JPH10298670A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH10298670A
JPH10298670A JP11748197A JP11748197A JPH10298670A JP H10298670 A JPH10298670 A JP H10298670A JP 11748197 A JP11748197 A JP 11748197A JP 11748197 A JP11748197 A JP 11748197A JP H10298670 A JPH10298670 A JP H10298670A
Authority
JP
Japan
Prior art keywords
anthracite
sintering
raw material
particle size
blended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11748197A
Other languages
Japanese (ja)
Inventor
Yozo Hosoya
陽三 細谷
Jun Okazaki
潤 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11748197A priority Critical patent/JPH10298670A/en
Publication of JPH10298670A publication Critical patent/JPH10298670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the product yield of sintered ore and to restrain the discharging quantity of NOX by roughly pulverizing powdery coke into a specified grain size, finely pulverizing anthracite to adjust the specific grain size and blending these materials into the sintering raw material. SOLUTION: After blending the powdery coke and the anthracite into the sintering raw material, these raw materials are mixed and granulated and charged into a sintering machine and sintered to produce the sintered ore. At this time, the powdery coke is roughly pulverized into the grain size of >0 to 5.0 mm by >=80 wt.% and the anthracite is finely pulverized and adjusted to the gain size >0 to 2.0 mm by >=80 wt.% and these are blended into the sintering raw material. Then, the grain sizes of the powdery coke of >0 to 1.0 mm by 30-55 wt.%, 1.0-2.0 mm by 10-60 wt.% and 2.0-10.0 mm by >0 to 35 wt.%, are adjusted or granulated and blended into the sintering raw material, Further, the grain size of the anthracite of >0 to 1.0 mm by 55-70 wt.%, 1.0-2.0 mm at >0 to 30 wt.% and 2.0-10 mm at >0 to 30 wt.%, are adjusted or granulated and blended into the sintering raw material. By this method, the production can be increased while fixing the discharging quantity of NOX.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉コークスと無煙
炭を焼結原料に配合し、配合原料全体を混合・造粒して
から焼結機で焼成する焼結鉱の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered ore in which coke breeze and anthracite are blended into a sintering raw material, the whole blended raw material is mixed and granulated, and then fired by a sintering machine. .

【0002】[0002]

【従来の技術】従来から、焼結鉱の製造では、焼結原料
に熱源として粉コークス、安価で低窒素含有量の無煙炭
を配合して混合し、造粒機で造粒したのち焼結機に装入
し、点火炉で焼結ベッド表層部の粉コークスや無煙炭に
着火し、焼結層の通気性を良好に保ちながら下方から吸
引して焼結操業をしている。そして、焼結鉱の品質を向
上させるために、通気性に悪影響を及ぼす粉コークスや
無煙炭の0.5mm以下を少なくする粒度調整が実施さ
れてきた。
2. Description of the Related Art Conventionally, in the production of sintered ore, sintering raw materials are mixed with coke breeze as a heat source, anthracite of low cost and low nitrogen content, mixed, granulated by a granulator, and then sintered. The sintering operation is carried out by igniting coke breeze and anthracite in the surface layer of the sintering bed with an ignition furnace, and sucking from below while maintaining good permeability of the sintering layer. Then, in order to improve the quality of the sinter, the particle size has been adjusted to reduce the coke breeze and the anthracite that have an adverse effect on the air permeability to 0.5 mm or less.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの手段
では焼結層の通気性は改善できるが、燃焼性の劣る無煙
炭に対しては粒度が粗くなってしまい、むしろ無煙炭の
燃焼速度が低下して焼結層内の温度低下を招き、成品歩
留を低下させて結果的に生産率も低下させる問題点があ
った。さらに、低N含有量の無煙炭を使用しているにも
かかわらず焼結層内の温度が低下するのでコークスと無
煙炭のNOx転換率が悪化し、低N含有量の無煙炭の使
用によるNOx発生抑制効果を十分に発揮できない欠点
があった。
However, these means can improve the permeability of the sintered layer, but make the grain size coarser for anthracite with poor flammability, but rather decrease the burning rate of the anthracite. As a result, there is a problem that the temperature in the sintered layer is lowered, the product yield is lowered, and the production rate is lowered as a result. Furthermore, despite the use of anthracite with low N content, the temperature in the sintering layer decreases, so that the NOx conversion rate of coke and anthracite deteriorates, and the suppression of NOx generation by using anthracite with low N content. There is a drawback that the effect cannot be sufficiently exhibited.

