cap 101 in FIG.
The stock solution is supplied to one liquid inlet / outlet port 118 via the receiving mechanism 18 and the valve 10, and sent into the UF membrane tube 15 through the inlet / outlet path 110 a in the end cap 101. The fed stock solution passes through the UF membrane tube 15 and reaches the other end cap 101, where it makes a U-turn through the return path 117 and is fed into the next UF membrane tube 15. The stock solution that has passed through the UF membrane tube 15 and has reached the other end cap 101 passes through the return path 117 again to make a U-turn and is sent into the next UF membrane tube 15. The concentrated liquid that has passed through all the UF membrane tubes 15 by repeating this U-turn is discharged from the other liquid inlet / outlet 118 through the inlet / outlet path 110a. Such a moving path 125 of the stock solution in the tubular membrane separation apparatus 10 is shown by a one-dot chain line in FIG. The stock solution moves along the movement path 125 that is bent and reciprocates in the housing 14 a plurality of times, and is filtered by the UF membrane tube 15 to be separated into treated water and concentrate. The treated water is discharged from the treated water take-out pipe 21 provided in the housing 14 and sent to the treated water relay tank 11. The concentrated liquid is discharged from the liquid inlet / outlet 118 and is returned to the concentrated circulation tank 2.
As shown in FIG. 2, since the movement path 125 is bent in the tubular membrane separator 10, the path through which the stock solution is filtered by the UF membrane tube 15 is defined as the full length of the tubular membrane separator 10 (one end cap). The length from the outer end surface of 101 to the outer end surface of the other end cap 101 can be made longer. As a result, there is an advantage that efficient filtration can be performed. The means for lengthening the movement path 125 is not limited to the reciprocation of the movement path 125 shown in FIG. Any shape may be used.
Next, the internal structure of the tubular membrane separator 10 will be described mainly with reference to FIG. FIG. 3 shows a state in which the end cap 101 provided at one end of the housing 14 is removed and various components in the housing 14 are pulled out. A pipe holding plate 105 and a disk-shaped metal plate 103 are accommodated in the housing 14. A rubber plate 104 for sealing is attached to the surface of the metal plate 103 on the pipe holding plate 105 side. As described above, a plurality of UF membrane tubes 15 are provided in the housing 14, and each of the UF membrane tubes 15 is inserted into a metal pipe 106. The UF membrane tube 15 is formed in a tube shape by winding a belt-shaped nonwoven fabric in a spiral shape and heat-welding the tube, and the inner surface of the tube is coated with a UF membrane.
A pipe holding plate 105 holds the end of each pipe 106 into which the UF membrane tube 15 is inserted. A plurality of pipe insertion holes are formed in the pipe holding plate 105, and the end portions of the pipes 106 are inserted into the insertion holes. Each pipe 106 in the inserted state is welded and fixed to the pipe holding plate 105. Thereby, a plurality of (18) pipes 106 are held by the pipe holding plate 105.
Insertion holes 109 corresponding to the number of pipes 106 are formed in the rubber plate 104 and the metal plate 103 so that the insertion joints 108 can be inserted into the insertion holes 109 from the metal plate 103 side. The insertion joint 108 is made of a material having a sealing function, such as rubber, in a mushroom shape, and has an insertion portion 108a and an umbrella portion 108b having a saw-shaped cross section. The insertion portion 108a of the insertion joint 108 is inserted from the opposite side (the metal plate 103 side) in a state where each pipe 106 is aligned with the insertion hole 109, whereby the saw-like insertion portion 108a becomes the UF membrane tube 15 in the pipe 106. It will be in the state inserted in. In this state, the umbrella part 108b comes into contact with the metal plate 103 (see FIGS. 4 and 5). When the insertion portion 108a is inserted into the UF membrane tube 15, it can be easily inserted by inserting the UF membrane tube 15 in a state where it is slightly pulled out from the pipe 106. The saw-shaped insertion portion 108a inserted into the UF membrane tube 15 has an effect of preventing the UF membrane tube 15 from coming off. That is, the end portion of the UF membrane tube 15 can be sandwiched and held by the insertion portion 108a of the insertion joint 108 and the end portion of the pipe 106. The insertion portion 108a is inserted into both ends of the pipe 106 (see FIG. 5), and the ends of the UF membrane tube 15 are held at both ends of the pipe 106. As a result, it is possible to prevent the UF membrane tube 15 near the end of the pipe 106 from being displaced toward the center of the pipe 106, and the concentrated liquid (raw solution) leaks outside through the small hole 120 of the pipe 106 from the displaced position. Inconvenience can be prevented. A fixed holding member (fixed holding means) for fixing and holding the end portion of the UF membrane tube 15 to the end portion of the pipe 106 is configured by the insertion portion 108 a of the insertion joint 108. An O-ring groove 119 is formed on the outer periphery of the pipe holding plate 105, and a sealing O-ring 111 is fitted in the groove 119.
Each pipe 106 is provided with a large number of small holes 120 in one or several rows along the longitudinal direction. The treated water is discharged into the housing 14 through the small hole 120. The treated water discharged into the housing 14 is discharged out of the tubular membrane separation apparatus 10 from the treated water extraction pipe 21 (see FIG. 2).
Positioning protrusions 112a and 112b are formed on the pipe holding plate 105. The metal plate 103 and the rubber plate 104 are formed with positioning insertion holes 113a and 113b. Further, positioning holes 114 a and 114 b are formed in the end cap 101. By inserting the protrusions 112a and 112b into the positioning holes 114a and 114b in a state where the protrusions 112a and 112b are inserted into the positioning insertion holes 113a and 113b, the pipe holding plate 105, the metal plate 103 with the rubber plate 104, and the end cap 101 are positioned relative to each other. Is done.
Further, a stud bolt 107 is provided at the center of the pipe holding plate 105. An insertion hole 115 for inserting the stud bolt 107 is formed in the end cap 101. An insertion hole 150 for inserting the stud bolt 107 is also formed in the rubber plate 104 and the metal plate 103. After the stud bolt 107 is inserted into both the insertion holes 115 and 150, the end cap 101, the metal plate 103 with the rubber plate 104, and the pipe holding plate 105 are positioned by the positioning protrusions 112a and 112b. In this state, the nut 102 is screwed and screwed into the stud bolt 107, whereby the end cap 101, the metal plate 103 with the rubber plate 104, and the pipe holding plate 105 are fastened and fixed in close contact with each other. The state will be described with reference to FIG.
FIG. 4 is a longitudinal sectional view of the vicinity of the end of the tubular membrane separator 10. The plurality of pipes 106 are inserted to such a depth that the end portions reach the end surface of the pipe holding plate 105. In this state, the ends of the pipe 106 and the UF membrane tube 15 are brought into pressure contact with the rubber plate 104 by the tightening force of the stud bolt 107 and the nut 102. An insertion joint 108 is inserted into the UF membrane tube 15 pressed against the rubber plate 104.
A plurality of recesses 110 are formed by recessing the periphery of the inlet / outlet portion of the stock solution to the plurality of return paths 117 (see FIGS. 2 and 6) formed in the end cap 101 (see FIG. 3). The umbrella portion 108 b of the insertion joint 108 enters the recess 110. In this state, the UF membrane tube 15 and the return path 117 are in communication with each other via the insertion joint 108.
Further, as shown in FIG. 5, a recess 110 is also formed in the inlet / outlet path 110 a following the liquid inlet / outlet 118, and the umbrella portion 108 b of the insertion joint 108 enters the recess 110. In this state, the UF membrane tube 15 and the inlet / outlet path 110a are in communication with each other via the insertion joint 108.
With reference to FIG. 5, the sealing function of the tubular membrane separator 10 will be described. When the nut 102 is screwed onto the stud bolt 107 and tightened, the end portion of the pipe 106 is pressed against the rubber plate 104, and the umbrella portion 108 b of the insertion joint 108 is connected to the concave portion 110 of the metal plate 103 and the end cap 101. And press. As a result, the stock solution pumped into the UF membrane tube 15 does not leak outside. The insertion joint 108 constitutes a seal member (seal means) that prevents the liquid to be filtered from leaking out of the UF membrane tube 15. Further, the treated water filtered by the UF membrane tube 15 and coming out of the housing 14 through the small hole 120 is prevented from leaking out of the housing 14 by the O-ring 111. The O-ring 111 constitutes a seal member (seal means) for preventing leakage of treated water.
Next, the end cap 101 will be described. First, the end cap 101 on the inlet / outlet side where the liquid inlet / outlet 118 is formed will be described with reference to FIG. In the end cap 101, liquid inlets / outlets 118 are formed at two locations, and an inlet / outlet path 110 a that continues to each liquid inlet / outlet 118 is formed. As a result, the stock solution pumped from one liquid inlet / outlet port 118 is sent into the UF membrane tube 15 through one inlet / outlet route 110a, and the concentrated solution coming out from the other UF membrane tube 15 passes through the other inlet / outlet route 110a. It is configured to be discharged from the other liquid inlet / outlet port 118 via. In addition, U-shaped return paths 117 are formed in eight places on the end cap 101 on the input / discharge side. In the figure, reference numeral 110 denotes a recess into which the umbrella part 108b of the insertion joint 108 enters.
As shown in FIG. 6B, the return end cap 101 in which the liquid inlet / outlet 118 is not formed has nine return paths 117, but the liquid inlet / outlet 118 is not formed. The end cap 101 in which the return path 117 and the entry / exit path 110a are formed is manufactured by casting.
In such a configuration, the stock solution pumped from the liquid inlet / outlet 118 of the inlet / outlet end cap 101 (FIG. 6A) is sent into the UF membrane tube 15 from the insertion joint 108, and the return side end cap 101 diagram is shown. 6 (b) is reached. The stock solution then makes a U-turn through a return path 117 formed in the return-side end cap 101, is sent into the next UF membrane tube 15, and returns to the inlet / outlet-side end cap 101. Therefore, the undiluted solution makes a U-turn through a return path 117 formed in the end cap 101 on the inlet / outlet side, is sent into the next UF membrane tube 15 and moves again to the end cap 101 on the return side. The U-turn is repeated a plurality of times (17 times), and the concentrated liquid passing through all the UF membrane tubes 15 is discharged from the other liquid inlet / outlet 118. The end cap 101 constitutes a filtration target liquid return member (filtration target liquid return means) that returns the filtration target liquid received from a certain UF membrane tube 15 and sends it to another UF membrane tube 15.
Next, intermediate portions in the longitudinal direction of the plurality of pipes 106 are positioned by being held by the holding plate 116. This will be described with reference to FIGS. 7 (a) and 7 (b). Six holding plates 116 are provided on the pipe 106 located on the outer periphery of the 18 pipes 106. One holding plate 116 is provided across three pipes 106. A holding plate 116 is welded and fixed to the central pipe 106 of the three pipes 106. Of the three pipes, the pipes 106 at both ends are sandwiched between the end portions of the holding plates 116 located on both sides of the pipe 106.
In this way, the mid-longitudinal positions of all the pipes located on the outer periphery are held and positioned. These holding plates 116 are provided at a plurality of positions at predetermined intervals in the longitudinal direction of the pipe 106. As a result, there is an advantage that each pipe 106 can be held as straight as possible and the UF membrane tube 15 can be easily inserted into the pipe 106. The holding plate 116 constitutes a holding member (holding means) that holds a part of the pipe in the longitudinal direction.
The filtration function by the UF membrane tube 15 will be described with reference to FIG. The material of the UF membrane tube 15 is PVDF (polyvinylidene fluoride), which has an advantage of high heat resistance and a wide pH range of the liquid to be filtered. The diameter of the UF membrane tube 15 is about 15 mm. This about 15 mm is merely an example, and for example, a diameter in the range of 5 mm to 26 mm can be used. The UF membrane tube 15 is a porous membrane having a pore diameter of approximately 0.01 to 0.001 μm. By feeding a stock solution in which impurities 16 such as oil, polymer, turbidity and the like are mixed with low molecules, ions, water, etc., into the UF membrane tube 15 at an appropriate pressure, low molecules, ions, water, etc. are transferred to the UF membrane. It passes through the tube 15 and is discharged into the housing 14 from a large number of small holes 120 (see FIG. 3) formed in the pipe 106, and is taken out from the treated water outlet pipe 21 as a permeated liquid (treated water). On the other hand, impurities 16 such as oil, polymer, and turbidity in the stock solution are discharged from the inlet / outlet 118 in a concentrated state without passing through the UF membrane tube 15 and are reduced into the concentrated circulation layer 2.