【0004】特開昭62−220590号公報には、粒
径0.25mm以下の部分を50重量%以上含む微粉コ
ークス100部に対して粒径5mm以下の部分を70%
以上含む石炭を10〜70部の割合で配合し、得られた
混合物にセメント、高炉水砕微粉末等の水硬性結合剤を
3%以下添加し、造粒、養生して目的の粒状燃料を得る
方法が記載されている。この方法は粉コークスの燃焼性
改善には効果があるが、燃焼性の劣る石炭(無煙炭)の
粒度が造粒により粗くなるため、石炭の燃焼速度は逆に
低下して層内温度を低下させ、成品歩留を低下させてN
Ox排出量の抑制効果も少なくなる欠点があった。
Japanese Patent Application Laid-Open No. 62-220590 discloses that 70% of a part having a particle size of 5 mm or less is contained in 100 parts of fine coke containing 50% by weight or more of a part having a particle size of 0.25 mm or less.
The above-mentioned coal is blended in a ratio of 10 to 70 parts, and a hydraulic binder such as cement, granulated blast furnace fine powder and the like is added to the obtained mixture in an amount of 3% or less, and granulated and cured to obtain a desired granular fuel. The method of obtaining is described. Although this method is effective in improving the combustibility of coke breeze, coal with low flammability (anthracite) becomes coarser due to granulation. , Lowering product yield
There is a disadvantage that the effect of suppressing the amount of Ox emission is reduced.

【0005】本発明は、粉コークスと無煙炭を同時に焼
結配合原料の燃料として使用する場合に、成品歩留を向
上させてNOx排出量を大幅に抑制する焼結鉱の製造方
法を提供することを目的とする。
An object of the present invention is to provide a method for producing a sintered ore that improves product yield and significantly reduces NOx emissions when coke breeze and anthracite are simultaneously used as a fuel for a sintering compound. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明は、前記課題を解
決するため、焼結原料に配合する粉コークスと無煙炭の
粒度分布を焼成前に調整または造粒することにより、粉
コークスと無煙炭の燃焼速度をほぼ同じにして焼結層内
の最高温度を上昇させ、成品歩留を向上させてNOx排
出量を大幅に抑制する。即ち、本発明の要旨は以下の
〜の通りである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention adjusts or granulates the particle size distribution of coke breeze and anthracite to be blended in a sintering raw material before sintering. The combustion speed is made almost the same, the maximum temperature in the sintered layer is raised, and the product yield is improved, and the NOx emission is largely suppressed. That is, the gist of the present invention is as follows.

【0007】 焼結原料に粉コークスおよび無煙炭を
配合した後、混合・造粒し、焼結機に装入して焼成する
焼結鉱の製造方法において、粉コークスを粗粉砕して0
超〜5.0mmが80wt%以上の粒度とし、無煙炭を
微粉砕して0超〜2.0mmが80wt%以上の粒度に
調整して焼結原料中に配合することを特徴とする焼結鉱
の製造方法。
[0007] In a method for producing a sintered ore in which coke breeze and anthracite are blended into a sintering raw material, mixed, granulated, charged into a sintering machine and calcined, coke breeze is coarsely pulverized to 0%.
Sinter ore characterized in that super-5.0 mm has a particle size of 80 wt% or more, and anthracite is finely pulverized to adjust the particle size of more than 0 to 2.0 mm to 80 wt% or more and blended into a sintering raw material. Manufacturing method.

【0008】 焼結原料に粉コークスおよび無煙炭を
配合した後、混合・造粒し、焼結機に装入して焼成する
焼結鉱の製造方法において、粉コークスの粒度を0超〜
1.0mmが30〜55wt%、1.0〜2.0mmが
10〜60wt%、2.0〜10.0mmが0超〜35
wt%に調整または造粒して焼結原料中に配合し、無煙
炭の粒度を0超〜1.0mmが55〜70wt%、1.
0〜2.0mmが0超〜30wt%、2.0〜10.0
mmが0超〜30wt%に調整または造粒して焼結原料
中に配合することを特徴とする焼結鉱の製造方法。
In a method for producing a sintered ore in which coke breeze and anthracite are blended into a sintering raw material, mixed, granulated, charged into a sintering machine and fired, the particle size of the coke breeze is more than 0 to
1.0 mm is 30 to 55 wt%, 1.0 to 2.0 mm is 10 to 60 wt%, and 2.0 to 10.0 mm is more than 0 to 35.
wt% is adjusted or granulated and blended into the raw material for sintering.
0 to 2.0 mm is more than 0 to 30 wt%, 2.0 to 10.0
A method for producing a sintered ore, comprising adjusting or granulating mm to be more than 0 to 30 wt% and blending in a sintering raw material.

【0009】 無煙炭平均粒度/粉コークス平均粒度
の比を0.45〜0.90に調整または造粒して焼結原
料中に配合することを特徴とする前記またはの焼結
鉱の製造方法。
[0009] The method for producing a sintered ore as described above, wherein the ratio of anthracite average particle size / coke fine average particle size is adjusted or granulated to 0.45 to 0.90 and blended into a sintering raw material.

【0010】 配合原料全体を混合・造粒した後、偏
析装入装置を介して焼結機に装入することを特徴とする
前記の焼結鉱の製造方法。
[0010] The method for producing a sintered ore described above, wherein the whole compounded raw materials are mixed and granulated, and then charged into a sintering machine via a segregation charging device.

【0011】[0011]

【発明の実施の形態】本発明は、粉コークスの0超〜
1.0mmの微粉量を少なくし、1〜5mmの粗粒の粒
度を増やして粉コークスの燃焼性を向上させる一方、無
煙炭については、逆に0超〜1.0mmの微粉量を増加
させ、1〜5mmの粗粒の粒度を減少させて燃焼性を向
上させる方法である。
BEST MODE FOR CARRYING OUT THE INVENTION
While reducing the amount of fine powder of 1.0 mm and increasing the particle size of coarse particles of 1 to 5 mm to improve the combustibility of coke breeze, for anthracite, the amount of fine powder of more than 0 to 1.0 mm is increased, This is a method of improving the flammability by reducing the particle size of coarse particles of 1 to 5 mm.

【0012】表1に、熱天秤に空気を流して燃焼試験を
行った、粉コークス、無煙炭の1000℃における燃焼
速度の測定結果例を示す。なお、1000℃までは窒素
ガス(不活性ガス)を流して昇温した。粉コークスにつ
いては、1.0〜2.0mm、2.0〜5.0mmの方
が0超〜1.0mmより燃焼速度が速いことが分かる。
一方、無煙炭については逆で、0超〜1.0mmの燃焼
速度が最も速く、1.0〜2.0mm、2.0〜5.0
mmになるにつれて燃焼速度が低下する結果を得た。石
炭の一種である無煙炭の気孔量は、表2に水銀圧入ポロ
シメーターによる測定結果を示すように粉コークスの気
孔量の1/3以下であり、また表2に示すように無煙炭
の灰分量は粉コークスの灰分量の1.5倍以上もある。
このように気孔量が少なくて灰分量が多いため、粉コー
クスと違い無煙炭の燃焼性は微粉になるほど向上すると
考えられる。
Table 1 shows an example of the measurement results of the burning rate of coke breeze and anthracite at 1000 ° C., which were subjected to a combustion test by flowing air through a thermobalance. The temperature was raised up to 1000 ° C. by flowing a nitrogen gas (inert gas). As for the coke breeze, it can be seen that the burning speed is higher in the case of 1.0 to 2.0 mm and 2.0 to 5.0 mm than in the case of exceeding 0 to 1.0 mm.
On the other hand, for anthracite, on the other hand, the burning speed of more than 0 to 1.0 mm is the fastest, and 1.0 to 2.0 mm, 2.0 to 5.0 mm.
mm, the burning rate decreased. The porosity of anthracite, a kind of coal, is less than 1/3 of the porosity of coke breeze as shown in Table 2 as measured by a mercury intrusion porosimeter, and the ash content of anthracite is as shown in Table 2. There is more than 1.5 times the ash content of coke.
Since the porosity is small and the ash content is large, it is considered that, unlike coke breeze, the flammability of anthracite is improved as the powder becomes finer.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】この粉コークス微粉の0超〜1.0mmを
減少させることと、無煙炭微粉の0超〜1.0mmを増
加させることとを組み合わせると、従来と違い表1に示
すように粉コークスと無煙炭の燃焼速度が一致するよう
になるので、焼結層内の最高温度が上昇するようにな
る。層内最高温度の上昇は、融液生成量を増やして焼結
鉱の成品歩留を向上し、さらに粉コークスと無煙炭に含
まれているNがFuelNOx(FuelNOxはTh
ermalNOxと違い、高温になるほどNOx発生が
抑制される)に転換する割合(NOx転換率)を低下さ
せる。
Combining the reduction of more than 0 to 1.0 mm of the fine coke powder with the increase of more than 0 to 1.0 mm of the anthracite fine powder, unlike the prior art, Since the burning rates of the anthracite coalesce, the maximum temperature in the sintered layer rises. Increasing the maximum temperature in the bed increases the amount of melt generated to improve the product yield of sinter, and furthermore, N contained in coke breeze and anthracite is reduced to FuelNOx (FuelNOx is Th
Unlike thermal NOx, the higher the temperature is, the lower the rate of NOx generation (NOx conversion rate) is reduced.