By filtering the stock solution with the UF membrane tube 15, the impurities 16 adhere to the inner surface of the UF membrane tube 15. If the impurities 16 adhere, the filtration performance deteriorates, so it is necessary to remove the impurities. A sponge ball 17 is placed in the UF membrane tube 15 in order to remove impurities attached to the inner surface of the UF membrane tube 15. The sponge ball 17 has a size slightly larger than the diameter of the UF membrane tube 15 (about 15 mm). As a result, the sponge ball 17 inserted into the UF membrane tube 15 is in a state where its outer peripheral surface is in contact with the inner surface of the UF membrane tube 15 (see FIG. 8). The sponge ball 17 is moved in the UF membrane tube 15 by the stock solution fed into the UF membrane tube 15, and impurities adhering to the inner surface of the UF membrane tube 15 are wiped off and removed. The sponge ball 17 that has moved through the UF membrane tube 15 and has been pushed to the other end of the tubular membrane separator 10 is received and held by a receiving mechanism 18 (see FIGS. 2 and 9). The sponge ball 17 constitutes a wiping body that moves in the UF membrane tube 15 and wipes impurities adhering to the inner surface of the UF membrane tube 15. In addition, as a wiping body, it is not limited to the sponge ball | bowl 17, For example, a pig (bullet), a brush, etc. may be sufficient.
Next, the receiving mechanism 18 will be described based on FIG. The receiving mechanism 18 has a cylindrical portion 121, and an M-shaped strainer 19 in a plan view is provided in the cylindrical portion 121. Left and right pipes 122 and 123 are connected to the tubular portion 121 by pipe joints 124, respectively. One pipe 122 is connected to the liquid inlet / outlet port 118 of the tubular membrane separator 10 (see FIG. 2), and the other pipe 123 is connected to the pipe 97 (see FIG. 1). Further, a screw groove is formed in the upper part of the cylindrical portion 121, and the detachable cap 20 is screwed into the screw groove.
By sending the stock solution into one liquid inlet / outlet 118, the sponge ball 17 moves through the UF membrane tube 15 of the tubular membrane separator 10 and is discharged from the other liquid inlet / outlet 118. The sponge ball 17 reaches the strainer 19 of the cylindrical portion 121 through the pipe 122 and is received by the strainer 19. The strainer 19 is formed with a stitch 19a so as to receive the sponge ball 17 but allow the concentrated liquid to pass therethrough. The concentrated liquid is reduced to the concentrated reduction tank 2 through the stitches 19a. The strainer 19 constitutes a receiving member that allows the liquid to be filtered to pass through but receives the sponge ball 17 (wiping body). Also,
The sponge ball 17 held by the receiving mechanism 18 at the other end of the tubular membrane separation device 10 is moved again in the UF membrane tube 15 by switching the flow of the stock solution (concentrated solution) in the reverse direction, so that the tubular type It reaches the receiving mechanism 18 on one end side of the membrane separation apparatus 10. In this way, by switching the flow of the stock solution (concentrated solution), the sponge ball 17 is reciprocated in the UF membrane tube 15 to remove the impurities 16.
By causing the sponge ball 17 to reciprocate a plurality of times in the UF membrane tube 15, impurities adhere to the sponge ball 17 itself, resulting in a disadvantage that the cleaning effect decreases. In order to eliminate the disadvantage, the dirty sponge ball 17 is configured to be replaceable. First, the valve 100 is provided in the pipe 122 (see FIG. 9) connected to the receiving mechanism 18 that receives the sponge ball 17, and the valve 100 is closed. This prevents the concentrate from flowing from the tubular membrane separator 10 to the receiving mechanism 18. In this state, the removable cap 20 of the receiving mechanism 18 is rotated and opened. The detachable cap 20 constitutes a take-out mechanism for taking out the received wipe and making it replaceable. Although the receiving mechanism 18 is provided at a lower position than the tubular membrane separation apparatus 10, since the valve 100 is closed, the concentrated liquid does not spout even when the detachable cap 20 is opened. Since the receiving mechanism 18 is provided at a higher position than the pipe 123 (see FIG. 9) on the side where the valve 100 is not provided, the concentrated liquid is supplied to the pipe 123 even when the detachable cap 20 is opened. Will not flow backwards. When the removable cap 20 is opened, the sponge ball 17 received by the strainer 19 can be taken out and replaced with a new one. After the replacement, the detachable cap 20 is screwed into the cylindrical portion 121 to cover it, and the valve 100 is opened. In addition, what is necessary is just to make it provide a valve also in the piping 123, when the receiving mechanism 18 is provided in the low position with respect to the piping 123 (refer FIG. 9). The valve 100 constitutes an ejection prevention mechanism (ejection prevention means) that prevents ejection of the liquid to be filtered when the detachable cap 20 is opened.
FIG. 1 shows a concentration step 1 in which a stock solution (concentrated solution) flows in the forward direction with respect to the tubular membrane separator 10, and the stock solution (concentrated solution) flows in the reverse direction with respect to the tubular membrane separator 10. Flowing concentration step 2 is shown in FIG. Referring to FIG. 10, in the concentration step 2, the three-way valve 36 is switched to the flow path C → A. The three-way valve 37 is switched to the B → C flow path. As a result, the concentrated liquid sent out by the circulation pump 33 is pressure-fed from the reverse direction to the tubular membrane separator 10 through the pipes 83 and 85, the B → C of the three-way valve 37, the pipe 86, and the pipe 97. The concentrated liquid concentrated in the tubular membrane separation apparatus 10 is returned to the concentration circulation tank 2 through the pipe 84, the C → A of the three-way valve 36, the pipe 88, the C → B of the three-way valve 38, and the pipe 89.
After the concentration process 1 shown in FIG. 1 and the concentration process 2 shown in FIG. 10 are repeatedly performed a predetermined number of times, the filtration device moves to the water pushing process. In this water pushing step, the concentrated liquid remaining in the tubular membrane separation apparatus 10 and the piping is pushed out by the washing liquid and is reduced to the concentration circulation tank 2.
This water pushing step is performed for a short time of about 10 seconds and will be described with reference to FIG. The cleaning liquid stored in the membrane cleaning tank 8 is a case where fresh water such as tap water is used (fresh water cleaning mode in S78), and a case where treated water separated by the tubular membrane separator 10 is used (processing water cleaning mode in S79). ) When fresh water is used, the motor valve 10 is opened and fresh water is supplied to the membrane cleaning tank 8 through the pipe 92. The membrane cleaning tank 8 is provided with a level sensor LS2, which can detect four levels of a full water level HH2, an operation start level H2, an operation stop level L2, and a drought level LL2. On the other hand, when cleaning is performed using treated water instead of fresh water, it is necessary to supply the treated water separated by the tubular membrane separation apparatus 10 to the membrane cleaning tank 8. For this purpose, the motor valve MV5 and the closed motor valve MV6 are opened, and control is performed so that the treated water is supplied to the membrane cleaning tank 8 via the pipe 90 and the motor valve MV6. In both the fresh water cleaning mode and the treated water cleaning mode, fresh water or treated water is replenished until the membrane cleaning tank 8 reaches the operation start level H2.
A cleaning heater 49 is provided in the membrane cleaning tank 8, and the cleaning liquid is warmed to a temperature suitable for cleaning the UF membrane tube 15 (for example, 40 to 50 ° C.). Therefore, the membrane cleaning tank 8 is made of a stainless steel material having excellent heat resistance. In the case of cleaning with a normal temperature cleaning liquid without providing the cleaning heater 49, the film cleaning tank 8 may be made of a resin material. Further, by operating the cleaning agent injection pump 32, the alkaline cleaning agent is supplied to the membrane cleaning tank 8. This alkaline cleaning agent can further improve the cleaning efficiency. Further, depending on the type of concentrate (concentrated solution), the use of an acidic cleaning agent can improve the cleaning efficiency. In such a case, an acidic detergent is used instead of the alkaline detergent.
In the water pushing step, the circulation pump 33 is operated with the motor valve MV1 closed and the motor valve MV2 opened. When the concentration step performed immediately before the water pushing step is the concentration step 1 (see FIG. 1), the cleaning liquid is caused to flow in the reverse direction with respect to the tubular membrane separation apparatus 10. On the other hand, when the concentration process performed immediately before the water pushing process is the concentration process 2 (FIG. 10), the washing liquid is flowed forward with respect to the tubular membrane separation device 10 to perform the water pushing. FIG. 11 shows a water pushing process in which the cleaning liquid is flowed in the forward direction to push out the residual concentrated liquid. The three-way valve 36 is switched to the B → C flow path and the three-way valve 37 is switched to the C → A flow path. As a result, the cleaning liquid in the membrane cleaning tank 8 is supplied to the UF membrane tube 15 from one end of the tubular membrane separator 10 through the pipe 95, the circulation pump 33, B → C of the three-way valve 36, and the pipe 84. As a result, the sponge ball held in the receiving mechanism 18 on one end side of the tubular membrane separation apparatus 10 is pushed into the UF membrane tube 15 and moves in the UF membrane tube 15 to move into the UF membrane tube 15. Wipe off any adhering material that adheres to the surface. The extruded concentrated liquid is returned to the concentration reduction tank 2 through the pipe 86, C → A of the three-way valve 37, pipe 87, C → B of the three-way valve 38, and pipe 89. After the concentrate remaining in the tubular membrane separation apparatus 10 and the piping is pushed out into the concentration reduction tank 2 and the water pushing process is completed, the process proceeds to the washing process.
In the cleaning process, the cleaning liquid stored in the membrane cleaning tank 8 is supplied to the tubular membrane separator 10 to clean the UF membrane tube 15. The cleaning process includes a cleaning process 1 in which the cleaning liquid stored in the membrane cleaning tank 8 is washed in a forward direction with respect to the tubular membrane separation apparatus 10 and a cleaning liquid in a reverse direction with respect to the tubular membrane separation apparatus 10. There is a cleaning step 2 in which it is washed and washed. In the cleaning process 1, as shown in FIG. 12, the three-way valve 38 is switched to the C → A flow path, and the cleaning water is controlled to be returned to the membrane cleaning tank 8. As a result, after the cleaning liquid in the membrane cleaning tank 8 passes through the tubular membrane separator 10 via the pipe 95, B → C of the three-way valve 36, and the pipe 84, C → A of the three-way valve 37, pipe 87, three-way The valve 38 is returned to the membrane cleaning tank 8 through C → A and the scrap 96. After the cleaning process 1 is executed for a predetermined time, the process is switched to the cleaning process 2.
In the cleaning process 2, referring to FIG. 13, the three-way valve 36 is switched to the C → A flow path, and the three-way valve 37 is switched to the B → C flow path. As a result, the cleaning liquid in the membrane cleaning tank 8 passes through the pipe 95, the circulation pump 33, the pipes 83 and 85, the flow path B → C of the three-way valve 37, and the pipe 86 from the opposite direction with respect to the tubular membrane separator 10. Supplied. The cleaning liquid that has passed through the UF membrane tube 15 in the tubular membrane separator 10 is reduced to the membrane cleaning tank 8 via the pipe 84, the C → A of the three-way valve 36, the pipe 88, the C → A of the three-way valve 38, and the pipe 96. Is done. After repeatedly performing this washing process 1 (see FIG. 12) and washing process 2 (see FIG. 13), the process moves to the concentration process again.
By repeatedly performing the concentration step, the water pushing step, and the washing step as described above, the concentrated solution is gradually concentrated by filtration by the tubular membrane separation device 10, and the amount of the concentrated solution stored in the concentration circulation tank 2 is reduced. Decrease. The concentrated liquid in the concentration circulation tank 2 has decreased to a predetermined amount (L1 level).
Is detected by the level sensor LS1, the pH adjustment water pump 30 is operated to supply the stock solution in the pH adjustment tank 5 to the concentration circulation tank 2. If the level sensor 1 detects that the concentrate in the concentration circulation tank 2 has reached the operation start level H1 by adding the stock solution, the pH adjustment water pump 30 is stopped and the addition of the stock solution is stopped. . In this state, the above-described concentration step, water pushing step, and washing step are repeatedly executed. Then, when the concentrated liquid in the concentration circulation tank 2 is reduced to a predetermined amount (L1 level) again, the stock solution in the pH adjustment tank 5 is again used.
Add to the concentration circulation tank 2 and supply. When the number of times of addition of the stock solution (concentration number) reaches a predetermined number, the motor valve MV7 is opened and the concentrate in the concentration circulation tank 2 is discharged to the concentrate relay tank 3 through the pipe 93. When the level sensor LS1 detects that the concentrate in the concentration circulation tank 2 has reached the discharge completion level LL, the motor valve MV7 is closed and the discharge of the concentrate is completed. On the other hand, in the concentrate relay tank 3, if the level sensor LS 3 detects that the amount of concentrate stored has increased, the concentrate feed pump 31 is operated to pass the concentrate in the concentrate relay tank 3 through the pipe 94. It sends out to the concentration storage tank 4. The concentration storage tank 4 is provided with a level sensor LS5. If the level sensor LS5 detects that the concentrated liquid in the concentrated storage tank 4 is full, the concentrated liquid in the concentrated storage tank 4 is taken out. Work is done.
A process from the start of the first concentration process to the discharge of the concentrated liquid in the concentration circulation tank 2 where the concentration is completed is referred to as one batch. By performing this one batch of processes a predetermined number of times, the filtering operation by the filtering device is completed and the filtering device is stopped.
The turbidity of the treated water taken out from the treated water take-out pipe 21 is detected by the photoelectric sensor 25. If the turbidity is equal to or higher than a predetermined value, it is determined that the filtration error has occurred, and an error notification process is performed.
Further, the temperature of the cleaning liquid pushed out by the circulation pump 33 is detected by the temperature sensor 26. Based on the detected value, the cleaning heater 49 is controlled so that the temperature of the cleaning liquid is maintained at a predetermined temperature (40 to 50 ° C.).
Next, a control circuit for the pH adjustment control panel 22 and the apparatus control panel 23 will be described with reference to FIG. The pH adjustment control panel 22 is provided with a pH adjustment control panel microcomputer 60. The pH adjustment control panel microcomputer 60 includes a CPU (Central Processing Unit) 66 as a control center, a ROM (Read Only Memory) 67 in which control programs and data are stored, and a RAM that functions as a work area for the CPU 66. (Random Access Memory) 68 and the like are provided.
On the other hand, the device control board 23 is provided with a device control board microcomputer 63. The device control panel microcomputer 63 includes a CPU 69 serving as a control center, a ROM 70 storing control programs and data, a RAM 71 functioning as a work area for the CPU 69, an EEPROM (Electrically Erasable Programmable Read-Only Memory) 72, and the like. Is provided.
The pH adjustment control panel microcomputer 60 receives detection signals from the pH sensor 24 and the level sensors LS4 to LS6. In addition, an operation signal from the input operation unit 61 such as a keyboard, a mouse, or a touch panel is input to the pH adjustment control panel microcomputer 60.
The pH adjustment control panel microcomputer 60 outputs pump control signals for the raw solution water pump 27, the alkali injection pump 28, the acid injection pump 29, and the pH adjustment water pump 30. A control signal for driving the agitation motor 30 is output. In addition, monitor display signals such as various error displays and the operation state of the filtration device are output to the display unit 62 to the operator.
The device control panel microcomputer 63 receives the sensor signals of the level sensors LS1 to LS3. Each flow rate detection signal of the flow meters FL1 to FL3 is input. Further, sensor signals of the photoelectric sensor 25, the temperature sensor 26, and the pressure sensors PS1 and PS2 are input. In addition, an operation signal is input from the input operation unit 64 such as a keyboard, a mouse, or a touch panel.
A heater control signal is output from the apparatus control panel microcomputer 63 to the cleaning heater 49. Further, each pump control signal is output to the concentrated liquid feed pump 31, the cleaning agent injection pump 32, and the circulation pump 33. Further, each valve control signal is output to the motor valves MV1 to MV10. Further, a display control signal for performing an error display and a monitor display of the operation state of the filtration device to the operator is output to the display unit 65.
The pH adjustment control panel microcomputer 60 and the apparatus control panel microcomputer 63 can transmit and receive signals to and from each other. The apparatus control panel microcomputer 63 outputs a stock solution supply signal for supplying the stock solution to the concentrated storage tank 2 to the pH adjustment control panel microcomputer 60. Receiving this, the pH adjustment control panel microcomputer 60 starts the control to supply the stock solution to the concentration and reduction tank 2 as described above, and sends a raw water supply signal to the device control panel microcomputer 63 that the supply of the stock solution has started. Send back. Further, the pH adjustment control panel microcomputer 60 transmits a collective abnormality signal to the apparatus control panel microcomputer 63 when an abnormality occurs in the control territory.
Next, based on FIG. 15 and FIG. 16, the control operation by the pH adjustment control panel microcomputer 60 will be described. The programs of the flowcharts shown in FIGS. 15 and 16 are stored in the ROM 67. First, the main routine of the pH adjustment control process will be described with reference to FIG. Each tank abnormality check process is performed in step (hereinafter simply referred to as “S”) 1. This is to check abnormalities in the storage state of the raw water tank 1 and the concentrated storage tank 4. Next, each tank liquid movement process is performed by S2. Next, pH adjustment processing is performed by S3. This pH adjustment treatment is a treatment for adjusting the pH by neutralizing the stock solution in the pH adjustment tank 5 with an alkali or an acid.
With reference to FIG. 15B, a flowchart of the subroutine program of each tank abnormality check process described above will be described. By S7, it is determined whether or not the value of the level sensor LS4 has abnormally decreased. When the amount of raw water stored in the raw water tank 1 is abnormally reduced and the water is in a drought state, a determination of YES is made in S7, the control advances to S8, and the process of turning on the raw water tank drought error flag is turned on Is made. On the other hand, when it is determined that the value of the level sensor LS4 is not abnormally lowered, the control proceeds to S9, and control is performed to turn off the raw water tank drought error flag.
Next, in S10, it is determined whether or not the value of the level sensor LS4 has risen abnormally. If it is determined that the temperature has risen abnormally, the control proceeds to S11, where control is performed to turn on the raw water tank full error flag. On the other hand, when it is determined that the level sensor LS4 has not risen abnormally, the process proceeds to S12, and processing for turning off the raw water tank full error flag is performed.
In S13, it is determined whether or not the value of the level sensor LS6 has abnormally decreased. If the stock solution in the pH adjustment tank 5 has dropped to an abnormal level, a determination of YES is made in S13, control proceeds to S14, and a process of turning on the pH adjustment tank drought error flag is performed. On the other hand, when the value of the level sensor 6 is not abnormally lowered, the control proceeds to S15, and the pH adjustment tank drought error flag is turned OFF. Next, in S16, it is determined whether or not the value of the level sensor LS6 has risen abnormally. If the stock solution stored in the pH adjustment tank 5 has risen to an abnormal level, a determination of YES is made in S16, the control proceeds to S17, and the pH adjustment tank full error flag is turned ON. On the other hand, if it is determined that the value of the level sensor 6 has not risen abnormally, the pH adjustment tank full error flag is turned OFF in S18.
Next, the control proceeds to S19, where it is determined whether or not the level sensor 5 has abnormally increased. When the concentrated liquid stored in the concentrated storage tank 4 is full and the level sensor LS5 detects that it is full, a determination of YES is made in S19, the control proceeds to S20, and the concentrated storage tank full water error flag is turned ON. . On the other hand, when the value of the level sensor 5 has not increased abnormally, the control proceeds to S21, and control for turning off the concentrated storage tank full error flag is performed.
Next, control proceeds to S22, where it is determined whether any error flag is ON. If it is not ON, this subroutine program returns and control proceeds to S2.
On the other hand, if any one of the error flags is ON, the control advances to S23, and a collective abnormality signal is transmitted to the apparatus control panel microcomputer 63, and the response to the ON error flag is made in S24. Control is performed to display the abnormality display by the display unit 62, and the process returns.
Next, a flowchart of a subroutine program for each inter-tank liquid transfer process shown in S2 will be described with reference to FIG. It is determined by S30 whether the raw water supply signal has been received. If the raw water supply signal is transmitted from the apparatus control panel microcomputer 63, a determination of YES is made in S30 and the control advances to S31, the pH adjustment water pump 30 is operated and the raw water in the pH adjustment tank 5 is concentrated and circulated. 2 is supplied. Next, in S32, a raw water supply signal indicating that the raw water supply is started is returned to the apparatus control panel microcomputer 63. Next, in S33, it is determined whether or not the value of the level sensor LS6 has decreased to the supply level. When the stock solution in the pH adjustment tank 5 is reduced to a level that requires replenishment, a determination of YES is made in S33 and the control advances to S34, and the stock solution water pump 27 is operated to remove the stock solution in the raw water tank 1. The pH adjustment tank 5 is replenished.
The flowchart of the subroutine program for the pH adjustment process shown in S3 will be described with reference to FIG. It is determined through S40 whether or not a pH adjustment value has been input. When the operator operates the input operation unit 61 to input a pH adjustment value in the pH adjustment tank 5, a process of updating the pH adjustment value to the input new pH adjustment value is performed in S41. Next, in S42, a process of comparing the current PH sensor value PS with the pH adjustment value PT is performed, and in S43, it is determined whether PS exceeds PT. If PS exceeds PT, control proceeds to S44, where the alkali injection pump 28 is operated to inject alkali into the pH adjusting tank 5. On the other hand, if PS does not exceed PT, the control proceeds to S45, where the acid injection pump 29 is operated to inject the acid into the pH adjustment tank 5. By this pH adjustment process, the stock solution in the pH adjustment tank 5 is controlled to have the pH adjustment value input by the operator.
Next, a flowchart of a control program for the apparatus control panel microcomputer 63 will be described with reference to FIGS. These flowcharts are stored in the ROM 70. First, the main routine of the apparatus control process will be described with reference to FIG. Various operation value setting input processes necessary for the operation of the filtration device are performed in S50, and various abnormal value setting input processes that are criteria for determining whether or not an abnormality has occurred are performed in S51, and an abnormality has occurred in S52. An abnormality check process is performed. In S53, each motor valve is controlled to switch the flow rate, and in S54, a monitor display process is performed.
Next, a flowchart of a subroutine program for the operation set value input process shown in S50 will be described with reference to FIGS. 17 (b) and 18 (a). This operation set value input process is a process for the operator to input and set various values necessary for operating the filtration device by the input operation unit 64. In S60, it is determined whether or not the number of times of concentration has been input. If there is not, it is determined in S62 whether or not the number of batches has been input. In S66, it is determined whether or not there has been an input of the discharge relay tank level. If not, it is determined whether or not an automatic cleaning time has been input in S67. If not, it is determined whether or not a water pushing time has been input in S70. If not, it is determined whether or not the reverse operation time has been input in S72. If not, it is determined in S74 whether or not the washing mode switching operation has been performed in S76. If not, it is determined whether or not a chemical cleaning setting has been input in S80. If not, the film cleaning is performed in S82. Is determined whether or not an input of the tank Shimizu replenishing time, not be determined whether or not the input of the heat exchanger operating temperature by S84 when, in the absence this subroutine program returns.
As described above, if the operator operates the input operation unit 64 to input the number of times the stock solution is added to the concentration circulation tank 2 (concentration number), a YES determination is made in S60, and the control advances to S61 for storage. The process of updating the number of times of concentration performed to the newly input number of times of concentration NK is performed. When the number of batches for how many steps of one batch are executed is input by the input operation unit 64, a determination of YES is made in S62, the control advances to S63, and the stored batch number is newly input. The process of updating to the batch count VC is performed.
When an operation for inputting and setting the level of the concentrate stored in the concentration circulation tank 2 is performed by the input operation unit 64, a determination of YES is made in S64, the control proceeds to S65, and the stored concentration circulation Processing to update the tank level to the newly input levels HH1, H1, L1, and LL1 is performed. HH1 is a full water abnormality level, H1 is an operation start level, L1 is an operation stop level, and LL1 is a drainage completion level.
If the operator operates the input operation unit 64 to input the level of the waste liquid relay tank (concentrated liquid relay tank) 3, a determination of YES is made in S66 and the control advances to S68, and the stored waste liquid relay tank level. Is updated to the newly input levels HH2, H2, L2, and LL2. This HH2 is a level of abnormally high water, H2 is a level to close the motor valve MV7 and prevent the concentrate from entering the concentration relay tank 3, and L2 starts the operation of the concentrate feed pump 31. LL2 is a level at which the concentrated water pump 31 is stopped.
When the automatic cleaning time is input by the input operation unit 64, a determination of YES is made in S67 and the control advances to S69, and the stored automatic cleaning time is updated to the newly input automatic cleaning time. Is made. The automatic cleaning time is a time for repeatedly executing the above-described cleaning process 1 (see FIG. 12) and cleaning process 2 (see FIG. 13). If the water pushing time is input by the input operation unit 64, a determination of YES is made in S70 and the control advances to S71, and the stored water pushing time is updated to the newly inputted water pushing time. .
When the reverse operation time is input by the input operation unit 64, a determination of YES is made in S72, the control proceeds to S73, and the stored reverse operation time is updated to the newly input reverse operation time. Made. The reverse operation time is the time from the start of the concentration step 1 to the end of the concentration step 1, the time from the start of the concentration step 2 to the end of the concentration step 2, and the start of the washing step 1 It is the time from the start to the end of the cleaning step 1 and the time from the start of the cleaning step 2 to the end of the cleaning step 2. When the waste liquid discharge time for discharging the concentrate stored in the concentration circulation tank 2 to the concentration relay tank 5 is input by the input operation unit 64, a determination of YES is made in S74, and the control proceeds to S75. Processing is performed to update the stored waste liquid discharge time to the newly input waste liquid discharge time.