【0016】本発明法では、粉コークスを粗粉砕して0
超〜5.0mmが80wt%以上の粒度とすることと、
無煙炭を微粉砕して0超〜2.0mmが80wt%以上
の粒度とすることを組み合わせる。粉コークスをロッド
ミル等の粉砕機で5mm以下が80%以上となるように
粗粉砕すると、一般に0超〜1.0mmに対する1.0
〜5.0mmが相対的に大きくなった粒度分布を示す。
これに対し、無煙炭をロッドミル等の粉砕機で2mm以
下が80%以上となるように微粉砕すると、一般に1.
0〜2.0mmに対する0超〜1.0mmが相対的に大
きくなった粒度分布を示す。したがって、両者を組み合
わせると前述のように粉コークスと無煙炭の燃焼速度が
接近し、成品歩留向上とNOx発生量低減効果を発現す
る。
In the method of the present invention, coke breeze is coarsely pulverized and
Ultra-5.0 mm has a particle size of 80 wt% or more;
Combination of pulverizing anthracite into a particle size of more than 0 to 2.0 mm of 80 wt% or more. When the coke breeze is coarsely pulverized by a pulverizer such as a rod mill so that 5% or less becomes 80% or more, it is generally 1.0 to 1.0 mm.
〜5.0 mm shows a relatively large particle size distribution.
On the other hand, when anthracite is pulverized with a pulverizer such as a rod mill so that 2 mm or less becomes 80% or more, generally, 1.
It shows a particle size distribution in which a value greater than 0 to 1.0 mm relative to 0 to 2.0 mm is relatively large. Therefore, when both are combined, as described above, the combustion speeds of the coke breeze and the anthracite are close to each other, and the effect of improving the product yield and reducing the NOx generation is exhibited.

【0017】さらに、粉コークスの粒度を0超〜1.0
mmが30〜55wt%、1.0〜2.0mmが10〜
60wt%、2.0〜10.0mmが0超〜35wt%
とし、無煙炭の粒度を0超〜1.0mmが55〜70w
t%、1.0〜2.0mmが0超〜30wt%、2.0
〜10.0mmが0超〜30wt%とするのは、以下の
理由による。
Furthermore, the particle size of the coke breeze is more than 0 to 1.0.
mm is 30 to 55 wt%, 1.0 to 2.0 mm is 10
60wt%, 2.0-10.0mm is more than 0-35wt%
The particle size of anthracite is more than 0 ~ 1.0mm is 55 ~ 70w
t%, 1.0 to 2.0 mm is more than 0 to 30 wt%, 2.0
The reason why mm10.0 mm is more than 0 to 30 wt% is as follows.

【0018】まず、事前に実施した鍋試験結果で上記の
粉コークスの粒度範囲が成品歩留向上とNOx発生量低
減に最適であることを確認した。
First, it was confirmed from the results of a pot test conducted in advance that the above-mentioned particle size range of coke breeze was optimal for improving product yield and reducing NOx generation.

【0019】粉コークスの0超〜1.0mmを30〜5
5wt%とするのは以下の理由による。通常の焼結機で
は、焼結ベッドの上層部には0超〜1.0mmの粉コー
クスが多くなり、ベッド中・下層部には1.0mm以上
の粉コークスが多くなる傾向があるので、粉コークスの
0超〜1.0mmが30wt%未満では、ベッド上層部
のコークス配合比が低下して上層部の成品歩留が悪化す
る傾向が見られる。一方、その粒度が55wt%超にな
ると、逆に焼結ベッドの通気性が悪化して生産性が低下
する現象が顕著になる。
More than 0 to 1.0 mm of coke breeze is 30 to 5
The reason for setting the content to 5 wt% is as follows. In a normal sintering machine, the upper part of the sintering bed tends to have more than 0 to 1.0 mm of coke breeze, and the middle and lower parts of the bed tend to have more than 1.0 mm of coke breeze. If more than 0 to 1.0 mm of coke breeze is less than 30 wt%, the coke blending ratio in the upper layer of the bed tends to decrease, and the product yield in the upper layer tends to deteriorate. On the other hand, when the particle size exceeds 55% by weight, on the contrary, the phenomenon that the permeability of the sintering bed deteriorates and the productivity decreases becomes remarkable.