If the input operation unit 64 is operated to determine which cleaning mode is to be used, that is, cleaning with clean water or cleaning with the processing liquid, YES is determined in S76 and the control advances to S77. Then, it is determined whether or not the current mode is the treated water cleaning mode. If the current mode is the treated water cleaning mode, the control proceeds to S78, and processing for switching to the fresh water cleaning mode is performed. On the other hand, if the current mode is not the treated water cleaning mode, that is, if it is the fresh water cleaning mode, the control proceeds to S79 and a process of switching to the treated water cleaning mode is performed.
If there is a chemical cleaning setting input operation through the input operation unit 64, a determination of YES is made in S80 and the control advances to S81, where the chemical injection time corresponding to the set batch number is updated to the input value. The When the membrane cleaning tank fresh water replenishment time for supplying fresh water to the membrane cleaning tank 8 is input by the input operation unit 64, a determination of YES is made in S82 and the process proceeds to S83 to store the stored membrane cleaning tank fresh water supply. Processing is performed to update the time to the newly input membrane cleaning tank fresh water replenishment time.
If the heat exchange operation temperature, which is the temperature of the cleaning liquid in the membrane cleaning tank 8, is input from the input operation unit 64, a determination of YES is made in S84 and the control advances to S85, and the stored heat exchange operation temperature is set. Processing to update the newly input heat exchange operation temperature is performed. Then, this subroutine program returns.
Next, a subroutine program for the abnormal value setting input process shown in S51 described above will be described with reference to FIG. In S90, it is determined whether or not there has been a processing flow rate lowering input. If not, it is determined in S92 whether or not a circulating flow rate has been input. If not, it is determined in S94 whether or not a pressure has been input. In S96, it is determined whether or not a concentration / discharge error has been input. If not, this subroutine program returns.
When the input of the treatment flow rate reduction for determining whether or not the flow rate of the treated water filtered by the tubular membrane separation apparatus 10 is abnormal is performed by the input operation unit 64, the control proceeds to S91 and stored. The processing flow reduction value that is being updated is updated to the newly inputted processing flow reduction value SR. When the circulation flow rate which is the circulation amount of the concentrate circulated by the circulation pump 33 is input by the input operation unit 64, the control proceeds to S93, and the stored circulation flow rate is changed to the newly input circulation flow rate. Processing to update the upper limit value JRU and the lower limit value JRL is performed. When the pressure of the concentrated liquid pumped to the tubular membrane separation apparatus 10 in the concentration step is input by the input operation unit 64, the control proceeds to S95, and the stored pressure is the upper limit of the newly input pressure. Processing for updating to PU and lower limit PL is performed. If the concentration discharge error time for determining an abnormality is input by the input operation unit 64 when the time for discharging the concentrate stored in the concentration circulation tank 2 exceeds a predetermined value, the control proceeds to S97. The stored concentration discharge error time is updated to the newly input concentration discharge error time NHT. Then, this subroutine program returns.
Next, a subroutine program for the abnormality check process shown in S52 will be described with reference to FIGS. First, in S105, the current value of each sensor is read and stored. Specifically, the value of the level sensor LS1 is stored as LS1, the value of the level sensor LS2 is stored as LS2, the value of the level sensor LS3 is stored as LS3, the value of the flow meter FL1 is stored as F1, and the flow rate The value of the meter FL2 is stored as F2, the value of the flow meter FL3 is stored as F3, the value of the photoelectric sensor 25 is stored as PS, the value of the temperature sensor 26 is stored as T, and the value of the pressure sensor PS1 is PS1 And the value of the pressure sensor PS2 is stored as PS2.
Next, it is determined by S106 whether the process currently performed by the filtration apparatus is a concentration process. If it is not the concentration step, this subroutine program returns. However, if it is the concentration step, the control advances to S107, and it is determined whether or not the value F2 of the flow meter FL2 is less than the processing flow rate drop value SR. If the determination result is YES, the processing flow rate decrease error flag is turned ON in S108. On the other hand, if the determination result in S107 is NO, a process for turning off the processing flow rate decrease error flag is performed in S109. Next, the control proceeds to S110, where it is determined whether or not the value F1 of the flow meter FL1 exceeds the upper limit JRU of the circulation flow rate. If exceeded, the operation flow rate upper limit error flag is turned ON in S111. Thereafter, the control proceeds to S116. On the other hand, if it is determined in S110 that it has not exceeded, control proceeds to S112, and after the operating flow rate upper limit error flag is turned OFF, control proceeds to S113. In S113, it is determined whether or not the value F1 of the flow meter FL1 is less than the lower limit JRL of the circulation flow rate. If it is less than S114, the operation flow rate lower limit error flag is turned on in S114, and if it is determined NO in S113, the operation flow rate lower limit error flag is turned off in S115.
In S116, it is determined whether or not the value PS1 of the pressure sensor PS1 exceeds the pressure upper limit PU. If it has exceeded, the process proceeds to S112 after the operation pressure upper limit error flag is turned on in S117. On the other hand, if PS1 does not exceed PU, a process for turning off the operating pressure upper limit error flag is performed in S118. Next, in S119, it is determined whether or not the value PS1 of the pressure sensor PS1 is below the lower limit PL of the pressure. If it is lower, the operating pressure lower limit error flag is turned ON in S120. On the other hand, if not below, the operation pressure lower limit error flag is turned OFF in S121.
Next, the control proceeds to S122, where it is determined whether or not the waste liquid drain flag has been switched from OFF to ON. This waste liquid discharge flag is a flag for discharging the concentrated liquid into the concentrated circulation tank 2 to the concentrated liquid relay tank 3, and is turned ON by S127 described later and turned OFF by S129 described later. Further, if the number of times of concentration (the number of times of addition) reaches the input number of times of concentration NK (see S61), when the number of batches has not reached VC, the waste liquid discharge flag is turned ON in S167 described later. In S122, a determination of YES is made only at the moment when the waste liquid discharge flag is switched from OFF to ON. If YES is determined in S122, the control proceeds to S123, and a process of setting the waste liquid discharge timer HHP is performed. Further, after the control for opening the motor valve MV7 is performed in S124, the control proceeds to S131.
If NO is determined in S122, the control proceeds to S125, and it is determined whether or not the waste liquid discharge flag is ON. If it is not ON, the process proceeds to S130, the waste liquid discharge timer HHP is cleared, and control is performed to close the motor valve MV7. Then, the process proceeds to S131.
On the other hand, if it is determined in S125 that the waste liquid discharge flag is ON, the control proceeds to S126, and it is determined whether or not the waste liquid discharge timer HHT exceeds the concentration discharge error time NHT.
Is done. If exceeded, control is performed to turn on the waste liquid discharge flag in S127, and then control proceeds to S128. When the waste liquid discharge timer HHT does not exceed the concentration discharge error time NHT, the control proceeds to S128, and it is determined whether or not the level sensor LS1 is at the discharge completion level (LL1). When the discharge completion level is not reached, the control proceeds to S131. However, when the discharge completion level is reached, the control proceeds to S12, and after the control for switching the waste liquid discharge flag to OFF is performed, the control proceeds to S131. move on.
In S131, it is determined whether or not the value of the level sensor LS3 exceeds the level HH2 of the full water abnormality. If it has exceeded, control proceeds to S132, the discharge P error flag is turned ON, and the process of turning ON the concentrate relay tank full error flag is performed, followed by S134.
On the other hand, if NO is determined in S131, the control proceeds to S133, in which the waste liquid P error flag is turned OFF and the concentrate relay tank full error flag is turned OFF. Next, the control proceeds to S134.
In S134, it is determined whether or not the value of the level sensor LS1 exceeds the full water abnormality level HH1. If it has exceeded, control proceeds to S135, and control is performed to turn on the concentration / circulation tank full water error flag. On the other hand, when the value of LS1 does not exceed HH1, the control proceeds to S136, and processing for turning off the concentration circulation tank full error flag is performed. Next, in S137, it is determined whether or not the value of the level sensor LS2 exceeds the full water level ML of the membrane cleaning tank 8. If exceeded, control proceeds to S138, and after processing for turning on the membrane cleaning tank full water error flag is performed, control proceeds to S143. On the other hand, when LS2 does not exceed the full water level ML, the control proceeds to S139, and control for turning off the membrane cleaning tank full error flag is performed.
Next, the control advances to S140, and it is determined whether or not the value of the level sensor LS2 is below the drought level KL of the membrane cleaning tank 8. If it falls below, the control advances to S141, and a process for turning on the membrane cleaning tank drought error flag is performed. On the other hand, when the value of LS2 is not lower than the drought level KL, the control proceeds to S142, and control for turning off the membrane cleaning tank drought error flag is performed. Next, in S143, it is determined whether or not any error flag is ON. If any error flag is ON, emergency stop control is performed in S144.
Next, a subroutine program for the flow path switching process shown in S53 will be described with reference to FIG. By S150, the stock solution replenishment process for supplying the stock solution to the concentration circulation tank is performed. Next, in S151, a concentration process is performed in which the stock solution stored in the concentration circulation tank 2 is filtered and concentrated. Next, a water pushing process is performed by S152. Next, a cleaning process for cleaning the UF membrane tube 15 of the tubular membrane separation apparatus 10 using the cleaning liquid stored in the membrane cleaning tank 8 is performed in S153. Next, a concentrated liquid discharge process for discharging the concentrated liquid stored in the concentrated circulation tank 2 is performed through S154.
Next, a flowchart of a subroutine program of the stock solution replenishment process shown in S150 will be described with reference to FIG. By S160, it is determined whether or not the operation flag indicating that the filtration apparatus is operating is ON. The operation flag becomes NO when the operator turns on the operation start switch with the power of the filtration apparatus turned on, and is turned off in S168. If the operation flag is not ON, this subroutine program returns. If the operation flag is ON, the control proceeds to S161, and it is determined whether or not the value of the level sensor LS1 is equal to or lower than the discharge completion level LL1 of the concentration circulation tank 2. If it is not less than LL1, the control advances to S162, and it is determined whether or not the value of the level sensor LS1 is at the operation stop level L1. If it is not L1, this subroutine program returns.
When this stock solution replenishment process is executed in a state where the concentrate in the concentration circulation tank 2 is discharged, the value of the level sensor LS1 is equal to or lower than the discharge completion level LL1, and therefore the control proceeds to S169. A process of transmitting a stock solution supply signal for replenishing the stock solution by the initial replenishment amount to the pH adjustment control panel 22 is performed. This “initial replenishment amount” is a replenishment amount at which the stock solution reaches the operation start level H1 in the concentration circulation tank 2 in a state where the concentrate is discharged.
If the concentrate replenishment process is executed in a state where the concentration process has progressed and the concentrated liquid in the concentration circulation tank 2 has been filtered to become thicker and the volume has been reduced to the operation stop level L1, a determination of YES is made in S162. The control advances to S163, and it is determined whether or not the concentration counter is NK. This concentration counter is a counter that counts the number of times of addition to add the stock solution into the concentration circulation tank 2. NK is the number of times of concentration (number of times of addition) preset by S61. If the current number of times of concentration (the number of times of addition) has not yet reached the preset number of times of enrichment NK, the control proceeds to S164, and the stock solution supply signal for replenishing the stock solution to the operation start level H1 in the concentration circulation tank 2 Is transmitted to the pH adjustment control panel 22. Thereby, it determines with YES by S30, a stock solution is supplied to the concentration circulation tank 2 by S31, and the stock solution is added.
While the stock solution is being added, the device control microcomputer 63 stops and controls the circulation pump 33. Thereby, supply of the stock solution (concentrated solution) to the tubular membrane separation apparatus 10 is stopped. When the circulation pump 33 is stopped, a back flow of the stock solution (concentrated liquid) may occur in the circulation pump 33. When a backflow occurs, the UF membrane tube 15 in the tubular membrane separation apparatus 10 located above the plurality of tubular membrane separation apparatuses 10 becomes negative pressure, and the treated water flows back to the UF membrane tube 15. There is a disadvantage that the flattened shape is crushed. In order to prevent this inconvenience, the apparatus control microcomputer 63 opens the motor valve MV8 while the circulation pump 33 is stopped. Then, the UF membrane tube 15 in the tubular membrane separator 10 is in communication with the upper part of the concentration circulation tank 2. The space between the liquid level of the stock solution (concentrated liquid) stored in the concentration circulation tank 2 and the ceiling portion of the concentration circulation tank 2 communicates with the outside air. As a result, the UF membrane tube 15 in the tubular membrane separator 10 is in communication with the outside air, and the UF membrane tube 15 is prevented from becoming negative pressure, and the UF membrane tube 15 is crushed and flattened. Is prevented. Next, the control advances to S165, and a process of updating the concentration number counter by 1 is performed.
On the other hand, if it is determined in S163 that the current concentration counter has reached NK, control proceeds to S166, where it is determined whether the batch counter has reached VC. This VC is the number of batches input and set in advance in S63. If the number of batches at the current time has not yet reached VC, the control advances to S167, and a process of turning on a waste liquid discharge flag for discharging the concentrated liquid in the concentration circulation tank 2 is performed. On the other hand, if the number of batches at the current time reaches VC, the control advances to S168, and processing for switching the operation flag to OFF is performed.
As described above, in this embodiment, the stock solution is added each time the stock solution in the concentrate circulation tank 2 decreases and reaches a predetermined amount (L1 level) as the stock solution is concentrated. Instead of this, the stock solution may always be supplied to the concentration circulation tank 2 little by little as the concentration proceeds. In the case of the former pouring method, the temperature of the concentrate gradually rises as the concentration progresses, so that there is an advantage that the filtration performance is improved. Inconvenience arises. In the case of the latter constant supply method, the temperature of the concentrate does not rise so much and the improvement of the filtration performance cannot be expected so much, but there is an advantage that the operation stop at the time of addition does not occur.
Next, the flowchart of the subroutine program for the concentration process shown in S151 will be described with reference to FIG. A process switching process is performed in S175. Next, in S176, a concentration process flow rate control process for switching the flow rate of the three-way valve or the like is performed.
Next, a flowchart of the subroutine program for the process switching process shown in S175 will be described with reference to FIG. In S180, it is determined whether or not the cleaning process flag is ON. This cleaning process flag is a flag indicating that the cleaning process is being executed. If the cleaning process flag is ON, this subroutine program returns. If the cleaning process flag is not ON, the control advances to S181 to determine whether or not the water pushing process flag is ON. The water pushing process flag is a flag indicating that the water pushing process is being executed. If the water pushing process flag is not ON, the control advances to S184, and it is determined whether or not the concentration process flag is ON. The concentration process flag is a flag indicating that the concentration process is being executed. When the concentration process flag is not ON, the control proceeds to S185, and it is determined whether or not the value of the level sensor LS1 has reached the operation start level H1 in the concentration circulation tank 2. If not reached, this subroutine program returns. However, if the stock solution is replenished and the value of the level sensor LS1 reaches the operation start level H1, the control advances to S186, and the process of turning on the concentration process flag is performed. Done.
If the concentration process flag is turned ON, a determination of YES is made in S184, the control proceeds to S182, and it is determined whether or not one unit concentration time has elapsed. This 1-unit concentration time refers to the water pushing step (see FIG. 11) after the concentration step 1 (see FIG. 1) and the concentration step 2 (see FIG. 10) are repeated a plurality of times after the concentration step is started. This is the time until the concentration process is completed for transfer. This 1 unit concentration time is set in advance so that it can be adjusted to a desired time. If one unit concentration time has not yet elapsed since the concentration step was started, the control proceeds to S183, where it is determined whether the reverse operation time has elapsed. The reverse operation time is the time from the start of the concentration step 1 until the end of the concentration step 1 to start the concentration step 2, and the transition from the start of the concentration step 2 to the concentration step 1 The time until the concentration step 2 is completed. This reverse operation time is the reverse operation time input and set in advance in S73.
If the reverse operation time has not yet elapsed, this subroutine program returns. On the other hand, when the reverse operation time has elapsed, a determination of YES is made in S183, the control proceeds to S187, and it is determined whether or not the reverse direction flag is ON. The reverse direction flag is a flag indicating that the concentrated liquid or the cleaning liquid is flowing in the reverse direction with respect to the tubular membrane separator 10. If the current direction is flowing in the reverse direction, the reverse direction flag is ON. Therefore, a determination of YES is made in S187, the control proceeds to S188, and the reverse direction flag is turned OFF. On the other hand, when the reverse direction flag is OFF, the control advances to S192, and processing for turning the reverse direction flag ON is performed. This subroutine program returns soon.
When one unit concentration time has elapsed, a determination of YES is made in S182, the control proceeds to S189, and it is determined whether or not the concentration number counter has reached NK. When the number of additions of the stock solution to the concentration circulation tank 2 has reached the preset concentration number NK, the control advances to S190, and processing for turning off the concentration process flag is performed. On the other hand, if the concentration counter has not reached NK, the control proceeds to S191, where the concentration process flag is turned OFF and the water pushing process flag is turned ON.
As a result, YES is determined in S181, and the subroutine program for process switching processing returns. The subroutine program for this process switching process also returns when the cleaning process flag is ON.
Next, a subroutine program for the concentration process flow path control process shown in S176 will be described with reference to FIG. In S195, it is determined whether or not the concentration process flag is ON. If it is not ON, this subroutine program returns. If it is ON, control proceeds to S196, where it is determined whether the reverse flag is OFF. If the reverse flag is OFF, the control proceeds to S197, the motor valve MV1 is opened, the motor valve MV3 is switched to the B → C flow path, and the motor valve MV4 is switched to the C → A flow path, After the motor valve MV9 is switched to the flow path C → B and the motor valve MV2 is closed, this subroutine program returns. By the control of S197, the concentrated solution (stock solution) flows in the forward direction as shown in FIG. 1, and the concentration step 1 is executed.
On the other hand, if the reverse direction flag is ON, NO is determined in S196 and the control advances to S198, the motor valve MV1 is opened, the motor valve MV3 is switched to the flow path C → A, and the motor valve MV4 is opened. Is switched to the flow path B → C, the motor valve MV9 is switched to the flow path C → B, and the motor valve MV2 is closed. As a result, the concentrated solution (stock solution) flows in the reverse direction as shown in FIG. 10, and the concentration step 2 is executed.
Next, the flowchart of the subroutine program for the water pushing process shown in S152 will be described with reference to FIG. A process switching process is performed in S205, and a water pushing process flow path control process is performed in S206.
Next, a flowchart of the subroutine program for the process switching process shown in S205 will be described with reference to FIG. By S210, it is determined whether or not the water pushing process flag is ON. If the water pushing process flag is not ON, this subroutine program returns. If it is ON, the control advances to S211 to determine whether or not the water pushing time has elapsed. This water pushing time is the water pushing time set in advance by S71. When the water pushing process proceeds and the water pushing process is executed for this water pushing time, a determination of YES is made in S211 and the control advances to S212, turning off the water pushing process flag and turning on the washing process flag. Switching control is performed.
Next, a flowchart of a subroutine program for the water pushing process flow path control process shown in S206 will be described with reference to FIG. In S215, it is determined whether or not the water pushing process flag is ON. When the water pushing process flag is OFF, this subroutine program returns. However, when the water pushing process flag is ON, the control advances to S216, and it is determined whether or not the reverse direction flag is ON. The If the concentration step 2 in which the stock solution (concentrate) is flowed in the reverse direction was executed in the concentration step that was executed immediately before the water pushing step, a YES determination is made in S216, and the control advances to S217, and the motor Control for closing valve MV1, opening motor valve MV2, switching motor valve MV3 to the flow path B → C, switching motor valve MV4 to the flow path C → A, and switching motor valve MV9 to the flow path C → B Is done. As a result, as shown in FIG. 11, the water is pushed by flowing the washing water in the forward direction.
On the other hand, if the concentration process performed immediately before the water pushing process is the concentration process 1 in which the stock solution (concentrated liquid) is flowed in the forward direction, the reverse flag is OFF, so that NO is determined in S216. The control proceeds to S218, the motor valve MV1 is closed, the motor valve MV2 is opened, the motor valve MV3 is switched to the flow path C → A, the motor valve MV4 is switched to the flow path B → C, and the motor valve Control for switching the MV 9 to the flow path C → B is performed.
As a result, when the concentration process performed immediately before the water pushing process is the concentration process 2 in which the concentrated liquid is flowed in the reverse direction, the cleaning liquid is flowed in the forward direction in the water pushing process to be performed next. The flow path control is performed (S217), and the sponge ball held in the receiving mechanism 18 on one end side of the tubular membrane separation apparatus 10 is pushed out into the UF membrane tube 15, and the sponge ball 17 is passed through the inside of the UF membrane tube 15. With this, the water is pushed while being washed. When the concentration process performed immediately before the water pushing process is the concentration process 1 in which the stock solution (concentrated liquid) flows in the forward direction, the reverse direction flag is OFF, so the cleaning liquid is tubular. A water push is applied to the membrane separation device 10 in the opposite direction (S218), and the sponge ball 17 held by the receiving mechanism 18 on the other single side of the tubular membrane separation device 10 is placed in the UF membrane tube 15. The water is pushed while being pushed out to clean the inside of the UF membrane tube 15.
Next, a flowchart of a subroutine program for the cleaning process shown in S153 will be described with reference to FIG. A process switching process is performed in S225, and a cleaning process flow path control process is performed in S226.
Next, a flowchart of a subroutine program for the process switching process shown in S225 will be described with reference to FIG. In S230, it is determined whether or not the cleaning process flag is ON. If it is not ON, this subroutine program returns. If the cleaning process flag is ON, the control advances to S231 to determine whether or not one unit cleaning time has elapsed. The one unit cleaning time is a time period from when the cleaning process 1 (see FIG. 12) and the cleaning process 2 (see FIG. 13) are executed a plurality of times until the cleaning process is completed. This 1 unit cleaning time is set in advance so that it can be adjusted to a desired time. If one unit cleaning time has not yet elapsed since the start of the cleaning process, NO is determined in S231, and the control advances to S234 to determine whether the reverse operation time has elapsed. This reverse operation time is the reverse operation time input and set in advance in S73. When the reverse operation time has not elapsed, the subroutine program returns. However, when the reverse operation time has elapsed, the control proceeds to S235, and it is determined whether or not the reverse direction flag is ON. When the reverse flag is ON, control to switch the reverse flag OFF is performed at S236, and when the reverse flag is not ON, control to switch the reverse flag to ON is performed at S237. Is called.
Next, a subroutine program for the cleaning process flow path control process shown in S226 will be described with reference to FIG. In S240, it is determined whether or not the cleaning process flag is ON. If it is not ON, this subroutine program returns. If the cleaning process flag is ON, the control advances to S241 to determine whether or not the reverse direction flag is OFF. Since this reverse direction flag is not switched in the above-described water pushing process (see FIG. 23), the reverse direction flag at the end of the concentration process is carried over as it is in the cleaning process and is determined in S241. As a result, at the start of the cleaning process, control is performed so that the cleaning liquid flows in the same direction as the flow direction of the stock solution (concentrated liquid) that has been executed at the end of the concentration process. If it reduces, control which starts washing | cleaning by flowing a washing | cleaning liquid in the direction opposite to the direction of the washing | cleaning liquid currently performed by the water pushing process will be performed. Specifically, when the reverse direction flag is ON, the control proceeds to S243, the motor valve MV1 is closed, the motor valve MV3 is switched to the flow path C → A, the motor valve MV2 is opened, and the motor valve MV4 is set to B Control is performed to switch to the flow path of C and switch the motor valve MV9 to the flow path of C to A. As a result, as shown in FIG. 13, a cleaning process 2 is performed in which the cleaning liquid is flowed in the reverse direction with respect to the tubular membrane separation apparatus 10.
If the reverse flag is OFF, the control proceeds to S242, the motor valve MV1 is closed, the motor valve MV3 is switched to the flow path B → C, the motor valve MV2 is opened, and the motor valve MV4 is changed from C → A. Control is performed to switch to the flow path and switch the motor valve MV9 to the flow path C → A. As a result, as shown in FIG. 12, the cleaning is performed by flowing the cleaning liquid in the forward direction with respect to the tubular membrane separator 10. Since the reverse flag is switched when the reverse rotation time elapses (S234 to S237), the cleaning process is switched from the cleaning process 1 to 2 or from the cleaning process 2 to 1.
Next, the flowchart of the subroutine program of the concentrate discharging process shown in S154 will be described with reference to FIG. In S250, it is determined whether or not the waste liquid discharge flag is ON. If it is not ON, this subroutine program returns. If it is ON, the control advances to S251, and control for opening the motor valve MV7 is performed. As a result, the concentrate stored in the concentration circulation tank 2 is discharged to the concentrate relay tank 3 via the motor valve MV7. Next, in S252, it is determined whether or not the value of the level sensor LS1 has reached the discharge completion level LL1 in the concentration circulation tank 2. If it is not yet LL1, this subroutine program returns, but at the stage when LL1 is reached, a determination of YES is made in S252, control proceeds to S253, the waste liquid discharge flag is turned OFF, and batch is performed in S254. This subroutine program returns after the process of updating the number counter by 1 is performed.
Next, the flowchart of the subroutine program for the monitor display process shown in S54 will be described with reference to FIG. In S260, it is determined whether or not a monitor display operation has been performed. If not, the subroutine program returns. If the operator operates the input operation unit 64 to input a monitor display operation, a determination of YES is made in S260 and the control advances to S261, and a menu for displaying various display items to be displayed on the display unit 65 is displayed. Display is executed. If the operator who sees it selects the menu to be displayed by the input operation unit 64, a determination of YES is made in S262, the control advances to S263, and the selected item is displayed on the display unit 65.