【0020】粉コークスの1.0〜2.0mmを10〜
60wt%とするのは、10wt%以上から粉コークス
の燃焼速度の増加が顕著になるが、60wt%を超える
と効果が頭打ちになるからである。
The coke breeze 1.0 to 2.0 mm
The reason why the content is set to 60 wt% is that the combustion rate of the coke breeze increases remarkably from 10 wt% or more, but when the content exceeds 60 wt%, the effect level out.

【0021】粉コークスの2.0〜10.0mmを0超
〜35wt%とするのは、35wt%超になると成品歩
留低下が見られ始めるからである。
The reason why 2.0 to 10.0 mm of the coke breeze is more than 0 to 35 wt% is that when the content exceeds 35 wt%, a decrease in product yield starts to be seen.

【0022】上記粉コークス粒度の最適範囲内では、無
煙炭の0超〜1.0mmが55wt%以上になると効果
が出始め、70wt%超になると逆に焼結ベッドの通気
性悪化による成品歩留低下、生産率低下の悪影響が見ら
れ始める。
Within the above-mentioned optimum range of the coke breeze particle size, the effect starts to be exhibited when the anthracite is more than 0 to 1.0 mm becomes 55 wt% or more, and when it becomes more than 70 wt%, conversely, the product yield due to the deterioration of the permeability of the sintering bed is obtained. The negative effects of the decline and the decrease in production rate begin to be seen.

【0023】無煙炭の1.0〜2.0mmを0超〜30
wt%とするのは、30wt%を超えると無煙炭の燃焼
速度の低下が顕著になり始めるからである。
[0023] Anthracite 1.0 to 2.0 mm exceeds 0 to 30
The reason for setting it to wt% is that if it exceeds 30 wt%, the burning rate of anthracite starts to decrease remarkably.

【0024】無煙炭の2.0〜10.0mmを0超〜3
0wt%とするのは、30wt%を超えると無煙炭の燃
焼速度の低下が顕著になり始めるからである。
2.0 to 10.0 mm of anthracite exceeds 0 to 3
The reason for setting it to 0 wt% is that if it exceeds 30 wt%, the burning rate of anthracite starts to decrease remarkably.

【0025】無煙炭平均粒度/粉コークス平均粒度の比
を0.45〜0.90に調整するのは以下の理由によ
る。粒度毎(10mm以上、10〜5mm、5〜2m
m、2〜1mm、1〜0.5mm、0.5〜0.25m
m、0.25〜0.125mm、0.125〜0.06
2mm、0.062mm以下)の重量割合から加重平均
で計算する平均粒度で評価すると、前記の粉コークス・
無煙炭の最適粒度範囲内では、無煙炭平均粒度/粉コー
クス平均粒度の比が0.90以下になると成品歩留向上
とNOx発生量抑制の効果が顕著になり始め、この比が
低くなるにつれてNOx発生量抑制の効果はより大きく
なる結果を得た。しかし、この比が0.45未満になる
と焼結ベッドの通気性が低下し、成品歩留が逆に悪化す
る現象が顕著になり、NOx発生量抑制の効果も頭打ち
になる。
The reason why the ratio of the average particle size of anthracite / the average particle size of coke breeze is adjusted to 0.45 to 0.90 is as follows. Every particle size (10mm or more, 10-5mm, 5-2m
m, 2-1 mm, 1-0.5 mm, 0.5-0.25 m
m, 0.25-0.125 mm, 0.125-0.06
2 mm, 0.062 mm or less).
Within the optimum particle size range of anthracite, when the ratio of the anthracite average particle size / the average coke fine particle size is 0.90 or less, the effects of improving product yield and suppressing NOx generation begin to become remarkable, and as this ratio decreases, NOx generation increases. The result that the effect of the amount suppression became larger was obtained. However, when this ratio is less than 0.45, the permeability of the sintering bed decreases, the phenomenon that the product yield deteriorates conspicuously becomes remarkable, and the effect of suppressing the generation amount of NOx also reaches a plateau.