Specific examples of the monitor display include, for example, automatic cleaning time, water pushing time, reverse operation time, waste liquid discharge time, full water abnormality level HH1, operation start level H1, operation stop level L1, discharge completion level LL1 in the concentration circulation tank 2 , Current water level, full water abnormality level HH2 in concentrate relay tank 3, level H1 closing MV7, level L2 starting operation of concentrate feed pump 31, level LL2 stopping concentrate feed pump 31, current water level, Various input operation setting values such as the number of times of concentration (the number of times of pouring) and the number of times of batch are displayed on the monitor. Furthermore, error display corresponding to various error flags that are turned on may be performed.
Next, an embodiment in which optimum filtration control is performed using machine learning by artificial intelligence will be described with reference to FIGS. Referring to FIG. 26, each of the device control panels 23 of the large number of filtration processing devices is connected to the artificial intelligence server 55 via the Internet 60. Various data generated during the operation of the filtration device is transmitted from each device control panel 23 to the artificial intelligence server 55, and the artificial intelligence server 5 performs machine learning based on the transmitted various data, and the learning result is obtained. The reflected control command is returned to each device control panel 23. Such a service may be executed by the artificial intelligence server 55 as a cloud service. The artificial intelligence server 55 uses a general Neumann computer, but may also use a neural network processor (NNP). A large number of “artificial neurons” modeled on real neurons are mounted on the NNP chip, and each neuron cooperates in a network. Further, a quantum computer employing a “quantum annealing method” may be used. Thereby, the time required for the optimization calculation in machine learning can be greatly shortened. “Artificial intelligence” is a broad concept that includes software agents. Further, machine learning described later may be performed in combination with deep learning.
A learning database 56 and a device control panel database 57 are connected to the artificial intelligence server 55. The learning database 56 includes various filtering environments corresponding to the environment in reinforcement learning, state data s indicating the state of the filtering environment, and action data a as an action performed by the artificial intelligence server 55 on the filtering environment. It is stored for each filtering environment.
The filtration environment is classified according to the type of waste liquid to be filtered, such as waste liquid from a food factory, waste liquid from a mechanical grinding factory, waste liquid from a petrochemical plant factory, waste liquid from a chemical factory, and the like. For example, even if it is a filtration environment which filters the waste liquid from a food factory, you may classify | categorize a filtration environment further subdivided for every kind of the foodstuff made into object. Further, if the artificial intelligence stores the waste liquid component as knowledge for each classified filtration environment, a more useful service can be provided.
The state data s is data for specifying the current state in the filtration environment based on the data transmitted from each device control panel 23. For example, the time required for the value of the level sensor LS1 to decrease from the operation start level H1 to the operation stop level L1, error information based on ON error flag data, and the like. The shorter the time for the level sensor LS1 to decrease from H1 to L1, the more efficiently the concentrate in the concentration circulation tank 2 is concentrated. The shorter the time, the higher the reward r is given to the artificial intelligence server 55. This is given to the agent engine 56 for reinforcement learning. On the other hand, based on the error information that has occurred, the lower the error occurrence frequency, the higher the reward r is given to the reinforcement learning agent engine 56.
Each device control panel 23 transmits the time required for the level sensor LS1 to decrease from H1 to L1 to the artificial intelligence server 55 via the Internet 60. In addition, the device control panel 23 transmits error flag data that is ON among the above-described error flags to the artificial intelligence server 55 via the Internet 60.
Examples of the action data a instructed to the device control panel 23 to which the artificial intelligence server 55 corresponds include, for example, the number of times of concentration (number of times of addition) NK, automatic cleaning time, reverse operation time, heat exchange operation temperature, concentrated liquid circulation flow rate, cleaning liquid. Circulation flow rate, concentration pressure, etc.
The device control panel database 57 records the filtration environment in which the device control panel 23 is currently performing the filtration process in association with the control panel ID assigned to each device control panel 23.
Next, the control circuit of the artificial intelligence server 55 will be described with reference to FIG. The artificial intelligence server 55 is provided with a CPU 161 as a control center, a ROM 163 storing a control program and control data, and a RAM 162 functioning as a work area for the CPU 161. In addition, a bus 164 for transferring data control signals and an interface unit 165 for transmitting / receiving data to / from an external device are provided. First, a communication unit 166 for transmitting and receiving signals and data via the Internet 60, a display unit 167 for displaying various information to the operator, and an input for the operator to perform an input operation on the artificial intelligence server 55 An operation unit 168 and the like are provided.
Next, the basic principle of reinforcement learning will be described based on FIG. The reinforcement learning agent engine 56 stored in the artificial intelligence server 55 exchanges information with the filtration environment S. The filtering environment S can be modeled by a discrete set of states S = {s | sεS}. When the reinforcement learning agent engine 56 performs the action a on such an environment S, a reward r for the action a is obtained. The machine learning agent engine 56 acquires data on the state s of the filtration environment S, determines an action a based on the state s, and executes the action a on the filtration environment S.
A control program for such an artificial intelligence server 55 will be described. FIG. 27C shows a main routine of the artificial intelligence server. A filtering environment classification process is performed through S270. Next, reinforcement learning processing is performed in S271. The filtration environment classification process determines which filtration environment the filtration processing apparatus currently performing the filtration process belongs to.
Specifically, this will be described with reference to FIG. In S275, it is determined whether or not filtration environment specifying data has been transmitted from the apparatus control panel 23. The filtration environment specifying data is data for specifying the waste liquid to be filtered, such as food factory waste liquid, chemical factory waste liquid, and the like, and it is considered that the operator manually inputs the input operation unit 64 and transmits it to the artificial intelligence server 55. . If the filtration environment specifying data is received, the control proceeds to S276, where it is determined whether or not there is a corresponding filtration environment among the filtration environments already stored in the learning database 56. If there is a corresponding filtration environment, the control advances to S279, and processing for storing the corresponding filtration environment in association with the transmitted ID of the apparatus control panel is performed. Next, in S280, the action data a corresponding to the filtration environment is calculated from the learning database 56 and returned to the apparatus control panel 23. In response to this, the apparatus control panel 23 controls the filtration apparatus in accordance with the received action data a (for example, the number of times of concentration, automatic cleaning time, reverse operation time, etc.). The state data s as the control result is transmitted to the artificial intelligence server 55 via the Internet 60 again.
On the other hand, if the filtration environment specifying data transmitted from the device control panel 23 does not apply to the filtration environment stored in the learning database 56, the control advances to S281 to create a new filtration environment and create the device control panel. Is stored in the device control panel database 57 in association with the ID of the device ID. Next, the process proceeds to S282, and processing for requesting the initial value of the action data a to the apparatus control panel 23 is performed. In response to this, the device control panel 23 displays the fact on the display unit 65, and the operator who sees it inputs the action data a that seems to be suitable for the filtration environment from the input operation unit 64 and passes through the Internet 60. And transmitted to the artificial intelligence server 50.
The artificial intelligence server 55 that has received the determination makes a YES determination in S277, and a process of storing the new filtering environment and the initial value of the action data a in the learning database 56 is performed in S278.
The initial value of action data a for a new filtration environment may be set by analogy on the artificial intelligence server 55 side. At that time, a rough component or the like of the liquid to be filtered to be newly filtered is input from the input operation unit 64 and transmitted to the artificial intelligence server 55 via the Internet 60. In response to this, the artificial intelligence server 55 determines the initial value of the action data a based on the components of the filtration target liquid (waste liquid) for each filtration environment already stored in the learning database 56. For example, a regression method in supervised learning may be used. Regression is an algorithm for obtaining a reasonable output value predicted from an input. In order to obtain an appropriate output value for unknown data, it is considered that a target is output based on a function with input data, and the problem of obtaining the function is a regression problem.
Next, a flowchart of a subroutine program for reinforcement learning processing shown in S271 will be described with reference to FIG. It is determined whether or not the status data s has been received in S283. If not received, this subroutine program returns.
The device control board 23 transmits the status data s and its own control board ID to the artificial intelligence server 55 via the Internet 60. If it is received, the control proceeds to S284, the device control board database 57 is searched, the filtration environment corresponding to the received control board ID is determined, the learning database 56 is searched, and the state corresponding to the filtration environment A process for updating the data s is performed. This update can be done in multiple types. A possible method is to update the average of the state data s as an average. For example, when the number of device control panels 23 that have transmitted the state data s as the filtration environment A is N and the state data that is newly transmitted this time is ss, the updated state data is (s × N + ss) / (N + 1).
As a second conceivable method, there are two types of the above-described average as a whole and state data unique to the device control panel 23 that has been newly transmitted, and each uses weighted data. The average state data as a whole can be calculated by the above-described formula. The unique state data is data obtained by tabulating state data transmitted for each control panel ID. When the overall average state data is sz, the specific state data is sk, the weight of the total average state data is wg, and the weight of the specific state data is wd, the artificial intelligence server 55 makes a response to the specific device control board 23. When calculating the action data a, w1 × sz + w2 × sk is used as the state data. However, w1 + w2 = 1.
In this way, it is possible to feed back to the device control panel 23 the action data a having specific validity, including the state data unique to each filtration processing device.
After updating the state data s, the control proceeds to S285, and a process for calculating the reward r is performed. The reception of the state data s in S283 is data transmitted from the device control board 23 as a result of feeding back the previous action data a to the device control board 23, and the reward is based on the state data s that is the result data. r is calculated. For example, if the time required for the level sensor LS1 to decrease from the driving start level H1 to the driving stop level L1 is shortened, a higher reward r is calculated, and the smaller the error that has occurred, the higher the reward r is. calculate.
Next, in S286, Q (a) = r a As described above, the process of calculating the action a having the highest Q value is performed. If the value of action a is defined as Q (a) and the correct value of Q (a) (hereinafter referred to as Q value) is obtained by the learning process, the action that maximizes the Q value becomes the learning result. At first, in order not to know how much reward can be obtained by performing action a, the value of Q (a) is initialized to 0 for all actions a. Next, possible a is performed in order, and the reward r at that time a To get. And for each a Q (a) = r a A having the highest Q value is obtained. The action data a stored in the learning database 56 is updated to the new action data a calculated in S286, and the action data a is transmitted to the corresponding device control panel 23 and fed back.
The following invention is disclosed by embodiment described above.
(1) In the wastewater treatment facility described in Japanese Patent Application Laid-Open No. 2014-14745, for example, an ultrafiltration membrane having a fine hole that allows water to pass through but blocks contaminants such as oil is formed into a cylindrical shape. Water was filtered and separated from pollutants by pumping and flowing industrial wastewater into the cylinder. Then, when the equipment is stopped, the ultrafiltration membrane is washed with water. However, in an area where it is difficult to secure water (for example, a desert area), it is difficult to secure sufficient water for cleaning, and there is a disadvantage that sufficient cleaning cannot be performed. Moreover, when it wash | cleans using a tap water in the area where water supply is complete, the problem that a water charge is added according to the usage fee for the tap water arises.
The filtration processing device conceived in view of the actual situation is a filtration processing device that uses a filtration membrane (for example, a UF membrane tube 15) to filter a liquid to be filtered by a cross flow method and separates it into a processed liquid and a concentrated liquid. Because
A filtration processing unit (for example, a tubular membrane separation device 10) for flowing and filtering the liquid to be filtered along the filtration membrane;
Cleaning means (for example, the membrane cleaning tank 8, the device control panel 23, the three- way valves 36, 37, 38, the receiving mechanism 18, the sponge ball 17) for cleaning the deposits attached to the filtration membrane by the filtration treatment;
A treated liquid storage tank (for example, a membrane cleaning tank 8) for collecting and storing the treated liquid,
The cleaning means is a cleaning liquid crossflow means (for example, the membrane cleaning tank 8, the process switching process in FIG. 24A, the cleaning process in FIG. 24B) for flowing a cleaning liquid along the filtration membrane. Including flow path switching processing)
The cleaning liquid crossflow means includes processed liquid use means (for example, S79, motor valve MV6) for using the processed liquid stored in the processed liquid storage tank as the cleaning liquid.
With such a configuration, it is possible to wash the deposits attached to the filtration membrane by effectively using the treatment liquid generated by filtration.
(2) In the wastewater treatment facility described in Japanese Patent Application Laid-Open No. 2014-14745, a cleaning liquid tank for storing water (or cleaning liquid) is provided, and water (or cleaning liquid) is washed through the ultrafiltration membrane when the facility is stopped. Yes. The cleaning liquid that has passed through the ultrafiltration membrane is returned to the cleaning liquid tank again.
However, at the start of cleaning, industrial wastewater still remains in the ultrafiltration membrane, and the industrial wastewater is pushed out into water (or cleaning liquid) and returned to the cleaning liquid tank. As a result, there is a drawback that the industrial wastewater is mixed with the water (or cleaning liquid) in the cleaning liquid tank to become dirty water (or cleaning liquid).
If the industrial wastewater pushed out at the start of cleaning is discarded without being returned to the cleaning liquid tank in order to eliminate such drawbacks, there is a disadvantage that the disposal fee becomes high. That is, when disposing of industrial waste, a fee is determined according to the type and amount of waste, and the disposal fee increases as the amount of waste increases.
The filtration processing device conceived in view of the actual situation is a filtration processing device that uses a filtration membrane (for example, a UF membrane tube 15) to filter a liquid to be filtered by a cross flow method and separates it into a processed liquid and a concentrated liquid. Because
A concentration circulation tank (for example, concentration circulation tank 2) for storing the filtration target liquid and receiving and storing the concentrated liquid after the filtration target liquid is supplied to the filtration membrane and filtered;
A filtration processing unit (for example, a tubular membrane separation device 10) for flowing and filtering the liquid to be filtered along the filtration membrane;
Cleaning means (for example, a membrane cleaning tank 8, a device control panel 23, three- way valves 36, 37, 38, a receiving mechanism 18, a sponge ball for cleaning the deposits adhered to the filtration membrane by a filtration treatment) 17)
In order to switch from a filtration process (for example, FIGS. 1 and 10) for filtering the liquid to be filtered by the filtration processing unit to a cleaning process (for example, FIGS. 12 and 13) for cleaning the filtration membrane by flowing the cleaning liquid. Process switching means (for example, the process switching process in FIG. 22B, the process switching process in FIG. 23B),
When switching from the filtration step to the washing step, a flushing means (for example, a water pushing step flow path control process in FIG. 23C) for flushing the remaining filtration target liquid with the washing liquid;
And a filtration target liquid reduction means (for example, S217, S218, motor valves MV3, MV4, MV9) for reducing the filtration target liquid washed away by the flushing means to the concentration circulation tank.
According to such a configuration, the liquid to be filtered pushed away by the flushing means is returned to the concentration circulation tank and further concentration is possible, and the waste amount of the liquid to be filtered can be reduced as much as possible.
Moreover, you may further provide the flushing time setting means (for example, S70, S71) for changing and setting the flushing time by the flushing means.
Furthermore, a cleaning liquid storage tank (for example, a film cleaning tank 8) for storing the cleaning liquid is further provided,
The cleaning means returns the cleaning liquid after the filtration membrane cleaning to the cleaning liquid storage tank (for example, S242, S243, motor valve MV9) in the cleaning step executed after the flushing by the flushing means is completed. .
(3) In a filtration apparatus that uses a filtration membrane to filter a liquid to be filtered by a crossflow method and separates it into a treated liquid and a concentrated liquid, filtration proceeds through various steps.
An object of the present invention is to provide a filtration apparatus capable of automatically switching each process necessary for performing a good filtration process and omitting an artificial operation as much as possible.
The filtration apparatus devised in view of the actual situation is subject to filtration by a cross-flow method using a filtration membrane (eg, UF membrane tube 15) provided in a filtration membrane unit (eg, tubular membrane separation device 10). A filtration apparatus for filtering a liquid to separate a processed liquid and a concentrated liquid,
Concentration reduction which reduces the concentrate which separated by supplying the filtration object liquid stored in the concentration circulation tank (for example, the concentration circulation tank 2) to the said filtration membrane unit and filtering with the said filtration membrane to a concentration circulation tank Concentration reduction means for executing the process (for example, S197, S198, motor valves MV1, MV2, MV3, MV4, MV9),
A flushing means for supplying a cleaning liquid to the filtration membrane unit and flushing the liquid to be filtered remaining in the filtration membrane unit to reduce it to the concentration circulation tank (for example, FIG. 23C) Water pushing process flow path control process),
Cleaning means (for example, a membrane cleaning tank 8, an apparatus control panel 23, three- way valves 36, 37, 38, a receiving mechanism 18, a sponge ball) that executes a cleaning process for cleaning the deposits attached to the filtration membrane with a cleaning liquid 17)
And a process switching control means (for example, a flow path switching process in FIG. 21A) for performing a process switching control for automatically switching the processes to be executed in the order of the concentration reduction process, the flushing process, and the cleaning process. ,
The process switching control means returns to the concentration reduction process again after the cleaning process is completed and repeatedly executes the process switching control (for example, S231 to S233).
(4) In the wastewater treatment facility described in Japanese Patent Application Laid-Open No. 2014-14745, washing is performed by flowing water through the ultrafiltration membrane when the facility is stopped. However, there is a drawback that it is difficult to perform a filtration process suitable for the type of liquid to be filtered.
The filtration processing device conceived in view of the actual situation is a filtration processing device that uses a filtration membrane (for example, a UF membrane tube 15) to filter a liquid to be filtered by a cross flow method and separates it into a processed liquid and a concentrated liquid. Because
A filtration processing unit (for example, a tubular membrane separation device 10) for flowing and filtering the liquid to be filtered along the filtration membrane;
Cleaning means (for example, the membrane cleaning tank 8, the device control panel 23, the three- way valves 36, 37, 38, the receiving mechanism 18, the sponge ball 17) for cleaning the deposits attached to the filtration membrane by the filtration treatment;
Machine learning means for performing machine learning for acquiring knowledge adapted to each filtration environment (for example, filtration environments A, B... In FIG. 26) classified according to the type of the liquid to be filtered (for example, An artificial intelligence server 55),
The machine learning means inputs data capable of specifying the filtration efficiency of the liquid to be filtered by the filtration in the filtration processing unit as a state with respect to the filtration environment (for example, state data s in FIG. 26).
At the same time, control that affects the filtration efficiency is output as an action on the filtration environment (for example, action data a in FIG. 26), and reinforcement learning is performed to improve the filtration efficiency by repeating the input and output. Reinforcement learning means (for example, the reinforcement learning process in FIG. 26B) is included.
With such a configuration, filtration processing reflecting the result of reinforcement learning becomes possible, and filtration processing performance can be improved.
(5) In the wastewater treatment facility described in Japanese Patent Application Laid-Open No. 2014-14745, washing is performed by flowing water through the ultrafiltration membrane. When the pump for supplying the stock solution to the ultrafiltration membrane is stopped in order to stop the equipment, a back flow of the stock solution (concentrated solution) may occur in the pump. When backflow occurs, the ultrafiltration membrane becomes negative pressure. If this ultrafiltration membrane is composed of, for example, a tube having no shape-retaining force, the disadvantage is that the treated water flows backward due to the negative pressure and the tube of the ultrafiltration membrane is crushed and becomes flat. Arise.
An object of the present invention devised in view of such circumstances is to eliminate the disadvantage that the inside of the filtration membrane tube becomes negative pressure when the supply of the liquid to be filtered to the filtration membrane tube is stopped.
The present invention is a filtration apparatus for filtering a liquid to be filtered using a filtration membrane tube (for example, a UF membrane tube 15) to separate it into a treated liquid and a concentrated liquid,
A feeding means (for example, a circulation pump 33) for feeding a liquid to be filtered into the filtration membrane tube;
Communication means (for example, a motor valve MV8) is provided that allows the inside of the filtration membrane tube to communicate with the outside air when the feeding of the stock solution by the feeding means is stopped.
Thereby, when the supply of the filtration target liquid to the filtration membrane tube is stopped, the disadvantage that the inside of the filtration membrane tube becomes negative pressure can be solved.
The characteristic points and modifications of the embodiment described above will be described below.
In the water pushing step, the filtration target liquid may be washed away in a state where the remaining filtration target liquid and the cleaning liquid are partitioned by a wiping body (for example, a sponge ball). That is, when the liquid to be filtered remaining in the filtration processing unit is washed away by the flushing means, the liquid to be filtered is separated in a state where the remaining liquid to be filtered and the cleaning liquid are separated by the wiping body. Configure to flush away. Thereby, after preventing that the filtration object liquid and the washing | cleaning liquid which remain | survive in the filtration process part are mixed as much as possible, the filtration object liquid can be washed away, and the filtration object liquid can be washed away effectively.
In the above-described embodiment, PVDF (polyvinylidene fluoride) is used as the material of the UF membrane (ultrafiltration membrane), but other materials may be used. In the above-described embodiment, a UF membrane (ultrafiltration membrane) is adopted as an example of the filtration membrane, but the filtration membrane is not limited to this. For example, an MF membrane (microfiltration membrane) may be used. In addition, separation and concentration at the ion level may be made possible by using an RO membrane (reverse osmosis) and an NF membrane (nanofiltration membrane). As for the pore size of the membrane, the RO membrane has a salt removal rate of about 99 to 99.8%, the NF membrane has a salt removal rate of about 40 to 97%, and the UF membrane has a membrane pore size of about 0.001 to 0. The MF membrane has a pore diameter of about 0.01 to 10 μm.
In the above-described embodiment, the urethane type is used as the material of the sponge ball. However, the present invention is not limited to this, and a vinyl type, a rubber type, or a polyethylene type may be used.
In the above-described embodiment, the automatic cleaning time (S69), the water pushing time (S71), the reverse operation time (S73), the heat exchange operation temperature (S85), the processing flow rate drop value SR (S91), which are input as set values, The upper limit JRU and lower limit JRL (S93) of the circulation flow rate, the concentration discharge error time NHT (S97), and the like were fixed values that do not vary. However, these values are controlled so as to vary to optimum values according to the progress of the concentration process (for example, the current number of times NK, the elapsed time of the concentration process, etc.) and / or the progress of the cleaning process. May be. If such variation control (dynamic optimization control) is performed by using the machine learning (for example, reinforcement learning) by the artificial intelligence server 55 described above, it can be realized with minimal human labor.
You may control so that the filtration apparatus shown by the above-mentioned embodiment can be monitored remotely. For example, an Ethernet unit is built in a filtration apparatus installed in the field, and the following can be performed by way of a PLC (Programmable Logic Controller).
a Filtration device sends an operation record by e-mail.
b Send e-mail when the filtration device is abnormal.
c The filtering device that received the mail from the PC resets the abnormality.
d The filter device that has received the mail from the PC starts / stops operation.
The stock solution water pump 27 shown in the above-described embodiment uses a mechanical seal pump. For example, a seal is provided at a location where the pump shaft passes through the casing, and the inside and outside of the casing are shut off to prevent leakage of internal liquid and intrusion of air or liquid from the outside. A magnet pump (a kind of sealless pump) may be used instead of the mechanical seal pump. This magnetic pump stops the penetration of the power transmission shaft from the outside to the inside of the pump in order to prevent liquid leakage from the seal that cannot be avoided due to the shaft seal mechanism of the sealed pumps. The power is transmitted by a permanent magnet or an electromagnet with a gap. Therefore, there is no leakage because there is no shaft seal. This is a feature of the magnet pump. This non-leakage quality creates reliability and safety. In addition, pumps other than the raw liquid feed pump 27 (pH adjustment water pump 30, alkali injection pump 28, acid injection pump 29, circulation pump 33, treated water delivery pump 34, cleaning agent injection pump 32, and concentrate feed pump 31) are also available. A magnet pump may be used instead of the mechanical seal pump.
As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to these embodiment, A various change is possible in the range which does not deviate from the meaning of this invention.
1   原水槽
2   濃縮循環槽
3   濃縮液中継槽
4   濃縮貯留槽
8   膜洗浄槽
10  チューブラ式膜分離装置
14  ハウジング
15  UF膜チューブ
17  スポンジボール
18  保持筒
19  ストレーナ
23  装置制御盤
55  人工知能サーバ
56  学習データベース
108 液出入り口
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Concentration circulation tank 3 Concentrated liquid relay tank 4 Concentration storage tank 8 Membrane washing tank 10 Tubular type membrane separator 14 Housing 15 UF membrane tube 17 Sponge ball 18 Holding cylinder 19 Strainer 23 Apparatus control board 55 Artificial intelligence server 56 Learning Database 108 Liquid inlet / outlet

Claims (9)

  1.  チューブラ式濾過膜を用いてクロスフロー方式で濾過対象液を濾過して処理済み液と濃縮液とに分離する濾過処理装置であって、
     前記チューブラ式濾過膜が内蔵され、該チューブラ式濾過膜内に濾過対象液を流して濾過するための濾過処理部と、
     濾過処理によって前記チューブラ式濾過膜内面に付着した付着物を洗浄する洗浄手段と、を備え、
     前記洗浄手段は、前記チューブラ式濾過膜内面に接触している拭浄体を移動させて該チューブラ式濾過膜内面に付着した付着物を拭い取り、
     前記チューブラ式濾過膜内を移動して前記濾過処理部から出てきた前記拭浄体を交換にするための交換機構をさらに備えていることを特徴とする、濾過処理装置。
    A filtration processing apparatus that separates a liquid to be filtered and a concentrated liquid by filtering the liquid to be filtered by a cross flow method using a tubular filtration membrane,
    The tubular filtration membrane is built-in, and a filtration processing unit for flowing and filtering the liquid to be filtered in the tubular filtration membrane;
    Cleaning means for cleaning deposits adhering to the inner surface of the tubular filtration membrane by filtration treatment,
    The cleaning means moves the wiping body that is in contact with the inner surface of the tubular filtration membrane to wipe off the adhering matter adhering to the inner surface of the tubular filtration membrane,
    The filtration apparatus further comprising an exchange mechanism for exchanging the wiping body that has moved through the tubular filtration membrane and has come out of the filtration section.