【0026】さらに、粉コークスと無煙炭の粒度を調整
し、配合原料全体を混合・造粒した後、偏析装入装置を
介して焼結機に装入すれば、焼結ベッドの上層部には粉
コークスの0超〜1.0mmに加えて無煙炭の0超〜
1.0mmがより多く集まるようになるので、焼結ベッ
ドの通気性が一定の条件では、ベッド上層部の層内温度
が上昇して上層部の成分歩留がより向上し、NOx排出
量も同時により抑制されるため特に好ましい。
Furthermore, after adjusting the particle size of the coke breeze and anthracite, mixing and granulating the entire blended raw material, and then charging the mixture into a sintering machine via a segregation charging device, the upper layer of the sintering bed is formed. More than 0 of coke breeze ~ 1.0mm plus more than 0 of anthracite ~
Since 1.0 mm is gathered more, under the condition that the permeability of the sintered bed is constant, the temperature in the upper layer of the bed rises, the component yield in the upper layer is further improved, and the NOx emission is also reduced. At the same time, it is particularly preferable because it is more suppressed.

【0027】[0027]

【実施例】表3に鍋試験に使用した配合原料の配合割
合、表4に鍋試験に使用した粉コークスと無煙炭の粒度
分布を示した。すべての試験における鍋試験装置への焼
結原料の装入は、粒度を層高方向に小さくなるように連
続して偏析させる装入装置(藤本政美ら:材料とプロセ
ス,1(1988),p.37〜39)を用いて行っ
た。なお、鍋試験結果と実機操業結果の対応があること
を各種試験ですでに確認している。
EXAMPLES Table 3 shows the mixing ratio of the raw materials used in the pot test, and Table 4 shows the particle size distribution of coke breeze and anthracite used in the pot test. The charging of the sintering raw material into the pan test apparatus in all tests is performed by a charging apparatus that continuously segregates the grain size in the direction of the bed height (Masami Fujimoto et al .: Materials and Processes, 1 (1988), p. 37-39). Various tests have already confirmed that there is a correspondence between the results of the pot test and the results of the actual operation of the machine.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】比較例に対して、実施例1から実施例3に
なるほど無煙炭の2mm以上を少なくして1mm以下を
増加させ、平均粒度を小さくした。粉コークスの粒度は
篩い分け法で調整し、無煙炭については、一度破砕した
のち篩い分け法で粒度を調整した。無煙炭平均粒度/粉
コークス平均粒度の比は、実施例1が0.78、実施例
2が0.57、実施例3が0.50、比較例が1.0で
あった。
As compared with the comparative example, the average particle size was reduced by decreasing the anthracite by 2 mm or more and increasing by 1 mm or less from Example 1 to Example 3. The particle size of the coke breeze was adjusted by a sieving method, and for anthracite, the particle size was adjusted by a sieving method after crushing once. The ratio of the average particle size of anthracite / the average particle size of coke breeze was 0.78 in Example 1, 0.57 in Example 2, 0.50 in Example 3, and 1.0 in Comparative Example.

【0031】図1に、鍋試験結果の生産率、成品歩留、
TI(冷間強度、JISM8712により測定)、RD
I(低温還元粉化指数、製銑部会法)、JIS還元率
(JISM8713)、NOx排出量原単位を示す。
FIG. 1 shows the production rate, product yield,
TI (cold strength, measured according to JIS M8712), RD
I (low-temperature reduction pulverization index, ironmaking subcommittee method), JIS reduction rate (JISM8713), and basic unit of NOx emission are shown.

【0032】図2には、焼結過程のヒートパターン測定
結果例を示した。本発明法では、焼結層内のヒートパタ
ーンの上層から下層にかけての最高温度が上昇して90
0℃以上の高温保持時間も均一化する傾向が見られ、こ
れが成品歩留向上とNOx発生量抑制を同時にもたらす
ことが分かった。
FIG. 2 shows an example of a heat pattern measurement result in the sintering process. According to the method of the present invention, the maximum temperature from the upper layer to the lower layer of the heat pattern in the sintered layer rises to 90%.
There was also a tendency for the high-temperature holding time at 0 ° C. or higher to be uniform, and it was found that this simultaneously improved the product yield and suppressed the amount of NOx generated.