  2.  前記濾過処理部は、第1か所と第2か所とに形成された濾過対象液の出入り口を有し、一方の前記出入り口から進入した濾過対象液が他方の前記出入り口に到達するまでの移動経路が1本となるように構成されており、
     前記拭浄体は、液体のクロスフローにより移動して該チューブラ式濾過膜内面に付着した付着物を拭い取り、
     前記交換機構は、前記チューブラ式濾過膜内を移動して前記出入り口から出てきた前記拭浄体を受止めると共に、濃縮液の通過は許容する拭浄体受止め機構を有し、
     前記拭浄体受止め機構は、受止めた前記拭浄体を取出して交換可能にするための取出し機構を有することを特徴とする、請求項1に記載の濾過処理装置。
    The filtration processing unit has an inlet / outlet for the liquid to be filtered formed in the first place and the second place, and the movement of the liquid to be filtered that has entered from one of the inlet / outlet until the other inlet / outlet is reached. It is configured to have one route,
    The wiping body is moved by a liquid cross flow and wipes off deposits adhering to the inner surface of the tubular filtration membrane.
    The exchange mechanism has a wiping body receiving mechanism that moves through the tubular filtration membrane and receives the wiping body that has come out from the entrance, and allows the passage of the concentrate.
    2. The filtration apparatus according to claim 1, wherein the wiping body receiving mechanism has a take-out mechanism for taking out the received wiping body and making it replaceable.
  3.  前記移動経路が前記濾過処理部の全長よりも長くなるように、当該移動経路を前記濾過処理部内で屈曲させていることを特徴とする、請求項2に記載の濾過処理装置。 3. The filtration apparatus according to claim 2, wherein the movement path is bent in the filtration processing section so that the movement path is longer than the entire length of the filtration processing section.
  4.  前記洗浄手段は、前記チューブラ式濾過膜に沿って洗浄用液体を流すための洗浄用液体クロスフロー手段を含む、請求項1~3の何れかに記載の濾過処理装置。 4. The filtration apparatus according to claim 1, wherein the cleaning means includes a cleaning liquid cross-flow means for flowing a cleaning liquid along the tubular filtration membrane.
  5.  前記処理済み液を回収して貯留するための処理済み液貯留槽をさらに備え、
     前記洗浄用液体クロスフロー手段は、前記処理済み液貯留槽に貯留されている処理済み液を前記洗浄用液体として使用するための処理済み液使用手段を有する、請求項4に記載の濾過処理装置。
    Further comprising a treated liquid storage tank for collecting and storing the treated liquid;
    The filtration processing apparatus according to claim 4, wherein the cleaning liquid crossflow means includes a processed liquid using means for using the processed liquid stored in the processed liquid storage tank as the cleaning liquid. .
  6.  前記濾過処理部により濾過対象液を濾過する濾過工程から前記洗浄用液体を流して洗浄する洗浄工程に切り換えるための工程切換え手段と、
     前記濾過工程から前記洗浄工程に切り換わるときに、残存している濾過対象液を前記洗浄用液体で押し流すための押し流し手段と、をさらに備えた、請求項4または5に記載の濾過処理装置。
    A process switching means for switching from a filtration process of filtering the liquid to be filtered by the filtration processing unit to a cleaning process of flowing and washing the cleaning liquid;
    The filtration processing apparatus according to claim 4, further comprising a flushing means for flushing the remaining liquid to be filtered with the washing liquid when the filtration process is switched to the washing process.
  7.  前記濾過処理部により濾過対象液を濾過する濾過工程と前記洗浄手段による洗浄工程との実行時間を調整するための時間調整手段をさらに備えた、請求項1~6の何れかに記載の濾過処理装置。 The filtration process according to any one of claims 1 to 6, further comprising a time adjusting unit for adjusting an execution time of a filtration step of filtering the liquid to be filtered by the filtration processing unit and a cleaning step of the cleaning unit. apparatus.
  8.  濾過対象液を貯留すると共に該濾過対象液が前記濾過処理部に供給されて濾過された後の濃縮液を受入れて貯留するための濃縮循環槽と、
     前記濃縮循環槽から前記濾過処理部を経由して前記濃縮循環槽に戻る濾過対象液の循環に伴って前記濾過処理部による濾過が進行することにより、前記濃縮循環槽内の濾過対象液が濃縮されて所定の貯留量まで減少したことに応じて、原液を前記濃縮循環槽内に注ぎ足すための原液注ぎ足し手段と、
     前記原液注ぎ足し手段による注ぎ足し回数が所定回数に達したことに応じて、前記濃縮循環槽内に貯留されている濃縮液を取り出すための濃縮液取り出し手段と、をさらに備えた、請求項1~7の何れかに記載の濾過処理装置。
    A concentration circulation tank for storing the filtrate to be filtered and receiving and storing the filtrate after the filtrate to be filtered is supplied to the filtration processing unit and filtered;
    The filtration target liquid in the concentration circulation tank is concentrated by the filtration by the filtration processing part as the filtration target liquid returns from the concentration circulation tank to the concentration circulation tank via the filtration processing part. And a stock solution adding means for adding a stock solution into the concentration circulation tank in response to being reduced to a predetermined storage amount,
    2. The apparatus according to claim 1, further comprising: a concentrate extracting means for extracting the concentrate stored in the concentration circulation tank when the number of times of addition by the stock solution adding means has reached a predetermined number. The filtration apparatus according to any one of ~ 7.
  9.  濾過対象液の種類に応じて分類された各濾過環境毎に適応した知識を獲得する機械学習を行うための機械学習手段をさらに備え、
     前記機械学習手段は、前記濾過処理部での濾過による濾過対象液の濾過効率を特定可能なデータを前記濾過環境に対する状態として入力すると共に、前記濾過効率に影響する制御を前記濾過環境に対する行為として出力し、前記入力と出力とを繰り返すことにより前記濾過効率を向上させるための強化学習を行う強化学習手段を含む、請求項1~8の何れかに記載の濾過処理装置。
    Machine learning means for performing machine learning to acquire knowledge adapted to each filtration environment classified according to the type of liquid to be filtered;
    The machine learning means inputs data capable of specifying the filtration efficiency of the liquid to be filtered by filtration in the filtration processing unit as a state for the filtration environment, and performs control that affects the filtration efficiency as an action for the filtration environment. 9. The filtration processing apparatus according to claim 1, further comprising reinforcement learning means for performing reinforcement learning for outputting and repeating the input and output to improve the filtration efficiency.
PCT/JP2017/038095 2016-10-14 2017-10-12 Filtering device WO2018070548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790001331.4U CN211514099U (en) 2016-10-14 2017-10-12 Filter processing device
JP2018545095A JP6917635B2 (en) 2016-10-14 2017-10-12 Filtration processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016202933 2016-10-14
JP2016-202933 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070548A1 true WO2018070548A1 (en) 2018-04-19

Family

ID=61905610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038095 WO2018070548A1 (en) 2016-10-14 2017-10-12 Filtering device

Country Status (3)

Country Link
JP (1) JP6917635B2 (en)
CN (1) CN211514099U (en)
WO (1) WO2018070548A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021687A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Water treatment plant
TWI730256B (en) * 2018-10-12 2021-06-11 衛風科技股份有限公司 Filteration system and the operating method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063108A (en) * 2020-10-09 2022-04-21 旭化成メディカル株式会社 Body cavity liquid treatment system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150852U (en) * 1973-04-25 1974-12-27
JPS5159456A (en) * 1974-11-19 1976-05-24 Ebara Infilco Makuosenbutsuno jokyohoho
JPS55111591U (en) * 1979-01-29 1980-08-05
JPS55121803A (en) * 1979-03-15 1980-09-19 Ebara Infilco Co Ltd Film washer
JPS57190609A (en) * 1981-05-19 1982-11-24 Hitachi Ltd Filter apparatus
JPS60166015A (en) * 1984-02-08 1985-08-29 Tokyo Electric Power Co Inc:The Filtration device
JPS631403A (en) * 1986-06-19 1988-01-06 Fine Fuiirudo Kk Purifier for dirty water
JPH0556230U (en) * 1991-12-27 1993-07-27 トリニティ工業株式会社 Membrane module device
JPH10309574A (en) * 1997-05-08 1998-11-24 Kurita Water Ind Ltd Pure water producing method
JP2008183470A (en) * 2007-01-26 2008-08-14 Daicen Membrane Systems Ltd Filtering system for aqueous emulsion solution
JP2012206025A (en) * 2011-03-30 2012-10-25 Panasonic Corp Device for producing ballast water, and method for operating the same
JP2012528717A (en) * 2009-06-02 2012-11-15 シーメンス インダストリー インコーポレイテッド Membrane cleaning with pulsed gas slag and global aeration

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150852U (en) * 1973-04-25 1974-12-27
JPS5159456A (en) * 1974-11-19 1976-05-24 Ebara Infilco Makuosenbutsuno jokyohoho
JPS55111591U (en) * 1979-01-29 1980-08-05
JPS55121803A (en) * 1979-03-15 1980-09-19 Ebara Infilco Co Ltd Film washer
JPS57190609A (en) * 1981-05-19 1982-11-24 Hitachi Ltd Filter apparatus
JPS60166015A (en) * 1984-02-08 1985-08-29 Tokyo Electric Power Co Inc:The Filtration device
JPS631403A (en) * 1986-06-19 1988-01-06 Fine Fuiirudo Kk Purifier for dirty water
JPH0556230U (en) * 1991-12-27 1993-07-27 トリニティ工業株式会社 Membrane module device
JPH10309574A (en) * 1997-05-08 1998-11-24 Kurita Water Ind Ltd Pure water producing method
JP2008183470A (en) * 2007-01-26 2008-08-14 Daicen Membrane Systems Ltd Filtering system for aqueous emulsion solution
JP2012528717A (en) * 2009-06-02 2012-11-15 シーメンス インダストリー インコーポレイテッド Membrane cleaning with pulsed gas slag and global aeration
JP2012206025A (en) * 2011-03-30 2012-10-25 Panasonic Corp Device for producing ballast water, and method for operating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021687A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Water treatment plant
JPWO2020021687A1 (en) * 2018-07-26 2020-08-06 三菱電機株式会社 Water treatment plant
US11649183B2 (en) 2018-07-26 2023-05-16 Mitsubishi Electric Corporation Water treatment plant
TWI730256B (en) * 2018-10-12 2021-06-11 衛風科技股份有限公司 Filteration system and the operating method thereof

Also Published As

Publication number Publication date
JP6917635B2 (en) 2021-08-11
CN211514099U (en) 2020-09-18
JPWO2018070548A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018070548A1 (en) Filtering device
EP2253594A2 (en) Water purification apparatus and method for using pressure filter and pore-control fiber filter
JP5287713B2 (en) Cleaning and sterilization method for ultrapure water production system
JP5798908B2 (en) Reverse osmosis treatment device and cleaning method for reverse osmosis treatment device
JP2007511348A (en) Water treatment system and method
US20130211602A1 (en) Method for the Open-Loop Control and/or Closed-Loop Control of Filter Systems for Ultrafiltration
US20090152178A1 (en) Fully Automated Membrane Cleaning System and Methods of Use
CN101944275A (en) Membrane pollution diagnosis and early warning decision making system of hollow fiber device
CN215138682U (en) Integrated device for offline cleaning and testing of water treatment membrane
WO2015138599A1 (en) Multi-port flow switching valve
CN103894072B (en) Seperation film purging system and the seperation film cleaning method using the system
JP2006305421A (en) Purification means washing method, purification means washing apparatus, and purification apparatus
US20160101389A1 (en) Method of performing a cleaning operation on a water filtration device
KR20130119121A (en) Chemical flushing unit
CN109078947B (en) Cleaning equipment
CN114259874B (en) Reverse osmosis water treatment automatic control system
TR201906036A2 (en) A washer device and a washer device operating method.
CN106178964B (en) A kind of nanofiltration membrane cleaning device
CN106415182A (en) An apparatus for recovering heat from a liquid flowing out of an industrial plant
KR100325096B1 (en) Automatic method for controlling operation of ultra filtration membrane continuously
KR20140121234A (en) Water treatment apparatus having ice manufacturing function and the method thereof
JP3796886B2 (en) Water purification equipment
CN105214505B (en) The in-site chemical cleaning method and system of hyperfiltration/microfiltration film
JP2011177689A (en) Water treatment system and treatment liquid discharge method
CN117619812A (en) Semiconductor cleaning liquid pipeline structure and semiconductor process equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861058

Country of ref document: EP

Kind code of ref document: A1