【0033】図3には、焼結ベッド層高方向のカーボン
割合を示す。本発明法の方が上層部のカーボン割合が増
えており、粒度の細かい無煙炭が上層部に多く偏析した
効果が出ていると考えられる。
FIG. 3 shows the proportion of carbon in the height direction of the sintered bed layer. It is considered that the effect of the method of the present invention is that the carbon ratio of the upper layer is increased, and anthracite having a fine particle size segregates in the upper layer more.

【0034】実施例では、焼結ベッドの成品歩留が向上
し、生産率が向上した。また、焼結層内の最高温度が上
昇して融液量が増えるので、成品歩留とTI、RDIが
向上し、焼結層内の温度分布がベッド上、中、下層で均
一化され、さらに焼結鉱組織にはミクロ気孔が増加して
均一に分散されるので、JIS還元率も向上した。さら
に、焼結層内の最高温度が上昇するので、FuelNO
xの発生量が抑制された。
In the example, the product yield of the sintering bed was improved, and the production rate was improved. In addition, since the maximum temperature in the sintering layer increases and the amount of the melt increases, the product yield and TI and RDI are improved, and the temperature distribution in the sintering layer is made uniform in the bed, in the middle, and in the lower layer, Furthermore, since the micropores are increased and uniformly dispersed in the sintered ore structure, the JIS reduction rate is also improved. Further, since the maximum temperature in the sintered layer rises, FuelNO
The generation amount of x was suppressed.

【0035】[0035]

【発明の効果】本発明によれば、焼結鉱の成品歩留を向
上させることができ、NOx排出量を抑制することがで
きる。また、焼結機排ガスのNOx排出量を一定にしな
がら、焼結鉱生産量を増加することも可能になる。その
上、焼結鉱の被還元性状を大幅に向上するので、高炉安
定操業に寄与する。
According to the present invention, the product yield of sintered ore can be improved, and NOx emission can be suppressed. It is also possible to increase the amount of sinter production while keeping the NOx emission of the sintering machine exhaust gas constant. In addition, since the properties of the ore to be reduced are greatly improved, it contributes to the stable operation of the blast furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結鉱の鍋試験結果を示す図である。FIG. 1 is a view showing the results of a pot test of a sintered ore.

【図2】焼結層内のヒートパターン測定結果の例を示す
図である。
FIG. 2 is a diagram showing an example of a heat pattern measurement result in a sintered layer.

【図3】実焼結機の焼結ベッド層高方向のカーボン割合
を示す図である。
FIG. 3 is a view showing a carbon ratio in a sintering bed layer height direction of an actual sintering machine.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 焼結原料に粉コークスおよび無煙炭を配
合した後、混合・造粒し、焼結機に装入して焼成する焼
結鉱の製造方法において、粉コークスを粗粉砕して0超
〜5.0mmが80wt%以上の粒度とし、無煙炭を微
粉砕して0超〜2.0mmが80wt%以上の粒度に調
整して焼結原料中に配合することを特徴とする焼結鉱の
製造方法。
1. A method for producing a sintered ore in which coke breeze and anthracite are blended into a sintering raw material, mixed, granulated, charged into a sintering machine and fired, and the coke breeze is coarsely pulverized. Sinter ore characterized in that super-5.0 mm has a particle size of 80 wt% or more, and anthracite is finely pulverized to adjust the particle size of more than 0 to 2.0 mm to 80 wt% or more and blended into a sintering raw material. Manufacturing method.
【請求項2】 焼結原料に粉コークスおよび無煙炭を配
合した後、混合・造粒し、焼結機に装入して焼成する焼
結鉱の製造方法において、粉コークスの粒度を0超〜
1.0mmが30〜55wt%、1.0〜2.0mmが
10〜60wt%、2.0〜10.0mmが0超〜35
wt%に調整または造粒して焼結原料中に配合し、無煙
炭の粒度を0超〜1.0mmが55〜70wt%、1.
0〜2.0mmが0超〜30wt%、2.0〜10.0
mmが0超〜30wt%に調整または造粒して焼結原料
中に配合することを特徴とする焼結鉱の製造方法。
2. A method for producing a sintered ore in which coke breeze and anthracite are blended into a sintering raw material, mixed, granulated, charged into a sintering machine and fired, wherein the particle size of the coke breeze is more than 0 to 2.
1.0 mm is 30 to 55 wt%, 1.0 to 2.0 mm is 10 to 60 wt%, and 2.0 to 10.0 mm is more than 0 to 35.
wt% is adjusted or granulated and blended into the raw material for sintering.
0 to 2.0 mm is more than 0 to 30 wt%, 2.0 to 10.0
A method for producing a sintered ore, comprising adjusting or granulating mm to be more than 0 to 30 wt% and blending in a sintering raw material.
【請求項3】 無煙炭平均粒度/粉コークス平均粒度の
比を0.45〜0.90に調整または造粒して焼結原料
中に配合することを特徴とする請求項1または2記載の
焼結鉱の製造方法。
3. The sintering material according to claim 1, wherein the ratio of anthracite average particle size / coke powder average particle size is adjusted or granulated to 0.45 to 0.90 and blended into a sintering raw material. The method of producing condensate.
【請求項4】 配合原料全体を混合・造粒した後、偏析
装入装置を介して焼結機に装入することを特徴とする請
求項3記載の焼結鉱の製造方法。
4. The method for producing a sintered ore according to claim 3, wherein the whole raw materials are mixed and granulated, and then charged into a sintering machine via a segregation charging device.
JP11748197A 1997-04-22 1997-04-22 Production of sintered ore Pending JPH10298670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11748197A JPH10298670A (en) 1997-04-22 1997-04-22 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11748197A JPH10298670A (en) 1997-04-22 1997-04-22 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH10298670A true JPH10298670A (en) 1998-11-10

Family

ID=14712781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11748197A Pending JPH10298670A (en) 1997-04-22 1997-04-22 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH10298670A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038999A (en) * 2000-11-20 2002-05-25 이구택 A method for manufacturing sintered ore using anthracite
KR100469298B1 (en) * 2000-11-24 2005-01-31 주식회사 포스코 SOx AND NOx REDUCING METHOD OF SINTERING DISCHARGING GAS BY USING ANTHRACITE HAVING LOW NITROGEN AND SULFUR
KR100544465B1 (en) * 2001-09-07 2006-01-24 주식회사 포스코 A Method for Manufacturing Sinter
KR100786466B1 (en) * 2001-12-18 2007-12-17 주식회사 포스코 Mini-pellet manufacturing for reduced sulfur oxide and nitrogen oxide
CN110343851A (en) * 2019-07-24 2019-10-18 武汉钢铁有限公司 A kind of ore-proportioning method effectively reducing sintering process NOx emission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038999A (en) * 2000-11-20 2002-05-25 이구택 A method for manufacturing sintered ore using anthracite
KR100469298B1 (en) * 2000-11-24 2005-01-31 주식회사 포스코 SOx AND NOx REDUCING METHOD OF SINTERING DISCHARGING GAS BY USING ANTHRACITE HAVING LOW NITROGEN AND SULFUR
KR100544465B1 (en) * 2001-09-07 2006-01-24 주식회사 포스코 A Method for Manufacturing Sinter
KR100786466B1 (en) * 2001-12-18 2007-12-17 주식회사 포스코 Mini-pellet manufacturing for reduced sulfur oxide and nitrogen oxide
CN110343851A (en) * 2019-07-24 2019-10-18 武汉钢铁有限公司 A kind of ore-proportioning method effectively reducing sintering process NOx emission
CN110343851B (en) * 2019-07-24 2021-02-19 武汉钢铁有限公司 Ore blending method for effectively reducing NOx emission in sintering process

Similar Documents

Publication Publication Date Title
JP6686974B2 (en) Sintered ore manufacturing method
JP2009097027A (en) Method for producing sintered ore
JPH024658B2 (en)
EA023830B1 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JPH10298670A (en) Production of sintered ore
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JPH10195549A (en) Production of sintered ore
JP5004421B2 (en) Method for producing sintered ore
JP2007277595A (en) Sintered ore production method
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP2009242829A (en) Method for producing sintered ore
JP3014556B2 (en) Blast furnace operation method
JP2001140007A (en) Operating method of blast furnace using polycrystallized water-containing iron raw material
JPS6313475B2 (en)
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JPS6349728B2 (en)
JPH08199250A (en) Production of sintered ore
JPH0885829A (en) Production of sintered ore
JPH0230722A (en) Manufacture of briquetted ore for blast furnace
JPS63128127A (en) Manufacture of sintered ore
CN117025943A (en) Modified fuel for improving sintering technical index, preparation method and application
JPH0598358A (en) Manufacture of sintered ore
JP2020117767A (en) Method for manufacturing sinter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A02